WorldWideScience

Sample records for cell imaging screen

  1. Resonant waveguide grating imagers for single cell analysis and high throughput screening

    Science.gov (United States)

    Fang, Ye

    2015-08-01

    Resonant waveguide grating (RWG) systems illuminate an array of diffractive nanograting waveguide structures in microtiter plate to establish evanescent wave for measuring tiny changes in local refractive index arising from the dynamic mass redistribution of living cells upon stimulation. Whole-plate RWG imager enables high-throughput profiling and screening of drugs. Microfluidics RWG imager not only manifests distinct receptor signaling waves, but also differentiates long-acting agonism and antagonism. Spatially resolved RWG imager allows for single cell analysis including receptor signaling heterogeneity and the invasion of cancer cells in a spheroidal structure through 3-dimensional extracellular matrix. High frequency RWG imager permits real-time detection of drug-induced cardiotoxicity. The wide coverage in target, pathway, assay, and cell phenotype has made RWG systems powerful tool in both basic research and early drug discovery process.

  2. Content adaptive screen image scaling

    OpenAIRE

    Zhai, Yao; Wang, Qifei; Lu, Yan; Li, Shipeng

    2015-01-01

    This paper proposes an efficient content adaptive screen image scaling scheme for the real-time screen applications like remote desktop and screen sharing. In the proposed screen scaling scheme, a screen content classification step is first introduced to classify the screen image into text and pictorial regions. Afterward, we propose an adaptive shift linear interpolation algorithm to predict the new pixel values with the shift offset adapted to the content type of each pixel. The shift offse...

  3. Impact of image segmentation on high-content screening data quality for SK-BR-3 cells

    Directory of Open Access Journals (Sweden)

    Li Yizheng

    2007-09-01

    Full Text Available Abstract Background High content screening (HCS is a powerful method for the exploration of cellular signalling and morphology that is rapidly being adopted in cancer research. HCS uses automated microscopy to collect images of cultured cells. The images are subjected to segmentation algorithms to identify cellular structures and quantitate their morphology, for hundreds to millions of individual cells. However, image analysis may be imperfect, especially for "HCS-unfriendly" cell lines whose morphology is not well handled by current image segmentation algorithms. We asked if segmentation errors were common for a clinically relevant cell line, if such errors had measurable effects on the data, and if HCS data could be improved by automated identification of well-segmented cells. Results Cases of poor cell body segmentation occurred frequently for the SK-BR-3 cell line. We trained classifiers to identify SK-BR-3 cells that were well segmented. On an independent test set created by human review of cell images, our optimal support-vector machine classifier identified well-segmented cells with 81% accuracy. The dose responses of morphological features were measurably different in well- and poorly-segmented populations. Elimination of the poorly-segmented cell population increased the purity of DNA content distributions, while appropriately retaining biological heterogeneity, and simultaneously increasing our ability to resolve specific morphological changes in perturbed cells. Conclusion Image segmentation has a measurable impact on HCS data. The application of a multivariate shape-based filter to identify well-segmented cells improved HCS data quality for an HCS-unfriendly cell line, and could be a valuable post-processing step for some HCS datasets.

  4. Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells

    Science.gov (United States)

    Soufiani, Arman Mahboubi; Tayebjee, Murad J. Y.; Meyer, Steffen; Ho-Baillie, Anita; Sung Yun, Jae; McQueen, Rowan W.; Spiccia, Leone; Green, Martin A.; Hameiri, Ziv

    2016-07-01

    In this study, we provide insights into planar structure methylammonium lead triiodide (MAPbI3) perovskite solar cells (PSCs) using electroluminescence and photoluminescence imaging techniques. We demonstrate the strength of these techniques in screening relatively large area PSCs, correlating the solar cell electrical parameters to the images and visualizing the features which contribute to the variation of the parameters extracted from current density-voltage characterizations. It is further used to investigate one of the major concerns about perovskite solar cells, their long term stability and aging. Upon storage under dark in dry glovebox condition for more than two months, the major parameter found to have deteriorated in electrical performance measurements was the fill factor; this was elucidated via electroluminescence image comparisons which revealed that the contacts' quality degrades. Interestingly, by deploying electroluminescence imaging, the significance of having a pin-hole free active layer is demonstrated. Pin-holes can grow over time and can cause degradation of the active layer surrounding them.

  5. Discovery of a novel HIV-1 integrase inhibitor from natural compounds through structure based virtual screening and cell imaging.

    Science.gov (United States)

    Gu, Wan-Gang; Zhang, Xuan; Ip, Denis Tsz-Ming; Yang, Liu-Meng; Zheng, Yong-Tang; Wan, David Chi-Cheong

    2014-09-17

    The interaction between HIV-1 integrase and LEDGF/P75 has been validated as a target for anti-HIV drug development. Based on the crystal structure of integrase in complex with LEDGF/P75, a library containing 80 thousand natural compounds was filtered with virtual screening. 11 hits were selected for cell based assays. One compound, 3-(1,3-benzothiazol-2-yl)-8-{[bis(2-hydroxyethyl)amino]methyl}-7-hydroxy-2H-chromen-2-one (D719) inhibited integrase nuclear translocation in cell imaging. The binding mode of D719 was analyzed with molecular simulation. The anti-HIV activity of D719 was assayed by measuring the p24 antigen production in acute infection. The structure characteristics of D719 may provide valuable information for integrase inhibitor design. PMID:25128456

  6. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis.

    Science.gov (United States)

    Hattori, Mitsuru; Ozawa, Takeaki

    2016-01-01

    G protein-coupled receptors (GPCRs) are notable targets of basic therapeutics. Many screening methods have been established to identify novel agents for GPCR signaling in a high-throughput manner. However, information related to the temporal reaction of GPCR with specific ligands remains poor. We recently developed a bioluminescence method for the quantitative detection of the interaction between GPCR and β-arrestin using split luciferase complementation. To monitor time-course variation of the interactions, a new imaging system contributes to the accurate evaluation of drugs for GPCRs in a high-throughput manner. PMID:27424906

  7. Retinal Imaging Techniques for Diabetic Retinopathy Screening.

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-03-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  8. Image analysis in high-content screening.

    Science.gov (United States)

    Niederlein, Antje; Meyenhofer, Felix; White, Daniel; Bickle, Marc

    2009-11-01

    The field of High Content Screening (HCS) has evolved from a technology used exclusively by the pharmaceutical industry for secondary drug screening, to a technology used for primary drug screening and basic research in academia. The size and the complexity of the screens have been steadily increasing. This is reflected in the fact that the major challenges facing the field at the present are data mining and data storage due to the large amount of data generated during HCS. On the one hand, technological progress of fully automated image acquisition platforms, and on the other hand advances in the field of automated image analysis have made this technology more powerful and more accessible to less specialized users. Image analysis solutions for many biological problems exist and more are being developed to increase both the quality and the quantity of data extracted from the images acquired during the screens. We highlight in this review some of the major challenges facing automatic high throughput image analysis and present some of the software solutions available on the market or from academic open source solutions. PMID:19531001

  9. Time-lapse imaging assay using the BioStation CT: A sensitive drug-screening method for three-dimensional cell culture

    OpenAIRE

    Sakamoto, Ruriko; Rahman, M. Mamunur; SHIMOMURA, MANAMI; Itoh, Manabu; Nakatsura, Tetsuya

    2015-01-01

    Three-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique ...

