Sample records for cell immune synapses

  1. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  2. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad


    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  3. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. (United States)

    Finetti, Francesca; Onnis, Anna; Baldari, Cosima T


    The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.

  4. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine


    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  5. The cytotoxic T lymphocyte immune synapse at a glance. (United States)

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M


    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.

  6. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation (United States)

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.


    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  7. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. (United States)

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco


    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.

  8. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Alice C N Brown


    Full Text Available Natural Killer (NK cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  9. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. (United States)

    Brown, Alice C N; Oddos, Stephane; Dobbie, Ian M; Alakoskela, Juha-Matti; Parton, Richard M; Eissmann, Philipp; Neil, Mark A A; Dunsby, Christopher; French, Paul M W; Davis, Ilan; Davis, Daniel M


    Natural Killer (NK) cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F)-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM) to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC) polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  10. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse. (United States)

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T


    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  11. Intraflagellar transport: a new player at the immune synapse. (United States)

    Finetti, Francesca; Paccani, Silvia Rossi; Rosenbaum, Joel; Baldari, Cosima T


    The assembly and maintenance of primary cilia, which orchestrate signaling pathways centrally implicated in cell proliferation, differentiation and migration, are ensured by multimeric protein particles in a process known as intraflagellar transport (IFT). It has recently been demonstrated that a number of IFT components are expressed in hematopoietic cells, which have no cilia. Here, we summarize data for an unexpected role of IFT proteins in immune synapse assembly and intracellular membrane trafficking in T lymphocytes, and discuss the hypothesis that the immune synapse could represent the functional homolog of the primary cilium in these cells.

  12. Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells.

    Directory of Open Access Journals (Sweden)

    Nahzli Dilek

    Full Text Available CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs. What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff but inhibition of suppression by regulatory T cells (Tregs, while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.

  13. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. (United States)

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco


    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  14. Studying the Dynamics of TCR Internalization at the Immune Synapse. (United States)

    Calleja, Enrique; Alarcón, Balbino; Oeste, Clara L


    Establishing a stable interaction between a T cell and an antigen presenting cell (APC) involves the formation of an immune synapse (IS). It is through this structure that the T cell can integrate all the signals provided by the APC. The IS also serves as a mechanism for TCR downregulation through internalization. Here, we describe methods for visualizing MHC-engaged T cell receptor (TCR) internalization from the IS in human cell lines and mouse primary T cells by confocal fluorescence microscopy techniques.

  15. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. (United States)

    Franciszkiewicz, Katarzyna; Le Floc'h, Audrey; Boutet, Marie; Vergnon, Isabelle; Schmitt, Alain; Mami-Chouaib, Fathia


    T-cell adhesion/costimulatory molecules and their cognate receptors on target cells play a major role in T-cell receptor (TCR)-mediated activities. Here, we compared the involvement of CD103 and LFA-1, and their respective ligands, in the maturation of the cytotoxic immune synapse (cIS) and in the activation of CTL effector functions. Our results indicate that cytotoxicity toward cancer cells and, to a lesser extent, cytokine production by specific CTL require, together with TCR engagement, the interaction of either CD103 with E-cadherin or LFA-1 with ICAM-1. Flow-based adhesion assay showed that engagement of CD103 or LFA-1, together with TCR, enhances the strength of the T-cell/target cell interaction. Moreover, electron microscopic analyses showed that integrin-dependent mature cIS (mcIS) displays a cohesive ultrastructure, with tight membrane contacts separated by extensive clefts. In contrast, immature cIS (icIS), which is unable to trigger target cell lysis, is loose, with multiple protrusions in the effector cell membrane. Experiments using confocal microscopy revealed polarized cytokine release and degranulation at the mcIS associated with target cell killing, whereas icIS is characterized by failure of IFN-γ and granzyme B relocalization. Thus, interactive forces between CTL and epithelial tumor cells, mainly regulated by integrin engagement, correlate with maturity and the ultrastructure of the cIS and influence CTL effector functions. These results provide new insights into molecular mechanisms regulating antitumor CTL responses and may lead to the development of more efficient cancer immunotherapy strategies.

  16. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J; Baldari, Cosima T


    T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.

  17. An Endothelial Planar Cell Model for Imaging Immunological Synapse Dynamics. (United States)

    Martinelli, Roberta; Carman, Christopher V


    Adaptive immunity is regulated by dynamic interactions between T cells and antigen presenting cells ('APCs') referred to as 'immunological synapses'. Within these intimate cell-cell interfaces discrete sub-cellular clusters of MHC/Ag-TCR, F-actin, adhesion and signaling molecules form and remodel rapidly. These dynamics are thought to be critical determinants of both the efficiency and quality of the immune responses that develop and therefore of protective versus pathologic immunity. Current understanding of immunological synapses with physiologic APCs is limited by the inadequacy of the obtainable imaging resolution. Though artificial substrate models (e.g., planar lipid bilayers) offer excellent resolution and have been extremely valuable tools, they are inherently non-physiologic and oversimplified. Vascular and lymphatic endothelial cells have emerged as an important peripheral tissue (or stromal) compartment of 'semi-professional APCs'. These APCs (which express most of the molecular machinery of professional APCs) have the unique feature of forming virtually planar cell surface and are readily transfectable (e.g., with fluorescent protein reporters). Herein a basic approach to implement endothelial cells as a novel and physiologic 'planar cellular APC model' for improved imaging and interrogation of fundamental antigenic signaling processes will be described.

  18. Mast cell synapses and exosomes: membrane contacts for information exchange

    Directory of Open Access Journals (Sweden)

    Amanda eCarroll-Portillo


    Full Text Available In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell-cell contacts with dendritic cells and T cells. Release of membrane-bound exosomes also provide for the transfer of antigen, mast cell proteins and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.

  19. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses (United States)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco


    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  20. Glutamatergic Signaling at the Vestibular Hair Cell Calyx Synapse

    NARCIS (Netherlands)

    Sadeghi, Soroush G.; Pyott, Sonja J.; Yu, Zhou; Glowatzki, Elisabeth


    In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamaterg

  1. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. (United States)

    Finetti, Francesca; Paccani, Silvia Rossi; Riparbelli, Maria Giovanna; Giacomello, Emiliana; Perinetti, Giuseppe; Pazour, Gregory J; Rosenbaum, Joel L; Baldari, Cosima T


    Most eukaryotic cells have a primary cilium which functions as a sensory organelle. Cilia are assembled by intraflagellar transport (IFT), a process mediated by multimeric IFT particles and molecular motors. Here we show that lymphoid and myeloid cells, which lack primary cilia, express IFT proteins. IFT20, an IFT component essential for ciliary assembly, was found to colocalize with both the microtubule organizing centre (MTOC) and Golgi and post-Golgi compartments in T-lymphocytes. In antigen-specific conjugates, IFT20 translocated to the immune synapse. IFT20 knockdown resulted in impaired T-cell receptor/CD3 (TCR/CD3) clustering and signalling at the immune synapse, due to defective polarized recycling. Moreover, IFT20 was required for the inducible assembly of a complex with other IFT components (IFT57 and IFT88) and the TCR. The results identify IFT20 as a new regulator of immune synapse assembly in T cells and provide the first evidence to implicate IFT in membrane trafficking in cells lacking primary cilia, thereby introducing a new perspective on IFT function beyond its role in ciliogenesis.

  2. The role of Cbln1 on Purkinje cell synapse formation. (United States)

    Ito-Ishida, Aya; Okabe, Shigeo; Yuzaki, Michisuke


    Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.

  3. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. (United States)

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki


    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  4. Molecular mechanism of parallel fiber-Purkinje cell synapse formation

    Directory of Open Access Journals (Sweden)

    Masayoshi eMishina


    Full Text Available The cerebellum receives two excitatory afferents, the climbing fiber (CF and the mossy fiber-parallel fiber (PF pathway, both converging onto Purkinje cells (PCs that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2 is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs through Cbln1 mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  5. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis (United States)

    Onnis, A; Finetti, F; Patrussi, L; Gottardo, M; Cassioli, C; Spanò, S; Baldari, C T


    Accumulating evidence underscores the T-cell immune synapse (IS) as a site of intense vesicular trafficking, on which productive signaling and cell activation crucially depend. Although the T-cell antigen receptor (TCR) is known to exploit recycling to accumulate to the IS, the specific pathway that controls this process remains to be elucidated. Here we demonstrate that the small GTPase Rab29 is centrally implicated in TCR trafficking and IS assembly. Rab29 colocalized and interacted with Rab8, Rab11 and IFT20, a component of the intraflagellar transport system that regulates ciliogenesis and participates in TCR recycling in the non-ciliated T cell, as assessed by co-immunoprecipitation and immunofluorescence analysis. Rab29 depletion resulted in the inability of TCRs to undergo recycling to the IS, thereby compromizing IS assembly. Under these conditions, recycling TCRs accumulated in Rab11+ endosomes that failed to polarize to the IS due to defective Rab29-dependent recruitment of the dynein microtubule motor. Remarkably, Rab29 participates in a similar pathway in ciliated cells to promote primary cilium growth and ciliary localization of Smoothened. These results provide a function for Rab29 as a regulator of receptor recycling and identify this GTPase as a shared participant in IS and primary cilium assembly. PMID:26021297

  6. Relating structure and function of inner hair cell ribbon synapses. (United States)

    Wichmann, C; Moser, T


    In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.

  7. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. (United States)

    González-Granado, José M; Silvestre-Roig, Carlos; Rocha-Perugini, Vera; Trigueros-Motos, Laia; Cibrián, Danay; Morlino, Giulia; Blanco-Berrocal, Marta; Osorio, Fernando G; Freije, José M P; López-Otín, Carlos; Sánchez-Madrid, Francisco; Andrés, Vicente


    In many cell types, nuclear A-type lamins regulate multiple cellular functions, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction; however, their role in specialized immune cells remains largely unexplored. We showed that the abundance of A-type lamins was almost negligible in resting naïve T lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in lamin-A was an early event that accelerated formation of the immunological synapse between T cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex to promote F-actin polymerization. We also showed that lamin-A expression accelerated TCR clustering and led to enhanced downstream signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, as well as increased target gene expression. Pharmacological inhibition of the ERK pathway reduced lamin-A-dependent T cell activation. Moreover, mice lacking lamin-A in immune cells exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation and identify lamin-A as a previously unappreciated regulator of the immune response.

  8. Climbing fiber synapse elimination in cerebellar Purkinje cells. (United States)

    Watanabe, Masahiko; Kano, Masanobu


    Innervation of Purkinje cells (PCs) by multiple climbing fibers (CFs) is refined into mono-innervation during the first three postnatal weeks of rodents' lives. In this review article, we will integrate the current knowledge on developmental process and mechanisms of CF synapse elimination. In the 'creeper' stage of CF innervation (postnatal day 0 (P0)∼), CFs creep among PC somata to form transient synapses on immature dendrites. In the 'pericellular nest' stage (P5∼), CFs densely surround and innervate PC somata. CF innervation is then displaced to the apical portion of PC somata in the 'capuchon' stage (P9∼), and translocate to dendrites in the 'dendritic' (P12∼) stage. Along with the developmental changes in CF wiring, functional and morphological distinctions become larger among CF inputs. PCs are initially innervated by more than five CFs with similar strengths (∼P3). During P3-7 only a single CF is selectively strengthened (functional differentiation), and it undergoes dendritic translocation from P9 on (dendritic translocation). Following the functional differentiation, perisomatic CF synapses are eliminated nonselectively; this proceeds in two distinct phases. The early phase (P7-11) is conducted independently of parallel fiber (PF)-PC synapse formation, while the late phase (P12-17) critically depends on it. The P/Q-type voltage-dependent Ca(2+) channel in PCs triggers selective strengthening of single CF inputs, promotes dendritic translocation of the strengthened CFs, and drives the early phase of CF synapse elimination. In contrast, the late phase is mediated by the mGluR1-Gαq-PLCβ4-PKCγ signaling cascade in PCs driven at PF-PC synapses, whose structural connectivity is stabilized and maintained by the GluRδ2-Cbln1-neurexin system.

  9. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. (United States)

    Onnis, Anna; Finetti, Francesca; Baldari, Cosima T


    The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.

  10. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures (United States)

    Patrussi, Laura; Baldari, Cosima T.


    ABSTRACT Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures. PMID:26587735

  11. New views of the human NK cell immunological synapse: recent advances enabled by super- and high- resolution imaging techniques

    Directory of Open Access Journals (Sweden)

    Emily M. Mace


    Full Text Available Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm. In addition, new techniques for single molecule imaging are being added to the cell biologist’s arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse’s relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super resolution microscopy and high resolution total internal reflection microscopy and Förster resonance energy transfer.

  12. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu


    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  13. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits (United States)

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.


    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  14. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang


    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  15. A peptide antagonist disrupts NK cell inhibitory synapse formation. (United States)

    Borhis, Gwenoline; Ahmed, Parvin S; Mbiribindi, Bérénice; Naiyer, Mohammed M; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I


    Productive engagement of MHC class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell Ig-like receptors (KIRs) can antagonize the inhibition mediated by high-affinity peptide:MHC complexes and cause NK cell activation. We show that low-affinity peptide:MHC complexes stall inhibitory signaling at the step of Src homology protein tyrosine phosphatase 1 recruitment and do not go on to form the KIR microclusters induced by high-affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signaling. Furthermore, the low-affinity peptide:MHC complexes prevented the formation of KIR microclusters by high-affinity peptide:MHC. Thus, peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption.

  16. Developmental patterning of glutamatergic synapses onto retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Schubert Timm


    Full Text Available Abstract Background Neurons receive excitatory synaptic inputs that are distributed across their dendritic arbors at densities and with spatial patterns that influence their output. How specific synaptic distributions are attained during development is not well understood. The distribution of glutamatergic inputs across the dendritic arbors of mammalian retinal ganglion cells (RGCs has long been correlated to the spatial receptive field profiles of these neurons. Thus, determining how glutamatergic inputs are patterned onto RGC dendritic arbors during development could provide insight into the cellular mechanisms that shape their functional receptive fields. Results We transfected developing and mature mouse RGCs with plasmids encoding fluorescent proteins that label their dendrites and glutamatergic postsynaptic sites. We found that as dendritic density (dendritic length per unit area of dendritic field decreases with maturation, the density of synapses along the dendrites increases. These changes appear coordinated such that RGCs attain the mature average density of postsynaptic sites per unit area (areal density by the time synaptic function emerges. Furthermore, stereotypic centro-peripheral gradients in the areal density of synapses across the arbor of RGCs are established at an early developmental stage. Conclusion The spatial pattern of glutamatergic inputs onto RGCs arises early in synaptogenesis despite ensuing reorganization of dendritic structure. We raise the possibility that these early patterns of synaptic distributions may arise from constraints placed on the number of contacts presynaptic neurons are able to make with the RGCs.

  17. Compartmentalization of signaling by vesicular trafficking: a shared building design for the immune synapse and the primary cilium. (United States)

    Finetti, Francesca; Baldari, Cosima T


    Accumulating evidence underscores the immune synapse (IS) of naive T cells as a site of intense vesicular trafficking. At variance with helper and cytolytic effectors, which use the IS as a secretory platform to deliver cytokines and/or lytic granules to their cellular targets, this process is exploited by naive T cells as a means to regulate the assembly and maintenance of the IS, on which productive signaling and cell activation crucially depend. We have recently identified a role of the intraflagellar transport (IFT) system, which is responsible for the assembly of the primary cilium, in the non-ciliated T-cell, where it controls IS assembly by promoting polarized T-cell receptor recycling. This unexpected finding not only provides new insight into the mechanisms of IS assembly but also strongly supports the notion that the IS and the primary cilium, which are both characterized by a specialized membrane domain highly enriched in receptors and signaling mediators, share architectural similarities and are homologous structures. Here, we review our current understanding of vesicular trafficking in the regulation of the assembly and maintenance of the naive T-cell IS and the primary cilium, with a focus on the IFT system.

  18. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto


    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  19. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten


    The induction of a proper adaptive immune response is dependent on the correct transfer of information between antigen-presenting cells (APCs) and antigen-specific T cells. Defects in information transfer may result in the development of diseases, e.g. immunodeficiencies and autoimmunity. A disti......The induction of a proper adaptive immune response is dependent on the correct transfer of information between antigen-presenting cells (APCs) and antigen-specific T cells. Defects in information transfer may result in the development of diseases, e.g. immunodeficiencies and autoimmunity....... A distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning...

  20. Analysing immune cell migration. (United States)

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J


    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  1. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  2. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells. (United States)

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke


    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  3. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses. (United States)

    Marc, R E; Liu, W


    Presynaptic gamma-aminobutyrate-immunoreactive (GABA+) profiles were mapped in the cyprinid retina with overlay microscopy: a fusion of electron and optical imaging affording high-contrast ultrastructural and immunocytochemical visualization. GABA+ synapses, deriving primarily from amacrine cells (ACs), compose 92% of conventional synapses and 98% of the input to bipolar cells (BCs) in the inner plexiform layer. GABA+ AC synapses, the sign-inverting elements of signal processing, are deployed in micronetworks and distinctive synaptic source/target topologies. Nested feedback micronetworks are formed by three types of links (BC --> AC, reciprocal BC AC synapses) arranged as nested BC [AC --> AC] loops. Circuits using nested feedback can possess better temporal performance than those using simple reciprocal feedback loops. Concatenated GABA+ micronetworks of AC --> AC and AC --> AC --> AC chains are common and must be key elements for lateral spatial, temporal, and spectral signal processing. Concatenated inhibitions may represent exceptionally stable, low-gain, sign-conserving devices for receptive field construction. Some chain elements are GABA immunonegative (GABA-) and are, thus, likely glycinergic synapses. GABA+ synaptic baskets target the somas of certain GABA+ and GABA- cells, resembling cortical axosomatic synapses. Finally, all myelinated intraretinal profiles are GABA+, suggesting that some efferent systems are sources of GABAergic inhibition in the cyprinid retina and may comprise all axosomatic synapses. These micronetworks are likely the fundamental elements for receptive field shaping in the inner plexiform layer, although few receptive field models incorporate them as functional components. Conversely, simple feedback and feedforward synapses may often be chimeras: the result of an incomplete view of synaptic topology.

  4. A positive feedback synapse from retinal horizontal cells to cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Skyler L Jackman


    Full Text Available Cone photoreceptors and horizontal cells (HCs have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.

  5. The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons

    Directory of Open Access Journals (Sweden)

    Lingfeng Meng


    Full Text Available Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.

  6. Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell. (United States)

    Cachope, Roger; Pereda, Alberto E


    Opioid receptors were shown to modulate a variety of cellular processes in the vertebrate central nervous system, including synaptic transmission. While the effects of opioid receptors on chemically mediated transmission have been extensively investigated, little is known of their actions on gap junction-mediated electrical synapses. Here we report that pharmacological activation of mu-opioid receptors led to a long-term enhancement of electrical (and glutamatergic) transmission at identifiable mixed synapses on the goldfish Mauthner cells. The effect also required activation of both dopamine D1/5 receptors and postsynaptic cAMP-dependent protein kinase A, suggesting that opioid-evoked actions are mediated indirectly via the release of dopamine from varicosities known to be located in the vicinity of the synaptic contacts. Moreover, inhibitory inputs situated in the immediate vicinity of these excitatory synapses on the lateral dendrite of the Mauthner cell were not affected by activation of mu-opioid receptors, indicating that their actions are restricted to electrical and glutamatergic transmissions co-existing at mixed contacts. Thus, as their chemical counterparts, electrical synapses can be a target for the modulatory actions of the opioid system. Because gap junctions at these mixed synapses are formed by fish homologs of the neuronal connexin 36, which is widespread in mammalian brain, it is likely that this regulatory property applies to electrical synapses elsewhere as well.

  7. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina. (United States)

    Chen, Yin-Peng; Chiao, Chuan-Chin


    Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  8. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  9. Purinergic signaling at immunological synapses. (United States)

    Dubyak, G R


    The early studies and hypotheses of Geoffrey Burnstock catalyzed intensive characterization of roles for nucleotides and P2 nucleotide receptors in neurotransmission and neuromodulation. These latter analyses have focused on the mechanisms of nucleotide release and action in the microenvironments of nerve endings and synapses. However, studies of various white blood cells, such as monocytes, neutrophils, and lymphocytes, suggest that locally released nucleotides also modulate intercellular signaling at so-called 'immunological synapses'. This communication describes recent findings and speculations regarding nucleotide release and signaling in several key phases of the immune and inflammatory responses.

  10. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo. (United States)

    Ito-Ishida, Aya; Miura, Eriko; Emi, Kyoichi; Matsuda, Keiko; Iijima, Takatoshi; Kondo, Tetsuro; Kohda, Kazuhisa; Watanabe, Masahiko; Yuzaki, Michisuke


    Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.

  11. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang


    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  12. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. (United States)

    Roux, Isabelle; Hosie, Suzanne; Johnson, Stuart L; Bahloul, Amel; Cayet, Nadège; Nouaille, Sylvie; Kros, Corné J; Petit, Christine; Safieddine, Saaid


    The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.

  13. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. (United States)

    Dean, Camin; Dresbach, Thomas


    Cell adhesion represents the most direct way of coordinating synaptic connectivity in the brain. Recent evidence highlights the importance of a trans-synaptic interaction between postsynaptic neuroligins and presynaptic neurexins. These transmembrane molecules bind each other extracellularly to promote adhesion between dendrites and axons. This signals the recruitment of presynaptic and postsynaptic molecules to form a functional synapse. Remarkably, neuroligins alone can induce the formation of fully functional presynaptic terminals in contacting axons. Conversely, neurexins alone can induce postsynaptic differentiation and clustering of receptors in dendrites. Therefore, the neuroligin-neurexin interaction has the unique ability to act as a bi-directional trigger of synapse formation. Here, we review several recent studies that offer clues as to how these proteins form synapses and how they might function in the brain to establish and modify neuronal network properties and cognition.

  14. HVEM serial-section analysis of rabbit foliate taste buds: I. Type III cells and their synapses. (United States)

    Royer, S M; Kinnamon, J C


    Serially sectioned rabbit foliate taste buds were examined with high voltage electron microscopy (HVEM) and computer-assisted, three-dimensional reconstruction. This report focuses on the ultrastructure of the type III cells and their synapses with sensory nerve fibers. Type III cells have previously been proposed to be the primary gustatory receptor cells in taste buds of rabbits and other mammals. Within rabbit foliate taste buds, type III cells constitute a well-defined, easily recognizable class and are the only taste bud cells observed to form synapses with intragemmal nerve fibers. Among 18 type III cells reconstructed from serial sections, 11 formed from 1 to 6 synapses each with nerve fibers; 7 reconstructed type III cells formed no synapses. Examples of both convergence and divergence of synaptic input from type III cells onto nerve fibers were observed. The sizes of the active zones of the synapses and numbers of vesicles associated with the presynaptic membrane specializations were highly variable. Dense-cored vesicles 80-140 nm in diameter were often found among the 40-60 nm clear vesicles clustered at presynaptic sites. At some synapses, these large dense-cored vesicles appeared to be the predominant vesicle type. This observation suggests that there may be functionally different types of synapses in taste buds, distinguished by the prevalence of either clear or dense-cored vesicles. Previous investigations have indicated that the dense-cored vesicles in type III cells may be storage sites for biogenic amines.

  15. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  16. Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses.

    Directory of Open Access Journals (Sweden)

    Astrid Bergerot

    Full Text Available Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7-15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.

  17. Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks (United States)

    Veres, Judit M; Nagy, Gergő A; Hájos, Norbert


    Efficient control of principal neuron firing by basket cells is critical for information processing in cortical microcircuits, however, the relative contribution of their perisomatic and dendritic synapses to spike inhibition is still unknown. Using in vitro electrophysiological paired recordings we reveal that in the mouse basal amygdala cholecystokinin- and parvalbumin-containing basket cells provide equally potent control of principal neuron spiking. We performed pharmacological manipulations, light and electron microscopic investigations to show that, although basket cells innervate the entire somato-denditic membrane surface of principal neurons, the spike controlling effect is achieved primarily via the minority of synapses targeting the perisomatic region. As the innervation patterns of individual basket cells on their different postsynaptic partners show high variability, the impact of inhibitory control accomplished by single basket cells is also variable. Our results show that both basket cell types can powerfully regulate the activity in amygdala networks predominantly via their perisomatic synapses. DOI: PMID:28060701

  18. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells. (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J


    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  19. Regulation and functional roles of rebound potentiation at cerebellar stellate cell - Purkinje cell synapses

    Directory of Open Access Journals (Sweden)

    Tomoo eHirano


    Full Text Available Purkinje cells receive both excitatory and inhibitory synaptic inputs and send sole output from the cerebellar cortex. Long-term depression, a type of synaptic plasticity, at excitatory parallel fiber–Purkinje cell synapses has been studied extensively as a primary cellular mechanism of motor learning. On the other hand, at inhibitory synapses on a Purkinje cell, postsynaptic depolarization induces long-lasting potentiation of GABAergic synaptic transmission. This synaptic plasticity is called rebound potentiation (RP, and its molecular regulatory mechanisms have been studied. The increase in intracellular Ca2+ concentration caused by depolarization induces RP through enhancement of GABAA receptor (GABAAR responsiveness. RP induction depends on binding of GABAAR with GABAAR associated protein (GABARAP which is regulated by Ca2+/calmodulin-dependent kinase II (CaMKII. Whether RP is induced or not is determined by the balance between phosphorylation and de-phosphorylation activities regulated by intracellular Ca2+ and by metabotropic GABA and glutamate receptors. Recent studies have revealed that the subunit composition of CaMKII has significant impact on RP induction. A Purkinje cell expresses both alpha- and beta-CaMKII, and the latter has much higher affinity for Ca2+/calmodulin than the former. It was shown that when the relative amount of alpha- to beta-CaMKII is large, RP induction is suppressed. The functional significance of RP has also been studied using transgenic mice in which a peptide inhibiting association of GABARAP and GABAAR is expressed selectively in Purkinje cells. The transgenic mice show abrogation of RP and subnormal adaptation of vestibulo-ocular reflex, a type of motor learning. Thus, RP is involved in a certain type of motor learning.

  20. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. (United States)

    Soares, Helena; Henriques, Ricardo; Sachse, Martin; Ventimiglia, Leandro; Alonso, Miguel A; Zimmer, Christophe; Thoulouze, Maria-Isabel; Alcover, Andrés


    How the vesicular traffic of signaling molecules contributes to T cell receptor (TCR) signal transduction at the immunological synapse remains poorly understood. In this study, we show that the protein tyrosine kinase Lck, the TCRζ subunit, and the adapter LAT traffic through distinct exocytic compartments, which are released at the immunological synapse in a differentially regulated manner. Lck vesicular release depends on MAL protein. Synaptic Lck, in turn, conditions the calcium- and synaptotagmin-7-dependent fusion of LAT and TCRζ containing vesicles. Fusion of vesicles containing TCRζ and LAT at the synaptic membrane determines not only the nanoscale organization of phosphorylated TCRζ, ZAP70, LAT, and SLP76 clusters but also the presence of phosphorylated LAT and SLP76 in interacting signaling nanoterritories. This mechanism is required for priming IL-2 and IFN-γ production and may contribute to fine-tuning T cell activation breadth in response to different stimulatory conditions.