  10. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Magdalena L Circu

    Full Text Available Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF or acidic extracellular pH (pHe, increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA. Since these drugs cannot be advanced into the clinic due to toxicity, we have designed a high-content assay to discover drugs that block peripheral lysosome trafficking with the goal of identifying novel drugs that inhibit tumor cell invasion. An automated high-content imaging system (Cellomics was used to measure the position of lysosomes relative to the nucleus. Among a total of 2210 repurposed and natural product drugs screened, 18 "hits" were identified. One of the compounds identified as an anterograde lysosome trafficking inhibitor was niclosamide, a marketed human anti-helminthic drug. Further studies revealed that niclosamide blocked acidic pHe, HGF, and epidermal growth factor (EGF-induced anterograde lysosome redistribution, protease secretion, motility, and invasion of DU145 castrate resistant prostate cancer cells at clinically relevant concentrations. In an effort to identify the mechanism by which niclosamide prevented anterograde lysosome movement, we found that this drug exhibited no significant effect on the level of ATP, microtubules or actin filaments, and had minimal effect on the PI3K and MAPK pathways. Niclosamide collapsed intralysosomal pH without disruption of the lysosome membrane, while bafilomycin, an agent that impairs lysosome acidification, was also found to induce JLA in our model. Taken together, these data suggest that niclosamide promotes

  11. Perceived Image Quality on Mobile Phones with Different Screen Resolution

    OpenAIRE

    Wenjie Zou; Jiarun Song; Fuzheng Yang

    2016-01-01

    The diverse display screen imposes significant challenges for assessing the perceptual media quality across different mobile devices. In this paper, the perceived image quality on different mobile phones is investigated. Firstly, subjective experiments for image quality evaluation are implemented on 9 popular mobile phones and a broadcast-quality monitor to evaluate the impact on perceived image quality regarding the screen resolution, screen size, image resolution, and image coding quality. ...

  12. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    Science.gov (United States)

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  13. Screen Printed Metallization of Silicon Solar Cells

    OpenAIRE

    Govaerts, R.; Van Overstraeten, R.; Mertens, R.; Ph. Lauwers; Frisson, L.

    1980-01-01

    This paper presents a screen printing process for the metallization of silicon solar cells. The physics and construction of a classical solar cell are reviewed. The results obtained with a screen printing process are comparable with other, more expensive technologies. This technology does not introduce an additional contact resistance on silicon. The process optimization and the influence of different parameters are discussed.

  14. RNAi Screening of Leukemia Cells Using Electroporation.

    Science.gov (United States)

    Agarwal, Anupriya; Tyner, Jeffrey W

    2016-01-01

    RNAi-mediated screening has been an integral tool for biological discovery for the past 15 years. A variety of approaches have been employed for implementation of this technique, including pooled, depletion/enrichment screening with lentiviral shRNAs, and segregated screening of panels of individual siRNAs. The latter approach of siRNA panel screening requires efficient methods for transfection of siRNAs into the target cells. In the case of suspension leukemia cell lines and primary cells, many of the conventional transfection techniques using liposomal or calcium phosphate-mediated transfection provide very low efficiency. In this case, electroporation is the only transfection technique offering high efficiency transfection of siRNAs into the target leukemia cells. Here, we describe methods for optimization and implementation of siRNA electroporation into leukemia cell lines and primary patient specimens, and we further offer suggested electroporation settings for some commonly used leukemia cell lines. PMID:27581286

  15. Image Quality in Screening Mammography in Croatia

    International Nuclear Information System (INIS)

    Mortality reduction through screening mammography (SMG) is possible only with examination of high image quality (IQ), which should be performed with acceptable patient breast radiation dose (BRD). Besides film processing control, equipment assessment with breast phantom and dosimetry, periodical external mammographic IQ assessment (MIQA) is needed, including image labelling (L), breast positioning (BP), exposure (EX) and artefacts (AR) assessment. The nationwide breast cancer screening program (NBSP) has been introduced in Croatia in 2006, and the MIQA is initiated as the first step in establishing quality assurance/quality control (QA/QC) framework in breast imaging in Croatia. The current study was aimed: (1) to provide objective evidence about the technical MIQ in NBSP in Croatia, (2) to compare MIQ between different types of mammographic units (MUs), (3) to identify the common deficiencies, and (4) to propose corrective activities. Mammograms (MGs) for IQA were collected from a total of 84 MUs which participate in NBSP, which represents 70 % of all MUs nationwide: A total of 420 MG examinations were reviewed. Each MU was requested to submit ''what they consider to be their five best representative MGs, each one performed in one of five consecutive workdays''. Mean age of MG machines was 7.76 years (range 2 - 21), with no difference between four MU types. This very first study of MIQ in Croatia corroborated our intuitive impression of inadequate IQ, staff training and equipment in many MUs nationwide. As MIQ strongly influences BC detection rate, suboptimal QA/QC always carries a risk to compromise the success of NBSP. Deficiencies in SMG, especially in ID and BP reflect different level of competency of radiological staff in Croatia. Differences in MIQ in various MU types are determined by their organization, equipment, education, working habits and motivation. More efforts are needed to train both RTs and radiologists to implement and maintain QA/QC in their

  16. Optical imaging: a newer screening tool in oncological practice

    International Nuclear Information System (INIS)

    Full text: The decrease in the incidence and the mortality of cancer has ushered in a palpable excitement in the oncology community. The recent and significant advances in the care of cancer patients is consequent to the developments in the fields of imaging, molecular diagnostics and n'folecularly targeted therapies. Targeted and Activable Optical imaging is a rapidly expanding discipline of molecular imaging designed to detect very small clusters of cancer cells at its earliest stage. This modality has higher sensitivity and is destined to open new vistas in cancer screening and intra-operative guidance of resection of very small volume disease. Use of contrast is optional. Optical imaging can differentiate tumors from healthy tissue on the principle based on absorption of hemoglobin, found in higher abundance in vascular tumors. The only shortcoming being its non-use for whole body scanning and use in only areas accessible to direct imaging. The optical probes are innovative marvels for being activable and targetable have greater sensitivity and portability. They find their use in topical and intravenous use for screening of colon, bladder and tumors of tracheo-bronchial tree

  17. B and T cell screen

    Science.gov (United States)

    Direct immunofluorescence; E-rosetting; T and B lymphocyte assays; B and T lymphocyte assays ... identifiers are added to distinguish between T and B cells. The E-rosetting test identifies T cells ...