  1. Mast cell synapses and exosomes: membrane contacts for information exchange.

    NARCIS (Netherlands)

    Carroll-Portillo, A.; Surviladze, Z.; Cambi, A.; Lidke, D.S.; Wilson, B.S.


    In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. Th

  2. Neurotransmitter transporters expressed in glial cells as regulators of synapse function. (United States)

    Eulenburg, Volker; Gomeza, Jesús


    Synaptic neurotransmission at high temporal and spatial resolutions requires efficient removal and/or inactivation of presynaptically released transmitter to prevent spatial spreading of transmitter by diffusion and allow for fast termination of the postsynaptic response. This action must be carefully regulated to result in the fine tuning of inhibitory and excitatory neurotransmission, necessary for the proper processing of information in the central nervous system. At many synapses, high-affinity neurotransmitter transporters are responsible for transmitter deactivation by removing it from the synaptic cleft. The most prevailing neurotransmitters, glutamate, which mediates excitatory neurotransmission, as well as GABA and glycine, which act as inhibitory neurotransmitters, use these uptake systems. Neurotransmitter transporters have been found in both neuronal and glial cells, thus suggesting high cooperativity between these cell types in the control of extracellular transmitter concentrations. The generation and analysis of animals carrying targeted disruptions of transporter genes together with the use of selective inhibitors have allowed examining the contribution of individual transporter subtypes to synaptic transmission. This revealed the predominant role of glial expressed transporters in maintaining low extrasynaptic neurotransmitter levels. Additionally, transport activity has been shown to be actively regulated on both transcriptional and post-translational levels, which has important implications for synapse function under physiological and pathophysiological conditions. The analysis of these mechanisms will enhance not only our understanding of synapse function but will reveal new therapeutic strategies for the treatment of human neurological diseases.

  3. Dynamic remodelling of synapses can occur in the absence of the parent cell body

    Directory of Open Access Journals (Sweden)

    Baxter Becki


    Full Text Available Abstract Background Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body. Results We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events. Conclusion The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is

  4. Early cytoskeletal rearrangement during dendritic cell maturation enhances synapse formation and Ca(2+) signaling in CD8(+) T cells. (United States)

    Averbeck, Marco; Braun, Thorsten; Pfeifer, Gunther; Sleeman, Jonathan; Dudda, Jan; Martin, Stefan F; Kremer, Bernhard; Aktories, Klaus; Simon, Jan C; Termeer, Christian


    The interplay between dendritic cells (DC) and T cells is a dynamic process critically depending on DC maturation. Ca(2+) influx is one of the initial events occurring during DC/T cell contacts. To determine how DC maturation influences DC/T cell contacts, time-lapse video microscopy was established using TCR-transgenic CD8(+) T cells from P14 mice. DC maturation shifted DC/T cell contacts from short-lived interactions with transient Ca(2+) influx in T cells to long-lasting interactions and sustained Ca(2+) influx of 30 min and more. Follow-up of DC/T cell interactions after 2 h using confocal microscopy revealed that long-lasting Ca(2+) responses in T cells were preferentially associated with the formation of an immunological synapse involving CD54 and H2-K(b) at the DC/T cell interface. Such synapse formation preceded MHC or B7 up-regulation, since DC developed into potent Ca(2+) stimulators 7 h after initiation of maturation. Instead, the enhanced capacity of 7 h-matured DC to induce sustained Ca(2+) responses in CD8(+) T cells is critically dependent on the polarization and rearrangement of the cytoskeleton, as shown by Clostridium difficile toxin B inhibitor experiments. These data indicate that already very early after receiving a maturation stimulus, DC display enhanced cytoskeletal activity resulting in the rapid formation of immunological synapses and effective CD8(+) T cell stimulation.

  5. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog (United States)

    Cochran, S. L.


    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  6. Dynamic changes in hair cell ribbon synapse induced by loss of spiral ganglion neurons in mice

    Institute of Scientific and Technical Information of China (English)

    Yuan Yasheng; Chi Fanglu


    Background Previous studies have suggested that primary degeneration of hair cells causes secondary degeneration of spiral ganglion neurons (SGNs),but the effect of SGN degeneration on hair cells has not been studied.In the adult mouse inner ear ouabain can selectively and permanently induce the degeneration of type 1 SGNs while leaving type 2 SGNs,efferent fibers,and sensory hair cells relatively intact.This study aimed to investigate the dynamic changes in hair cell ribbon synapse induced by loss of SGNs using ouabain application to the round window niche of adult mice.Methods In the analysis,24 CBA/CAJ mice aged 8-10 weeks,were used,of which 6 normal mice were used as the control group.After ouabain application in the round window niche 6 times in an hour,ABR threshold shifts at least 30 dB in the three experimental groups which had six mice for 1-week group,six for 1-month group,and six for 3-month group.All 24 animals underwent function test at 1 week and then immunostaining at 1 week,1 month,and 3 months.Results The loss of neurons was followed by degeneration of postsynaptic specializations at the afferent synapse with hair cells.One week after ouabain treatment,the nerve endings of type 1 SGNs and postsynaptic densities,as measured by Na/K ATPase and PSD-95,were affected but not entirely missing,but their partial loss had consequences for synaptic ribbons that form the presynaptic specialization at the synapse between hair cells and primary afferent neurons.Ribbon numbers in inner hair cells decreased (some of them broken and the ribbon number much decreased),and the arrangement of the synaptic ribbons had undergone a dynamic reorganization:ribbons with or without associated postsynaptic densities moved from their normal location in the basal membrane of the cell to a more apical location and the neural endings alone were also found at more apical locations without associated ribbons.After 1 month,when the neural postsynaptic densities had completed their

  7. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian


    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  8. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. (United States)

    Arrighi, Jean-François; Pion, Marjorie; Garcia, Eduardo; Escola, Jean-Michel; van Kooyk, Yvette; Geijtenbeek, Teunis B; Piguet, Vincent


    Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC-T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient.Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN- DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC-T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.

  9. Synapse formation and remodeling

    Institute of Scientific and Technical Information of China (English)


    Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around 1011 neurons in the human brain,with each neuron receiving thousands of synaptic inputs,either excitatory or inhibitory.A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals,synaptic cleft,and postsynaptic compartments.Synapse formation involves a number of cell adhesion molecules,extracellular factors,and intracellular signaling or structural proteins.After the establishment of synaptic connections,synapses undergo structural or functional changes,known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors.This review summarizes recent progress in the field of synapse development,with particular emphasis on the work carried out in China during the past 10 years(1999-2009).

  10. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E


    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  11. The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Mandy J. Ludford-Menting


    Full Text Available Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.

  12. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells. (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina


    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  13. Pasteurella multocida and immune cells. (United States)

    Kubatzky, Katharina F


    Pasteurella multocida was first discovered by Perroncito in 1878 and named after Louis Pasteur who first isolated and described this Gram-negative bacterium as the cause of fowl disease in 1880. Subsequently, P. multocida was also found to cause atrophic rhinitis in pigs, haemorrhagic septicaemia in cattle and respiratory diseases in many other animals. Among other factors such as lipopolysaccharide, outer membrane proteins and its capsule, the protein toxin (PMT) of P. multocida is an important virulence factor that determines the immunological response of the host's immune system. However, the exact molecular mechanisms taking place in cells of the innate and adaptive immune system are largely unknown for any of these virulence factors. Due to the obvious function of PMT on cells of the porcine skeletal system where it causes bone destruction, PMT was regarded as an osteolytic protein toxin. However, it remained unclear what the actual benefit for the bacteria would be. Recently, more attention was drawn to the osteoimmunological effects of PMT and the interplay between bone and immune cells. This review summarises the knowledge of effects of P. multocida virulence factors on the host's immune system.

  14. Cell-mediated immune response

    DEFF Research Database (Denmark)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan


    OBJECTIVE: This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. DATA SOURCES AND STUDY SELECTION: A focused...... and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two...... triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). CONCLUSIONS...

  15. Are mesenchymal stromal cells immune cells?

    NARCIS (Netherlands)

    M.J. Hoogduijn (Martin)


    textabstractMesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-cl

  16. Cadm1-expressing synapses on Purkinje cell dendrites are involved in mouse ultrasonic vocalization activity.

    Directory of Open Access Journals (Sweden)

    Eriko Fujita

    Full Text Available Foxp2(R552H knock-in (KI mouse pups with a mutation related to human speech-language disorders exhibit poor development of cerebellar Purkinje cells and impaired ultrasonic vocalization (USV, a communication tool for mother-offspring interactions. Thus, human speech and mouse USV appear to have a Foxp2-mediated common molecular basis in the cerebellum. Mutations in the gene encoding the synaptic adhesion molecule CADM1 (RA175/Necl2/SynCAM1/Cadm1 have been identified in people with autism spectrum disorder (ASD who have impaired speech and language. In the present study, we show that both Cadm1-deficient knockout (KO pups and Foxp2(R552H KI pups exhibit impaired USV and smaller cerebellums. Cadm1 was preferentially localized to the apical-distal portion of the dendritic arbor of Purkinje cells in the molecular layer of wild-type pups, and VGluT1 level decreased in the cerebellum of Cadm1 KO mice. In addition, we detected reduced immunoreactivity of Cadm1 and VGluT1 on the poorly developed dendritic arbor of Purkinje cells in the Foxp2(R552H KI pups. However, Cadm1 mRNA expression was not altered in the Foxp2(R552H KI pups. These results suggest that although the Foxp2 transcription factor does not target Cadm1, Cadm1 at the synapses of Purkinje cells and parallel fibers is necessary for USV function. The loss of Cadm1-expressing synapses on the dendrites of Purkinje cells may be associated with the USV impairment that Cadm1 KO and Foxp2(R552H KI mice exhibit.

  17. Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. (United States)

    Grant, Lisa; Yi, Eunyoung; Glowatzki, Elisabeth


    Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8-11) and hearing rats (postnatal days 19-21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.

  18. Immune Cells in Blood Recognize Tumors (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  19. Increased synapse formation obtained by T cell epitopes containing a CxxC motif in flanking residues convert CD4+ T cells into cytolytic effectors.

    Directory of Open Access Journals (Sweden)

    Vincent A Carlier

    Full Text Available The nature of MHC class II-binding epitopes not only determines the specificity of T cell responses, but may also alter effector cell functions. Cytolytic CD4+ T cells have been observed primarily in anti-viral responses, but very little is known about the conditions under which they can be elicited. Their potential as regulators of immune responses, however, deserves investigations. We describe here that inclusion of a thiol-disulfide oxidoreductase motif within flanking residues of class II-restricted epitopes results, both in vitro and in vivo, in elicitation of antigen-specific cytolytic CD4+ T cells through increased synapse formation. We show that both naïve and polarized CD4+ T cells, including Th17 cells, can be converted by cognate recognition of such modified epitopes. Cytolytic CD4+ T cells induce apoptosis on APCs by Fas-FasL interaction. These findings potentially open the way towards a novel form of antigen-specific immunosuppression.

  20. Cbln1 binds to specific postsynaptic sites at parallel fiber-Purkinje cell synapses in the cerebellum. (United States)

    Matsuda, Keiko; Kondo, Tetsuro; Iijima, Takatoshi; Matsuda, Shinji; Watanabe, Masahiko; Yuzaki, Michisuke


    Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is a unique molecule that is not only required for maintaining normal parallel fiber (PF)-Purkinje cell synapses, but is also capable of inducing new PF synapses in adult cerebellum. Although Cbln1 is reportedly released from granule cells, where and how Cbln1 binds in the cerebellum has remained largely unclear, partly because Cbln1 undergoes proteolysis to yield various fragments that are differentially detected by different antibodies. To circumvent this problem, we characterized the Cbln1-binding site using recombinant Cbln1. An immunohistochemical analysis revealed that recombinant Cbln1 preferentially bound to PF-Purkinje cell synapses in primary cultures and acute slice preparations in a saturable and replaceable manner. Specific binding was observed for intact Cbln1 that had formed a hexamer, but not for the N-terminal or C-terminal fragments of Cbln1 fused to other proteins. Similarly, mutant Cbln1 that had formed a trimer did not bind to the Purkinje cells. Immunoreactivity for the recombinant Cbln1 was observed in weaver cerebellum (which lacks granule cells) but was absent in pcd cerebellum (which lacks Purkinje cells), suggesting that the binding site was located on the postsynaptic sites of PF-Purkinje cell synapses. Finally, a subcellular fractionation analysis revealed that recombinant Cbln1 bound to the synaptosomal and postsynaptic density fractions. These results indicate that Cbln1, released from granule cells as hexamers, specifically binds to a putative receptor located at the postsynaptic sites of PF-Purkinje cell synapses, where it induces synaptogenesis.

  1. Immune cell trafficking from the brain maintains CNS immune tolerance. (United States)

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A


    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  2. Cross-dressing by donor dendritic cells after allogeneic bone marrow transplantation contributes to formation of the immunological synapse and maximizes responses to indirectly presented antigen. (United States)

    Markey, Kate A; Koyama, Motoko; Gartlan, Kate H; Leveque, Lucie; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; MacDonald, Kelli P A; Hill, Geoffrey R


    The stimulation of naive donor T cells by recipient alloantigen is central to the pathogenesis of graft-versus-host disease after bone marrow transplantation (BMT). Using mouse models of transplantation, we have observed that donor cells become "cross-dressed" in very high levels of recipient hematopoietic cell-derived MHC class I and II molecules following BMT. Recipient-type MHC is transiently present on donor dendritic cells (DCs) after BMT in the setting of myeloablative conditioning but is persistent after nonmyeloablative conditioning, in which recipient hematopoietic cells remain in high numbers. Despite the high level of recipient-derived alloantigen present on the surface of donor DCs, donor T cell proliferative responses are generated only in response to processed recipient alloantigen presented via the indirect pathway and not in response to cross-dressed MHC. Assays in which exogenous peptide is added to cross-dressed MHC in the presence of naive TCR transgenic T cells specific to the MHC class II-peptide combination confirm that cross-dressed APC cannot induce T cell proliferation in isolation. Despite failure to induce T cell proliferation, cross-dressing by donor DCs contributes to generation of the immunological synapse between DCs and CD4 T cells, and this is required for maximal responses induced by classical indirectly presented alloantigen. We conclude that the process of cross-dressing by donor DCs serves as an efficient alternative pathway for the acquisition of recipient alloantigen and that once acquired, this cross-dressed MHC can assist in immune synapse formation prior to the induction of full T cell proliferative responses by concurrent indirect Ag presentation.

  3. Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate. (United States)

    Kantardzhieva, Albena; Liberman, M Charles; Sewell, William F


    Cochlear hair cells form ribbon synapses with terminals of the cochlear nerve. To test the hypothesis that one function of the ribbon is to create synaptic vesicles from the cisternal structures that are abundant at the base of hair cells, we analyzed the distribution of vesicles and cisterns around ribbons from serial sections of inner hair cells in the cat, and compared data from low and high spontaneous rate (SR) synapses. Consistent with the hypothesis, we identified a "sphere of influence" of 350 nm around the ribbon, with fewer cisterns and many more synaptic vesicles. Although high- and low-SR ribbons tended to be longer and thinner than high-SR ribbons, the total volume of the two ribbon types was similar. There were almost as many vesicles docked at the active zone as attached to the ribbon. The major SR-related difference was that low-SR ribbons had more synaptic vesicles intimately associated with them. Our data suggest a trend in which low-SR synapses had more vesicles attached to the ribbon (51.3 vs. 42.8), more docked between the ribbon and the membrane (12 vs. 8.2), more docked at the active zone (56.9 vs. 44.2), and more vesicles within the "sphere of influence" (218 vs. 166). These data suggest that the structural differences between high- and low-SR synapses may be more a consequence, than a determinant, of the physiological differences.

  4. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. (United States)

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David


    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  5. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. (United States)

    Saudargiene, Ausra; Cobb, Stuart; Graham, Bruce P


    Cellular activity in the CA1 area of the hippocampus waxes and wanes at theta frequency (4-8 Hz) during exploratory behavior of rats. Perisomatic inhibition onto pyramidal cells tends to be strongest out of phase with pyramidal cell activity, whereas dendritic inhibition is strongest in phase with pyramidal cell activity. Synaptic plasticity also varies across the theta cycle, from strong long-term potentiation (LTP) to long-term depression (LTD), putatively corresponding to encoding and retrieval phases for information patterns encoded by pyramidal cell activity (Hasselmo et al. (2002a) Neural Comput 14:793-817). The mechanisms underpinning the phasic changes in plasticity are not clear, but it is likely that inhibition plays a role by affecting levels of electrical activity and calcium concentration at synapses. We explore the properties of synaptic plasticity during theta at Schaffer collateral synapses on CA1 pyramidal neurons and the influence of spatially and temporally targeted inhibition using a detailed multicompartmental model of the CA1 pyramidal neuron microcircuit and a phenomenological model of synaptic plasticity. The results suggest CA3-CA1 synapses are potentiated on one phase of theta due to high calcium levels provided by paired weak CA3 and layer III entorhinal cortex (EC) inputs even when somatic spiking is inhibited by perisomatic interneuron activity. Weak CA3 inputs alone induce lower calcium transients and result in depression of the CA3-CA1 synapses. These synapses are depressed if activated in phase with dendritic inhibition as strong CA3 inputs alone are not able to cause high calcium in this theta phase even though the CA1 pyramidal neuron shows somatic spiking. Dendritic inhibition acts as a switch that prevents LTP and promotes LTD during the retrieval phases of the theta rhythm in CA1 pyramidal cell. This may be important for not overly reinforcing recalled memories and in forgetting no longer relevant memories.

  6. Immune cells in the female reproductive tract. (United States)

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun


    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy.

  7. ``Backpack'' Functionalized Living Immune Cells (United States)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael


    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  8. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske


    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  9. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm


    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  10. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus. (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori


    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  11. Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3. (United States)

    Tata, Despina A; Marciano, Veronica A; Anderson, Brenda J


    Individuals with clinical disorders associated with elevated plasma glucocorticoids, such as major depressive disorder and Cushing's syndrome, are reported to have smaller hippocampal volume. To understand how the hippocampus responds at the cellular and subcellular levels to glucocorticoids and how such changes are related to volume measures, we have undertaken a comprehensive study of glucocorticoid effects on hippocampal CA3 volume and identified elements in the neuropil including astrocytic volume and cell and synapse number and size. Male Sprague-Dawley rats were injected with corticosterone (40 mg/kg), the primary glucocorticoid in rodents, or vehicle for 60 days. The CA3 was further subdivided so that the two-thirds of CA3 (nearest the dentate gyrus) previously shown to be vulnerable to corticosterone could be analyzed as two separate subfields. Corticosterone had no effect on neuropil volume or glial volume in the proximal subfield but caused a strong tendency for astrocytic processes to make up a larger proportion of the tissue and for volume of tissue made of constituents other than glial cells (primarily neuronal processes) to be smaller in the middle subfield. Within the neuropil, there were no cellular or subcellular profiles that indicated degeneration, suggesting that corticosterone does not cause prolonged damage. Corticosterone did not reduce cell number or cell or nonperforated synapse size but did cause a pronounced loss of synapses. This loss occurred in both subfields and, therefore, was independent of volume loss. Together, the findings suggest that volume measures can underestimate corticosterone effects on neural structure.

  12. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons (United States)

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.


    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  13. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng


    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  14. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo


    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  15. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp


    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  16. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka


    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  17. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu


    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  18. The regulated secretory pathway in CD4(+ T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse.

    Directory of Open Access Journals (Sweden)

    Clare Jolly


    Full Text Available Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1 at the virological synapse (VS is an efficient mode of dissemination between CD4(+ T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+ T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS. Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL and we show that the HIV-1 envelope glycoprotein (Env localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+ T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+ T cells to enhance its dissemination.

  19. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain. (United States)

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R


    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.

  20. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball


    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  1. Orchestration of angiogenesis by immune cells

    Directory of Open Access Journals (Sweden)

    Antonino eBruno


    Full Text Available It is widely accepted that the tumor microenvironment plays a major role in cancer and is indispensable for tumor progression. The tumor microenvironment involves many players going well beyond the malignant-transformed cells, including stromal, immune and endothelial cells. The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can orchestrate the symphony of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy.Considerable attention within the context of tumor angiogenesis should focus not only on the endothelial cells, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation and angiogenesis to tumor progression. Here we review the data in the literature and seek to identify the conductors of this orchestra. We also suggest that interrupting the immune -> inflammation -> angiogenesis -> tumor progression process can delay or prevent tumor insurgence and malignant disease.

  2. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. (United States)

    Lee, Young Il; Li, Yue; Mikesh, Michelle; Smith, Ian; Nave, Klaus-Armin; Schwab, Markus H; Thompson, Wesley J


    Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice. Transgenic manipulation of the levels of membrane-tethered neuregulin1 (NRG1-III), a potent activator of SCs normally presented on motor axons, alters the rate of loss of motor inputs at NMJs during developmental synapse elimination. In addition, NMJs of adult transgenic mice that expressed excess axonal NRG1-III exhibited continued remodeling, in contrast to the more stable morphologies of controls. In fact, synaptic SCs of these adult mice with NRG1-III overexpression exhibited behaviors evident in wild type neonates during synapse elimination, including an affinity for the postsynaptic myofiber surface and phagocytosis of nerve terminals. Given that levels of NRG1-III expression normally peak during the period of synapse elimination, our findings identify axon-tethered NRG1 as a molecular determinant for SC-driven neuromuscular synaptic plasticity.

  3. [Immune system evolution. (From cells to humans)]. (United States)

    Belek, A S


    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  4. Cytomegalovirus immune evasion of myeloid lineage cells. (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka


    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  5. Exploring the limits of optical microscopy: live cell and superresolution fluorescence microscopy of HIV-1 Transfer Between T lymphocytes Across the Virological Synapse (United States)

    McNerney, Gregory Paul

    Human immunodeficiency virus 1 (HIV-1) is a human retrovirus that efficiently, albeit gradually, overruns the immune system. An already infected T lymphocyte can latch onto another T lymphocyte whereby creating a virological synapse (VS); this junction drives viral assembly and transfer to the target cell in batches in an efficient, protective manor. My Ph.D. doctoral thesis focused on studying this transmission mechanism using advanced optical imaging modalities and the fully infectious fluorescent clone HIV Gag-iGFP. T lymphocytes are non-adherent cells (˜10 um thick) and the viral transmission process is fairly dynamic, hence we employed a custom spinning disk confocal microscope that revealed many interesting characteristics of this cooperative event. This methodology has low throughput as cell contact and transfer is at random. Optical tweezers was then added to the microscope to directly initiate cell contact at will. To assess when viral maturation occurs post-transfer, an optical assay based off of Forster resonance energy transfer was developed to monitor maturation. Structured illumination microscopy was further used to image the process at higher resolution and it showed that viral particles are not entering existing degradative compartments. Non-HIV-1 applications of the optical technologies are also reviewed.

  6. Cell mediated immunity to fungi: a reassessment. (United States)

    Romani, Luigina


    Protective immunity against fungal pathogens is achieved by the integration of two distinct arms of the immune system, the innate and adaptive responses. Innate and adaptive immune responses are intimately linked and controlled by sets of molecules and receptors that act to generate the most effective form of immunity for protection against fungal pathogens. The decision of how to respond will still be primarily determined by interactions between pathogens and cells of the innate immune system, but the actions of T cells will feed back into this dynamic equilibrium to regulate the balance between tolerogenic and inflammatory responses. In the last two decades, the immunopathogenesis of fungal infections and fungal diseases was explained primarily in terms of Th1/Th2 balance. Although Th1 responses driven by the IL-12/IFN-gamma axis are central to protection against fungi, other cytokines and T cell-dependent pathways have come of age. The newly described Th17 developmental pathway may play an inflammatory role previously attributed to uncontrolled Th1 responses and serves to accommodate the seemingly paradoxical association of chronic inflammatory responses with fungal persistence in the face of an ongoing inflammation. Regulatory T cells in their capacity to inhibit aspects of innate and adaptive antifungal immunity have become an integral component of immune resistance to fungi, and provide the host with immune defense mechanisms adequate for protection, without necessarily eliminating fungal pathogens which would impair immune memory--or causing an unacceptable level of tissue damage. The enzyme indoleamine 2,3-dioxygenase and tryptophan metabolites contribute to immune homeostasis by inducing Tregs and taming overzealous or heightened inflammatory responses.

  7. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)


    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  8. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. (United States)

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth


    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  9. Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells. (United States)

    Qi, Guanxiao; Feldmeyer, Dirk


    Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.

  10. Myeloid cells in tumour-immune interactions. (United States)

    Kareva, Irina; Berezovskaya, Faina; Castillo-Chavez, Carlos


    Despite highly developed specific immune responses, tumour cells often manage to escape recognition by the immune system, continuing to grow uncontrollably. Experimental work suggests that mature myeloid cells may be central to the activation of the specific immune response. Recognition and subsequent control of tumour growth by the cells of the specific immune response depend on the balance between immature (ImC) and mature (MmC) myeloid cells in the body. However, tumour cells produce cytokines that inhibit ImC maturation, altering the balance between ImC and MmC. Hence, the focus of this manuscript is on the study of the potential role of this inhibiting mechanism on tumour growth dynamics. A conceptual predator-prey type model that incorporates the dynamics and interactions of tumour cells, CD8(+) T cells, ImC and MmC is proposed in order to address the role of this mechanism. The prey (tumour) has a defence mechanism (blocking the maturation of ImC) that prevents the predator (immune system) from recognizing it. The model, a four-dimensional nonlinear system of ordinary differential equations, is reduced to a two-dimensional system using time-scale arguments that are tied to the maturation rate of ImC. Analysis shows that the model is capable of supporting biologically reasonable patterns of behaviour depending on the initial conditions. A range of parameters, where healing without external influences can occur, is identified both qualitatively and quantitatively.

  11. Targeting epidermal Langerhans cells by epidermal powder immunization

    Institute of Scientific and Technical Information of China (English)


    Immune reactions to foreign or self-antigens lead to protective immunity and, sometimes, immune disorders such as allergies and autoimmune diseases. Antigen presenting cells (APC) including epidermal Langerhans cells (LCs) play an important role in the course and outcome of the immune reactions. Epidermal powder immunization (EPI) is a technology that offers a tool to manipulate the LCs and the potential to harness the immune reactions towards prevention and treatment of infectious diseases and immune disorders.

  12. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. (United States)

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias


    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision.