  18. Automatic image classification for the urinoculture screening.

    Science.gov (United States)

    Andreini, Paolo; Bonechi, Simone; Bianchini, Monica; Garzelli, Andrea; Mecocci, Alessandro

    2016-03-01

    Urinary tract infections (UTIs) are considered to be the most common bacterial infection and, actually, it is estimated that about 150 million UTIs occur world wide yearly, giving rise to roughly $6 billion in healthcare expenditures and resulting in 100,000 hospitalizations. Nevertheless, it is difficult to carefully assess the incidence of UTIs, since an accurate diagnosis depends both on the presence of symptoms and on a positive urinoculture, whereas in most outpatient settings this diagnosis is made without an ad hoc analysis protocol. On the other hand, in the traditional urinoculture test, a sample of midstream urine is put onto a Petri dish, where a growth medium favors the proliferation of germ colonies. Then, the infection severity is evaluated by a visual inspection of a human expert, an error prone and lengthy process. In this paper, we propose a fully automated system for the urinoculture screening that can provide quick and easily traceable results for UTIs. Based on advanced image processing and machine learning tools, the infection type recognition, together with the estimation of the bacterial load, can be automatically carried out, yielding accurate diagnoses. The proposed AID (Automatic Infection Detector) system provides support during the whole analysis process: first, digital color images of Petri dishes are automatically captured, then specific preprocessing and spatial clustering algorithms are applied to isolate the colonies from the culture ground and, finally, an accurate classification of the infections and their severity evaluation are performed. The AID system speeds up the analysis, contributes to the standardization of the process, allows result repeatability, and reduces the costs. Moreover, the continuous transition between sterile and external environments (typical of the standard analysis procedure) is completely avoided. PMID:26780249

  19. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  20. Influence of Substrate and Screen Thread Count on Reproduction of Image Elements in Screen Printing

    OpenAIRE

    Mladen Stancic; Dragoljub Novakovic; Ivana Tomic; Igor Karlovic

    2012-01-01

    The printing plate and its characteristics in the conventional printing techniques have a significant impact on print quality and image appearance. In screen printing, a weave of screen mesh i.e. a number of threads per cm, is the most important characteristic of the printing plate, hence the most relevant factor which defines printing quality. Print quality itself is a complex term that includes desired colour reproduction and satisfactory reproduction of image elements. In th...

  1. Imaging and screening in lung cancer

    Directory of Open Access Journals (Sweden)

    Matteo Giaj Levra

    2008-12-01

    Full Text Available Lung cancer is the main cause of death for neoplasia in the world. Hence it’s growing the necessity to investigate screening tests to detect tumoral lesions at the early stages: several trials have been performed to establish the best method, target and frequence of the screening to offer. CT, X-ray, PET, sputum citology and CAD software are here analyzed, together with the associated statistics and bias.

  2. Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics

    Directory of Open Access Journals (Sweden)

    Silver Pamela A

    2006-04-01

    Full Text Available Abstract Background Gene transcriptional activity is well correlated with intra-nuclear position, especially relative to the nuclear periphery, which is a region classically associated with gene silencing. Recently however, actively transcribed genes have also been found localized to the nuclear periphery in the yeast Saccharomyces cerevisiae. When genes are activated, they become associated with the nuclear pore complex (NPC at the nuclear envelope. Furthermore, chromosomes are not static structures, but exhibit constrained diffusion in real-time, live-cell studies of particular loci. The relationship of chromosome motion with transcriptional activation and active-gene recruitment to the nuclear periphery has not yet been investigated. Results We have generated a yeast strain that enables us to observe the motion of the galactose-inducible GAL gene locus relative to the nuclear periphery in real-time under transcriptionally active and repressed conditions. Using segmented geometric particle tracking, we show that the repressed GAL locus undergoes constrained diffusive movement, and that transcriptional induction with galactose is associated with an enrichment in cells with GAL loci that are both associated with the nuclear periphery and much more constrained in their movement. Furthermore, we report that the mRNA export factor Sac3 is involved in this galactose-induced enrichment of GAL loci at the nuclear periphery. In parallel, using a novel machine visual screening technique, we find that the motion of constrained GAL loci correlates with the motion of the cognate nuclei in galactose-induced cells. Conclusion Transcriptional activation of the GAL genes is associated with their tethering and motion constraint at the nuclear periphery. We describe a model of gene recruitment to the nuclear periphery involving gene diffusion and the mRNA export factor Sac3 that can be used as a framework for further experimentation. In addition, we applied to

  3. Optoelectronic image processing for cervical cancer screening

    Science.gov (United States)

    Narayanswamy, Ramkumar; Sharpe, John P.; Johnson, Kristina M.

    1994-05-01

    Automation of the Pap-smear cervical screening method is highly desirable as it relieves tedium for the human operators, reduces cost and should increase accuracy and provide repeatability. We present here the design for a high-throughput optoelectronic system which forms the first stage of a two stage system to automate pap-smear screening. We use a mathematical morphological technique called the hit-or-miss transform to identify the suspicious areas on a pap-smear slide. This algorithm is implemented using a VanderLugt architecture and a time-sequential ANDing smart pixel array.

  4. Application of Imaging-Based Assays in Microplate Formats for High-Content Screening.

    Science.gov (United States)

    Fogel, Adam I; Martin, Scott E; Hasson, Samuel A

    2016-01-01

    The use of multiparametric microscopy-based screens with automated analysis has enabled the large-scale study of biological phenomena that are currently not measurable by any other method. Collectively referred to as high-content screening (HCS), or high-content analysis (HCA), these methods rely on an expanding array of imaging hardware and software automation. Coupled with an ever-growing amount of diverse chemical matter and functional genomic tools, HCS has helped open the door to a new frontier of understanding cell biology through phenotype-driven screening. With the ability to interrogate biology on a cell-by-cell basis in highly parallel microplate-based platforms, the utility of HCS continues to grow as advancements are made in acquisition speed, model system complexity, data management, and analysis systems. This chapter uses an example of screening for genetic factors regulating mitochondrial quality control to exemplify the practical considerations in developing and executing high-content campaigns. PMID:27317002

  5. Screening and Identifying of Nephrotoxic Compounds in Lithospermum erythrorhizon Using Live-cell Fluorescence Imaging and Liquid Chromatography Coupled with Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-ping; JIN Ye-cheng; ZENG Xing; ZHANG Bo-li; ZHANG Yu-feng

    2011-01-01

    In order to identify the potential nephrotoxic compounds in traditional Chinese medicine Lithospermum erythrorhizon,it was separated into serial fractions according to their polarities.An in vitro method was utilized to determine the nephrotoxicity of these fractions with the help of fluorescence image analysis.As a result,the primary fraction A05 and its secondary fractions C06-C09 and C12-C14 were found to have significant toxicity to LLCPK1 cell line,as determined by the survive rate less than 20% after they were treated with these fractions.These potential nephrotoxic fractions were further analyzed by multistage and high resolution mass spectrometry.The main compounds in these fractions were tentatively identified to be acetylshikonin,isobutyrylshikonin,β,β′-dimethylacryloylshikonin,and isovalerylshikonin,which may bring nephrotoxicity.

  6. Magnetic resonance imaging for lung cancer screen

    OpenAIRE

    Wang, Yi-Xiang J.; Lo, Gladys G.; Yuan, Jing; Larson, Peder E.Z.; Zhang, Xiaoliang

    2014-01-01

    Lung cancer is the leading cause of cancer related death throughout the world. Lung cancer is an example of a disease for which a large percentage of the high-risk population can be easily identified via a smoking history. This has led to the investigation of lung cancer screening with low-dose helical/multi-detector CT. Evidences suggest that early detection of lung cancer allow more timely therapeutic intervention and thus a more favorable prognosis for the patient. The positive relationshi...

  7. Screening cell mechanotype by parallel microfiltration

    Science.gov (United States)

    Qi, Dongping; Kaur Gill, Navjot; Santiskulvong, Chintda; Sifuentes, Joshua; Dorigo, Oliver; Rao, Jianyu; Taylor-Harding, Barbie; Ruprecht Wiedemeyer, W.; Rowat, Amy C.