  13. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I). (United States)

    Sasaki, Tetsuya; Oga, Tomofumi; Nakagaki, Keiko; Sakai, Kazuhisa; Sumida, Kayo; Hoshino, Kohei; Miyawaki, Izuru; Saito, Koichi; Suto, Fumikazu; Ichinohe, Noritaka


    The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in

  14. Associations of Unilateral Whisker and Olfactory Signals Induce Synapse Formation and Memory Cell Recruitment in Bilateral Barrel Cortices: Cellular Mechanism for Unilateral Training Toward Bilateral Memory (United States)

    Gao, Zilong; Chen, Lei; Fan, Ruicheng; Lu, Wei; Wang, Dangui; Cui, Shan; Huang, Li; Zhao, Shidi; Guan, Sudong; Zhu, Yan; Wang, Jin-Hui


    Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex (CBC) were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveal the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory. PMID:28018178

  15. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao


    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  16. Cellular immune responses towards regulatory cells. (United States)

    Larsen, Stine Kiær


    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  17. Target-cell specificity of kainate autoreceptor and Ca2+-store-dependent short-term plasticity at hippocampal mossy fiber synapses. (United States)

    Scott, Ricardo; Lalic, Tatjana; Kullmann, Dimitri M; Capogna, Marco; Rusakov, Dmitri A


    Presynaptic kainate receptors (KARs) modulate transmission between dentate granule cells and CA3 pyramidal neurons. Whether presynaptic KARs affect other synapses made by granule cell axons [mossy fibers (MFs)], on hilar mossy cells or interneurons, is not known. Nor is it known whether glutamate release from a single MF is sufficient to activate these receptors. Here, we monitor Ca(2+) in identified MF boutons traced from granule cell bodies. We show that a single action potential in a single MF activates both presynaptic KARs and Ca(2+) stores, contributing to use-dependent facilitation at MF-CA3 pyramidal cell synapses. Rapid local application of kainate to the giant MF bouton has no detectable effect on the resting Ca(2+) but facilitates action-potential-evoked Ca(2+) entry through a Ca(2+) store-dependent mechanism. Localized two-photon uncaging of the Ca(2+) store receptor ligand IP(3) directly confirms the presence of functional Ca(2+) stores at these boutons. In contrast, presynaptic Ca(2+) kinetics at MF synapses on interneurons or mossy cells are insensitive to KAR blockade, to local kainate application or to photolytic release of IP(3). Consistent with this, postsynaptic responses evoked by activation of a single MF show KAR-dependent paired-pulse facilitation in CA3 pyramidal cells, but not in interneurons or mossy cells. Thus, KAR-Ca(2+) store coupling acts as a synapse-specific, short-range autoreceptor mechanism.

  18. Cbln1 accumulates and colocalizes with Cbln3 and GluRδ2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum


    Miura, Eriko; Matsuda, Keiko; Morgan, James I.; Yuzaki, Michisuke; Watanabe, Masahiko


    Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity; Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRδ2-null mice and include, severe reduction in the number of PF-PC synapses and loss of long-term d...

  19. Cbln1 accumulates and colocalizes with Cbln3 and GluRdelta2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum. (United States)

    Miura, Eriko; Matsuda, Keiko; Morgan, James I; Yuzaki, Michisuke; Watanabe, Masahiko


    Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity. Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRdelta2-null mice, and include severe reduction in the number of PF-PC synapses and loss of long-term depression of synaptic transmission. To understand better the relationship between Cbln1, Cbln3 and GluRdelta2, we performed light and electron microscopic immunohistochemical analyses using highly specific antibodies and antigen-exposing methods, i.e. pepsin pretreatment for light microscopy and postembedding immunogold for electron microscopy. In conventional immunohistochemistry, Cbln1 was preferentially associated with non-terminal portions of PF axons in the molecular layer but rarely overlapped with Cbln3. In contrast, antigen-exposing methods not only greatly intensified Cbln1 immunoreactivity in the molecular layer, but also revealed its high accumulation in the synaptic cleft of PF-PC synapses. No such synaptic accumulation was evident at other PC synapses. Furthermore, Cbln1 now came to overlap almost completely with Cbln3 and GluRdelta2 at PF-PC synapses. Therefore, the convergence of all three molecules provides the anatomical basis for a common signaling pathway regulating circuit development and synaptic plasticity in the cerebellum.

  20. Epigenetic Dysfunction in Turner Syndrome Immune Cells. (United States)

    Thrasher, Bradly J; Hong, Lee Kyung; Whitmire, Jason K; Su, Maureen A


    Turner syndrome (TS) is a chromosomal condition associated with partial or complete absence of the X chromosome that involves characteristic findings in multiple organ systems. In addition to well-known clinical characteristics such as short stature and gonadal failure, TS is also associated with T cell immune alterations and chronic otitis media, suggestive of a possible immune deficiency. Recently, ubiquitously transcribed tetratricopeptide repeat on the X chromosome (UTX), a histone H3 lysine 27 (H3K27) demethylase, has been identified as a downregulated gene in TS immune cells. Importantly, UTX is an X-linked gene that escapes X-chromosome inactivation and thus is haploinsufficient in TS. Mice with T cell-specific UTX deficiency have impaired clearance of chronic viral infection due to decreased frequencies of T follicular helper (Tfh) cells, which are critical for B cell antibody generation. In parallel, TS patients have decreased Tfh frequencies in peripheral blood. Together, these findings suggest that haploinsufficiency of the X-linked UTX gene in TS T cells underlies an immune deficit, which may manifest as increased predisposition to chronic otitis media.

  1. Measurement of myeloid cell immune suppressive activity. (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo


    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  2. Quantitative analysis of the ribbon synapse number of cochlear inner hair cells in C57BL/6J mice using the three-dimensional modeling method

    Institute of Scientific and Technical Information of China (English)


    In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.

  3. Inhibitory synapse formation in a co-culture model incorporating GABAergic medium spiny neurons and HEK293 cells stably expressing GABAA receptors. (United States)

    Brown, Laura E; Fuchs, Celine; Nicholson, Martin W; Stephenson, F Anne; Thomson, Alex M; Jovanovic, Jasmina N


    Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed

  4. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse (United States)

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael


    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  5. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee


    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  6. Gut Mesenchymal Stromal Cells in Immunity

    Directory of Open Access Journals (Sweden)

    Valeria Messina


    Full Text Available Mesenchymal stromal cells (MSCs, first found in bone marrow (BM, are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal or interspersed within intestinal submucosa (intercryptal. In Crohn’s disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC. The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn’s disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer.

  7. Gut Mesenchymal Stromal Cells in Immunity (United States)

    Messina, Valeria; Buccione, Carla; Marotta, Giulia; Ziccheddu, Giovanna; Signore, Michele; Mattia, Gianfranco; Puglisi, Rossella; Sacchetti, Benedetto; Biancone, Livia


    Mesenchymal stromal cells (MSCs), first found in bone marrow (BM), are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal) or interspersed within intestinal submucosa (intercryptal). In Crohn's disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC). The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ) is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn's disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer. PMID:28337224

  8. Platelets as immune cells in infectious diseases. (United States)

    Speth, Cornelia; Löffler, Jürgen; Krappmann, Sven; Lass-Flörl, Cornelia; Rambach, Günter


    Platelets have been shown to cover a broad range of functions. Besides their role in hemostasis, they have immunological functions and thus participate in the interaction between pathogens and host defense. Platelets have a broad repertoire of receptor molecules that enable them to sense invading pathogens and infection-induced inflammation. Consequently, platelets exert antimicrobial effector mechanisms, but also initiate an intense crosstalk with other arms of the innate and adaptive immunity, including neutrophils, monocytes/macrophages, dendritic cells, B cells and T cells. There is a fragile balance between beneficial antimicrobial effects and detrimental reactions that contribute to the pathogenesis, and many pathogens have developed mechanisms to influence these two outcomes. This review aims to highlight aspects of the interaction strategies between platelets and pathogenic bacteria, viruses, fungi and parasites, in addition to the subsequent networking between platelets and other immune cells, and the relevance of these processes for the pathogenesis of infections.

  9. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. (United States)

    Goldberg, Ethan M; Watanabe, Shigeo; Chang, Su Ying; Joho, Rolf H; Huang, Z Josh; Leonard, Christopher S; Rudy, Bernardo


    Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mM TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.

  10. Destruction of solid tumors by immune cells (United States)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.


    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  11. Organizing polarized delivery of exosomes at synapses. (United States)

    Mittelbrunn, Maria; Vicente-Manzanares, Miguel; Sánchez-Madrid, Francisco


    Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.

  12. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  13. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Peng; JIN Lian-hong; LIANG Tao; LIU En-zhong; ZHAO Shi-guang


    Background Axonal regeneration in lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. This paper studied the action of neural stem cell (NSC) in promoting corticospinal axons regeneration and synapse reformation in rats with injured spinal cord.Methods NSCs were isolated from the cortical tissue of spontaneous aborted human fetuses in accordance with the ethical request. The cells were discarded from the NSC culture to acquire NSC-conditioned medium. Sixty adult Wistar rats were randomly divided into four groups (n=15 in each): NSC graft, NSC medium, graft control and medium control groups. Microsurgical transection of the spinal cord was performed in all the rats at the T11. The NSC graft group received stereotaxic injections of NSCs suspension into both the spinal cord stumps immediately after transection; graft control group received DMEM injection. In NSC medium group,NSC-conditioned medium was administered into the spinal cord every week; NSC culture medium was administered to the medium control group. Hindlimb motor function was assessed using the BBB Locomotor Rating Scale. Regeneration of biotin dextran amine (BDA) labeled corticospinal tract was assessed. Differentiation of NSCs and the expression of synaptophysin at the distal end of the injured spinal cord were observed under a confocal microscope. Group comparisons of behavioral data were analyzed with ANOVA.Results NSCs transplantation resulted in extensive growth of corticospinal axons and locomotor recovery in adult rats after complete spinal cord transection, the mean BBB scores reached 12.5 in NSC graft group and 2.5 in graft control group (P< 0.05). There was also significant difference in BBB score between the NSC medium (11.7) and medium control groups (3.7, P< 0.05). BDA traces regenerated fibers sprouted across the lesion site and entered the caudal part of the spinal cord. Synaptophysin expression

  14. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses (United States)

    Booker, Sam A.; Campbell, Graham R.; Mysiak, Karolina S.; Brophy, Peter J.; Kind, Peter C.


    Key points Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity.Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low‐frequency dentate to CA3 glutamatergic synaptic transmission.High‐frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase‐deficient mice.Intact presynaptic mitochondrial function is critical for the short‐term dynamics of mossy fibre to CA3 synaptic function. Abstract Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole‐cell patch‐clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV‐deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy‐fibre synapse because the amplitude, input–output relationship and 50 ms paired‐pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short‐term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired‐pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect

  15. Innate immune cells in the pathogenesis of primary systemic vasculitis. (United States)

    Misra, Durga Prasanna; Agarwal, Vikas


    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

  16. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor. (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P


    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  17. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei

    Directory of Open Access Journals (Sweden)

    Claire E Warner


    Full Text Available Considerable debate continues regarding thalamic inputs to the middle temporal area (MT of the visual cortex that bypass the primary visual cortex (V1 and the role they might have in the residual visual capability following a lesion of V1. Two specific retinothalamic projections to area MT have been speculated to relay through the medial portion of the inferior pulvinar nucleus (PIm and the koniocellular layers of the dorsal lateral geniculate nucleus (LGN. Although a number of studies have demonstrated retinal inputs to regions of the thalamus where relays to area MT have been observed, the relationship between the retinal terminals and area MT relay cells has not been established. Here we examined direct retino-recipient regions of the marmoset monkey (Callithrix jacchus pulvinar nucleus and the LGN following binocular injections of anterograde tracer, as well as area MT relay cells in these nuclei by injection of retrograde tracer into area MT. Retinal afferents were shown to synapse with area MT relay cells as demonstrated by colocalization with the presynaptic vesicle membrane protein synaptophysin. We also established the presence of direct synapes of retinal afferents on area MT relay cells within the PIm, as well as the koniocellular K1 and K3 layers of the LGN, thereby corroborating the existence of two disynaptic pathways from the retina to area MT that bypass V1.

  18. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types (United States)

    Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.


    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841

  19. Are Platelets Cells? And if Yes, Are They Immune Cells?

    Directory of Open Access Journals (Sweden)

    Fabrice eCOGNASSE


    Full Text Available Small fragments circulating in the blood were formally identified by the end of the 19th century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the 20th century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such however, they were acknowledged as immunizing (to specific HPA and HLA markers: the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as the 1930s, platelets entered the arsenal of medicines; were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an immune cell? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages. The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of

  20. Developmental Hypothyroxinemia and Hypothyroidism Reduce Parallel Fiber-Purkinje Cell Synapses in Rat Offspring by Downregulation of Neurexin1/Cbln1/GluD2 Tripartite Complex. (United States)

    Wang, Yuan; Dong, Jing; Wang, Yi; Wei, Wei; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Chen, Jie


    Iodine is a significant micronutrient. Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during developmental period can cause cerebellar dysfunction. However, mechanisms are still unclear. Therefore, the present research aims to study effects of developmental hypothyroxinemia caused by mild ID and hypothyroidism caused by severe ID or methimazole (MMZ) on parallel fiber-Purkinje cell (PF-PC) synapses in filial cerebellum. Maternal hypothyroxinemia and hypothyroidism models were established in Wistar rats using ID diet and deionized water supplemented with different concentrations of potassium iodide or MMZ water. Birth weight and cerebellum weight were measured. We also examined PF-PC synapses using immunofluorescence, and western blot analysis was conducted to investigate the activity of Neurexin1/cerebellin1 (Cbln1)/glutamate receptor d2 (GluD2) tripartite complex. Our results showed that hypothyroxinemia and hypothyroidism decreased birth weight and cerebellum weight and reduced the PF-PC synapses on postnatal day (PN) 14 and PN21. Accordingly, the mean intensity of vesicular glutamate transporter (VGluT1) and Calbindin immunofluorescence was reduced in mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of Neurexin1/Cbln1/GluD2 tripartite complex. Our study supports the hypothesis that developmental hypothyroxinemia and hypothyroidism reduce PF-PC synapses, which may be attributed to the downregulation of Neurexin1/Cbln1/GluD2 tripartite complex.

  1. Role of Dendritic Cells in Immune Dysfunction (United States)

    Savary, Cherylyn A.


    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  2. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells


    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna


    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  3. Emerging themes in GABAergic synapse development. (United States)

    Kuzirian, Marissa S; Paradis, Suzanne


    Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.

  4. Elastohydrodynamics and kinetics of protein patterning in the immunological synapse

    CERN Document Server

    Carlson, Andreas


    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse (IS). Understanding the biophysical basis for protein patterning by deciphering the quantitative rules for their formation and motion is an important aspect of characterizing immune cell recognition and thence the rules for immune system activation. We propose a minimal mathematical model for the physical basis of membrane protein patterning in the IS, which encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to simple predictions for the spatial and temporal scales of protein cluster formation, growth and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins, and the fluid in the synaptic cleft. Numerical simulations complement these scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Dire...

  5. Identification of skin immune cells in non-human primates. (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric


    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  6. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse. (United States)

    Zhang, Jianmei; Han, Victor Z; Meek, Johannes; Bell, Curtis C


    Primary afferent fibers from the electroreceptors of mormyrid electric fish use a latency code to signal the intensity of electrical current evoked by the fish's own electric organ discharge (EOD). The afferent fibers terminate centrally in the deep and superficial granular layers of the electrosensory lobe with morphologically mixed chemical-electrical synapses. The granular cells in these layers seem to decode afferent latency through an interaction between primary afferent input and a corollary discharge input associated with the EOD motor command. We studied the physiology of deep and superficial granular cells in a slice preparation with whole cell patch recording and electrical stimulation of afferent fibers. Afferent stimulation evoked large all-or-none electrical excitatory postsynaptic potentials (EPSPs) and large all or none GABAergic inhibitory postsynaptic potentials (IPSPs) in both superficial and deep granular cells. The amplitudes of the electrical EPSPs depended on postsynaptic membrane potential, with maximum amplitudes at membrane potentials between -65 and -110 mV. Hyperpolarization beyond this level resulted in either the abrupt disappearance of EPSPs, a step-like reduction to a smaller EPSP, or a graded reduction in EPSP amplitude. Depolarization to membrane potentials lower than that yielding a maximum caused a linear decrease in EPSP amplitude, with EPSP amplitude reaching 0 mV at potentials between -55 and -40 mV. We suggest that the dependence of EPSP size on postsynaptic membrane potential is caused by close linkage of pre- and postsynaptic membrane potentials through a high-conductance gap junction. We also suggest that this dependence may result in functionally important nonlinear interactions between synaptic inputs.

  7. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    Full Text Available BACKGROUND: Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides. METHODOLOGY/PRINCIPAL FINDINGS: For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility. CONCLUSION: In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  8. Mast Cell and Immune Inhibitory Receptors

    Institute of Scientific and Technical Information of China (English)

    LixinLi; ZhengbinYao


    Modulation by balancing activating and inhibitory receptors constitutes an important mechanism for regulating immune responses. Cells that are activated following ligation of receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs) can be negatively regulated by other receptors bearing immunoreceptor tyrosine-based inhibition motifs (ITIMs). Human mast cells (MCs) are the major effector cells of type I hypersensitivity and important participants in a number of disease processes. Antigen-mediated aggregation of IgE bound to its high-affinity receptor on MCs initiates a complex series of biochemical events leading to MC activation. With great detailed description and analysis of several inhibitory receptors on human MCs, a central paradigm of negative regulation of human MC activation by these receptors has emerged. Cellular & Molecular Immunology. 2004;1(6):408-415.

  9. Synapse clusters are preferentially formed by synapses with large recycling pool sizes.

    Directory of Open Access Journals (Sweden)

    Oliver Welzel

    Full Text Available Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.

  10. Regulation of Immune Cells by Eicosanoid Receptors

    Directory of Open Access Journals (Sweden)

    Nancy D. Kim


    Full Text Available Eicosanoids are potent, bioactive, lipid mediators that regulate important components of the immune response, including defense against infection, ischemia, and injury, as well as instigating and perpetuating autoimmune and inflammatory conditions. Although these lipids have numerous effects on diverse cell types and organs, a greater understanding of their specific effects on key players of the immune system has been gained in recent years through the characterization of individual eicosanoid receptors, the identification and development of specific receptor agonists and inhibitors, and the generation of mice genetically deficient in various eicosanoid receptors. In this review, we will focus on the receptors for prostaglandin D2, DP1 and DP2/CRTH2; the receptors for leukotriene B4, BLT1 and BLT2; and the receptors for the cysteinyl leukotrienes, CysLT1 and CysLT2, by examining their specific effects on leukocyte subpopulations, and how they may act in concert towards the development of immune and inflammatory responses.

  11. The Reticular Cell Network : A Robust Backbone for Immune Responses

    NARCIS (Netherlands)

    Textor, Johannes; Mandl, Judith N; de Boer, Rob J


    Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During inf

  12. Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C.


    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions. PMID:23144767

  13. Dynamic range of vertebrate retina ganglion cells: importance of active dendrites and coupling by electrical synapses. (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C


    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.

  14. The integration of signalling and the spatial organization of the T cell synapse

    Directory of Open Access Journals (Sweden)

    Jeremie eRossy


    Full Text Available Engagement of the T cell antigen receptor (TCR triggers signalling pathways that lead to T cell selection, differentiation and clonal expansion. Superimposed onto the biochemical network is a spatial organization that describes individual receptor molecules, dimers, oligomers and higher order structures. Here we review recent finding about TCR organization in naïve and memory T cells. A key question that has emerged is how antigen-TCR interactions encode spatial information to direct T cell activation and differentiation. Single molecule super-resolution microscopy may become an important tool in decoding receptor organization at the molecular level.

  15. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin


    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  16. Target cell-dependent normalization of transmitter release at neocortical synapses. (United States)

    Koester, Helmut J; Johnston, Daniel


    The efficacy and short-term modification of neocortical synaptic connections vary with the type of target neuron. We investigated presynaptic Ca2+ and release probability at single synaptic contacts between pairs of neurons in layer 2/3 of the rat neocortex. The amplitude of Ca2+ signals in boutons of pyramids contacting bitufted or multipolar interneurons or other pyramids was dependent on the target cell type. Optical quantal analysis at single synaptic contacts suggested that release probabilities are also target cell-specific. Both the Ca2+ signal and the release probability of different boutons of a pyramid contacting the same target cell varied little. We propose that the mechanisms that regulate the functional properties of boutons of a pyramid normalize the presynaptic Ca2+ influx and release probability for all those boutons that innervate the same target cell.

  17. [Understanding of immune system by visualization of spatiotemporal regulation of immune cells in the entire body]. (United States)

    Tomura, Michio


    Immune system is high-dimensional integrated system distributed in the whole body. Many kinds of, total 10(11) of immune cells are regulated by receiving appropriate signals in appropriate places. We have been attempting to understand immune system by revealing spatiotemporal regulation of immune cells at the whole body level by "Visualization of immune response in vivo". Photoconvertible protein, "Kaede"-Tg mice allowed us to monitor cell-replacement and cell-movement in the whole body by marking cells with color of Kaede from green to red with exposure to violet light. It is applicable to small cell number populations in both lymphoid organs and also peripheral tissues under both normal and pathophysiological conditions. By using this system, we have demonstrated novel findings that "Naive CD4(+) T cell recirculation is an active process that they recirculate through lymphoid organs to seek limited niche for interacting with endogenous antigens and upregulate their function." and "Activated regulatory T cells emigrating from cutaneous immune response is responsible for termination of immune reponse." I will introduce these new tools of us and would like to discuss what is needed to understand immune system in the entire body.

  18. Tracking immune cells in vivo using magnetic resonance imaging. (United States)

    Ahrens, Eric T; Bulte, Jeff W M


    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and ¹⁹F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.

  19. T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse. (United States)

    Traver, Maria K; Paul, Suman; Schaefer, Brian C


    The T cell receptor (TCR) to NF-κB signaling pathway plays a critical role in regulation of proliferation and effector T cell differentiation and function. In naïve T cells, data suggest that most or all key cytoplasmic NF-κB signaling occurs in a TCR-proximal manner at the immunological synapse (IS). However, the subcellular organization of cytoplasmic NF-κB-activating complexes in effector T cells is more complex, involving signaling molecules and regulatory mechanisms beyond those operative in naïve cells. Additionally, in effector T cells, much signaling occurs at cytoplasmic locations distant from the IS. Visualization of these cytoplasmic signaling complexes has provided key insights into the complex and dynamic regulation of NF-κB signal transduction in effector T cells. In this chapter, we provide in-depth protocols for activating and preparing effector T cells for fluorescence imaging, as well as a discussion of the effective application of distinct imaging methodologies, including confocal and super-resolution microscopy and imaging flow cytometry.

  20. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)



    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  1. Imaging and Analysis of OT1 T Cell Activation on Lipid Bilayers




    Authors: Peter Beemiller, Jordan Jacobelli & Matthew Krummel ### Abstract Supported lipid bilayers are frequently used to study cell membrane protein dynamics during immune synapse formation by T cells. Here we describe methods for the imaging and analysis of OT1+ T cell activation and T-cell receptor (TCR) dynamics on lipid bilayers. ### Introduction T cells are activated at immune synapses when TCRs bind agonist ligands on antigen presenting cells (APCs). Glass cover...

  2. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie;


    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth....

  3. In vivo protein synthesis determinations in human immune cells


    Januszkiewicz, Anna


    Intact immune responses are essential for defeating severe infections in individual patients. Insufficient function of the immune system contributes to a poor prognosis in these patients, in particular the ICU patients. Nevertheless, the immune system function is not easily monitored and evaluated. The ongoing metabolic activity of immune competent cells is reflected by their in vivo protein synthesis rate. The aim of this thesis was to apply in vivo protein synthesis measur...

  4. Facilitating and nonfacilitating synapses on pyramidal cells: a correlation between physiology and morphology


    Bower, J M; Haberly, L B


    Pyramidal cells in piriform cortex receive excitatory inputs from two different sources that are segregated onto adjacent segments of their apical dendrites. The present studies show that excitatory postsynaptic potentials (EPSPs) evoked by primary olfactory tract afferents that terminate on distal apical segments display paired shock facilitation whereas ESPSs evoked by intrinsic association fibers that terminate on proximal apical segments do not. An ultrastructural comparison of the presyn...

  5. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong


    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  6. Specificity and actions of an arylaspartate inhibitor of glutamate transport at the Schaffer collateral-CA1 pyramidal cell synapse.

    Directory of Open Access Journals (Sweden)

    Weinan Sun

    Full Text Available In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA. At concentrations up to 100 µM, L-TBA did not act as an AMPA receptor (AMPAR or NMDA receptor (NMDAR agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg(2+ concentrations, but in Mg(2+-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg(2+ was the same in hippocampal slices from EAAT3 +/+ and EAAT3 -/- mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg(2+ revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg(2+ block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency

  7. Astrocyte-Synapse Structural Plasticity



    The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmissi...

  8. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. (United States)

    Moss, Jonathan; Gebara, Elias; Bushong, Eric A; Sánchez-Pascual, Irene; O'Laoi, Ruadhan; El M'Ghari, Imane; Kocher-Braissant, Jacqueline; Ellisman, Mark H; Toni, Nicolas


    Adult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described. Here, we used light microscopy and electron microscopy to examine Nestin-GFP transgenic mice and provide a detailed ultrastructural reconstruction analysis of Nestin-GFP-positive RGL cells of the dentate gyrus. We show that their primary processes follow a tortuous path from the subgranular zone through the granule cell layer and ensheathe local synapses and vasculature in the inner molecular layer. They share the ensheathing of synapses and vasculature with astrocytic processes and adhere to the adjacent processes of astrocytes. This extensive interaction of processes with their local environment could allow them to be uniquely receptive to signals from local neurons, glia, and vasculature, which may regulate their fate.

  9. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. (United States)

    Matsukawa, Hiroshi; Wolf, Alexander M; Matsushita, Shinichi; Joho, Rolf H; Knöpfel, Thomas


    Micelacking both Kv3.1 and both Kv3.3 K+ channel alleles display severe motor deficits such as tremor, myoclonus, and ataxic gait. Micelacking one to three alleles at the Kv3.1 and Kv3.3 loci exhibit in an allele dose-dependent manner a modest degree of ataxia. Cerebellar granule cells coexpress Kv3.1 and Kv3.3 K+ channels and are therefore candidate neurons that might be involved in these behavioral deficits. Hence, we investigated the synaptic mechanisms of transmission in the parallel fiber-Purkinje cell system. Action potentials of parallel fibers were broader in mice lacking both Kv3.1 and both Kv3.3 alleles and in mice lacking both Kv3.1 and a single Kv3.3 allele compared with those of wild-type mice. The transmission of high-frequency trains of action potentials was only impaired at 200 Hz but not at 100 Hz in mice lacking both Kv3.1 and Kv3.3 genes. However, paired-pulse facilitation (PPF) at parallel fiber-Purkinje cell synapses was dramatically reduced in a gene dose-dependent manner in mice lacking Kv3.1 or Kv3.3 alleles. Normal PPF could be restored by reducing the extracellular Ca2+ concentration indicating that increased activity-dependent presynaptic Ca2+ influx, at least in part caused the altered PPF in mutant mice. Induction of metabotropic glutamate receptor-mediated EPSCs was facilitated, whereas longterm depression was not impaired but rather facilitated in Kv3.1/Kv3.3 double-knockout mice. These results demonstrate the importance of Kv3 potassium channels in regulating the dynamics of synaptic transmission at the parallel fiber-Purkinje cell synapse and suggest a correlation between short-term plasticity at the parallel fiber-Purkinje cell synapse and motor performance.