    2015-01-01

    Cell mechanical phenotype or ‘mechanotype’ is emerging as a valuable label-free biomarker. For example, marked changes in the viscoelastic characteristics of cells occur during malignant transformation and cancer progression. Here we describe a simple and scalable technique to measure cell mechanotype: this parallel microfiltration assay enables multiple samples to be simultaneously measured by driving cell suspensions through porous membranes. To validate the method, we compare the filtration of untransformed and HRasV12-transformed murine ovary cells and find significantly increased deformability of the transformed cells. Inducing epithelial-to-mesenchymal transition (EMT) in human ovarian cancer cells by overexpression of key transcription factors (Snail, Slug, Zeb1) or by acquiring drug resistance produces a similar increase in deformability. Mechanistically, we show that EMT-mediated changes in epithelial (loss of E-Cadherin) and mesenchymal markers (vimentin induction) correlate with altered mechanotype. Our results demonstrate a method to screen cell mechanotype that has potential for broader clinical application. PMID:26626154

  8. Fundus Autofluorescence Imaging in an Ocular Screening Program

    Directory of Open Access Journals (Sweden)

    A. M. Kolomeyer

    2012-01-01

    Full Text Available Purpose. To describe integration of fundus autofluorescence (FAF imaging into an ocular screening program. Methods. Fifty consecutive screening participants were included in this prospective pilot imaging study. Color and FAF (530/640 nm exciter/barrier filters images were obtained with a 15.1MP Canon nonmydriatic hybrid camera. A clinician evaluated the images on site to determine need for referral. Visual acuity (VA, intraocular pressure (IOP, and ocular pathology detected by color fundus and FAF imaging modalities were recorded. Results. Mean ± SD age was 47.4 ± 17.3 years. Fifty-two percent were female and 58% African American. Twenty-seven percent had a comprehensive ocular examination within the past year. Mean VA was 20/39 in the right eye and 20/40 in the left eye. Mean IOP was 15 mmHg bilaterally. Positive color and/or FAF findings were identified in nine (18% individuals with diabetic retinopathy or macular edema (n=4, focal RPE defects (n=2, age-related macular degeneration (n=1, central serous retinopathy (n=1, and ocular trauma (n=1. Conclusions. FAF was successfully integrated in our ocular screening program and aided in the identification of ocular pathology. Larger studies examining the utility of this technology in screening programs may be warranted.

  9. Computer Simulation Of Radiographic Screen-Film Images

    Science.gov (United States)

    Metter, Richard V.; Dillon, Peter L.; Huff, Kenneth E.; Rabbani, Majid

    1986-06-01

    A method is described for computer simulation of radiographic screen-film images. This method is based on a previously published model of the screen-film imaging process.l The x-ray transmittance of a test object is sampled at a pitch of 50 μm by scanning a high-resolution, low-noise direct-exposure radiograph. This transmittance is then used, along with the x-ray exposure incident upon the object, to determine the expected number of quanta per pixel incident upon the screen. The random nature of x-ray arrival and absorption, x-ray quantum to light photon conversion, and photon absorption by the film is simulated by appropriate random number generation. Standard FFT techniques are used for computing the effects of scattering. Finally, the computed film density for each pixel is produced on a high-resolution, low-noise output film by a scanning printer. The simulation allows independent specification of x-ray exposure, x-ray quantum absorption, light conversion statistics, light scattering, and film characteristics (sensitometry and gran-ularity). Each of these parameters is independently measured for radiographic systems of interest. The simulator is tested by comparing actual radiographic images with simulated images resulting from the independently measured parameters. Images are also shown illustrating the effects of changes in these parameters on image quality. Finally, comparison is made with a "perfect" imaging system where information content is only limited by the finite number of x-rays.

  10. Lung cancer screening: from imaging to biomarker

    OpenAIRE

    Xiang, Dong; Zhang, Bicheng; Doll, Donald; Shen, Kui; Kloecker, Goetz; Freter, Carl

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential ...

  11. Meeting report--Imaging the Cell.

    Science.gov (United States)

    Moreau, Violaine; Cordelières, Fabrice P; Poujol, Christel; Sagot, Isabelle; Saltel, Frédéric

    2015-11-01

    Every two years, the French Society for Cell Biology (SBCF) organises an international meeting called 'Imaging the Cell'. This year, the 8th edition was held on 24-26 June 2015 at University of Bordeaux Campus Victoire in the city of Bordeaux, France, a UNESCO World Heritage site. Over the course of three days, the meeting provided a forum for experts in different areas of cell imaging. Its unique approach was to combine conventional oral presentations during morning sessions with practical workshops at hosting institutes and the Bordeaux Imaging Center during the afternoons. The meeting, co-organised by Violaine Moreau and Frédéric Saltel (both INSERM U1053, Bordeaux, France), Christel Poujol and Fabrice Cordelières (both Bordeaux Imaging Center, Bordeaux, France) and Isabelle Sagot (Institut de Biochimie et Génétique Cellulaires, Bordeaux, France), brought together about 120 scientists including 16 outstanding speakers to discuss the latest advances in cell imaging. Thanks to recent progress in imaging technologies, cell biologists are now able to visualise, follow and manipulate cellular processes with unprecedented accuracy. The meeting sessions and workshops highlighted some of the most exciting developments in the field, with sessions dedicated to optogenetics, high-content screening, in vivo and live-cell imaging, correlative light and electron microscopy, as well as super-resolution imaging. PMID:26527200

  12. Screening CEST contrast agents using ultrafast CEST imaging

    Science.gov (United States)

    Xu, Xiang; Yadav, Nirbhay N.; Song, Xiaolei; McMahon, Michael T.; Jerschow, Alexej; van Zijl, Peter C. M.; Xu, Jiadi

    2016-04-01

    A chemical exchange saturation transfer (CEST) experiment can be performed in an ultrafast fashion if a gradient field is applied simultaneously with the saturation pulse. This approach has been demonstrated for studying dia- and para-magnetic CEST agents, hyperpolarized Xe gas and in vivo spectroscopy. In this study we present a simple method for the simultaneous screening of multiple samples. Furthermore, by interleaving a number of saturation and readout periods within the TR, a series of images with different saturation times can be acquired, allowing for the quantification of exchange rates using the variable saturation time (QUEST) approach in a much accelerated fashion, thus enabling high throughput screening of CEST contrast agents.

  13. All screen printed dye solar cell

    Science.gov (United States)

    Meyer, Toby; Martineau, David; Azam, Asef; Meyer, Andreas

    2007-09-01

    All screen printed Dye Sensitized Solar cell modules were fabricated and demonstrated excellent electrical performances thanks to a monolithic interconnection based on highly conductive carbon layers. Attained efficiency at 1000 W/m2 is 6 % with a fill-factor of 0.7. This monolithic module is very elegant to manufacture since the layers, including nano- TiO II spacer, catalytic active layer, conductive carbon and sealing are all printed. Such a module only requires one transparent conductive substrate which allows substantial manufacturing cost reductions. Moreover, only one co-firing cycle is sufficient, thus lowering the required energy at production. In addition, a quick staining process enables in-line production techniques. Modules of 10 x 10 cm are now being built for sampling and performance testing.

  14. Optical diagnostics of osteoblast cells and osteogenic drug screening

    Science.gov (United States)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  15. CVD diamond screens for photon beam imaging at PETRA III

    Science.gov (United States)

    Degenhardt, M.; Aprigliano, G.; Schulte-Schrepping, H.; Hahn, U.; Grabosch, H.-J.; Wörner, E.

    2013-03-01

    PETRA III, the most brilliant storage-ring-based synchrotron radiation source in the world, started its operation in 2009. It features 14 undulator beamlines and will be extended by further 10 beamlines in the PETRA III extension project. During the startup phase of the 14 PETRA III beamlines, fluorescence monitors based on CVD diamond screens have proven to be a very powerful tool for the monitoring of the attenuated undulator beams and for the commissioning of the optical components, e.g. slit systems and monochromators. They served as the essential instrument for the initial setup of the positron beam orbit to align the undulator photon beam along the beamline. The application of CVD diamond screens for the beam imaging at PETRA III beamlines is presented. Images taken during the beam adjustment and the beamline commissioning are shown.

  16. Newborn Sickle Cell Screening: Benefits and Burdens Realized.

    Science.gov (United States)

    Rowley, Peter T.; Huntzinger, Donna J.

    1983-01-01

    Follow-up data on a program that screened 17 newborns for sickle cell anemia suggests that in order to derive maximum benefit from such screening physicians need to better understand the differential diagnosis, treatment, and inheritance of sickle cell disease, and individual guidance must be provided to families. (GC)

  17. Image quality parameters of screen-film combinations

    International Nuclear Information System (INIS)

    The image quality in radiology is to a large extent determined by three measurable parameters of screen-film systems: the H-D curve, the modulation transfer function and the Wiener spectrum. Measuring methods of the three parameters are described and results are presented. It turns out that the modulation transfer function is correlated to the visual sharpness and the Wiener spectrum is correlated to the visual impression of graininess. The combination of the three parameters to a single image quality criterion in the form of the detective quantum efficiency (DQE) demonstrates that the DQE is not a generally valid quality criterion for high sharpness and low graininess. (orig.)

  18. Imaging of acute thoracic injury: the advent of MDCT screening.

    Science.gov (United States)

    Mirvis, Stuart E

    2005-10-01

    Chest radiography remains the primary screening study for the assessment of victims of chest trauma, but computed tomography (CT), particularly multidetector CT (MDCT), has progressively changed the imaging approach to these patients. MDCT acquires thinner sections with greater speed, allowing higher quality axial images and nonaxial reformations than conventional or single-detector helical CT. The speed of MDCT, both in acquiring data and in reconstructing images, makes the performance of total body surveys in the blunt polytrauma patient practicable. In general, CT has been well documented to offer major advantages over chest radiography in both screening for thoracic injuries and in characterizing such injuries. This capacity has been enhanced by the application of multichannel data acquisition. The greater sensitivity of MDCT has been well demonstrated in diagnosing vascular and diaphragmatic injuries. This article reviews current concepts of diagnostic imaging in acute chest trauma from blunt force and penetrating mechanisms emphasizing the spectrum of diagnostic imaging findings for various injuries, based primarily on radiographic and CT appearances. The advantages of MDCT for selected injuries are emphasized. PMID:16274001

  19. Image evaluation of a new blue emission screen film system

    International Nuclear Information System (INIS)

    We studied the image qualities of Dupont Ultra-Vision (U-V) systems. These systems were compared with Fuji HR systems. U-V screens use a high density yttrium tantalate phosphor emitting an ultraviolet ray. Basic imaging properties in both systems, such as characteristic curves, relative speeds, X-ray attenuation rates, crossover, MTFs and Wiener spectra were measured. MTFs of U-V systems were significantly higher than those of HR systems. Wiener spectra of U-V systems were inferior to those of HR systems. The visual image qualities of U-V systems were evaluated by observer performance tests using 'Paired preference test'. Visual evaluation of bone radiographs using U-V systems showed that they were superior to HR systems. These visual evaluation results agreed with basic imaging properties. (author)

  20. Image evaluation of a new blue emission screen film system

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Keiko; Nishihara, Sadamitsu; Yamauchi, Shuichi; Yoshida, Ken-ichi; Nagano, Hiromi; Ueda, Katsuhiko; Otsuka, Akiyoshi [Yamaguchi Univ., Ube (Japan). School of Medicine

    1995-11-01

    We studied the image qualities of Dupont Ultra-Vision (U-V) systems. These systems were compared with Fuji HR systems. U-V screens use a high density yttrium tantalate phosphor emitting an ultraviolet ray. Basic imaging properties in both systems, such as characteristic curves, relative speeds, X-ray attenuation rates, crossover, MTFs and Wiener spectra were measured. MTFs of U-V systems were significantly higher than those of HR systems. Wiener spectra of U-V systems were inferior to those of HR systems. The visual image qualities of U-V systems were evaluated by observer performance tests using `Paired preference test`. Visual evaluation of bone radiographs using U-V systems showed that they were superior to HR systems. These visual evaluation results agreed with basic imaging properties. (author).

  1. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    Directory of Open Access Journals (Sweden)

    Ramasamy S

    2014-12-01

    Full Text Available Sakthivel Ramasamy,1 Devasier Bennet,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea; 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. Keywords: screening of bioactive agents, impedance-based cell

  2. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    Science.gov (United States)

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  3. Microfluidic cell chips for high-throughput drug screening.

    Science.gov (United States)

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  4. Image Quality Assurance in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Network of the National Lung Screening Trial

    OpenAIRE

    Moore, Stephen M.; Gierada, David S.; Clark, Kenneth W.; Blaine, G. James

    2005-01-01

    The National Lung Screening Trial is evaluating the effectiveness of low-dose spiral CT and conventional chest X-ray as screening tests for persons who are at high risk for developing lung cancer. This multicenter trial requires quality assurance (QA) for the image quality and technical parameters of the scans. The electronic system described here helps manage the QA process. The system includes a workstation at each screening center that de-identifies the data, a DICOM storage service at the...

  5. Portable, low-priced retinal imager for eye disease screening

    Science.gov (United States)

    Soliz, Peter; Nemeth, Sheila; VanNess, Richard; Barriga, E. S.; Zamora, Gilberto

    2014-02-01

    The objective of this project was to develop and demonstrate a portable, low-priced, easy to use non-mydriatic retinal camera for eye disease screening in underserved urban and rural locations. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities or other economically stressed healthcare facilities. Our approach for Smart i-Rx is based primarily on a significant departure from current generations of desktop and hand-held commercial retinal cameras as well as those under development. Our techniques include: 1) Exclusive use of off-the-shelf components; 2) Integration of retinal imaging device into low-cost, high utility camera mount and chin rest; 3) Unique optical and illumination designed for small form factor; and 4) Exploitation of autofocus technology built into present digital SLR recreational cameras; and 5) Integration of a polarization technique to avoid the corneal reflex. In a prospective study, 41 out of 44 diabetics were imaged successfully. No imaging was attempted on three of the subjects due to noticeably small pupils (less than 2mm). The images were of sufficient quality to detect abnormalities related to diabetic retinopathy, such as microaneurysms and exudates. These images were compared with ones taken non-mydriatically with a Canon CR-1 Mark II camera. No cases identified as having DR by expert retinal graders were missed in the Smart i-Rx images.

  6. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    Science.gov (United States)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  7. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms.