  10. Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. (United States)

    Kumar, Santosh; Rajagopalan, Sumati; Sarkar, Pabak; Dorward, David W; Peterson, Mary E; Liao, Hsien-Shun; Guillermier, Christelle; Steinhauser, Matthew L; Vogel, Steven S; Long, Eric O


    The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.

  11. Programmed cell death in the plant immune system. (United States)

    Coll, N S; Epple, P; Dangl, J L


    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  12. Immunosuppressive cells in tumor immune escape and metastasis. (United States)

    Liu, Yang; Cao, Xuetao


    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.

  13. Differential Protein Network Analysis of the Immune Cell Lineage

    Directory of Open Access Journals (Sweden)

    Trevor Clancy


    Full Text Available Recently, the Immunological Genome Project (ImmGen completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks.

  14. The Dynamics of Interactions Among Immune and Glioblastoma Cells. (United States)

    Eder, Katalin; Kalman, Bernadette


    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

  15. Exosomes and nanotubes: Control of immune cell communication. (United States)

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne


    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.

  16. Tumor infiltrating immune cells in gliomas and meningiomas. (United States)

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores


    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.

  17. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells


    Julio Aliberti


    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response...

  18. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota


    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  19. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)


    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  20. The Coupling between Ca2+ Channels and the Exocytotic Ca2+ Sensor at Hair Cell Ribbon Synapses Varies Tonotopically along the Mature Cochlea (United States)

    Cho, Soyoun


    The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter glutamate that activates the postsynaptic auditory fibers. The speed and

  1. Efficient Associative Computation with Discrete Synapses. (United States)

    Knoblauch, Andreas


    Neural associative networks are a promising computational paradigm for both modeling neural circuits of the brain and implementing associative memory and Hebbian cell assemblies in parallel VLSI or nanoscale hardware. Previous work has extensively investigated synaptic learning in linear models of the Hopfield type and simple nonlinear models of the Steinbuch/Willshaw type. Optimized Hopfield networks of size n can store a large number of about n(2)/k memories of size k (or associations between them) but require real-valued synapses, which are expensive to implement and can store at most C = 0.72 bits per synapse. Willshaw networks can store a much smaller number of about n(2)/k(2) memories but get along with much cheaper binary synapses. Here I present a learning model employing synapses with discrete synaptic weights. For optimal discretization parameters, this model can store, up to a factor ζ close to one, the same number of memories as for optimized Hopfield-type learning--for example, ζ = 0.64 for binary synapses, ζ = 0.88 for 2 bit (four-state) synapses, ζ = 0.96 for 3 bit (8-state) synapses, and ζ > 0.99 for 4 bit (16-state) synapses. The model also provides the theoretical framework to determine optimal discretization parameters for computer implementations or brainlike parallel hardware including structural plasticity. In particular, as recently shown for the Willshaw network, it is possible to store C(I) = 1 bit per computer bit and up to C(S) = log n bits per nonsilent synapse, whereas the absolute number of stored memories can be much larger than for the Willshaw model.

  2. Innate immune pattern recognition: a cell biological perspective. (United States)

    Brubaker, Sky W; Bonham, Kevin S; Zanoni, Ivan; Kagan, Jonathan C


    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.

  3. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells. (United States)

    Hsu, Peter; Nanan, Ralph


    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance.

  4. IgSF8: a developmentally and functionally regulated cell adhesion molecule in olfactory sensory neuron axons and synapses


    Ray, Arundhati; Treloar, Helen B.


    Here, we investigated an Immunoglobulin (Ig) superfamily protein IgSF8 which is abundantly expressed in olfactory sensory neuron (OSN) axons and their developing synapses. We demonstrate that expression of IgSF8 within synaptic neuropil is transitory, limited to the period of glomerular formation. Glomerular expression decreases after synaptic maturation and compartmental glomerular organization is achieved, although expression is maintained at high levels within the olfactory nerve layer (ON...

  5. The protective effect of myo-inositol on hippocamal cell loss and structural alterations in neurons and synapses triggered by kainic acid-induced status epilepticus. (United States)

    Kotaria, Nato; Kiladze, Maia; Zhvania, Mzia G; Japaridze, Nadezhda J; Bikashvili, Tamar; Solomonia, Revaz O; Bolkvadze, Tamar


    It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree-in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid.

  6. Estrogen receptors regulate innate immune cells and signaling pathways. (United States)

    Kovats, Susan


    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  7. Human intestinal dendritic cells as controllers of mucosal immunity. (United States)

    Bernardo, David


    Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory) of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  8. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo


    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  9. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli


    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  10. Kicking off adaptive immunity: the discovery of dendritic cells


    Katsnelson, Alla


    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  11. Levels of immune cells in transcendental meditation practitioners

    Directory of Open Access Journals (Sweden)

    Jose R Infante


    Conclusions: The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.

  12. Cell signaling in the interaction between pathogenic bacteria and immune cells. (United States)

    Yang, Hui; Liu, Yaxiong; Tang, Ruihua; Shao, Dongyan; Li, Jing; Li, Ji; Ye, Linjie; Jin, Mingliang; Huang, Qingsheng; Shi, Junling


    Cell signaling is an essential part in the complex system of communication that governs basic cellular activities and coordinates cell actions. The ability of cells to perceive and correctly respond to their microenvironment is essential for cell survival and basic biological function. In the defense from pathogenic bacteria, the immune cells exert their function through various signaling pathways. In this review, we will summarize recent findings on the role of cell signaling in the interaction between pathogenic bacteria and immune cells, focusing on neutrophils and macrophages, which are part of the innate immunity, and also T cells, which are components of the adaptive immune system.

  13. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  14. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons. (United States)

    Edwards, Stacey L; Morrison, Logan M; Yorks, Rosalina M; Hoover, Christopher M; Boominathan, Soorajnath; Miller, Kenneth G


    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

  15. The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

    Directory of Open Access Journals (Sweden)

    Mancardi Gianluigi


    Full Text Available Abstract Background The hematopoietic stem cells (HSCs niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs. Results Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE. Conclusion Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.

  16. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai


    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  17. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. (United States)

    Jochems, Caroline; Schlom, Jeffrey


    Numerous studies have now documented a link between the immune infiltrate in several human carcinoma types and prognosis and response to therapy. The most comprehensive of these studies were in colorectal cancer with similar conclusions by numerous groups. Analyses of immune infiltrate of several other carcinoma types also showed general correlations between immune infiltrate and prognosis, but with some conflicting results. This review will attempt to summarize the current state of this field and point out what factors may be responsible for some of the conflicting findings. Nonetheless, the breadth of reports drawing similar conclusions for some cancer cell types leads one to more seriously consider the link between immune cell infiltrate and tumor prognosis and/or response to therapy, and the potential for combining conventional cancer therapy with active immunotherapy employing therapeutic cancer vaccines.

  18. Immune Cell Isolation from Mouse Femur Bone Marrow


    Liu, Xiaoyu; Quan, Ning


    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of sp...

  19. Accelerated Intoxication of GABAergic Synapses by Botulinum Neurotoxin A Disinhibits Stem Cell-Derived Neuron Networks Prior to Network Silencing (United States)


    controls (Figure 2A). To con- firm that the reduction of APs was caused by the loss of synap- tic drive rather than decreased intrinsic excitability, passive...indicates a P < 0.05; ** indicates a P < 0.01; *** indicates a P < 0.001. significantly increased IBI and APs per burst within 10min, con- firming network...A may undergo retrograde transport and be released from motor neurons to intoxicate central synapses (Restani et al., 2012a,b; Marchand-Pauvert et al

  20. The Principles of Engineering Immune Cells to Treat Cancer. (United States)

    Lim, Wendell A; June, Carl H


    Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.

  1. Human immune cell targeting of protein nanoparticles - caveospheres (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert


    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  2. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis (United States)


    Sepsis is a life threatening condition mediated by systemic infection, but also triggered by hemorrhage and trauma. These are significant causes of organ injury implicated in morbidity and mortality, as well as post-sepsis complications associated with dysfunction of innate and adaptive immunity. The role of cellular bioenergetics and loss of metabolic plasticity of immune cells is increasingly emerging in the pathogenesis of sepsis. This review describes mitochondrial biology and metabolic alterations of immune cells due to sepsis, as well as indicates plausible therapeutic opportunities.

  3. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.


    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  4. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. (United States)

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E


    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system.

  5. The architects of B and T cell immune responses. (United States)

    Lane, Peter J L


    Published work links adult lymphoid tissue-inducer cells (LTi) with T cell-dependent antibody responses. In this issue of Immunity, Tsuji et al. (2008) associate LTi with T cell-independent IgA antibody responses in the gut.

  6. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan


    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  7. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M


    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  8. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等


    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  9. Intercellular Communication in the Adaptive Immune System (United States)

    Chakraborty, Arup


    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  10. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu


    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  11. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. (United States)

    Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira; Talla, Aarthi; McDonald, David; Bhaskaran, Natarajan; Levine, Alan D; Weinberg, Aaron; Sekaly, Rafick P


    Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4(+) T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4(+) T lymphocytes, such as T helper 17 cells and CD4(+)Foxp3(+) regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will

  12. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Som Gowda Nanjappa

    Full Text Available Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+ T-cell help, vaccine-induced CD8(+ T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+ T cells (Tc17 cells have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+ T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.

  13. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells. (United States)

    Nanjappa, Som Gowda; Heninger, Erika; Wüthrich, Marcel; Gasper, David Joseph; Klein, Bruce S


    Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+) T-cell help, vaccine-induced CD8(+) T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+) T cells (Tc17 cells) have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+) T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.

  14. Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand. (United States)

    Weinstock, Ada; Pevsner-Fischer, Meirav; Porat, Ziv; Selitrennik, Michael; Zipori, Dov


    Mesenchymal stem cells (MSCs) serve as supporting and regulatory cells, by providing tissues with multiple factors and are also known for their immunosuppressive capabilities. Our laboratory had previously shown that MSCs expressed toll-like receptor (TLR) 2 and are activated by its ligand Pam3Cys. TLR2 is an important component of the innate immune system, as it recognizes bacterial lipopeptides, thus priming a pro-inflammatory immune response. This study showed that Pam3Cys attached extensively to cells of both wild-type and TLR2 deficient cultured MSCs, thus, independently of TLR2. The TLR2 independent binding occurred through the adsorption of the palmitoyl moieties of Pam3Cys. It was further showed that Pam3Cys was transferred from cultured MSCs to immune cells. Moreover, Pam3Cys provided to the immune cells induced a pro-inflammatory response in vitro and in vivo. Overall, it is demonstrated herein that a TLR2 ligand bound to MSCs also through a TLR2 independent mechanism. Furthermore, the ligand incorporated by MSCs is subsequently released to stimulate an immune response both in vitro and in vivo. It is thus suggested that during bacterial infection, stromal cells may retain a reservoir of the TLR2 ligands, in a long-term manner, and release them slowly to maintain an immune response.

  15. Immune Monitoring Using mRNA-Transfected Dendritic Cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan


    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  16. Analog VLSI Circuits for Short-Term Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Shih-Chii Liu


    Full Text Available Short-term dynamical synapses increase the computational power of neuronal networks. These synapses act as additional filters to the inputs of a neuron before the subsequent integration of these signals at its cell body. In this work, we describe a model of depressing and facilitating synapses derived from a hardware circuit implementation. This model is equivalent to theoretical models of short-term synaptic dynamics in network simulations. These circuits have been added to a network of leaky integrate-and-fire neurons. A cortical model of direction-selectivity that uses short-term dynamic synapses has been implemented with this network.

  17. Up-regulation of Ras/Raf/ERK1/2 signaling in the spinal cord impairs neural cell migration, neurogenesis, synapse formation, and dendritic spine development

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; ZHANG Xu; LIU Tao; LI Xia-wen; Mazar Malik; FENG Shi-qing


    Background The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation,migration,differentiation,and death.In the nervous system,emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death.To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of spinal cord injury,we developed a cellular model of Raf/ERK up-regulation by overexpressing c-Raf in cultured spinal cord neurons (SCNs) and dorsal root ganglions (DRGs).Methods DRGs and SCNs were prepared from C57BL/6J mouse pups.DRGs or SCNs were infected with Ad-Raf-1 or Ad-Null adenovirus alone.Cell adhesion assay and cell migration assay were investigated,Dil labeling was employed to examine the effect of the up-regulation of Ras/Raf/ERK1/2 signaling on the dendritic formation of spinal neurons.We used the TO-PRO-3 staining to examine the apoptotic effect of c-Raf on DRGs or SCNs.The effect on the synapse formation of neurons was measured by using immunofluorescence.Results We found that Raf/ERK up-regulation stimulates the migration of both SCNs and DRGs,and impairs the formation of excitatory synapses in SCNs.In addition,we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in SCNs.Investigating the possible mechanisms through which Raf/ERK up-regulation affects the excitatory synapse formation and dendritic spine development,we discovered that Raf/ERK up-regulation suppresses the development and maturation of SCNs.Conclusion The up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of spinal cord injury through both its impairment of the SCN development and causing neural circuit imbalances.

  18. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Directory of Open Access Journals (Sweden)

    Ervin E Kara


    Full Text Available Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H1/T(H2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  19. Tailored immune responses: novel effector helper T cell subsets in protective immunity. (United States)

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R


    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  20. A bionics chemical synapse. (United States)

    Thanapitak, Surachoke; Toumazou, Christofer


    Implementation of the current mode CMOS circuit for chemical synapses (AMPA and NMDA receptors) with dynamic change of glutamate as the neurotransmitter input is presented in this paper. Additionally, circuit realisation for receptor GABA(A) and GABA(B) with an electrical signal which symbolises γ-Aminobutyric Acid (GABA) perturbation is introduced. The chemical sensor for glutamate sensing is the modified ISFET with enzyme (glutamate oxidase) immobilisation. The measured results from these biomimetics chemical synapse circuits closely match with the simulation result from the mathematical model. The total power consumption of the whole chip (four chemical synapse circuits and all auxiliary circuits) is 168.3 μW. The total chip area is 3 mm(2) in 0.35-μm AMS CMOS technology.

  1. The role of cell-mediated immunity in typhoid. (United States)

    Mabel, T J; Paniker, C K


    The cell-mediated immunity in typhoid was assessed by the leukocyte migration inhibition test and delayed hypersensitivity skin test in 60 clinical typhoid patients. The property of leukocyte migration inhibition appeared first and was positive in 28 of 60 (46.7%) patients on admission and 45 of 60 (75%) at the time of discharge. This difference was definitely more in blood culture positive patients. The delayed hypersensitivity appeared later and was positive in 18 of 60 (30%) on admission and 31 of 60 (51.7%) at the time of discharge. Patients with positive cellular-immune response against typhoid antigen did not develop relapse. On the whole cell-mediated immunity seems to play an important role in typoid. The control groups--the medical and surgical patients, doctors, clinical students and preclinical students--showed positive cellular immune response of 43.3 81.3, 40.7 and 25% respectively. The significance of these results is discussed.

  2. Host Cell Autophagy in Immune Response to Zoonotic Infections

    Directory of Open Access Journals (Sweden)

    Panagiotis Skendros


    Full Text Available Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.

  3. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn


    Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly......, IFNγ spot-formation was observed without addition of peptide to the assay culture at 3 weeks and 3 months after immunization. To clarify if IFNγ spot formation in the absence of peptide exposure ex vivo is caused by the peptide-pool per se, mice were immunized with single peptides. Three of the five...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...

  4. Mobilizing forces -CD4~+ helper T cells script adaptive immunity

    Institute of Scientific and Technical Information of China (English)

    Frédérick Masson; Gabrielle T Belz


    Traditionally, CD4~+ T cells have been understood to play a key role in 'helping' CD8~+ T cells undergo efficient activation and proliferation in response to foreign pathogens. This has been thought to be directed primarily by CD4~+ T cell interactions with dendritic cells (DCs) [1, 2] that convert 'unlicenced' DCs into DCs capable of implementing a full blown immune response ('licenced' DCs).

  5. Spaceflight alters immune cell function and distribution (United States)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.


    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  6. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong


    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  7. Integrin-independent movement of immune cells


    Pinner, Sophie E; Sahai, Erik


    Cell motility requires the temporal and spatial coordination of the actin cytoskeleton with cell-matrix adhesions. Since their discovery more than 20 years ago, integrins have been at the center of cell-matrix adhesion research. Integrin-mediated adhesions link the actin network to the extracellular matrix and are commonly observed as cells migrate across rigid two-dimensional substrates. However, as more cell motility studies are being conducted in three-dimensional (3D) culture systems and ...

  8. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.


    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  9. "Flagellated" cancer cells propel anti-tumor immunity. (United States)

    Garaude, Johan; Blander, J Magarian


    The use of innate immune receptor agonists in cancer therapies has suffered from many drawbacks. Our recent observations suggest that some of these hurdles can be overcome by introducing flagellin into tumor cells to promote tumor antigen presentation by dendritic cells (DCs) and simultaneously trigger two types of pattern recognition receptors (PRRs).

  10. Marginal zone B-cells, a gatekeeper of innate immunity. (United States)

    Zouali, Moncef; Richard, Yolande


    To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies - performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans - showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells - MZ B-cells and/or B1 B-cells - with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.

  11. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy. (United States)

    Wang, Lili; Eng, Edward T; Law, Kenneth; Gordon, Ronald E; Rice, William J; Chen, Benjamin K


    Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells.

  12. Effects of spaceflight on levels and activity of immune cells (United States)

    Sonnenfeld, Gerald; Berry, Wallace D.; Mandel, Adrian D.; Konstantinova, Irena V.; Taylor, Gerald R.


    Experiments were carried out on cells from rats that had been flown on Soviet Biosputnik Cosmos 1887 to explore the effects of speceflight on immune responses. Rat bone marrow cells were examined for their response to colony stimulating factor-M. Rat spleen and bone marrow cells were stained with antibodies directed against cell surface antigenic markers. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell, and interleukin-2 receptor cell surface antigens. A small increase in the percentage of cells staining positively for helper-T-cell antigens was also noted. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin.

  13. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen


    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  14. Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct

    Institute of Scientific and Technical Information of China (English)

    Chuanyu Liu; Surong Zhou; Xuwen Sun; Zhuli Liu; Hongliang Wu; Yuanwu Mei


    Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex.These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.

  15. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)


    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  16. Ikaros can enhance immune activity though the interaction with Autotaxin in LDIR exposed immune cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jin; Kim, Min Young; Kim, Ji Young; Kim, Hee Sun; KIm, Cha Soon; Nam, Seon Young; Yang, Kwang Hee; Jin, Young Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Seoul (Korea, Republic of)


    Ikaros, one of transcription factors, plays major roles in the differentiation and biology of leukocytes, including all classes of lymphocytes (NK, T, and B cells), monocytes/macrophages, and dendritic cells. Ikaros was also shown to regulate early neutrophils differentiation. Therefore, Ikaros appears to be a major determinant in the development and function of immune system. Autotaxin (ATX), which is also called nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX functions as a lysophospholipase D, converting lysophosphatidylcholine (LPC) into the lipid mediator lysophosphatidic acid (LPA). LPA bind together with specific G protein-coupled receptors, which elicit a wide range of cellular responses including the cell proliferation, migration and neurite remodeling. In the Recent report, ATX stimulate human endothelial cells (HUVECs) growth and cytokine production. In our previous study, we showed that low-dose ionizing radiation (LDIR) enhanced the cell proliferation cell coupled with Ikaros phosphorylation. In addition, we found that LDIR increased the expression level of cyclin E and cdk2 protein in IM-9 B lymphoblast cells. In this report, therefore, we try to find Ikaros binding proteins after LDIR in IM-9 lymphoblastic cell lines to examine whether the effects of LDIR induced cell proliferation are one of immune activation responses or not.


    Institute of Scientific and Technical Information of China (English)


    Objective: To investigate the expression of immune- related molecules in glioblastoma multiform(GBM) cells. Methods: The expression of major histocompatibility complex (MHC), β2-microglobulin, Fas, CD80 and CD86 molecules on the surface of GBM cells were evaluated by flow cytometry. The expression of TAP-1, TAP-2 and Tapasin in the GBM cells were evaluated by RT-PCR method. Results: MHC class Ⅰ, β2 microglobulin, TAP-1, TAP-2 and tapasin were expressed in most GBM cell lines. Except U87, there was no MHC class Ⅱ molecule expression on any of the other GBM cell lines. Fas was expressed on all the GBM cell lines examined. Conclusion: The mechanism by which GBM escapes immune surveillance may involve down regulation of expression of MHC class Ⅰ molecules and MHC class Ⅱ molecules. MHC class Ⅰpositive GBM may be the suitable target of immunotherapy.

  18. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  19. Automated quantification of synapses by fluorescence microscopy. (United States)

    Schätzle, Philipp; Wuttke, René; Ziegler, Urs; Sonderegger, Peter


    The quantification of synapses in neuronal cultures is essential in studies of the molecular mechanisms underlying synaptogenesis and synaptic plasticity. Conventional counting of synapses based on morphological or immunocytochemical criteria is extremely work-intensive. We developed a fully automated method which quantifies synaptic elements and complete synapses based on immunocytochemistry. Pre- and postsynaptic elements are detected by their corresponding fluorescence signals and their proximity to dendrites. Synapses are defined as the combination of a pre- and postsynaptic element within a given distance. The analysis is performed in three dimensions and all parameters required for quantification can be easily adjusted by a graphical user interface. The integrated batch processing enables the analysis of large datasets without any further user interaction and is therefore efficient and timesaving. The potential of this method was demonstrated by an extensive quantification of synapses in neuronal cultures from DIV 7 to DIV 21. The method can be applied to all datasets containing a pre- and postsynaptic labeling plus a dendritic or cell surface marker.

  20. Interferon-inducible GTPases in cell autonomous and innate immunity. (United States)

    Meunier, Etienne; Broz, Petr


    Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell-intrinsic manner, collectively referred to as cell-autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen-associated molecular patterns by pattern-recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN-stimulated genes, among them the so-called IFN-inducible GTPases. Two subfamilies of IFN-inducible GTPases, the immunity-related GTPases (IRGs) and the guanylate-binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi-protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin-1β and interleukin-18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.

  1. Intestinal epithelial cells and their role in innate mucosal immunity


    Maldonado-Contreras, A. L.; McCormick, Beth A


    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human ...

  2. Marginal zone B-cells, a gatekeeper of innate immunity

    Directory of Open Access Journals (Sweden)

    Moncef eZOUALI


    Full Text Available To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B-lymphocytes were initially thought to only play a role in the adaptative branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount local antibody response against type 2 T-independent (TI-2 antigens, MZ B-cells can participate to T-dependent (TD immune response through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in rodents and primates. We also summarize studies —performed in transgenic mice expressing fully human antibodies on their B-cells and macaques whose infection with Simian Immunodeficiency Virus (SIV represents a suitable model for HIV-1 infection in humans— showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells —MZ B-cells and/or B1 B-cells— with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.

  3. The secretory synapse: the secrets of a serial killer. (United States)

    Bossi, Giovanna; Trambas, Christina; Booth, Sarah; Clark, Richard; Stinchcombe, Jane; Griffiths, Gillian M


    Cytotoxic T lymphocytes (CTLs) destroy their targets by a process involving secretion of specialized granules. The interactions between CTLs and target can be very brief; nevertheless, adhesion and signaling proteins segregate into an immunological synapse. Secretion occurs in a specialized secretory domain. Use of live and fixed cell microscopy allows this secretory synapse to be visualized both temporally and spatially. The combined use of confocal and electron microscopy has produced some surprising findings, which suggest that the secretory synapse may be important both in delivering the lethal hit and in facilitating membrane transfer from target to CTL. Studies on the secretory synapse in wild-type and mutant CTLs have been used to identify proteins involved in secretion. Further clues as to the signals required for secretion are emerging from comparisons of inhibitory and activating synapses formed by natural killer cells.

  4. From T cell "exhaustion" to anti-cancer immunity. (United States)

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E


    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  5. Follicular helper T cell in immunity and autoimmunity

    Directory of Open Access Journals (Sweden)

    D. Mesquita Jr


    Full Text Available The traditional concept that effector T helper (Th responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17 and the follicular helper T cells (Tfh. These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R, the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  6. T cell immune responses in psoriasis.

    Directory of Open Access Journals (Sweden)

    Zohre Jadali


    Full Text Available A central role for T cells and their cytokines in the pathogenesis of psoriasis has been proposed; however, there are controversies over the details of this issue. The goal of this study is to summarise currently available data on the importance of T cells in psoriasis pathogenesis. A systematic review of the English medical literature was conducted by searching PubMed, Embase, ISI Web of Knowledge, and Iranian databases including Iranmedex, and SID for studies on associations between the involvement of T cell subsets and psoriasis. The results of the present study indicate that alterations in the number and function of different subsets of T-cells are associated with psoriasis. It appears that studies on T cell subsets contributed to understanding the immunopathogenesis of psoriasis. In addition, it may have provided novel therapeutic opportunities in ameliorating immunopathologies.

  7. Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. (United States)

    de Witte, Moniek A; Kierkels, Guido J J; Straetemans, Trudy; Britten, Cedrik M; Kuball, Jürgen


    Over half a century ago, the first allogeneic stem cell transplantation (allo-SCT) initiated cellular immunotherapy. For several decades, little progress was made, and toxicity of allo-SCT remained a major challenge. However, recent breakthroughs have opened new avenues to further develop this modality and to provide less toxic and equally efficient interventions for patients suffering from hematological or solid malignancies. Current novel cellular immune interventions include ex vivo expansion and adoptive transfer of tumor-infiltrating immune cells or administration of drugs which antagonize tolerizing mechanisms. Alternatively, transfer of immune cells engineered to express defined T cell receptors (TCRs) and chimeric antigen receptors (CARs) has shown its potential. A valuable addition to 'engineered' adaptive immunity has emerged recently through the improved understanding of how innate immune cells can attack cancer cells without substantial side effects. This has enabled the development of transplantation platforms with limited side effects allowing early immune interventions as well as the design of engineered immune cells expressing innate immune receptors. Here, we focus on innate immune interventions and their orchestration with TCR- and CAR-engineered immune cells. In addition, we discuss how the exploitation of the full potential of cellular immune interventions is influenced by regulatory frameworks. Finally, we highlight and discuss substantial differences in the current landscape of clinical trials in Europe as compared to the USA. The aim is to stimulate international efforts to support regulatory authorities and funding agencies, especially in Europe, to create an environment that will endorse the development of engineered immune cells for the benefit of patients.

  8. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos


    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients.

  9. [Biotherapy targeting the immune system]. (United States)

    Frenzel, Laurent


    The use of monoclonal antibody targeted therapy has changed the management of several diseases, including in hematology and immunology. The panel of the present available biotherapies allows a specific action at various stages of the immune response. Indeed, some of these molecules can target the naive T cell at the immunological synapse or the way of TH1, TH17 and regulatory T cell. Others may be more specific for the B cell and immunoglobulin. Some will even be active on both B and T cells.

  10. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance. (United States)

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y


    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth.

  11. Immunity to pathogens taught by specialized human dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Jens A. E. Geginat


    Full Text Available Dendritic cells (DC are specialized antigen-presenting cells (APC that have a key role in immune responses, because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and up-regulate MHC molecules and co-stimulatory receptors to activate antigen-specific CD4+ and CD8+ T-cells. It is now well established that DC are not a homogeneous population, but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DC (pDC rapidly produce large amounts of IFN-α, which has potent anti-viral functions and activates several other immune cells. However, pDC are not particularly potent APC and induce the tolerogenic cytokine IL-10 in CD4+ T-cells. In contrast, myeloid DC (mDC are very potent APC and possess the unique capacity to prime naïve T-cells and consequently to initiate a primary adaptive immune response. Different subsets of myeloid DC with specialized functions have been identified. In mice, CD8α+ mDC capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T cell responses to control intracellular pathogens. Conversely, CD8α- mDC preferentially prime CD4+ T-cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDC, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several relevant toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggests specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the

  12. Differential mechanisms of transmission at three types of mossy fiber synapse. (United States)

    Toth, K; Suares, G; Lawrence, J J; Philips-Tansey, E; McBain, C J


    The axons of the dentate gyrus granule cells, the so-called mossy fibers, innervate their inhibitory interneuron and pyramidal neuron targets via both anatomically and functionally specialized synapses. Mossy fiber synapses onto inhibitory interneurons were comprised of either calcium-permeable (CP) or calcium-impermeable (CI) AMPA receptors, whereas only calcium-impermeable AMPA receptors existed at CA3 principal neuron synapses. In response to brief trains of high-frequency stimuli (20 Hz), pyramidal neuron synapses invariably demonstrated short-term facilitation, whereas interneuron EPSCs demonstrated either short-term facilitation or depression. Facilitation at all CI AMPA synapses was voltage independent, whereas EPSCs at CP AMPA synapses showed greater facilitation at -20 than at -80 mV, consistent with a role for the postsynaptic unblock of polyamines. At pyramidal cell synapses, mossy fiber EPSCs possessed marked frequency-dependent facilitation (commencing at stimulation frequencies >0.1 Hz), whereas EPSCs at either type of interneuron synapse showed only moderate frequency-dependent facilitation or underwent depression. Presynaptic metabotropic glutamate receptors (mGluRs) decreased transmission at all three synapse types in a frequency-dependent manner. However, after block of presynaptic mGluRs, transmission at interneuron synapses still did not match the dynamic range of EPSCs at pyramidal neuron synapses. High-frequency stimulation of mossy fibers induced long-term potentiation (LTP), long-term depression (LTD), or no change at pyramidal neuron synapses, interneuron CP AMPA synapses, and CI AMPA synapses, respectively. Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability. These data reveal differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.

  13. CXCR5+ T helper cells mediate protective immunity against tuberculosis (United States)

    Slight, Samantha R.; Rangel-Moreno, Javier; Gopal, Radha; Lin, Yinyao; Fallert Junecko, Beth A.; Mehra, Smriti; Selman, Moises; Becerril-Villanueva, Enrique; Baquera-Heredia, Javier; Pavon, Lenin; Kaushal, Deepak; Reinhart, Todd A.; Randall, Troy D.; Khader, Shabaana A.


    One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy. PMID:23281399

  14. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin


    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  15. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho


    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...

  16. Evasion of T cell immunity by Epstein-Barr virus

    NARCIS (Netherlands)

    Horst, D.


    Immune evasion strategies are thought to contribute essentially to the life cycle of persistent viruses by delaying the elimination of the infected cell long enough to enable the virus to replicate. Exemplary in this context are the herpesviruses, large DNA viruses that are carried as a persistent a

  17. Ebola VP40 in exosomes can cause immune cell dysfunction

    Directory of Open Access Journals (Sweden)

    Michelle L Pleet


    Full Text Available Ebola virus (EBOV is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible

  18. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;


    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack,...

  19. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.


    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.

  20. Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III

    Directory of Open Access Journals (Sweden)

    Aristo Vojdani


    Full Text Available Regulatory T (Treg cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate Treg cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor destruction. Although the etiology of dysfunctional Treg cell populations is under debate, the ramifications, and their mechanisms, are increasingly brought to light in the medical community. Methods that compensate for aberrant immune regulation may not address the underlying complications; however, they hold promise for the alleviation of debilitating immune system-related disorders. The dominant immunoregulatory nature of Treg cells, coupled with recent mechanistic knowledge of natural immunomodulatory compounds, highlights the importance of Treg cells to practitioners and researchers of complementary and alternative medicine (CAM.

  1. In vivo imaging of immune cell trafficking in cancer. (United States)

    Ottobrini, Luisa; Martelli, Cristina; Trabattoni, Daria Lucia; Clerici, Mario; Lucignani, Giovanni


    Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.

  2. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia

    DEFF Research Database (Denmark)

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian


    and overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8(+) and CD45R0(+) T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion......Immune cells often infiltrate testicular germ cell neoplasms, including pre-invasive carcinoma in situ (CIS), but the significance of this phenomenon remains unknown. The composition and distribution of infiltrating immune cells were examined by immunohistochemistry in testis samples with CIS...... and very few CD4(+) and FoxP3(+) T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia...

  3. Emerging Evidence for Platelets as Immune and Inflammatory Effector Cells

    Directory of Open Access Journals (Sweden)

    Matthew Thomas Rondina


    Full Text Available While traditionally recognized for their roles in hemostatic pathways, emerging evidence demonstrates that platelets have previously unrecognized, dynamic roles that span the immune continuum. These newly-recognized platelet functions, including the secretion of immune mediators, interactions with endothelial cells, monocytes, and neutrophils, toll-like receptor (TLR mediated responses, and induction of neutrophil extracellular trap (NET formation, bridge thrombotic and inflammatory pathways and contribute to host defense mechanisms against invading pathogens. In this focused review, we highlight several of these emerging aspects of platelet biology and their implications in clinical infectious syndromes.

  4. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith


    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  5. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston


    The intestine presents a huge surface area to the outside environment, a property that is of critical importance for its key functions in nutrient digestion, absorption, and waste disposal. As such, the intestine is constantly exposed to dietary and microbial-derived foreign antigens, to which....... The recognition that dietary nutrients and microbial communities in the intestine influence both mucosal and systemic immune cell development and function as well as immune-mediated disease has led to an explosion of literature in mucosal immunology in recent years and a growing interest in the functionality...

  6. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaolei Tang; Trevor RF Smith; Vipin Kumar


    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations,suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming.

  7. Role of Dendritic Cells in Immune Dysfunction (United States)

    Savary, Cherylyn A.


    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  8. Ageing and cell-mediated immunity. (United States)

    Fixa, B; Komárková, O; Chmelar, V


    The lymphocyte transformation test with phytohemagglutinin as mitogen estimated according to the incorporation of 2-(14)C-thymidine in DNA was used as an indicator of cell-mediated reactivity in 53 healthy subjects. Three age groups were examined: up to 20 years (21 subjects), 21-40 years (10 subjects) and over 70 years (22 subjects). The responsiveness of lymphocytes decreased significantly with age. In the highest age group 12 pathologically low values were found.

  9. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam


    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  10. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice. (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya


    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  11. How B cells shape the immune response against Mycobacterium tuberculosis. (United States)

    Maglione, Paul J; Chan, John


    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B-cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against non-viral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against non-viral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought.

  12. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick


    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  13. Mast cells in allergy and autoimmunity: implications for adaptive immunity. (United States)

    Gregory, Gregory D; Brown, Melissa A


    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  14. Th17 Cells in Immunity and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Simone Kennedy Bedoya


    Full Text Available Th17 and IL-17 play important roles in the clearance of extracellular bacterial and fungal infections. However, strong evidence also implicates the Th17 lineage in several autoimmune disorders including multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. The Th17 subset has also been connected with type I diabetes, although whether it plays a role in the pathogenicity of or protection from the disease remains a controversial issue. In this review we have provided a comprehensive overview of Th17 pathogenicity and function, including novel evidence for a protective role of Th17 cells in conjunction with the microbiota gut flora in T1D onset and progression.

  15. Mast cells and basophils in cutaneous immune responses. (United States)

    Otsuka, A; Kabashima, K


    Mast cells and basophils share some functions in common and are generally associated with T helper 2 (Th2) immune responses, but taking basophils as surrogate cells for mast cell research or vice versa for several decades is problematic. Thus far, their in vitro functions have been well studied, but their in vivo functions remained poorly understood. New research tools for their functional analysis in vivo have revealed previously unrecognized roles for mast cells and basophils in several skin disorders. Newly developed mast cell-deficient mice provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. In addition, studies using basophil-deficient mice have revealed that basophils were responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Moreover, human basophils infiltrate different skin lesions and have been implicated in the pathogenesis of skin diseases ranging from atopic dermatitis to autoimmune diseases. In this review, we will discuss the recent advances related to mast cells and basophils in human and murine cutaneous immune responses.

  16. Regulatory T cells and the immune pathogenesis of prenatal infection. (United States)

    Rowe, Jared H; Ertelt, James M; Xin, Lijun; Way, Sing Sing


    Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal-placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.

  17. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner. (United States)

    Viviani, Barbara; Boraso, Mariaserena; Valero, Manuel; Gardoni, Fabrizio; Marco, Eva Maria; Llorente, Ricardo; Corsini, Emanuela; Galli, Corrado Lodovico; Di Luca, Monica; Marinovich, Marina; López-Gallardo, Meritxell; Viveros, Maria-Paz


    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.

  18. Direct interaction studies between Aspergillus fumigatus and Human immune cells; what have we learned about pathogenicity and host immunity?

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton


    Full Text Available Invasive aspergillosis is a significant threat to health and is a major cause of mortality in immunocompromised individuals. Understanding the interaction between the fungus and the immune system is important in determining how the immunocompetent host remain disease free. Several studies examining the direct interaction between Aspergillus fumigatus and purified innate immune cells have been conducted to measure the responses of both the host cells and the pathogen. It has been revealed that innate immune cells have different modes of action ranging from effective fungal killing by neutrophils to the less aggressive response of dendritic cells. Natural-killer cells do not phagocytose the fungus unlike the other innate immune cells mentioned but appear to mediate their antifungal effect through the release of gamma interferon. Transcriptional analysis of A. fumigatus interacting with these cells has indicated that it can adapt to the harsh microenvironment of the phagosome and produces toxins, ribotoxin and gliotoxin, that can induce cell death in the majority of innate immune cells. These data point towards potential novel antifungal treatments including the use of innate immune cells as antifungal vaccines.

  19. The responses of immune cells to iron oxide nanoparticles. (United States)

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping


    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.

  20. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas (United States)

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.


    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  1. Electrical synapses and synchrony: the role of intrinsic currents. (United States)

    Pfeuty, Benjamin; Mato, Germán; Golomb, David; Hansel, David


    Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell properties affect the synchronization of neurons interacting by electrical synapses. Numerical simulations of a network of conductance-based neurons randomly connected with electrical synapses show that potassium currents promote synchrony, whereas the persistent sodium current impedes it. Furthermore, synchrony varies with the firing rate in qualitatively different ways depending on the intrinsic currents. We also study analytically a network of quadratic integrate-and-fire neurons. We relate the stability of the asynchronous state of this network to the phase-response function (PRF), which characterizes the effect of small perturbations on the firing timing of the neurons. In particular, we show that the greater the skew of the PRF toward the first half of the period, the more stable the asynchronous state. Combining our simulations with our analytical results, we establish general rules to predict the dynamic state of large networks of neurons coupled with electrical synapses. Our work provides a natural explanation for surprising experimental observations that blocking electrical synapses may increase the synchrony of neuronal activity. It also suggests different synchronization properties for LTS and FS cells. Finally, we propose to further test our predictions in experiments using dynamic clamp techniques.

  2. Suppression of cell-mediated immunity by misonidazole

    Energy Technology Data Exchange (ETDEWEB)

    Rockwell, S.; Neaderland, M.H. (Yale Univ., New Haven, CT (USA). School of Medicine)


    The data presented in this report demonstrate that single treatments with large doses of misonidazole (l mg/g) produce significant inhibition of delayed hypersensitivity to DNFB. Contact sensitivity to DNFB is generally considered to be a cell-mediated immune response (Asherson and Ptak 1968, Moorhead 1978, Phanuphak et al. 1974, Zembala and Asherson 1973). The authors' histological observations and the lack of ear swelling in the nude mice support this interpretation.

  3. Mineralocorticoid Receptors in Immune Cells; Emerging Role in Cardiovascular Disease


    Bene, Nicholas C.; Alcaide, Pilar; Wortis, Henry H.; Jaffe, Iris Z.


    Mineralocorticoid receptors (MR) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pr...

  4. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells

    Institute of Scientific and Technical Information of China (English)

    Qi Cao; Dangsheng Li; Ningli Li; Li Wang; Fang Du; Huiming Sheng; Yan Zhang; Juanjuan Wu; Baihua Shen; Tianwei Shen; Jingwu Zhang


    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Thl immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml,/K0.01 vs controls). Consistent with a role of anti-CD25 response in the down-regulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  5. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation. (United States)

    Neuillé, Marion; Morgans, Catherine W; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M; Martemyanov, Kirill A; Zeitz, Christina


    Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.

  6. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status [Abstract (United States)

    The circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a H...

  7. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status. (United States)

    Circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a HoBi-...

  8. Glycation of extracellular matrix proteins impairs migration of immune cells. (United States)

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt


    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells.

  9. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B


    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  10. Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin.


    Borg, Rachael J.; Samson, Andre L.; Amanda E-L Au; Anja Scholzen; Martina Fuchsberger; Kong, Ying Y.; Roxann Freeman; Nicole A Mifsud; Magdalena Plebanski; Medcalf, Robert L.


    Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells - a critical cell that links the innate an...

  11. Emerging roles for platelets as immune and inflammatory cells. (United States)

    Morrell, Craig N; Aggrey, Angela A; Chapman, Lesley M; Modjeski, Kristina L


    Despite their small size and anucleate status, platelets have diverse roles in vascular biology. Not only are platelets the cellular mediator of thrombosis, but platelets are also immune cells that initiate and accelerate many vascular inflammatory conditions. Platelets are linked to the pathogenesis of inflammatory diseases such as atherosclerosis, malaria infection, transplant rejection, and rheumatoid arthritis. In some contexts, platelet immune functions are protective, whereas in others platelets contribute to adverse inflammatory outcomes. In this review, we will discuss platelet and platelet-derived mediator interactions with the innate and acquired arms of the immune system and platelet-vessel wall interactions that drive inflammatory disease. There have been many recent publications indicating both important protective and adverse roles for platelets in infectious disease. Because of this new accumulating data, and the fact that infectious disease continues to be a leading cause of death globally, we will also focus on new and emerging concepts related to platelet immune and inflammatory functions in the context of infectious disease.

  12. Differential mechanisms of transmission and plasticity at mossy fiber synapses. (United States)

    McBain, Chris J


    The last few decades have seen the hippocampal formation at front and center in the field of synaptic transmission. However, much of what we know about hippocampal short- and long-term plasticity has been obtained from research at one particular synapse; the Schaffer collateral input onto principal cells of the CA1 subfield. A number of recent studies, however, have demonstrated that there is much to be learned about target-specific mechanisms of synaptic transmission by study of the lesser known synapse made between the granule cells of the dentate gyrus; the so-called mossy fiber synapse, and its targets both within the hilar region and the CA3 hippocampus proper. Indeed investigation of this synapse has provided an embarrassment of riches concerning mechanisms of transmission associated with feedforward excitatory and inhibitory control of the CA3 hippocampus. Importantly, work from a number of labs has revealed that mossy fiber synapses possess unique properties at both the level of their anatomy and physiology, and serve as an outstanding example of a synapse designed for target-specific compartmentalization of synaptic transmission. The purpose of the present review is to highlight several aspects of this synapse as they pertain to a novel mechanism of bidirectional control of synaptic plasticity at mossy fiber synapses made onto hippocampal stratum lucidum interneurons. It is not my intention to pour over all that is known regarding the mossy fiber synapse since many have explored this topic exhaustively in the past and interested readers are directed to other fine reviews (Henze et al., 2000; Urban et al., 2001; Lawrence and McBain, 2003; Bischofberger et al., 2006; Nicoll and Schmitz, 2005).

  13. Mining the Immune Cell Proteome to Identify Ovarian Cancer-Specific Biomarkers (United States)


    tolerance of the fetal allograft from maternal responses and may also serve as a novel biomarker for preeclampsia. Keywords Immune cell on the percentage of immune cells positive for sMUC16, Siglec-9 and other immune markers. The data was plotted using the Graph Pad statistical...likely to inhibit the cytolytic activities of these immune cells, as shown in our previous study thereby ensuring suppression of maternal cytotoxic

  14. Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response. (United States)

    Huang, Ke; Liu, PengFei; Li, Xiang; Chen, ShuBin; Wang, LiHui; Qin, Li; Su, ZhengHui; Huang, WenHao; Liu, Juli; Jia, Bei; Liu, Jie; Cai, JingLei; Pei, DuanQing; Pan, GuangJin


    The breakthrough development of induced pluripotent stem cells (iPSCs) raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells. However, whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear. In this study, we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with autogenous peripheral blood mononuclear cells (PBMCs), we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation. However, a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs. Furthermore, no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells (CD3(+)CD8(-) T cells, CD3(+)CD8(+) T cells or CD3(-)CD56(+) NK cells) by NPCs in both PBMC and T cell co-culture systems. These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants, and thus set a base for further preclinical evaluation of human iPSCs.

  15. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian


    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  16. Effects of PVA coated nanoparticles on human immune cells. (United States)

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank


    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine.

  17. The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. (United States)

    Zanetti, M; Rodvold, J J; Mahadevan, N R


    The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and 'community effects' in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment.

  18. Autoreactive T cells in the immune pathogenesis of pemphigus vulgaris. (United States)

    Amber, Kyle T; Staropoli, Patrick; Shiman, Michael I; Elgart, George W; Hertl, Michael


    Pemphigus vulgaris is a life-threatening autoimmune blistering disease caused by anti-desmoglein IgG autoantibodies that finally lead to acantholysis presenting clinically as progressive blistering. Whilst the production of pathogenic antibodies is key to the development of pemphigus vulgaris, many immunological steps are required prior to autoantibody induction. We review advances in the understanding of these immunologic processes with a focus on human leucocyte antigen polymorphisms and antigen recognition, epitope spreading, central and peripheral tolerance, T helper differentiation, induction of pro- and anti-inflammatory cytokines and T-cell regulation of B cells. Targeting autoaggressive T cells as regulators and stimulators of B-cell antibody production should allow for more specific therapeutic immune interventions, avoiding the global immunosuppression seen with many commonly used immunosuppressants in pemphigus vulgaris.

  19. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga


    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  20. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. (United States)

    Najar, Mehdi; Raicevic, Gordana; Fayyad-Kazan, Hussein; Bron, Dominique; Toungouz, Michel; Lagneaux, Laurence


    Because of their well-recognized immunomodulatory properties, mesenchymal stromal cells (MSCs) represent an attractive cell population for therapeutic purposes. In particular, there is growing interest in the use of MSCs as cellular immunotherapeutics for tolerance induction in allogeneic transplantations and the treatment of autoimmune diseases. However, multiple mechanisms have been identified to mediate the immunomodulatory effects of MSCs, sometimes with several ambiguities and inconsistencies. Although published studies have mainly reported the role of soluble factors, we believe that a sizeable cellular component plays a critical role in MSC immunomodulation. We refer to these cells as regulatory immune cells, which are generated from both the innate and adaptive responses after co-culture with MSCs. In this review, we discuss the nature and role of these immune regulatory cells as well as the role of different mediators, and, in particular, regulatory immune cell induction by MSCs through interleukin-10. Once induced, immune regulatory cells accumulate and converge their regulatory pathways to create a tolerogenic environment conducive for immunomodulation. Thus, a better understanding of these regulatory immune cells, in terms of how they can be optimally manipulated and induced, would be suitable for improving MSC-based immunomodulatory therapeutic strategies.

  1. Bystander T cells in human immune responses to dengue antigens

    Directory of Open Access Journals (Sweden)

    Suwannasaen Duangchan


    Full Text Available Abstract Background Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. Results Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ induction in response to inactivated dengue serotype 2 antigen (Den2. The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA, which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK (mean ± SE = 55.2 ± 3.3, CD4+T (24.5 ± 3.3 and CD8+T cells (17.9 ± 1.5, respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1% implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. Conclusions This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.

  2. Functions of innate immune cells and commensal bacteria in gut homeostasis. (United States)

    Kayama, Hisako; Takeda, Kiyoshi


    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses.

  3. Enhancement and abrogation : modifications of host immune status influence IL-2 and LAK cell immunotherapy

    NARCIS (Netherlands)

    E.P. Steller (Erick)


    textabstractThis thesis will discuss the role immune cells and the host immune system can play in enhancement and abrogation of this novel immunotherapy with interleukin 2 and lymphokine-activated killer cells. Chapter 3 and 4 will discuss the scoring methods in this intraperitoneal cancer and immun

  4. Levels of immune cells in transcendental meditation practitioners (United States)

    Infante, Jose R; Peran, Fernando; Rayo, Juan I; Serrano, Justo; Domínguez, Maria L; Garcia, Lucia; Duran, Carmen; Roldan, Ana


    Context: Relationships between mind and body have gradually become accepted. Yogic practices cause modulation of the immune system. Transcendental meditation (TM) is a specific form of mantra meditation. We reported previously different plasma levels of catecholamines and pituitary hormones in TM practitioners comparing with a control group, and patterns of the daytime secretion of these hormones different from those normally described. Aims: The aim of the following study is to evaluate the immune system in these meditation practitioners, by determining leukocytes and lymphocytes subsets. Methods: TM group consisted of 19 subjects who regularly practice either TM or the more advanced Sidhi-TM technique. A control group consisted of 16 healthy subjects who had not previously used any relaxation technique. Total leukocytes, granulocytes, lymphocytes and monocytes were counted by an automated quantitative hematology analyzer, whereas lymphocytes subsets were determined by flow cytometry. Samples were taken from each subject at 0900 h after an overnight fast. Results: The results indicated that the TM group had higher values than the control group in CD3+CD4−CD8+ lymphocytes (P < 0.05), B lymphocytes (P < 0.01) and natural killer cells (P < 0.01), whereas CD3+CD4+CD8− lymphocytes showed low levels in meditation practitioners (P < 0.001). No significant differences were observed in total leukocytes, granulocytes, monocytes, total lymphocytes or CD3+ lymphocytes comparing both groups. Conclusions: The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results. PMID:25035626

  5. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase. (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub


    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  6. The immune system and hypertension. (United States)

    Singh, Madhu V; Chapleau, Mark W; Harwani, Sailesh C; Abboud, Francois M


    A powerful interaction between the autonomic and the immune systems plays a prominent role in the initiation and maintenance of hypertension and significantly contributes to cardiovascular pathology, end-organ damage and mortality. Studies have shown consistent association between hypertension, proinflammatory cytokines and the cells of the innate and adaptive immune systems. The sympathetic nervous system, a major determinant of hypertension, innervates the bone marrow, spleen and peripheral lymphatic system and is proinflammatory, whereas the parasympathetic nerve activity dampens the inflammatory response through α7-nicotinic acetylcholine receptors. The neuro-immune synapse is bidirectional as cytokines may enhance the sympathetic activity through their central nervous system action that in turn increases the mobilization, migration and infiltration of immune cells in the end organs. Kidneys may be infiltrated by immune cells and mesangial cells that may originate in the bone marrow and release inflammatory cytokines that cause renal damage. Hypertension is also accompanied by infiltration of the adventitia and perivascular adipose tissue by inflammatory immune cells including macrophages. Increased cytokine production induces myogenic and structural changes in the resistance vessels, causing elevated blood pressure. Cardiac hypertrophy in hypertension may result from the mechanical afterload and the inflammatory response to resident or migratory immune cells. Toll-like receptors on innate immune cells function as sterile injury detectors and initiate the inflammatory pathway. Finally, abnormalities of innate immune cells and the molecular determinants of their activation that include toll-like receptor, adrenergic, cholinergic and AT1 receptors can define the severity of inflammation in hypertension. These receptors are putative therapeutic targets.

  7. Gliotransmission and the tripartite synapse. (United States)

    Santello, Mirko; Calì, Corrado; Bezzi, Paola


    In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.

  8. The Consequence of Immune Suppressive Cells in the Use of Therapeutic Cancer Vaccines and Their Importance in Immune Monitoring

    Directory of Open Access Journals (Sweden)

    Matteo Vergati


    Full Text Available Evaluating the number, phenotypic characteristics, and function of immunosuppressive cells in the tumor microenvironment and peripheral blood could elucidate the antitumor immune response and provide information to evaluate the efficacy of cancer vaccines. Further studies are needed to evaluate the correlation between changes in immunosuppressive cells and clinical outcomes of patients in cancer vaccine clinical trials. This paper focuses on the role of T-regulatory cells, myeloid-derived suppressor cells, and tumor-associated macrophages in cancer and cancer immunotherapy and their role in immune monitoring.

  9. Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    Directory of Open Access Journals (Sweden)

    Kayo Tokeji


    Full Text Available We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case.

  10. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. (United States)

    Whelan, Jarrett; Gowdy, Kymberly M; Shaikh, Saame Raza


    B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.

  11. S-nitrosylation/Denitrosylation and Apoptosis of Immune Cells

    Institute of Scientific and Technical Information of China (English)

    Shaojin Duan; Chang Chen


    Nitric oxide (NO) as an immunoregulatory molecule, predominantly depending on S-nitrosylation, acts as a versatile player that executes its regulation and signal transduction for exerting its multi-functions and pleiotropy.Apoptosis of immune cells is an intricate process coupled with positive/negative selection depending on integrated diverse endogenous and exogenous signals and functions to sustain homeostasis in the immune system. Here, the dual roles of NO depending on its concentration in apoptosis are reviewed, breeding up a switch mode in the apoptotic process. Following comments of different switches from apoptosis-death, a new finding of checkpoint(early fluorescence point) of GSNO-initiated thymocyte apoptosis and NOS-GSNOR double control are highlighted.Moreover, S-nitrosylation/denitrosylation, being as a redox switch, logically approaches to networks of metabolism itself and further accesses the neuroendicrine-immune-free radical network as a whole. Moreover, the host defense mediated by NO on pathogens, via protein S-nitrosylation are also discussed.