    Science.gov (United States)

    Crane, Matthew M; Chung, Kwanghun; Stirman, Jeffrey; Lu, Hang

    2010-06-21

    This paper reviews the technologies that have been invented in the last few years on high-throughput phenotyping, imaging, screening, and related techniques using microfluidics. The review focuses on the technical challenges and how microfluidics can help to solve these existing problems, specifically discussing the applications of microfluidics to multicellular model organisms. The challenges facing this field include handling multicellular organisms in an efficient manner, controlling the microenvironment and precise manipulation of the local conditions to allow the phenotyping, screening, and imaging of the small animals. Not only does microfluidics have the proper length scale for manipulating these biological entities, but automation has also been demonstrated with these systems, and more importantly the ability to deliver stimuli or alter biophysical/biochemical conditions to the biological entities with good spatial and temporal controls. In addition, integration with and interfacing to other hardware/software allows quantitative approaches. We include several successful examples of microfluidics solving these high-throughput problems. The paper also highlights other applications that can be developed in the future. PMID:20383347

  8. Combinatorial synthesis and screening of fuel cell catalysts

    Science.gov (United States)

    Jayaraman, Shrisudersan

    Polymer electrolyte membrane fuel cells (PEMFCs) are compact power sources that can operate with high efficiencies and low emission of environmentally harmful gases. One of the major barriers impeding the development of PEMFCs as a competitive energy source is the inability of existing anode catalysts to oxidize fuels other than hydrogen at sufficient levels due to catalyst deactivation by carbon monoxide (CO) and other partial oxidation products. The focus of this research is the development and application of combinatorial strategies to construct and interrogate electrooxidation (anode) catalysts pertaining to PEMFCs to discover catalysts with enhanced performance in catalyst deactivating environments. A novel method (known as the "gel-transfer" method) for synthesizing catalyst composition gradient libraries for combinatorial catalyst discovery was developed. This method involved transferring a spatial concentration gradient of precursor metal salts created within a polymer gel on to a solid conducting substrate by electrochemical reduction. Chemically sensitive surface-imaging techniques, namely, scanning electrochemical microscopy (SECM) and optical screening with a pH-dependent fluorescence probe were used to characterize the combinatorial catalyst samples. The utility of SECM as a screening tool to measure the activity of multicomponent catalyst libraries towards fuel cell electrooxidation reactions was established with simple catalyst libraries including a platinum coverage gradient and platinum-ruthenium and platinum-ruthenium-molybdenum arrays. A platinum-ruthenium surface composition gradient was constructed through the gel-transfer method and its reactivity towards hydrogen oxidation in the presence of a catalyst poison (CO) was mapped using the SECM. Ruthenium composition between 20 and 30% exhibited superior performance than the rest of the binary. The gel-transfer method was extended to construct a ternary platinum-ruthenium-rhodium catalyst library

  9. Fluorescent screens and image processing for the APS linac test stand

    International Nuclear Information System (INIS)

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed

  10. Fluorescent screens and image processing for the APS linac test stand

    International Nuclear Information System (INIS)

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image

  11. Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries

    Science.gov (United States)

    Kalber, Tammy; Badar, Adam; Lythgoe, Mark; Pule, Martin

    2015-01-01

    The identification and engineering of proteins having refined or novel characteristics is an important area of research in many scientific fields. Protein modelling has enabled the rational design of unique proteins, but high-throughput screening of large libraries is still required to identify proteins with potentially valuable properties. Here we report on the development and evaluation of a novel fluorescent activated cell sorting based screening platform. Single bacterial cells, expressing a protein library to be screened, are electronically sorted and deposited onto plates containing solid nutrient growth media in a dense matrix format of between 44 and 195 colonies/cm2. We show that this matrix format is readily applicable to machine interrogation (<30 seconds per plate) and subsequent bioinformatic analysis (~60 seconds per plate) thus enabling the high-throughput screening of the protein library. We evaluate this platform and show that bacteria containing a bioluminescent protein can be spectrally analysed using an optical imager, and a rare clone (0.5% population) can successfully be identified, picked and further characterised. To further enhance this screening platform, we have developed a prototype electronic sort stream multiplexer, that when integrated into a commercial flow cytometric sorter, increases the rate of colony deposition by 89.2% to 24 colonies per second. We believe that the screening platform described here is potentially the foundation of a new generation of high-throughput screening technologies for proteins. PMID:26536118

  12. Screening cell mechanotype by parallel microfiltration

    OpenAIRE

    Dongping Qi; Navjot Kaur Gill; Chintda Santiskulvong; Joshua Sifuentes; Oliver Dorigo; Jianyu Rao; Barbie Taylor-Harding; W. Ruprecht Wiedemeyer; Amy C. Rowat

    2015-01-01

    Cell mechanical phenotype or 'mechanotype' is emerging as a valuable label-free biomarker. For example, marked changes in the viscoelastic characteristics of cells occur during malignant transformation and cancer progression. Here we describe a simple and scalable technique to measure cell mechanotype: this parallel microfiltration assay enables multiple samples to be simultaneously measured by driving cell suspensions through porous membranes. To validate the method, we compare the filtratio...

  13. Screening attenuation of coaxial cables determined in GTEM-cells

    Directory of Open Access Journals (Sweden)

    A. Knobloch

    2004-01-01

    Full Text Available This paper describes the determination of the screening attenuation with a GTEM cell. An analytical part gives the link between the voltage at the cell port and the total radiated power. The next section investigates the optimal cable setup in the cell. With a measurement of the common mode current on the cable and a simulation of the radiation resistance the loop antenna characteristic of the cable setup could be verified. It is shown that the use of ferrit cores decrease the difference between the maximum and the minimum screening attenuation. The determination of great screening attenuation could be improved with the use of N-type measurement cables. A comparison between this GTEM cell method and the standard methods shows a good agreement.

  14. Correlation between image quality and radiation dose on screening mammography

    International Nuclear Information System (INIS)

    Objective: To obtain the matched parameters between image quality and radiation dose by exploring the influence of the exposure parameters of screening mammography on both the image quality and radiation dose. Methods: The correlation between the exposure parameters and average glandular doses to 507 patients undergoing screening mammography were retrospectively analyzed. The influence of breast compression thickness on radiation dose by exposing different thickness of PMMA was obtained. The correlation with image quality was analyzed by combined testing of contrast detail test mode (CDMAM3.4) and different thickness of PMMAs. Results: The groups aged 30 to 49 years were the main groups in 507 examined patients, up to 67.06% of the total. The mean value of average gland doses (AGD) in contrast-prior mode was the highest in three kinds of exposure modes,accounting for 137.5% of standard mode.In standard mode, target material/filtration board combination was Mo/Mo, Mo/Rh and Rh/Rh, accounting for 1/3 respectively. Mo/Rh and Rh/Rh were selected in dose-prior mode,accounting for 50% respectively. Mo/Mo was mainly selected in contrast-prior,accounting for 52%. Breast compression thickness was positively correlated with average gland doses. Image quality figure inverse (IQFinv) under three kinds of modes (STD, DOSE, CNT) was 98.32, 95.41 and 107.02, respectively, and IQFinv of contrast-prior mode was the highest among them. IQFinv was in general agreement in the three kinds of exposure modes when the thickness of PMMA plates plates was greater than or equal to 5 cm. Conclusions: In clinical practice, when the breast is of density type and pressed thickness is less than 4 em, the dose-prior mode should be selected. When the pressed thickness is between 4 and 6 cm, the standard exposure mode should be selected. When the pressed thickness is larger than 6 cm, the manual mode should be selected. (authors)

  15. Sickle cell disease: time for a targeted neonatal screening programme.

    LENUS (Irish Health Repository)

    Gibbons, C

    2015-02-01

    Ireland has seen a steady increase in paediatric sickle cell disease (SCD). In 2005, only 25% of children with SCD were referred to the haemoglobinopathy service in their first year. A non-funded screening programme was implemented. This review aimed to assess the impact screening has had. All children referred to the haemoglobinopathy service born in Ireland after 2005 were identified. Data was collected from the medical chart and laboratory system. Information was analysed using Microsoft Excel. 77 children with SCD were identified. The median age at antibiotic commencement in the screened group was 56 days compared with 447 days in the unscreened group, p = < 0.0003. 22 (28%) of infants were born in centre\\'s that do not screen and 17 (81%) were over 6 months old at referral, compared with 14 (21%) in the screened group. 6 (27%) of those in the unscreened group presented in acute crisis compared with 2 (3%) in the screened population. The point prevalence of SCD in Ireland is 0.2% in children under 15 yr of African and Asian descent. We identified delays in referral and treatment, which reflect the lack of government funded support and policy. We suggest all maternity units commence screening for newborns at risk of SCD. It is a cost effective intervention with a number needed to screen of just 4 to prevent a potentially fatal crisis.

  16. An infrared image based methodology for breast lesions screening

    Science.gov (United States)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  17. Image quality assurance in the prostate, lung, colorectal, and ovarian cancer screening trial network of the National Lung Screening Trial.

    Science.gov (United States)

    Moore, Stephen M; Gierada, David S; Clark, Kenneth W; Blaine, G James

    2005-09-01

    The National Lung Screening Trial is evaluating the effectiveness of low-dose spiral CT and conventional chest X-ray as screening tests for persons who are at high risk for developing lung cancer. This multicenter trial requires quality assurance (QA) for the image quality and technical parameters of the scans. The electronic system described here helps manage the QA process. The system includes a workstation at each screening center that de-identifies the data, a DICOM storage service at the QA Coordinating Center, and Web-based systems for presenting images and QA evaluation forms to the QA radiologists. Quality assurance data are collated and analyzed by an independent statistical organization. We describe the design and implementation of this electronic QA system, emphasizing issues relating to data security and privacy, the various obstacles encountered in the installation of a common system at different participating screening centers, and the functional success of the system deployed. PMID:15924251

  18. Systematic screening of imaging biomarkers for the Islets of Langerhans, among clinically available positron emission tomography tracers

    International Nuclear Information System (INIS)

    Introduction: Functional imaging could be utilized for visualizing pancreatic islets of Langerhans. Therefore, we present a stepwise algorithm for screening of clinically available positron emission tomography (PET) tracers for their use in imaging of the neuroendocrine pancreas in the context of diabetes. Methods: A stepwise procedure was developed for screening potential islet imaging agents. Suitable PET-tracer candidates were identified by their molecular mechanism of targeting. Clinical abdominal examinations were retrospectively analyzed for pancreatic uptake and retention. The target protein localization in the pancreas was assessed in silico by –omics approaches and the in vitro by binding assays to human pancreatic tissue. Results: Six putative candidates were identified and screened by using the stepwise procedure. Among the tested PET tracers, only [11C]5-Hydroxy-tryptophan passed all steps. The remaining identified candidates were falsified as candidates and discarded following in silico and in vitro screening. Conclusions: Of the six clinically available PET tracers identified, [11C]5-HTP was found to be a promising candidate for beta cell imaging, based on intensity of in vivo pancreatic uptake in humans, and islet specificity as assessed on human pancreatic cell preparations. The flow scheme described herein constitutes a methodology for evaluating putative islet imaging biomarkers among clinically available PET tracers

  19. The future of imaging screening: proceedings of the Fourth Annual ACR FORUM.

    Science.gov (United States)

    Hillman, Bruce J; Amis, E Stephen; Weinreb, Jeffrey C; Neiman, Harvey L

    2005-01-01

    The FORUM is an ACR planning activity focused on a specific topic deemed to be of long-range importance to the college. A select panel of multidisciplinary experts met in 2004 to consider the ramifications of imaging screening from diverse perspectives. Considerations included the nature of screening for disease, its technological issues, and biases associated with the perceived success of screening; potential technologies and target diseases; business and economics; insurance coverage; ethics and the law; how imaging screening could be paired with nonimaging screening; and how the lay public perceives screening. The FORUM participants considered how imaging screening might develop over the next 5 to 10 years and made recommendations to the ACR on actions it might take to benefit both the specialty and patients. PMID:17411759

  20. A system and methodology for high-content visual screening of individual intact living cells in suspension

    Science.gov (United States)

    Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer

    2007-02-01

    Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.

  1. Creation of a CT Image Library for the Lung Screening Study of the National Lung Screening Trial.

    Science.gov (United States)

    Clark, K W; Gierada, D S; Moore, S M; Maffitt, D R; Koppel, P; Phillips, S R; Prior, F W

    2007-03-01

    The CT Image Library (CTIL) of the Lung Screening Study (LSS) network of the National Lung Screening Trial (NLST) consists of up to three annual screens using CT imaging from each of 17,308 participants with a significant history of smoking but no evidence of cancer at trial enrollment (Fall 2002-Spring 2004). Screens performed at numerous medical centers associated with 10 LSS-NLST screening centers are deidentified of protected health information and delivered to the CTIL via DVD, external hard disk, or Internet/Virtual Private Network transmission. The collection will be completed in late 2006. The CTIL is of potential interest to clinical researchers and software developers of nodule detection algorithms. Its attractiveness lies in its very specific, well-defined patient population, scanned via a common CT protocol, and in its collection of evenly spaced serial screens. In this work, we describe the technical details of the CTIL collection process from screening center retrieval through library storage. PMID:16783598

  2. Reasons for the poor quality imaging with the intensifying screen of dental film

    International Nuclear Information System (INIS)

    Objective: To analyze the poor quality imagine with the intensifying screen of dental film, and to improve the clinical application. Methods: With the routine imaging protocol, 1000 dental films with intensifying screen and 1000 conventional dental films were involved in this study. The definition, grains and artifacts of the images were comparatively studied. Results: The imaging quality of the intensifying screen dental film was worse than that of the conventional dental films, and the influence of the artifacts were not excluded. Conclusion: The spread of fluorescent light from screen, poor screen-film contact, effect of oblique projection of X-ray, fleck on screen structure, radiographic technique and film process results in the decrease of image definition, poor grain of the film, more artifacts

  3. Screening of nanoparticle embryotoxicity using embryonic stem cells.

    Science.gov (United States)

    Campagnolo, Luisa; Fenoglio, Ivana; Massimiani, Micol; Magrini, Andrea; Pietroiusti, Antonio

    2013-01-01

    Due to the increasing use of engineered nanoparticles in many consumer products, rapid and economic tests for evaluating possible adverse effects on human health are urgently needed. In the present chapter the use of mouse embryonic stem cells as a valuable tool to in vitro screen nanoparticle toxicity on embryonic tissues is described. This in vitro method is a modification of the embryonic stem cell test, which has been widely used to screen soluble chemical compounds for their embryotoxic potential. The test offers an alternative to animal experimentation, reducing experimental costs and ethical issues. PMID:23592031

  4. Lipocytes (fat cells) (image)

    Science.gov (United States)

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  5. A High-Content Imaging Screen for Cellular Regulators of β-Catenin Protein Abundance.