  12. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin


    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  13. Immunity

    Institute of Scientific and Technical Information of China (English)


    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  14. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan


    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  15. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike


    To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system....... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  16. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail:


    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  17. How stem cells speak with host immune cells in inflammatory brain diseases. (United States)

    Pluchino, Stefano; Cossetti, Chiara


    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.

  18. Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer (United States)

    Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.


    Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934

  19. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    DEFF Research Database (Denmark)

    Navikas, Shohreh


    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune system, have evolved...... for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population...... of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed...

  20. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    Directory of Open Access Journals (Sweden)

    Asiel Arce-Sillas


    Full Text Available T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective.

  1. Human Gastric Epithelial Cells Contribute to Gastric Immune Regulation by Providing Retinoic Acid to Dendritic Cells


    Bimczok, Diane; John Y. Kao; Zhang, Min; Cochrun, Steven; Mannon, Peter; Peter, Shajan; Wilcox, Charles M.; Mönkemüller, Klaus E; Harris, Paul R.; Grams, Jayleen M.; Stahl, Richard D.; Smith, Phillip D.; Smythies, Lesley E.


    Despite the high prevalence of chronic gastritis caused by H. pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule, retinol, and that gastric epithelial cells express both RA biosynthesis genes and RA res...

  2. [Significance of regulatory B cells in nosogenesis of immune thrombocytopenia]. (United States)

    Li, Xin; Wang, Fang; Ding, Kai Yang; Dai, Lan


    This study was aimed to investigate the role of regulatory B cells (Breg) in pathogenesis of immune thrombocytopenia (ITP) and its clinical significance. A total of 35 ITP patients and 20 normal controls were enrolled in this study. The expression of CD19(+)CD24(hi)CD38(hi) B cells was detected by flow cytometry and the expression of IL-10 mRNA and TGF-β1 mRNA was assayed by RT-PCR. The results indicated that the expression level of CD19(+)CD24(hi)CD38(hi) B cells in peripheral blood of newly diagnosed ITP patients was obviously lower than that in normal controls (P < 0.05); the expression level of CD19(+)CD24(hi)CD38(hi) B cells in ITP patients with increased platelet count after treatment was higher than that before treatment (P < 0.05); the expression level of IL-10 mRNA in newly diagnosed ITP patients was significantly lower than that the in normal controls (P < 0.05), the expression level of TGF-β1 mRNA in newly diagnosed ITP patients increases as compared with normal controls (P < 0.05), after treatment with DXM the expression of IL-10 mRNA was enhanced, the expression of TGF-β1 mRNA was reduced as compared with expression level before treatment (P < 0.05). It is concluded that the Breg cells may play an important role in the pathogenesis of ITP via humoral immunity and its regulation of T lymphocytes.

  3. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. (United States)

    Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; Caluwé, Lien De; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva


    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.

  4. The immune-body cytokine network defines a social architecture of cell interactions

    Directory of Open Access Journals (Sweden)

    Alon Uri


    Full Text Available Abstract Background Three networks of intercellular communication can be associated with cytokine secretion; one limited to cells of the immune system (immune cells, one limited to parenchymal cells of organs and tissues (body cells, and one involving interactions between immune and body cells (immune-body interface. These cytokine connections determine the inflammatory response to injury and subsequent healing as well as the biologic consequences of the adaptive immune response to antigens. We informatically probed the cytokine database to uncover the underlying network architecture of the three networks. Results We now report that the three cytokine networks are among the densest of complex networks yet studied, and each features a characteristic profile of specific three-cell motifs. Some legitimate cytokine connections are shunned (anti-motifs. Certain immune cells can be paired by their input-output positions in a cytokine architecture tree of five tiers: macrophages (MΦ and B cells (BC comprise the first tier; the second tier is formed by T helper 1 (Th1 and T helper 2 (Th2 cells; the third tier includes dendritic cells (DC, mast cells (MAST, Natural Killer T cells (NK-T and others; the fourth tier is formed by neutrophils (NEUT and Natural Killer cells (NK; and the Cytotoxic T cell (CTL stand alone as a fifth tier. The three-cell cytokine motif architecture of immune system cells places the immune system in a super-family that includes social networks and the World Wide Web. Body cells are less clearly stratified, although cells involved in wound healing and angiogenesis are most highly interconnected with immune cells. Conclusion Cytokine network architecture creates an innate cell-communication platform that organizes the biologic outcome of antigen recognition and inflammation. Informatics sheds new light on immune-body systems organization. Reviewers This article was reviewed by Neil Greenspan, Matthias von Herrath and Anne Cooke.

  5. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma

    Directory of Open Access Journals (Sweden)

    Marios Giannakis


    Full Text Available Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs, memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies.

  6. T cell immunity and vaccines against invasive fungal diseases. (United States)

    Ito, James Isami


    Over the past two decades much has been learned about the immunology of invasive fungal infection, especially invasive candidiasis and invasive aspergillosis. Although quite different in their pathogenesis, the major common protective host response is Th1 mediated. It is through Th1 cytokine production that the effector cells, phagocytes, are activated to kill the fungus. A more thorough understanding of the pathogenesis of disease, the elicited protective Th1 immune response, the T cell antigen(s) which elicit this response, and the mechanism(s) whereby one can enhance, reconstitute, or circumvent the immunosuppressed state will, hopefully, lead to the development of a vaccine(s) capable of protecting even the most immunocompromised of hosts.

  7. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar


    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  8. Hydroxytyrosol and oleuropein of olive oil inhibit mast cell degranulation induced by immune and non-immune pathways. (United States)

    Persia, Fabio Andrés; Mariani, María Laura; Fogal, Teresa Hilda; Penissi, Alicia Beatriz


    The aim of this study was to determine whether hydroxytyrosol and oleuropein, the major phenols found in olives and olive oil, inhibit mast cell activation induced by immune and non-immune pathways. Purified peritoneal mast cells were preincubated in the presence of test compounds (hydroxytyrosol or oleuropein), before incubation with concanavalin A, compound 48/80 or calcium ionophore A23187. Dose-response and time-dependence studies were carried out. Comparative studies with sodium cromoglycate, a classical mast cell stabilizer, were also made. After incubation the supernatants and pellets were used to determine the β-hexosaminidase content by colorimetric reaction. The percentage of β-hexosaminidase release in each tube was calculated and taken as a measure of mast cell activation. Other samples of cell pellets were used for cell viability studies by the trypan blue dye exclusion test, or fixed for light and electron microscopy. Biochemical and morphological findings of the present study showed for the first time that hydroxytyrosol and oleuropein inhibit mast cell degranulation induced by both immune and non-immune pathways. These results suggest that olive phenols, particularly hydroxytyrosol and oleuropein, may provide insights into the development of useful tools for the prevention and treatment of mast cell-mediated disorders.

  9. Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors

    Directory of Open Access Journals (Sweden)

    Sylvia eSimon


    Full Text Available Bacteria trigger host defense and inflammatory processes such as cytokine production, pyroptosis and the chemotactic migration of immune cells towards the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called effector proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the Icm/Dot type IV secretion system and as many as 300 different effector proteins to govern host cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell autonomous immunity or cell migration, i.e. they interfere with (i endocytic, secretory or retrograde vesicle trafficking pathways, (ii organelle or cell motility, (iii the inflammasome and programmed cell death, or (iv the transcription factor NF-κB. Here we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila.

  10. Lipid body accumulation alters calcium signaling dynamics in immune cells. (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen


    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  11. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system. (United States)

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo


    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  12. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo


    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  13. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment (United States)

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony


    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  14. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Fabian Flores-Borja


    Full Text Available Our knowledge and understanding of the tumor microenvironment (TME have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC. Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies.

  15. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A


    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  16. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers. (United States)

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra


    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  17. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    Full Text Available UNLABELLED: Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes

  18. Comparison of dendritic cell-mediated immune responses among canine malignant cells. (United States)

    Tamura, Kyoichi; Arai, Hiroyoshi; Ueno, Emi; Saito, Chie; Yagihara, Hiroko; Isotani, Mayu; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto


    Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.

  19. Cell-mediated responses of immunized vervet monkeys to defined Leishmania T-cell epitopes.


    Curry, A J; Jardim, A; Olobo, J.O.; Olafson, R W


    A population of vervet monkeys was immunized with killed parasites and infected with Leishmania major promastigotes either by needle or by infected-fly bite. The responses of recovered monkeys to mitogens, killed parasites, and molecularly defined T-cell epitopes were then compared with those of control animals. Peripheral blood mononuclear cells (PBMC) from both naive and recovered animals proliferated strongly in response to both B- and T-cell mitogens, although the responses of the recover...

  20. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking (United States)

    Conniot, João; Silva, Joana; Fernandes, Joana; Silva, Liana; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena; Barata, Teresa


    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.

  1. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. (United States)

    Reitz, M U; Gifford, M L; Schäfer, P


    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  2. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    Directory of Open Access Journals (Sweden)

    Najl V Valeyev

    Full Text Available Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  3. Modeling putative therapeutic implications of exosome exchange between tumor and immune cells. (United States)

    Lu, Mingyang; Huang, Bin; Hanash, Samir M; Onuchic, José N; Ben-Jacob, Eshel


    Development of effective strategies to mobilize the immune system as a therapeutic modality in cancer necessitates a better understanding of the contribution of the tumor microenvironment to the complex interplay between cancer cells and the immune response. Recently, effort has been directed at unraveling the functional role of exosomes and their cargo of messengers in this interplay. Exosomes are small vesicles (30-200 nm) that mediate local and long-range communication through the horizontal transfer of information, such as combinations of proteins, mRNAs and microRNAs. Here, we develop a tractable theoretical framework to study the putative role of exosome-mediated cell-cell communication in the cancer-immunity interplay. We reduce the complex interplay into a generic model whose three components are cancer cells, dendritic cells (consisting of precursor, immature, and mature types), and killer cells (consisting of cytotoxic T cells, helper T cells, effector B cells, and natural killer cells). The framework also incorporates the effects of exosome exchange on enhancement/reduction of cell maturation, proliferation, apoptosis, immune recognition, and activation/inhibition. We reveal tristability-possible existence of three cancer states: a low cancer load with intermediate immune level state, an intermediate cancer load with high immune level state, and a high cancer load with low immune-level state, and establish the corresponding effective landscape for the cancer-immunity network. We illustrate how the framework can contribute to the design and assessments of combination therapies.

  4. Effects of chrysotherapy on cell mediated immune response. (United States)

    Lorber, A; Jackson, W H; Simon, T M


    Auranofin (AF) differs significantly from gold sodium thiomalate (GSTM) in formulation, i.e., aurous gold is stabilized by dual sulfur and phosphorus ligands, hydrophobic rather than hydrophilic characteristics, and lack of ionic charge. These attributes facilitate: oral absorption of AF, plasma membrane penetration, increase in intracellular lymphocyte gold concentration; and perhaps thereby influence lymphocyte function. AF treated subjects recorded prompt and sharp declines in mitogen-induced lymphoproliferative response (LMR) greater than 80%; suppressed response to skin testing with dinitrochlorobenezene (DNCB) in 11 of 14 subjects; and blebbing of lymphocyte membranes by scanning electron microscopy. In contrast, lymphocytes from a matched group of GSTM treated subjects recorded later onset and less suppression of LMR; normal response to DNCB skin testing; and did not manifest membrane blebbing. Accordingly, the therapeutic action of AF on immune response was observed in the 16 subjects receiving 6 mg/d of an average of 45 weeks to effect primarily cell mediated rather than humoral immune response when compared with a matched group of GSTM treated patients.

  5. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  6. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. (United States)

    Ostroff, Linnaea E; Manzur, Mustfa K; Cain, Christopher K; Ledoux, Joseph E


    There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.

  7. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. (United States)

    Liu, Qiaofei; Liao, Quan; Zhao, Yupei


    The mechanisms of distant metastasis of malignancies largely remain unknown. Circulating tumor cells (CTC) derived from the primary cancer initiate distant metastasis by entering and traversing the bloodstream. Current methods to detect CTC are based on the notion that CTC do not express the common leukocyte antigen CD45. However, these methods neglect the fact that CTC can directly adhere to platelets and immune cells and therefore appear to be CD45-positive. The potential effects of interactions between CTC and adhesive immune cells have been largely overlooked, despite the fact that most CTC are killed by immune effector cells and only those that evade immune surveillance result in clonal expansion and metastatic lesions. It is crucial to define the characteristics that allow a select CTC population to escape immune surveillance; particularly, it must be determined whether interactions between CTC and adhesive immune cells provide a protective effect on CTC survival. If interactions between CTC and adhesive immune cells offer a selective advantage to those CTC cells, the next consideration is which characteristics of a CTC-immune cell population allow sufficient protection to facilitate immune evasion. Myeloid-derived suppressor cells (MDSC) are a large heterogeneous population of immature myeloid cells that accumulate during cancer progression to induce extensively systemic and local immunosuppression, a phenomenon that has been demonstrated to facilitate cancer distant metastasis. We hypothesize, therefore, that CTC populations interacting with adhesive immune cells will have different biological behavior than CTC populations alone. Further, we hypothesize that CTC can create a defensive shield consisting of adhesive MDSC, which allows evasion of immune surveillance and therefore facilitates distant metastatic lesions. This possibility highlights the importance of direct interactions between CTC and adhesive immune cells and suggests the potential target that

  8. 小脑肽1对浦肯野细胞突触形成作用的最新研究进展%The Advance on Studies of Cerebellin 1 Effects on Synapses Formation of Purkinje Cells

    Institute of Scientific and Technical Information of China (English)

    遇春霖; 张忠玲


    Cerebellin 1 is a glycoprotein in the cerebellum, which is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel ifbers, the axons of the granule cells. The molecular mechanisms by which Cbln1 induces synapse formation were described and the related literature was reviewed.%小脑肽1是一种小脑中的特异性糖蛋白,由颗粒细胞生成并分泌,在颗粒细胞的平行纤维和浦肯野细胞之间的兴奋性突触形成过程中发挥重要作用。文中将详细描述小脑肽1诱导新生突触形成的分子机制。复习相关方面的文献,就小脑肽1对于浦肯野细胞上突触的形成以及兴奋与抑制传入的调节作用的研究现状作详细介绍。

  9. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. (United States)

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna


    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  10. Neuromelanin is an immune stimulator for dendritic cells in vitro

    Directory of Open Access Journals (Sweden)

    Oberländer Uwe


    Full Text Available Abstract Background Parkinson's disease (PD is characterized at the cellular level by a destruction of neuromelanin (NM-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs, the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN from human subjects or with synthetic dopamine melanin (DAM. DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh. NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.

  11. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    Institute of Scientific and Technical Information of China (English)

    Shohreh Issazadeh-Navikas


    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens.This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue.Two arms of immunity,the innate and adaptive immune systems,have evolved for quick,non-specific immune responses to pathogens and more efficient,long-lasting ones upon specific recognition of recurrent pathogens.Specialized cells have arisen as the sentinels of these functions,including macrophages,natural killer (NK),and T and B-lymphocytes.Interestingly,a population of immune cells that can exert both of these complex functions,NKT cells,not only share common functions but also exhibit shared cell surface markers of cells of both arms of the Immune system.These features,in combination with sophisticated maintenance of immune homeostasis,will be discussed.The recent finding of self-peptide reactivity of NKT cells in the context of CD1d,with capacity to regulate multiple autoimmune and inflammatory conditions,motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells.Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells,Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.

  12. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail:, e-mail:; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail:; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail:, e-mail:


    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  13. The State of a Cell in Systematic Immunity in Case of Injuries

    Directory of Open Access Journals (Sweden)

    Igor M. Plehutsa


    Full Text Available The influence on date change of a cell in systematic immunity has been studied. The research implies 52 patients with different forms of traumatic disorders aged 16-69 (on average 37, 914, 28. The focus group was made up of 16 patients, who have been performed non-urgent operations not linked to musculoskeletal disorders. All focus group patients were splitted in 3 groups in accordance with their health condition. The cell system analysis of immunity was conducted by identifying of sub-populations of T-lymphocytes and antibodies CD3, CD4, CD8, and CD22. The most vivid changes of a cell systematic immunity (II-III immunity disorders grades were observed among patients with severe traumatic disorders. Operational intervention, even without trauma – significantly influences the cell systematic immunity, though patients with traumatic immune disorders, apart from immunoregulatory index were more significant than those of the focus group patients.

  14. Sex differences in pain: a tale of two immune cells. (United States)

    Mapplebeck, Josiane C S; Beggs, Simon; Salter, Michael W


    Substantial evidence has implicated microglia in neuropathic pain. After peripheral nerve injury, microglia in the spinal cord proliferate and increase cell-surface expression of the purinergic receptor P2X4. Activation of P2X4 receptors results in release of brain-derived neurotrophic factor, which acts on neurons to produce disinhibition of dorsal horn neurons which transmit nociceptive information to the brain. Disinhibition of these neurons produces pain hypersensitivity, a hallmark symptom of neuropathic pain. However, elucidating this microglia-neuronal signalling pathway was based on studies using only male rodents. Recent evidence has shown that the role of microglia in pain is sexually dimorphic. Despite similar microglia proliferation in the dorsal horn in both sexes, females do not upregulate P2X4Rs and use a microglia-independent pathway to mediate pain hypersensitivity. Instead, adaptive immune cells, possibly T cells, may mediate pain hypersensitivity in female mice. This profound sex difference highlights the importance of including subjects of both sexes in preclinical pain research.

  15. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression. (United States)

    Huang, Miao-Tzu; Lin, Been-Ren; Liu, Wei-Liang; Lu, Chun-Wei; Chiang, Bor-Luen


    Regulatory T cells have a crucial role in health and disease because of their immune regulation function. However, the anatomic sites where regulatory T cells exert optimal immune regulation are open to debate. In our current study with the use of a shear-stress flow assay, we found that regulatory T cells exhibited significantly decreased adhesion to either activated endothelial monolayer or intercellular adhesion molecule 1 or E-selectin-coated surfaces compared with activated effector T cells. The less transmigration capacity of the regulatory T cells prompted our speculation of preferential lymph node localization for the regulatory T cells that endowed these cells with immune regulation function in the most efficient manner. To test this hypothesis, the role of lymph node localization in regulatory T cell-mediated immune suppression was evaluated with a footpad inflammation model. We found that adoptively transferred regulatory T cells inhibited the development of footpad inflammation. In addition, although blockage of CCR7 or CD62L had no effect on the immune suppressive function of the regulatory T cells per se, pretreatment of the regulatory T cells with either CCR7 or CD62L blocking antibodies prevented their recruitment into draining lymph nodes and concomitantly abrogated the immune suppressive effects of adoptively transferred regulatory T cells during footpad inflammation. Our data demonstrate the crucial role of lymph node localization in regulatory T cell-mediated immune suppression and suggest a probable hierarchy in the anatomic sites for optimal immune regulation. Elucidating the relationships between the transmigration characteristics of the regulatory T cells and their immune regulation function will provide insightful information for regulatory T cell-based cell therapy.

  16. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  17. Targeting KIT on innate immune cells to enhance the antitumor activity of checkpoint inhibitors. (United States)

    Stahl, Maximilian; Gedrich, Richard; Peck, Ronald; LaVallee, Theresa; Eder, Joseph Paul


    Innate immune cells such as mast cells and myeloid-derived suppressor cells are key components of the tumor microenvironment. Recent evidence indicates that levels of myeloid-derived suppressor cells in melanoma patients are associated with poor survival to checkpoint inhibitors. This suggests that targeting both the innate and adaptive suppressive components of the immune system will maximize clinical benefit and elicit more durable responses in cancer patients. Preclinical data suggest that targeting signaling by the receptor tyrosine kinase KIT, particularly on mast cells, may modulate innate immune cell numbers and activity in tumors. Here, we review data highlighting the importance of the KIT signaling in regulating antitumor immune responses and the potential benefit of combining selective KIT inhibitors with immune checkpoint inhibitors.

  18. Synapse formation between isolated axons requires presynaptic soma and redistribution of postsynaptic AChRs. (United States)

    Meems, Ryanne; Munno, David; van Minnen, Jan; Syed, Naweed I


    The involvement of neuronal protein synthetic machinery and extrinsic trophic factors during synapse formation is poorly understood. Here we determine the roles of these processes by reconstructing synapses between the axons severed from identified Lymnaea neurons in cell culture, either in the presence or absence of trophic factors. We demonstrate that, although synapses are maintained between isolated pre- and postsynaptic axons for several days, the presynaptic, but not the postsynaptic, cell body, however, is required for new synapse formation between soma-axon pairs. The formation of cholinergic synapses between presynaptic soma and postsynaptic axon requires gene transcription and protein synthesis solely in the presynaptic neuron. We show that this synaptogenesis is contingent on extrinsic trophic factors present in brain conditioned medium (CM). The CM-induced excitatory synapse formation is mediated through receptor tyrosine kinases. We further demonstrate that, although the postsynaptic axon does not require new protein synthesis for synapse formation, its contact with the presynaptic cell in CM, but not in defined medium (no trophic factors), differentially alters its responsiveness to exogenously applied acetylcholine at synaptic compared with extrasynaptic sites. Together, these data suggest a synergetic action of cell-cell signaling and trophic factors to bring about specific changes in both pre- and postsynaptic neurons during synapse formation.

  19. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV. (United States)

    Rölle, Alexander; Brodin, Petter


    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system.

  20. Electrolyte-gated organic synapse transistor interfaced with neurons

    CERN Document Server

    Desbief, Simon; Casalini, Stefano; Guerin, David; Tortorella, Silvia; Barbalinardo, Marianna; Kyndiah, Adrica; Murgia, Mauro; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique


    We demonstrate an electrolyte-gated hybrid nanoparticle/organic synapstor (synapse-transistor, termed EGOS) that exhibits short-term plasticity as biological synapses. The response of EGOS makes it suitable to be interfaced with neurons: short-term plasticity is observed at spike voltage as low as 50 mV (in a par with the amplitude of action potential in neurons) and with a typical response time in the range of tens milliseconds. Human neuroblastoma stem cells are adhered and differentiated into neurons on top of EGOS. We observe that the presence of the cells does not alter short-term plasticity of the device.

  1. Scanning the cell surface proteome of cancer cells and identification of metastasis-associated proteins using a subtractive immunization strategy

    DEFF Research Database (Denmark)

    Rasmussen, Nicolaj; Ditzel, Henrik J


    characterization of the identified proteins. The strategy is based on subtractive immunization of mice, and we used the two isogenic cell lines, NM-2C5 and M-4A4, derived from the MDA-MB-435 cancer cell line, as a model system. Although the two cell lines are equally tumorigenic, only M-4A4 has metastatic...... of the immune system itself to scan the cell surface proteome for differentially expressed proteins. The subtractive immunization strategy should be broadly applicable as a quantitative and comparative proteomic approach for screening the cell surface and also allow generation of mAbs to study these cell...

  2. Defining Tumor Cell and Immune Cell Behavior in Vivo during Pulmonary Metastasis of Breast Cancer (United States)


    Congress in the Educational Session on Cancer Immunology . I gave a talk entitled “ Harnessing Intravital Microscopy To Understand The Real-Time...AWARD NUMBER: W81XWH-13-1-0009 TITLE: Defining Tumor Cell and Immune Cell Behavior in Vivo during Pulmonary Metastasis of Breast Cancer ...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  3. Defining Tumor Cell and Immune Cell Behavior in Vivo during Pulmonary Metastasis of Breast Cancer (United States)


    tail vein injection) either inline 6 with imaging or prior to prepping the animal for surgery. This method has revealed a unique phenomenon by which...immune cell behavior in the disease Asthma as well as T cell behavior in lung viral infections. This method will hopefully enable greater overall... Internet site(s) Nothing to report c) Technologies or techniques Refined approach to Lung Intravital Microscopy (LIVM.) This approach will be

  4. Toxicological studies of semiconductor quantum dots on immune cells.

    Energy Technology Data Exchange (ETDEWEB)

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda


    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested

  5. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.


    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells an

  6. Toll-like receptors on regulatory T cells: expanding immune regulation.

    NARCIS (Netherlands)

    Sutmuller, R.P.M.; Morgan, M.E.; Netea, M.G.; Grauer, O.M.; Adema, G.J.


    Regulatory T (Treg) cells maintain peripheral tolerance and limit effector responses to prevent excessive immune-mediated tissue damage. However, recent research reveals that Treg cells also dampen the induction of immune responses and, thus, must be controlled to enable the effective protection aga

  7. Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates. (United States)

    Asano, K; Okamoto, K


    Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.

  8. Discovering naturally processed antigenic determinants that confer protective T cell immunity

    DEFF Research Database (Denmark)

    Gilchuk, Pavlo; Spencer, Charles T; Conant, Stephanie B;


    CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infectio...

  9. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes (United States)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  10. Effects of microcin B17 on microcin B17-immune cells. (United States)

    Herrero, M; Kolter, R; Moreno, F


    When microcin B17-immune cells are treated with microcin B17 they show many of the physiological effects displayed by microcin B17-sensitive cells treated in the same way. DNA replication stops immediately and several SOS functions are subsequently induced. In sensitive cells these effects are irreversible and lead to cell death, whereas in immune cells they are reversible and there is no loss of viability. This is an unusual mechanism of immunity because it does not prevent the primary action of the microcin. The implications of this mechanism concerning the mode of action of microcin B17 and the induction of the SOS system are discussed.

  11. The Roles of Innate Immune Cells in Liver Injury and Regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Dong; Haiming Wei; Rui Sun; Zhigang Tian


    For predominant abundance with liver-specific Kupffer cells, natural killer (NK) cells, and natural killer T (NKT)cells and their rapid responses to several stimuli, the liver is considered as an organ with innate immune features.In contrast to their roles in the defense of many infectious agents like hepatitis viruses and parasites, hepatic innate immune cells are also involved in the immunopathogenesis of human clinical liver diseases and several murine hepatitis models such as concanavalin A (Con A), lipopolysaccharide (LPS), or polyinosinic-polycytidylic acid (Poly I:C)-induced liver injury. In this review, the destructive roles of NK cells, NKT cells and Kupffer cells in the processes of immune-mediated liver injury and regeneration will be discussed, and some putative mechanisms involving the impairment of liver regeneration caused by activated hepatic innate immune cells are also proposed.

  12. T Cell Receptors and the Evolution of Recognition Mechanisms in Immunity. (United States)

    Inchley, C. J.


    Discusses recent advances in the study of mammalian immunology. Explains the roles of two families of lymphocytes, the B cells and T cells. Also examines evolutionary mechanisms related to the immune system. (ML)

  13. Regulation of B lymphocytes and plasma cells by innate immune mechanisms and stromal cells in rheumatoid arthritis. (United States)

    Maseda, Damian; Bonami, Rachel H; Crofford, Leslie J


    B cells mediate multiple functions that influence immune and inflammatory responses in rheumatoid arthritis. Production of a diverse array of autoantibodies can happen at different stages of the disease, and are important markers of disease outcome. In turn, the magnitude and quality of acquired humoral immune responses is strongly dependent on signals delivered by innate immune cells. Additionally, the milieu of cells and chemokines that constitute a niche for plasma cells rely strongly on signals provided by stromal cells at different anatomical locations and times. The chronic inflammatory state therefore importantly impacts the developing humoral immune response and its intensity and specificity. We focus this review on B cell biology and the role of the innate immune system in the development of autoimmunity in patients with rheumatoid arthritis.

  14. The gametic synapse

    DEFF Research Database (Denmark)

    Macaulay, Angus D.; Gilbert, Isabelle; Caballero, Julieta


    the gamete and the surrounding cells that is limited to paracrine signaling and direct transfer of small molecules via gap junctions existing at the end of the somatic cells' projections that are in contact with the oolemma. The purpose of this work was to explore the role of cumulus cell projections...

  15. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail:; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)


    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  16. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey Schlom


    Full Text Available Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  17. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. (United States)

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M


    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  18. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)


    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical sig

  19. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R;


    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  20. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)


    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  1. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun


    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  2. Eradication of tumour cells by successive injections of allogeneic immune and hyperimmune peritoneal cells in a murine lymphoma system

    NARCIS (Netherlands)

    Dullens, H.F.J.; Woutersen, R.A.; Weger, R.A. de; Otter, W. den


    Allogeneic C57BL immune and hyperimmune (vs SL2) peritoneal cells are used for eradication of DBA/2 derived SL2 lymphoma cells injected into the peritoneal cavity of DBA/2 mice. SL2 bearing DBA/2 mice are treated with 3, 5, or 8 successive i.p. injections of 2 × 106 allogeneic C57BL immune or hyper

  3. Dissociation of skeletal muscle for flow cytometric characterization of immune cells in macaques. (United States)

    Liang, Frank; Ploquin, Aurélie; Hernández, José DelaO; Fausther-Bovendo, Hugues; Lindgren, Gustaf; Stanley, Daphne; Martinez, Aiala Salvador; Brenchley, Jason M; Koup, Richard A; Loré, Karin; Sullivan, Nancy J


    The majority of vaccines and several treatments are administered by intramuscular injection. The aim is to engage and activate immune cells, although they are rare in normal skeletal muscle. The phenotype and function of resident as well as infiltrating immune cells in the muscle after injection are largely unknown. While methods for obtaining and characterizing murine muscle cell suspensions have been reported, protocols for nonhuman primates (NHPs) have not been well defined. NHPs comprise important in vivo models for studies of immune cell function due to their high degree of resemblance with humans. In this study, we developed and systematically compared methods to collect vaccine-injected muscle tissue to be processed into single cell suspensions for flow cytometric characterization of immune cells. We found that muscle tissue processed by mechanical disruption alone resulted in significantly lower immune cell yields compared to enzymatic digestion using Liberase. Dendritic cell subsets, monocytes, macrophages, neutrophils, B cells, T cells and NK cells were readily detected in the muscle by the classic human markers. The methods for obtaining skeletal muscle cell suspension established here offer opportunities to increase the understanding of immune responses in the muscle, and provide a basis for defining immediate post-injection vaccine responses in primates.

  4. Protection of mice against Trypanosoma cruzi by immunization with paraflagellar rod proteins requires T cell, but not B cell, function. (United States)

    Miller, M J; Wrightsman, R A; Stryker, G A; Manning, J E


    Previous studies have shown that immunization of mice with the paraflagellar rod proteins (PAR) of Trypanosoma cruzi induces an immune response capable of protecting mice against an otherwise lethal challenge with this parasite. Herein, we define immunologic responses that do or do not play a critical role in PAR-mediated protection. Firstly, PAR-immunized Ab-deficient (muMT) strain mice survived an otherwise lethal T. cruzi challenge, indicating that a B cell response is not required for PAR-induced immunity. However, beta2m -/- mice, which are severely deficient in MHC class I and TCR alphabeta+ CD8+ CD4- T cells, did not survive challenge infection following PAR immunization, indicating that MHC class I/CD8+ T cell function is necessary for protection induced by PAR immunization. Surprisingly, PAR-immunized mice depleted of CD4+ T cells survived a T. cruzi challenge for >84 days postinfection while maintaining a parasitemia that is generally thought to be lethal (i.e., >10(6) trypomastigotes/ml), thus associating CD4+ T cell function with the process of parasite clearance. Consistent with this association, CD4+ T cells from PAR-immunized mice released INF-gamma and stimulated T. cruzi-infected macrophages to release nitric oxide. The importance of IFN-gamma in PAR-induced protective immunity is further indicated by the observation that PAR-immunized INF-gamma knockout mice developed an extremely high parasitemia and did not survive a challenge infection. Thus, while Ab-mediated immune mechanisms are not required for protection induced by PAR immunization, T cell responses are necessary for both elimination of bloodstream parasites and survival.

  5. Cutting edge: FasL(+) immune cells promote resolution of fibrosis. (United States)

    Wallach-Dayan, Shulamit B; Elkayam, Liron; Golan-Gerstl, Regina; Konikov, Jenya; Zisman, Philip; Dayan, Mark Richter; Arish, Nissim; Breuer, Raphael


    Immune cells, particularly those expressing the ligand of the Fas-death receptor (FasL), e.g. cytotoxic T cells, induce apoptosis in 'undesirable' self- and non-self-cells, including lung fibroblasts, thus providing a means of immune surveillance. We aimed to validate this mechanism in resolution of lung fibrosis. In particular, we elucidated whether FasL(+) immune cells possess antifibrotic capabilities by induction of FasL-dependent myofibroblast apoptosis and whether antagonists of membrane (m) and soluble (s) FasL can inhibit these capabilities. Myofibroblast interaction with immune cells and its FasL-dependency, were investigated in vitro in coculture with T cells and in vivo, following transplantation into lungs of immune-deficient syngeneic Rag-/- as well as allogeneic SCID mice, and into lungs and air pouches of FasL-deficient (gld) mice, before and after reconstitution of the mice with wild-type (wt), FasL(+) immune cells. We found that myofibroblasts from lungs resolving fibrosis undergo FasL-dependent T cell-induced apoptosis in vitro and demonstrate susceptibility to in vivo immune surveillance in lungs of reconstituted, immune- and FasL-deficient, mice. However, immune-deficient Rag-/- and SCID mice, and gld-mice with FasL-deficiency, endure the accumulation of transplanted myofibroblasts in their lungs with subsequent development of fibrosis. Concomitantly, gld mice, in contrast to chimeric FasL-deficient mice with wt immune cells, accumulated transplanted myofibroblasts in the air pouch model. In humans we found that myofibroblasts from fibrotic lungs secrete sFasL and resist T cell-induced apoptosis, whereas normal lung myofibroblasts are susceptible to apoptosis but acquire resistance upon addition of anti-s/mFasL to the coculture. Immune surveillance, particularly functional FasL(+) immune cells, may represent an important extrinsic component in myofibroblast apoptosis and serve as a barrier to fibrosis. Factors interfering with Fas/FasL-immune

  6. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. (United States)

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja


    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.

  7. Adjuvant properties of thermal component of hyperthermia enhanced transdermal immunization: effect on dendritic cells.

    Directory of Open Access Journals (Sweden)

    Neha Joshi

    Full Text Available Hyperthermia enhanced transdermal (HET immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT. We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.

  8. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés


    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.

  9. Glial Synapses Found Plastic

    Institute of Scientific and Technical Information of China (English)


    @@ Traditionally regarded as merely padding and supportive, glia, small cells that dramatically outnumber their larger neighbors, neurons, may play an essential role in information processing in the brain.

  10. Immunological Signatures after Bordetella pertussis Infection Demonstrate Importance of Pulmonary Innate Immune Cells (United States)

    Brummelman, Jolanda; van der Maas, Larissa; Tilstra, Wichard; Pennings, Jeroen L. A.; Han, Wanda G. H.; van Els, Cécile A. C. M.; van Riet, Elly; Kersten, Gideon F. A.; Metz, Bernard


    Effective immunity against Bordetella pertussis is currently under discussion following the stacking evidence of pertussis resurgence in the vaccinated population. Natural immunity is more effective than vaccine-induced immunity indicating that knowledge on infection-induced responses may contribute to improve vaccination strategies. We applied a systems biology approach comprising microarray, flow cytometry and multiplex immunoassays to unravel the molecular and cellular signatures in unprotected mice and protected mice with infection-induced immunity, around a B. pertussis challenge. Pre-existing systemic memory Th1/Th17 cells, memory B-cells, and mucosal IgA specific for Ptx, Vag8, Fim2/3 were detected in the protected mice 56 days after an experimental infection. In addition, pre-existing high activity and reactivation of pulmonary innate cells such as alveolar macrophages, M-cells and goblet cells was detected. The pro-inflammatory responses in the lungs and serum, and neutrophil recruitment in the spleen upon an infectious challenge of unprotected mice were absent in protected mice. Instead, fast pulmonary immune responses in protected mice led to efficient bacterial clearance and harbored potential new gene markers that contribute to immunity against B. pertussis. These responses comprised of innate makers, such as Clca3, Retlna, Glycam1, Gp2, and Umod, next to adaptive markers, such as CCR6+ B-cells, CCR6+ Th17 cells and CXCR6+ T-cells as demonstrated by transcriptome analysis. In conclusion, besides effective Th1/Th17 and mucosal IgA responses, the primary infection-induced immunity benefits from activation of pulmonary resident innate immune cells, achieved by local pathogen-recognition. These molecular signatures of primary infection-induced immunity provided potential markers to improve vaccine-induced immunity against B. pertussis. PMID:27711188

  11. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    Directory of Open Access Journals (Sweden)

    Chenjie Fei


    Full Text Available Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s, and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus leukocyte immune-type receptors (IpLITRs, which appear to be important regulators of several innate cellular responses via classical as well

  12. Cells involved in the immune response. XXIX Establishment of optimal conditions for the primary and secondary immune responses by rabbit lymphoid cells in vitro. (United States)

    Richter, M; Behelak, Y


    Attempts were made to initiate the primary and secondary humoral immune responses to sheep red blood cells (SRBC) in vitro as determined by the hemolytic plaque-forming cell (PFC) response, with cell suspensions prepared from a variety of lymphoid organs of the rabbit- thymus, bone marrow, spleen, appendix, sacculus rotundus, Peyer's patches, popliteal lymph node and circulating leukocytes. A number of different media and gaseous phases were utilized in order to establish the optimal conditions for the immune response in vitro. The induction of a secondary PFC response was consistently obtained with 'memory' spleen cells obtained from rabbits 3-6 months following intravenous immunization with SRBC but not with cells of any of the other lymphoid organs, and this response probably represents the activity of memory cells which reside in the rabbit spleen. A primary response was observed only with 'normal' spleen cells, and the medium which faciliated the response was different from that which facilitated the induction of the secondary response in vitro. It was also observed, using a medium in which normal spleen cells were incapable of generating PFC', that mixed cultures of normal spleen and normal appendix or bone marrow cells could give a marked PFC reponse in vitro. Whether the PFC response to SRBCs obtained with the lymphoid cells of normal, unimmunized rabbits represent a true primary response, a secondary response, or a response of a different nature as a consequence of continuous subthreshold immunization of the rabbit with enteric microorganisms which cross-react with the antigen, remains to be determined. However, out initial successes with cultures consisting of cells of at least two distinct lymphoid organs in cases where the cells of any one of these organs could not respond, suggest that interaction of at least two functionally distinct cells is required and that the repsonse observed in vitro is probably a primary immune response.

  13. Cellular Immune Response to an Engineered Cell-Based Tumor Vaccine at the Vaccination Site


    Zhou,Qiang; Johnson, Bryon D.; Rimas J Orentas


    The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L− CCR7− CD49b+ CD8 effector...

  14. Immune response in virus model structured by cell infection-age. (United States)

    Browne, Cameron


    This paper concerns modeling the coupled within-host population dynamics of virus and CTL (Cytotoxic T Lymphocyte) immune response. There is substantial evidence that the CTL immune response plays a crucial role in controlling HIV in infected patients. Recent experimental studies have demonstrated that certain CTL variants can recognize HIV infected cells early in the infected cell lifecycle before viral production, while other CTLs only detect viral proteins (epitopes) presented on the surface of infected cells after viral production. The kinetics of epitope presentation and immune recognition can impact the efficacy of the immune response. We extend previous virus models to include cell infection-age structure in the infected cell compartment and immune response killing/activation rates of a PDE-ODE system. We characterize solutions to our system utilizing semigroup theory, determine equilibria and reproduction numbers, and prove stability and persistence results. Numerical simulations show that ' early immune recognition' precipitates both enhanced viral control and sustained oscillations via a Hopf bifurcation. In addition to inducing oscillatory dynamics, considering immune process rates to be functions of cell infection-age can also lead to coexistence of multiple distinct immune effector populations.

  15. Synaptic competition sculpts the development of GABAergic axo-dendritic but not perisomatic synapses.

    Directory of Open Access Journals (Sweden)

    Elena Frola

    Full Text Available The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs work together with the synaptic adhesion molecule neuroligin 2 (NL2 to regulate synapse formation in different subcellular compartments. We investigated mice ("γ2 knockdown mice" with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.

  16. Dendritic cell-derived IL-15 controls the induction of CD8 T cell immune responses. (United States)

    Rückert, René; Brandt, Katja; Bulanova, Elena; Mirghomizadeh, Farhad; Paus, Ralf; Bulfone-Paus, Silvia


    The development and the differentiation of CD8(+) T cells are dependent on IL-15. Here, we have studied the source and mechanism of how IL-15 modulates CD8(+) T cell-mediated Th1 immune responses by employing two delayed-type hypersensitivity (DTH) models. IL-15-deficient (IL-15(-/-)) mice or mice treated with soluble IL-15Ralpha as an IL-15 antagonist showed significantly reduced CD8(+) T cell-dependent DTH responses, while activation of CD4(+) T cell and B cell functions remained unaffected. Injection of antigen-labeled dendritic cells (DC) from IL-15(+/+), IL-15(-/-) or IL-15Ralpha(-/-) mice revealed that DC-derived IL-15 is an absolute requirement for the initiation of DTH response. The re-establishment of the interaction of IL-15 with the IL-15Ralpha by incubating IL-15(-/-) DC with IL-15 completely restored the capacity to prime T cells for DTH induction in vivo. Moreover, IL-15 also enhanced secretion of pro-inflammatory cytokines by DC and triggered in vitro CD8(+) T cell proliferation and IL-2 release. Taken together, the data suggest that an autocrine IL-15/IL-15Ralpha signaling loop in DC is essential for inducing CD8(+)-dependent Th1 immune responses in mice. Therefore, targeted manipulation of this loop promises to be an effective, novel strategy for therapeutic modulation of clinically relevant DTH reactions.

  17. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.


    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  18. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells. (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E


    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  19. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer C Regan


    Full Text Available Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of

  20. Differential control of immune cell homeostasis by Foxp3(+) regulatory T cells in murine peripheral lymph nodes and spleen. (United States)

    Milanez-Almeida, Pedro; Klawonn, Frank; Meyer-Hermann, Michael; Huehn, Jochen


    Foxp3(+) regulatory T cells (Tregs) hamper efficient immune responses to tumors and chronic infections. Therefore, depletion of Foxp3(+) Tregs has been proposed as therapeutic option to boost immune responses and to improve vaccinations. Although Treg-mediated control of T cell homeostasis is well established, Foxp3(+) Treg interaction with other immune cell subsets is only incompletely understood. Thus, the present study aimed at examining dynamic effects of experimental Foxp3(+) Treg depletion on a broad range of immune cell subsets, including B cells, natural killer cells, and myeloid cells. Striking differences were observed when peripheral lymph nodes (LN) and spleen were compared. B cells, for example, showed a massive and long-lasting accumulation only in LN but not in spleen of transiently Treg-depleted mice. In contrast, monocyte-derived dendritic cells, which are potent inducers of T cell responses, also accumulated selectively, but only transiently in LN, suggesting that this cell population is under very strict control of Foxp3(+) Tregs. In summary, the observations described here provide insights into the dynamics of immune cells after selective depletion of Foxp3(+) Tregs. This will allow a better prediction of the impact of Treg ablation in translational studies that aim at boosting immune responses and vaccinations.

  1. Immune Cell Dynamics in the CNS : Learning From the Zebrafish

    NARCIS (Netherlands)

    Oosterhof, Nynke; Boddeke, Erik; van Ham, Tjakko J.


    A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and

  2. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid


    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  3. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. (United States)

    Chen, Weiqiang; Huang, Nien-Tsu; Oh, Boram; Lam, Raymond H W; Fan, Rong; Cornell, Timothy T; Shanley, Thomas P; Kurabayashi, Katsuo; Fu, Jianping


    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this "bulk" assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined poly-dimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay ("AlphaLISA"), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples.

  4. The case of the “serfdom” condition of phagocytic immune cells

    Directory of Open Access Journals (Sweden)

    E Ottaviani


    Full Text Available In a modern immunological perspective, it may be asserted that the phagocytic cell should not be considered as the "serfdom", but rather the pivot of the immune system. Indeed, the invertebrate immunocyte as well as the vertebrate macrophage play a central role in immunity, inflammation and stress response. The evolutionary conserved immune-neuroendocrine effector system have remained of fundamental importance in defense against pathogens, and its efficiency increased through synergy with the new, clonotipical recognition repertoire in vertebrates.

  5. Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells


    Doehle, Brian P.; Chang, Kristina; Fleming, Lamar; McNevin, John; Hladik, Florian; McElrath, M. Juliana; Gale, Michael


    Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interfer...

  6. Neuronal influence behind the central nervous system regulation of the immune cells

    Directory of Open Access Journals (Sweden)



    Full Text Available Central nervous system has a highly specialized microenvironment, and despite being initially considered an immune privileged site, this immune status is far from absolute because it varies with age and brain topography. The brain monitors immune responses by several means that act in parallel; one pathway involves afferent nerves (vagal nerve and the other resident cells (neurons and glia. These cell populations exert a strong role in the regulation of the immune system, favoring an immune-modulatory environment in the CNS. Neurons control glial cell and infiltrated T-cells by contact-dependent and -independent mechanisms. Contact-dependent mechanisms are provided by several membrane immune modulating molecules such as Sema-7A, CD95L, CD22, CD200, CD47, NCAM, ICAM-5 and cadherins; which can inhibit the expression of microglial inflammatory cytokines, induce apoptosis or inactivate infiltrated T-cells. On the other hand, soluble neuronal factors like Sema-3A, cytokines, neurotrophins, neuropeptides, and neurotransmitters attenuate microglial and/or T-cell activation. In this review, we focused on all known mechanism driven only by neurons in order to control the local immune cells.

  7. T cell mediated cerebral hemorrhages and microhemorrhages during passive Aβ immunization in APPPS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    de Calignon Alix


    Full Text Available Abstract Background Immunization against amyloid-β (Aβ, the peptide that accumulates in the form of senile plaques and in the cerebrovasculature in Alzheimer's disease (AD, causes a dramatic immune response that prevents plaque formation and clears accumulated Aβ in transgenic mice. In a clinical trial of Aβ immunization, some patients developed meningoencephalitis and hemorrhages. Neuropathological investigations of patients who died after the trial showed clearance of amyloid pathology, but also a powerful immune response involving activated T cells probably underlying the negative effects of the immunization. Results To define the impact of T cells on this inflammatory response we used passive immunization and adoptive transfer to separate the effect of IgG and T cell mediated effects on microhemorrhage in APPPS1 transgenic mice. Neither anti Aβ IgG nor adoptively transferred T cells, alone, led to increased cerebrovascular damage. However, the combination of adoptively transferred T cells and passive immunization led to massive cerebrovascular bleeding that ranged from multiple microhemorrhages in the parenchyma to large hematomas. Conclusions Our results indicate that vaccination can lead to Aβ and T cell induced cerebral micro-hemorrhages and acute hematomas, which are greatly exacerbated by T cell mediated activity.

  8. The role of IL-33/ST2L signals in the immune cells. (United States)

    Lu, Jingli; Kang, Jian; Zhang, Chengliang; Zhang, Xiaojian


    Interleukin (IL)-33 signals influence various immune cells during differentiation, immune responses and homeostasis. As discussed in this Review, IL-33 via TI/ST2L regulates the functions of immune cells including T cells, B cells, DCs, macrophages, mast cells, and innate lymphoid cells (ILCs). Stimulation with IL-33 is crucial for CD4+ T cell polarized into Th2 immunity and for the induction of Treg. CD8+ T cells can also express ST2L and IL-33 promotes features of effector CD8+ T cells. For macrophages and ILCs, ST2L presents on these cells and IL-33 induces Th2 cytokine production. IL-33 modulates adhesion, activation, maturation, and cytokine production by mast cells. ST2 is expressed in B1 and is important for differentiation of IL-10-producing B cells. Understanding the specific role of IL-33/ST2L in different immune cells will help to answer the remaining questions that are important for diseases pathologies and intervention strategies by targeting the IL-33/ST2L signals.

  9. Hematopoietic stem and progenitor cells in HIV/AIDS and immune reconstitution

    Institute of Scientific and Technical Information of China (English)

    Jielin Zhang; Clyde S Crumpacker


    @@ The human immunodeficiency virus type 1 (HIV-1) causes an acquired immunodeficiency syndrome (AIDS).HIV-1 infects human immune cells,specifically CD4+ lymphocytes, which leads to AIDS and undermines reconstitution of immunity. The unique challenges of HIV/AIDS have triggered multidisciplinary investigators to study the virology of the pathogen and the biology of the host cells, especially the interactions of HIV-1 with T-lymphocytes,macrophages, and hematopoietic stem and progenitor cells (HSPC) [1-8].

  10. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  11. A New Mechanism for Neuron-synapse Maturation Discovered

    Institute of Scientific and Technical Information of China (English)


    @@ A group of CAS scientists recently made a research breakthrough in the development of synapse, the key structure of the nervous system that transmits signals from one nerve cell to another. This work was reported as a cover story in the May 4th issue of prestigious journal Neuron.


    Institute of Scientific and Technical Information of China (English)

    高巍; 黄裕新; 陈洪; 孙大勇; 张洪新


    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythrocytic immune function. Resuits showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CDs+ had no any considerable changes and a positive correlation between CD~ and RBC-C3bRR was found. In immtttaosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EAgroup and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.


    Institute of Scientific and Technical Information of China (English)

    GaoWei; HuangYuxin; ChenHong; SunDayong; ZhangHongxin


    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluoreseence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythroeytic immune function. Results showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD8+ had no any considerable changes and a positive correlation between CD4+ and RBC-C3bRR was found. In immuoosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  14. Therapeutic immunization strategies against cervical cancer : induction of cell-mediated immunity in murine models

    NARCIS (Netherlands)

    Bungener, Laura Barbara


    The aim of the study described in this thesis is the development of a therapeutic immunization strategy against cervical cancer and pre-malignant precursor lesions of cervical cancer (CIN lesions). Cervical cancer is caused by high risk human papillomavirus (HPV). Two of the early proteins of high r

  15. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  16. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity. (United States)

    Winning, Sandra; Fandrey, Joachim


    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  17. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning


    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  18. Global dynamics of cell mediated immunity in viral infection models with distributed delays

    CERN Document Server

    Nakata, Yukihiko


    In this paper, we investigate global dynamics for a system of delay differential equations which describes a virus-immune interaction in \\textit{vivo}. The model has two distributed time delays describing time needed for infection of cell and virus replication. Our model admits three possible equilibria, an uninfected equilibrium and infected equilibrium with or without immune response depending on the basic reproduction number for viral infection $R_{0}$ and for CTL response $R_{1}$ such that $R_{1}1$. The immune activation has a positive role in the reduction of the infection cells and the increasing of the uninfected cells if $R_{1}>1$.

  19. NIH scientists find way to enhance immune attack on tumor cells (United States)

    Investigators have identified a new class of human immune cells that behave like stem cells. These cells, a subtype of T lymphocytes, which comprise a small fraction of white blood cells, may prove more effective than any previously reported type of T ce

  20. Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomoly Detection

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve


    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.

  1. Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. (United States)

    Aryee, Ken-Edwin; Shultz, Leonard D; Brehm, Michael A


    Immunodeficient mice engrafted with human immune systems provide an exciting model to study human immunobiology in an in vivo setting without placing patients at risk. The essential parameter for creation of these "humanized models" is engraftment of human hematopoietic stem cells (HSC) that will allow for optimal development of human immune systems. However, there are a number of strategies to generate humanized mice and specific protocols can vary significantly among different laboratories. Here we describe a protocol for the co-implantation of human HSC with autologous fetal liver and thymic tissues into immunodeficient mice to create a humanized model with optimal human T cell development. This model, often referred to as the Thy/Liv or BLT (bone marrow, liver, thymus) mouse, develops a functional human immune system, including HLA-restricted human T cells, B cells, and innate immune cells.

  2. Induction of T-cell immunity against leukemia by dendritic cells pulsed with total RNA isolated from leukemia cells

    Institute of Scientific and Technical Information of China (English)

    李牧; 尤胜国; 葛薇; 马双; 马楠; 赵春华


    Objectives To assess the feasibility and efficacy of eliciting leukemia-specific T-cell responses in syngeneic mice in vitro and in vivo using dendritic cells (DCs) pulsed with total RNA from leukemia cells.Methods DCs generated from bone marrow culture in vitro in the presence of combined cytokines were pulsed with cellular total RNA isolated from cultured L615 cells by cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium) propane (DOTAP). T-cell responses were evaluated by in vitro proliferation, and cytotoxicity assay. And in vivo immune protection and proghosis of mice with leukemia were studied.Conclusions These data support the use of DCs/RNA vaccine as a feasible and effective route to elicit leukemia immunity against unidentified leukemia-associated antigens for treatment of leukemia-bearing animals.

  3. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli


    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  4. T helper cell polarisation as a measure of the maturation of the immune response

    NARCIS (Netherlands)

    Cameron, S.B.; Stolte, H.H.; Chow, A.W.; Savelkoul, H.F.J.


    BACKGROUND: T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigens in vivo display strong effects on T-h subset differentiation. The aim of the study was to detect the intrinsic capacity

  5. Immune Recognition of Latency-insitigating Pathogens by Human Dendritic Cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov

    that Mtb induces signaling in moDCs that misdirects the immune response into an extracellular Th17 response, even though the bacteria hide inside immune cells. Finally it is demonstrated how HIV-1 strains, capable of provoking sustained infection, induce a highmannose-independent complete necrotic...

  6. Innate Immune Responses in Viral Hepatitis: the role of Kupffer cells and liver-derived monocytes in shaping intrahepatic immunity in mice using the LCMV infection model

    NARCIS (Netherlands)

    D. Movita (Dowty)


    markdownabstract__Abstract__ This study was performed to elucidate the immunological role of the liver in viral hepatitis. The immune functions of the liver are shaped by the intrahepatic cells present during steady state condition, as well as the recruited immune cells during liver inflammation.