    Science.gov (United States)

    Zeng, Xin; Montoute, Monica; Bee, Tiger W; Lin, Hong; Kallal, Lorena A; Liu, Yan; Agarwal, Pankaj; Wang, Dayuan; Lu, Quinn; Morrow, Dwight; Pope, Andrew J; Wu, Zining

    2016-03-01

    Abnormal accumulation of β-catenin protein, a key transcriptional activator required for Wnt signaling, is the hallmark of many tumor types, including colon cancer. In normal cells, β-catenin protein level is tightly controlled by a multiprotein complex through the proteosome pathway. Mutations in the components of the β-catenin degradation complex, such as adenomatous polyposis coli (APC) and Axin, lead to β-catenin stabilization and the constitutive activation of target genes. Since the signal transduction of Wnt/β-catenin is mainly mediated by protein-protein interactions, this pathway has been particularly refractory to conventional target-based small-molecule screening. Here we designed a cellular high-content imaging assay to detect β-catenin protein through immunofluorescent staining in the SW480 colon cancer cell line, which has elevated β-catenin endogenously. We demonstrate that the assay is robust and specific to screen a focused biologically diverse chemical library set against known targets that play diverse cellular functions. We identified a number of hits that reduce β-catenin levels without causing cell death. These hits may serve as tools to understand the dynamics of β-catenin degradation. This study demonstrates that detecting cell-based β-catenin protein stability is a viable approach to identifying novel mechanisms of β-catenin regulation as well as small molecules of therapeutic potential. PMID:26656867

  6. Sickle Cell Screening: Medical, Legal, Ethical, Psychological and Social Problems; A Sickle Cell Crisis.

    Science.gov (United States)

    Bowman, James E.

    In recent years, sickle cell screening programs have been initiated by community groups, health centers, hospitals, medical schools, health departments, school systems, city and State governments, various branches of the Federal Government, fraternal and social clubs, and other organizations. Problems have resulted from mass sickle cell screening,…

  7. Including Antenna Models in Microwave Imaging for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meincke, Peter

    2006-01-01

    Microwave imaging is emerging as a tool for screening for breast cancer, but the lack of methods for including the characteristics of the antennas of the imaging systems in the imaging algorithms limits their performance. In this paper, a method for incorporating the full antenna characteristics...

  8. Enhancement of Probe Signal for Screening of HIV-1 Protease Inhibitors in Living Cells

    Directory of Open Access Journals (Sweden)

    Huantong Yao

    2012-12-01

    Full Text Available The global human immunodeficiency virus infection/acquired immuno-deficiency syndrome (HIV/AIDS epidemic is one of the biggest threats to human life. Mutation of the virus and toxicity of the existing drugs necessitate the development of new drugs for effective AIDS treatment. Previously, we developed a molecular probe that utilizes the Förster resonance energy transfer (FRET principle to visualize HIV-1 protease inhibition within living cells for drug screening. We explored using AcGFP1 (a fluorescent mutant of the wild-type green fluorescent protein as a donor and mCherry (a mutant of red fluorescent protein as an acceptor for FRET microscopy imaging measurement of HIV-1 protease activity within living cells and demonstrated that the molecular probe is suitable for the High-Content Screening (HCS of anti-HIV drugs through an automated FRET microscopy imaging measurement. In this study, we genetically engineered a probe with a tandem acceptor protein structure to enhance the probe’s signal. Both in vitro and in vivo studies revealed that the novel structure of the molecular probe exhibits a significant enhancement of FRET signals, reaching a probe FRET efficiency of 34%, as measured by fluorescence lifetime imaging microscopy (FLIM measurement. The probe developed herein would enable high-content screening of new anti-HIV agents.

  9. Cell-based screens and phenomics with fission yeast.

    Science.gov (United States)

    Rallis, Charalampos; Bähler, Jürg

    2016-01-01

    Next-generation sequencing approaches have considerably advanced our understanding of genome function and regulation. However, the knowledge of gene function and complex cellular processes remains a challenge and bottleneck in biological research. Phenomics is a rapidly emerging area, which seeks to rigorously characterize all phenotypes associated with genes or gene variants. Such high-throughput phenotyping under different conditions can be a potent approach toward gene function. The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic model organism that is increasingly used for genomewide screens and phenomic assays. In this review, we highlight current large-scale, cell-based approaches used with S. pombe, including computational colony-growth measurements, genetic interaction screens, parallel profiling using barcodes, microscopy-based cell profiling, metabolomic methods and transposon mutagenesis. These diverse methods are starting to offer rich insights into the relationship between genotypes and phenotypes. PMID:26523839

  10. Screening of Highly Expressed CPEΔN Lung Cancer H1299 Cells

    OpenAIRE

    Sun, Jing; Zhang, Guirong; Wang, Hongyue; Shen, Hui

    2015-01-01

    Background and objective The N-terminal truncated carboxypeptidase E (CPEΔN) protein is a novel biomarker of tumor metastasis. This study screened the H1299 cell line with a highly expressed CPEΔN gene for in vivo imaging experiment. Methods Human CPEΔN gene was cloned into the luciferase lentiviral vector. H1299 cells transduced with CPEΔN or control lentiviral vectors were selected with 2 µg/mL puromycin. The expression of CPEΔN was identified through Western blot analysis, and luciferase a...

  11. Examination of the lumbar vertebral column using large-screen image intensifier photofluorography

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Manninen, H.; Mahlamaeki, S.

    1985-01-01

    The OPTILUX 57 device with its large image intensifying screen is very efficient in visualizing the lumbar vertebrae. The article explains the techniques and summarizes results obtained in the examination of young sportsmen.

  12. Clinical evaluation of twin screen-film chest radiography: cost effective lung and mediastinal imaging

    International Nuclear Information System (INIS)

    Objective: A new twin screen-film cassette system optimised for conventional chest radiography was evaluated by four thoracic radiologists. Materials and Methods: The twin screen-film cassette system produces two film images, the front film optimised for the mediastinal region of the chest, the rear for the lung region. Image degradation on either screen-film system due to internal photon scatter has been virtually eliminated due to the use of a dividing filter. Fifty patients were included in a trial that resulted in a set of chest images for each patient, taken on the same inspiration, by both the twin screen-film cassette and the conventional system. The resultant fifty sets of images were evaluated by four chest radiologists who scored 12 radiographic features of the chest and patient pathologies present, using a paired difference technique. Results: The image quality of the twin screen-film cassette system was judged to be significantly superior to the conventional screen-film system in nine of the 12 radiographic features scored (P<0.003). In the three other regions and for the patient pathologies, no significant conclusions were drawn. Conclusion: The new twin screen-film system showed improved visualisation of radiographic features, particularly in the mediastinal and retrocardiac lung regions. This new system shows promise in both standard and portable clinical applications. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Secondary solid cancer screening following hematopoietic cell transplantation

    Science.gov (United States)

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  14. Prevalence of sickle cell disease