  7. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity (United States)

    den Brok, M H M G M; Sutmuller, R P M; Nierkens, S; Bennink, E J; Frielink, C; Toonen, L W J; Boerman, O C; Figdor, C G; Ruers, T J M; Adema, G J


    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens. PMID:16953240

  8. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. (United States)

    Hugues, Stéphanie; Fetler, Luc; Bonifaz, Laura; Helft, Julie; Amblard, François; Amigorena, Sebastian


    Induction of immunity and peripheral tolerance requires contacts between antigen-bearing dendritic cells (DCs) and cognate T cells. Using real-time two-photon microscopy, we have analyzed the dynamics of CD8(+) T cells in lymph nodes during the induction of antigen-specific immunity or tolerance. At 15-20 h after the induction of immunity, T cells stopped moving and established prolonged interactions with DCs. In tolerogenic conditions, despite effective initial T cell activation and proliferation, naive T cells remained motile and established serial brief contacts with multiple DCs. Thus, stable DC-T cell interactions occur during the induction of priming, whereas brief contacts may contribute to the induction of T cell tolerance.

  9. Phenotypic differences of CD4(+) T cells in response to red blood cell immunization in transfused sickle cell disease patients. (United States)

    Vingert, Benoît; Tamagne, Marie; Habibi, Anoosha; Pakdaman, Sadaf; Ripa, Julie; Elayeb, Rahma; Galacteros, Frédéric; Bierling, Philippe; Ansart-Pirenne, Hélène; Bartolucci, Pablo; Noizat-Pirenne, France


    Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50-70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4(+) T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4(+) T-cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4(+) T-cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4(+) T cells were associated with the nonresponder status, whereas spontaneous expression of IL-10 by CD4(+) T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jb(k) . These findings implicate CD4(+) T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders.

  10. Enhanced in vivo protein synthesis in circulating immune cells of ICU patients. (United States)

    Januszkiewicz, Anna; Klaude, Maria; Loré, Karin; Andersson, Jan; Ringdén, Olle; Rooyackers, Olav; Wernerman, Jan


    Insufficient function of the immune system contributes to a poor prognosis in intensive care unit (ICU) patients. However, the immune system function is not easily monitored and evaluated. In vivo protein synthesis determination in immune competent cells offers a possibility to quantify immunological activation. The aim of this descriptive study was to determine the in vivo fractional protein synthesis rate (FSR) in immune cells of ICU patients during the initial phase of the critical illness. Patients (n = 20) on ventilator treatment in the general ICU were studied during their first week of ICU stay. FSR was determined in circulating T lymphocytes, mononuclear cells, the whole population of blood leukocytes, and in stationary immune cells of palatine tonsils during a 90-min period by a flooding technique. Healthy, adult subjects (n = 11), scheduled for elective ear, nose, and throat surgery served as a control group. The FSR in leukocytes and mononuclear cells of ICU patients was higher compared with the control group. In contrast, the FSR of circulating T lymphocytes and of tonsillar cells was not different from that in the healthy subjects. In summary, the ICU patients showed a distinct polarization of metabolic responses during the initial phase of the critical illness. The in vivo rate of protein synthesis was high in the circulating mononuclear cells and leukocytes, reflecting enhanced metabolic activity in these cell populations. Determination of the in vivo protein synthesis rate may be used as a tool to obtain additional information on activation of the immune system.

  11. Location of tumor affects local and distant immune cell type and number (United States)

    Hensel, Jonathan A.; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P.


    Abstract Introduction Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid‐derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. Methods In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. Results The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4+ and CD8+ T‐cell numbers, which was also observed in their spleens. Conclusions These data indicate that alterations in tumor‐reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci. PMID:28250928

  12. Hot water extracts of Chlorella vulgaris improve immune function in protein-deficient weanling mice and immune cells. (United States)

    An, Hyo-Jin; Rim, Hong-Kun; Jeong, Hyun-Ja; Hong, Seung-Heon; Um, Jae-Young; Kim, Hyung-Min


    The objective of this study was to investigate the effects of hot water extracts of Chlorella vulgaris (CVE) on a deteriorated immune function through utilization of a protein-energy malnutrition (PEM) diet. Unicellular algae, C. vulgaris, were used as biological response modifier. PEM is associated with decreased host immune defense. Male C57BL/6J mice, initially four weeks old, were fed for 8 days with standard diet or a PEM diet. Mice in the PEM diet group were orally administered 0.1 g/kg and 0.15 g/kg of CVE for the following week. Nutritional parameters such as the total protein, albumin, glucose, and interferon γ (IFN-γ) were increased in blood serum of the CVE-treated group compared with the non-treated group. The mononuclear cell numbers from spleen, superficial, and mesenteric lymph node were reduced in mice fed with PEM diet, but numbers from the spleen and superficial lymph node were increased by the CVE (0.1 and 0.15 g/kg) treatment. We also investigated the effect of CVE on the production of cytokines in human T-cell line, MOLT-4 cells, and primary cultured splenocytes. The CVE treatment significantly increased the production of both interleukin (IL)-2 and IL-4 compared with the media control, but did not affect the production of IFN-γ. These results suggest that CVE may be useful in improving the immune function.

  13. B cells responses and cytokine production are regulated by their immune microenvironment. (United States)

    Vazquez, Monica I; Catalan-Dibene, Jovani; Zlotnik, Albert


    The adaptive immune system consists of two types of lymphocytes: T and B cells. These two lymphocytes originate from a common precursor, yet are fundamentally different with B cells mediating humoral immunity while T cells mediate cell mediated immunity. In cytokine production, naïve T cells produce multiple cytokines upon activation while naïve activated B cells do not. B cells are capable of producing cytokines, but their cytokine production depends on their differentiation state and activation conditions. Hence, unlike T cells that can produce a large amount of cytokines upon activation, B cells require specific differentiation and activation conditions to produce cytokines. Many cytokines act on B cells as well. Here, we discuss several cytokines and their effects on B cells including: Interleukins, IL-7, IL-4, IL-6, IL-10, and Interferons, IFN-α, IFN-β, IFN-γ. These cytokines play important roles in the development, survival, differentiation and/or proliferation of B cells. Certain chemokines also play important roles in B cell function, namely antibody production. As an example, we discuss CCL28, a chemokine that directs the migration of plasma cells to mucosal sites. We conclude with a brief overview of B cells as cytokine producers and their likely functional consequences on the immune response.

  14. CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?


    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence


    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripher...

  15. Modulation and metamodulation of synapses by adenosine. (United States)

    Ribeiro, J A; Sebastião, A M


    The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.

  16. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response.

    Directory of Open Access Journals (Sweden)

    Nikolaus Rieber

    Full Text Available In a number of countries, whole cell pertussis vaccines (wcP were replaced by acellular vaccines (aP due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ and Th2 (IL-4, IL-5, IL-10 cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+CD69(+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+ memory T cells may contribute to protection against clinical pertussis.

  17. The mucosal immune system in the oral cavity-an orchestra of T cell diversity

    Institute of Scientific and Technical Information of China (English)

    Rui-Qing Wu; Dun-Fang Zhang; Eric Tu; Qian-Ming Chen; WanJun Chen


    The mucosal immune system defends against a vast array of pathogens, yet it exhibits limited responses to commensal microorganisms under healthy conditions. The oral-pharyngeal cavity, the gateway for both the gastrointestinal and respiratory tracts, is composed of complex anatomical structures and is constantly challenged by antigens from air and food. The mucosal immune system of the oral-pharyngeal cavity must prevent pathogen entry while maintaining immune homeostasis, which is achieved via a range of mechanisms that are similar or different to those utilized by the gastrointestinal immune system. In this review, we summarize the features of the mucosal immune system, focusing on T cell subsets and their functions. We also discuss our current understanding of the oral-pharyngeal mucosal immune system.

  18. Immune selection of tumor cells in TCR β-chain transgenic mice. (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B


    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  19. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond

    Directory of Open Access Journals (Sweden)

    Morgan eHuse


    Full Text Available Cytoskeletal polarization is crucial for many aspects of immune function, ranging from neutrophil migration to the sampling of gut flora by intestinal dendritic cells. It also plays a key role during lymphocyte cell-cell interactions, the most conspicuous of which is perhaps the immunological synapse (IS formed between a T cell and an antigen-presenting cell (APC. IS formation is associated with the reorientation of the T cell’s microtubule-organizing center (MTOC to a position just beneath the cell-cell interface. This cytoskeletal remodeling event aligns secretory organelles inside the T cell with the IS, enabling the directional release of cytokines and cytolytic factors toward the APC. MTOC polarization is therefore crucial for maintaining the specificity of a T cell’s secretory and cytotoxic responses. It has been known for some time that T cell receptor (TCR stimulation activates the MTOC polarization response. It has been difficult, however, to identify the machinery that couples early TCR signaling to cytoskeletal remodeling. Over the past few years, considerable progress has been made in this area. This review will present an overview of recent advances, touching on both the mechanisms that drive MTOC polarization and the effector responses that require it. Particular attention will be paid to both novel and atypical members of the protein kinase C family, which are now known to play important roles in both the establishment and the maintenance of the polarized state.

  20. Dendritic Cells of Vital Importance for Immune Regulation in the Lung for Immune Regulation in the Lung


    Heer, H.J.


    textabstractDendritic cells (DCs) are known to play a pivotal role in the induction of a primary and secondary immune response in the lung (1) (see chapter 2 for a full theoretical introduction on DC subsets). By taking up antigen under steady state and inflammatory conditions from the tissue where they reside, DCs can subsequently migrating to draining lymph nodes (LNs). Here they can present antigen bound peptides on either MHC class I and/or II to CD8+ or CD4+ T cells respectively. These D...

  1. Function of Helper T Cells in the Memory CTL-mediated Anti-tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    高丰光; GermainJ.P.Fernendo; 刘文军


    Abstract To investigate the role of CD4+ helper T (Th) cells in the memory CTL-mediated anti-tumor immunity, the RAG-1 gene knock out mice were adoptively transferred with OT-1 cells to generate the memory CTL, the C57B1/6 mice immunized with the epitope peptide of OVA specific Th cells and with different adjuvants were adopfively transferred with these memory-CTLs, and then the animals were challenged with tumor cells EGT. It was found that although the simple immunization of mice with the epitope peptide of the OVA specific Th cells could generate more effect CTL, but this effect was not so strong enough to resist completely the challenges with tumor cells. Nevertheless, the memory CTL-mediated anti-tumor immune effect required the helps of Th1 and Th2 cells. The cross-regulation between Thl and Th2 cells seemed to be beneficial for the host to generate more effector CTL for mounting an efficient anti-tumor response. It concluded that the interaction between Thl and Th2 cells might be more important than the single subset of Th cells in the memory CTL-mediated anti-tumor immune response. More attention should be paid in this regard for the future studies.

  2. Invariant natural killer T cells in adipose tissue: novel regulators of immune-mediated metabolic disease. (United States)

    Rakhshandehroo, M; Kalkhoven, E; Boes, M


    Adipose tissue (AT) represents a microenvironment where intersection takes place between immune processes and metabolic pathways. A variety of immune cells have been characterized in AT over the past decades, with the most recent addition of invariant natural killer T (iNKT) cells. As members of the T cell family, iNKT cells represent a subset that exhibits both innate and adaptive characteristics and directs ensuing immune responses. In disease conditions, iNKT cells have established roles that include disorders in the autoimmune spectrum in malignancies and infectious diseases. Recent work supports a role for iNKT cells in the maintenance of AT homeostasis through both immune and metabolic pathways. The deficiency of iNKT cells can result in AT metabolic disruptions and insulin resistance. In this review, we summarize recent work on iNKT cells in immune regulation, with an emphasis on AT-resident iNKT cells, and identify the potential mechanisms by which adipocytes can mediate iNKT cell activity.

  3. Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Melanie Greter


    Full Text Available Subcutaneous immunization delivers antigen (Ag to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs. There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI, in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI.

  4. Role of Suppressor of Cytokine Signaling 3 in the Immune Modulation of Mesenchymal Stromal Cells. (United States)

    Yang, Chen; Zheng, Chunquan; Lin, Hai; Li, Jing; Zhao, Keqing


    The underlying mechanisms of mesenchymal stromal cells (MSCs) on immune modulation to treat allergic diseases remain unclear. Here, we showed that the suppressor of cytokine signaling 3 (SOCS3) is an important immune modulator expressed by MSCs, which is significantly increased by interferon-γ (IFN-γ). In addition, we observed that SOCS3 is a crucial mediator of the anti-proliferative and functional effects of MSCs on T cells and B cells. The immune modulation of MSCs through SOCS3 is mediated by cell-cell contacts. Moreover, SOCS3 could serve as an indicator to predict the potential immune modulatory of MSCs derived from different donors. Furthermore, treatment with anti-SOCS3 Ab significantly decreased ovalbumin-specific antibodies and neutrophil infiltration in ovalbumin-induced allergic rhinitis (AR) mice. Our results suggest that SOCS3 serves as an immune modulator interfering with T cells and B cells, and SOCS3 may act as a predictive marker for immune modulatory of MSCs.

  5. Helper T-cell heterogeneity: a complex developmental issue in the immune system

    Institute of Scientific and Technical Information of China (English)

    Chen Dong


    After activation by antigen-presenting cells, naive, antigen-specific CD4+ T cells differentiate into effector T cells. Two decades ago, Coffman and Mosman first discovered the heterogeneity of effector T cells, which were named as Th 1 or Th2 cells.1 Th 1 and Th2 cells are differentially induced and are involved in immunity against intracellular and extracellular pathogens, respectively, as well as immunopathologies such as autoimmunity and allergy.

  6. Epithelial cells, the “switchboard” of respiratory immune defense responses: effects of air pollutants (United States)

    Müller, Loretta; Jaspers, Ilona


    Summary “Epimmunome”, a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases. PMID:22851042

  7. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D


    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  8. Relationship of VEGF/VEGFR with immune and cancer cells:staggering or forward?

    Institute of Scientific and Technical Information of China (English)

    Yu-Ling Li; Hua Zhao; Xiu-Bao Ren


    Vascular endothelial growth factor (VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors (VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells (DCs), macrophages, and lymphocytes further express certain types of VEGF receptors. VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness. This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment.

  9. Innate immune control of EBV-infected B cells by invariant natural killer T cells. (United States)

    Chung, Brian K; Tsai, Kevin; Allan, Lenka L; Zheng, Dong Jun; Nie, Johnny C; Biggs, Catherine M; Hasan, Mohammad R; Kozak, Frederick K; van den Elzen, Peter; Priatel, John J; Tan, Rusung


    Individuals with X-linked lymphoproliferative disease lack invariant natural killer T (iNKT) cells and are exquisitely susceptible to Epstein-Barr virus (EBV) infection. To determine whether iNKT cells recognize or regulate EBV, resting B cells were infected with EBV in the presence or absence of iNKT cells. The depletion of iNKT cells increased both viral titers and the frequency of EBV-infected B cells. However, EBV-infected B cells rapidly lost expression of the iNKT cell receptor ligand CD1d, abrogating iNKT cell recognition. To determine whether induced CD1d expression could restore iNKT recognition in EBV-infected cells, lymphoblastoid cell lines (LCL) were treated with AM580, a synthetic retinoic acid receptor-α agonist that upregulates CD1d expression via the nuclear protein, lymphoid enhancer-binding factor 1 (LEF-1). AM580 significantly reduced LEF-1 association at the CD1d promoter region, induced CD1d expression on LCL, and restored iNKT recognition of LCL. CD1d-expressing LCL elicited interferon γ secretion and cytotoxicity by iNKT cells even in the absence of exogenous antigen, suggesting an endogenous iNKT antigen is expressed during EBV infection. These data indicate that iNKT cells may be important for early, innate control of B cell infection by EBV and that downregulation of CD1d may allow EBV to circumvent iNKT cell-mediated immune recognition.

  10. Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression. (United States)

    Imhof, Marianne; Karas, Irene; Gomez, Ivan; Eger, Andreas; Imhof, Martin


    There is a continuous demand for preclinical modeling of the interaction of dendritic cells with the immune system and cancer cells. Recent progress in gene expression profiling with nucleic acid microarrays, in silico modeling and in vivo cell and animal approaches for non-clinical proof of safety and efficacy of these immunotherapies is summarized. Immunoinformatic approaches look promising to unfold this potential, although still unstable and difficult to interpret. Animal models have progressed a great deal in recent years, finally narrowing the gap from bench to bedside. However, translation to the clinic should be done with precaution. The most significant results concerning clinical benefit might come from detailed immunologic investigations made during well designed clinical trials of dendritic-cell-based therapies, which in general prove safe.

  11. Immune cells and prognosis in HPV-associated oropharyngeal squamous cell carcinomas

    DEFF Research Database (Denmark)

    Saber, Camelia Nami; Grønhøj Larsen, Christian; Dalianis, Tina;


    prognosis should be offered altered treatment. Besides the well-known biomarkers of HPV and p16, new promising immune cells and markers might nuance the prognosis and treatment for patients with HPV+ OPSCC. We systematically reviewed the literature on immunological features of HPV-associated OPSCCs......Currently, oropharyngeal squamous cell carcinomas (OPSCC) are treated based on the traditional TNM-classification, although this scheme might be inadequate for the subgroup of human papillomavirus (HPV)-associated OPSCCs. It remains debatable whether this subgroup of patients with favorable......, and report that a high number of cytotoxic T cells (CD8s) and a low number of CD98 positive cells is associated with better outcome, while an increased CD4/CD8 ratio and a high human leukocyte antigen 1 (HLA1) intensity is most likely associated with worse outcome. These findings might contribute to future...

  12. The where, when, how and why of hyaluronan binding by immune cells

    Directory of Open Access Journals (Sweden)

    Sally S. M. Lee-Sayer


    Full Text Available Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues is indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of CD44, the hyaluronan receptor, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.

  13. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix. (United States)

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter


    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  14. The where, when, how, and why of hyaluronan binding by immune cells. (United States)

    Lee-Sayer, Sally S M; Dong, Yifei; Arif, Arif A; Olsson, Mia; Brown, Kelly L; Johnson, Pauline


    Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.

  15. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    Institute of Scientific and Technical Information of China (English)

    DamoXu; HaiyingLiu; MousaKomai-Koma


    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of naive T cells towards either Thl or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases. Cellular & Molecular Immunology.

  16. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    Institute of Scientific and Technical Information of China (English)

    Damo Xu; Haiying Liu; Mousa Komai-Koma


    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of na(i)ve T cells towards either Th1 or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases.

  17. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact


    Scholz, Jean L.; Crowley, Jenni E.; Tomayko, Mary M.; Steinel, Natalie; O'Neill, Patrick J.; Quinn, William J; Goenka, Radhika; Miller, Juli P; Cho, Yun Hee; Long, Vatana; Ward, Chris; Migone, Thi-Sau; Shlomchik, Mark J.; Cancro, Michael P.


    We have used an inhibiting antibody to determine whether preimmune versus antigen-experienced B cells differ in their requisites for BLyS, a cytokine that controls differentiation and survival. Whereas in vivo BLyS inhibition profoundly reduced naïve B cell numbers and primary immune responses, it had a markedly smaller effect on memory B cells and long-lived plasma cells, as well as secondary immune responses. There was heterogeneity within the memory pools, because IgM-bearing memory cells ...

  18. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K;


    by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  19. The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses

    DEFF Research Database (Denmark)

    Blom, Lars H; Martel, Britta C; Larsen, Lau F


    BACKGROUND: The pathology of allergic diseases involves type 2 immune cells, such as Th2, ILC2, and basophils exerting their effect by production of IL-4, IL-5, and IL-13. However, surface receptors that are specifically expressed on type 2 immune cells are less well documented. The aim...... and ILC2 cells and basophils. In peanut-allergic subjects the peanut-specific Th2 (CD154(+) CRTh2(+) ) cells expressed more CD200R than the non-allergen specific Th2 (CD154(-) CRTh2(+) ) cells. Moreover, co-staining of CD161 and CD200R identified peanut-specific highly differentiated IL-4(+) IL-5(+) Th2...

  20. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon


    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  1. Transmission of pseudorabies virus from immune-masked blood monocytes to endothelial cells


    Van de Walle, Gerlinde; Favoreel, Herman; Nauwynck, Hans; Mettenleiter, Thomas C.; Pensaert, Maurice


    Pseudorabies virus (PRV) may cause abortion, even in the presence of vaccination-induced immunity. Blood monocytes are essential to transport the virus in these immune animals, including transport to the pregnant uterus. Infected monocytes express viral proteins on their cell surface. Specific antibodies recognize these proteins and should activate antibody-dependent cell lysis. Previous work showed that addition of PRV-specific polyclonal antibodies to PRV-infected monocytes induced internal...

  2. Mn Porphyrin Regulation of Aerobic Glycolysis: Implications on the Activation of Diabetogenic Immune Cells


    Delmastro-Greenwood, Meghan M.; Votyakova, Tatyana; Goetzman, Eric,; Marre, Meghan L.; Previte, Dana M.; Tovmasyan, Artak; Batinic-Haberle,Ines; Trucco, Massimo M.; Piganelli, Jon D.


    Aims: The immune system is critical for protection against infections and cancer, but requires scrupulous regulation to limit self-reactivity and autoimmunity. Our group has utilized a manganese porphyrin catalytic antioxidant (MnTE-2-PyP5+, MnP) as a potential immunoregulatory therapy for type 1 diabetes. MnP has previously been shown to modulate diabetogenic immune responses through decreases in proinflammatory cytokine production from antigen-presenting cells and T cells and to reduce diab...

  3. Role of cell death in the propagation of PrP(Sc) in immune cells. (United States)

    Takahashi, Kenichi; Inoshima, Yasuo; Ishiguro, Naotaka


    A number of studies have suggested that macrophages, dendritic cells, and follicular dendritic cells play an important role in the propagation of PrP(Sc). Both accumulation and proteolysis of PrP(Sc) have been demonstrated in peripheral macrophages. Macrophages may act as reservoirs for PrP(Sc) particles if the cells die during transient PrP(Sc) propagation. However, whether cell death plays a role in PrP(Sc) propagation in macrophages remains unclear. In this study, we investigated the possibility of propagation and transmission of PrP(Sc) between dead immune cells and living neural cells. We found that under specific conditions, transient PrP(Sc) propagation occurs in dead cells, indicating that interaction between PrP(C) and PrP(Sc) on plasma membrane lipid rafts might be important for PrP(Sc) propagation. Co-culturing of killed donor PrP(Sc)-infected macrophages with recipient N2a-3 neuroblastoma cells accelerated PrP(Sc) transmission. Our results suggest that cell death may play an important role in PrP(Sc) propagation, whereas transient PrP(Sc) propagation in macrophages has little effect on PrP(Sc) transmission.

  4. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection. (United States)

    García-Quintanilla, Meritxell; Pulido, Marina R; Pachón, Jerónimo; McConnell, Michael J


    The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.

  5. T cell intrinsic NOD2 is dispensable for CD8 T cell immunity.

    Directory of Open Access Journals (Sweden)

    Gloria H Y Lin

    Full Text Available NOD2 is an intracellular pattern recognition receptor that provides innate sensing of bacterial muramyl dipeptide by host cells, such as dendritic cells, macrophages and epithelial cells. While NOD2's role as an innate pathogen sensor is well established, NOD2 is also expressed at low levels in T cells and there are conflicting data as to whether NOD2 plays an intrinsic role in T cell function. Here we show that following adoptive transfer into WT hosts, NOD2(-/- OT-I T cells show a small decrease in the number of OVA-specific CD8 T cells recovered at the peak of the response to respiratory influenza virus infection. On the other hand, no such defect was observed upon intranasal immunization with a replication defective adenovirus carrying the OVA epitope recognized by OT-I, or when OVA was delivered with LPS subcutaneously, or when influenza-OVA was delivered intraperitoneally. Thus we observed a selective defect in NOD2-deficient T cell responses only during a live viral infection. Moreover, there was no apparent defect when NOD2(-/- OT-I T cells were stimulated in vitro. Finally, this selective defect in recovery of NOD2-deficient CD8 T cells was not observed in a non-transgenic respiratory infection model in which mixed bone marrow chimeras were used such that the NOD2(-/- T cells were allowed to develop and respond in a NOD2-sufficient host. Taken together our data indicate that T cell intrinsic NOD2 is not required for CD8 T cell responses to antigen delivered under a variety of conditions in vitro and in vivo. However, CD8 T cells that have developed in the absence of NOD2 show a selective and modest impairment in their response to live respiratory influenza infection.

  6. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. (United States)

    Eyerich, Stefanie; Eyerich, Kilian; Pennino, Davide; Carbone, Teresa; Nasorri, Francesca; Pallotta, Sabatino; Cianfarani, Francesca; Odorisio, Teresa; Traidl-Hoffmann, Claudia; Behrendt, Heidrun; Durham, Stephen R; Schmidt-Weber, Carsten B; Cavani, Andrea


    Th subsets are defined according to their production of lineage-indicating cytokines and functions. In this study, we have identified a subset of human Th cells that infiltrates the epidermis in individuals with inflammatory skin disorders and is characterized by the secretion of IL-22 and TNF-alpha, but not IFN-gamma, IL-4, or IL-17. In analogy to the Th17 subset, cells with this cytokine profile have been named the Th22 subset. Th22 clones derived from patients with psoriasis were stable in culture and exhibited a transcriptome profile clearly separate from those of Th1, Th2, and Th17 cells; it included genes encoding proteins involved in tissue remodeling, such as FGFs, and chemokines involved in angiogenesis and fibrosis. Primary human keratinocytes exposed to Th22 supernatants expressed a transcriptome response profile that included genes involved in innate immune pathways and the induction and modulation of adaptive immunity. These proinflammatory Th22 responses were synergistically dependent on IL-22 and TNF-alpha. Furthermore, Th22 supernatants enhanced wound healing in an in vitro injury model, which was exclusively dependent on IL-22. In conclusion, the human Th22 subset may represent a separate T cell subset with a distinct identity with respect to gene expression and function, present within the epidermal layer in inflammatory skin diseases. Future strategies directed against the Th22 subset may be of value in chronic inflammatory skin disorders.

  7. Monitoring of Pathogen-Specific T-Cell Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation (United States)

    Fuji, Shigeo; Kapp, Markus; Einsele, Hermann


    The clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT) has been significantly improved during the last decades with regard to the reduction in organ failure, infection, and severe acute graft-versus-host disease. However, severe complications due to infectious diseases are still one of the major causes of morbidity and mortality after allogeneic HSCT, in particular in patients receiving haploidentical HSCT or cord blood transplant due to a slow and often incomplete immune reconstitution. In order to improve the immune control of pathogens without an increased risk of alloreactivity, adoptive immunotherapy using highly enriched pathogen-specific T cells offers a promising approach. In order to identify patients who are at high risk for infectious diseases, several monitoring assays have been developed with potential for the guidance of immunosuppressive drugs and adoptive immunotherapy in clinical practice. In this article, we aim to give a comprehensive overview regarding current developments of T-cell monitoring techniques focusing on T cells against viruses and fungi. In particular, we will focus on rather simple, fast, non-labor-intensive, cellular assays which could be integrated in routine clinical screening approaches. PMID:24062744

  8. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses. (United States)

    Rubinski, Anna; Ziv, Noam E


    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby in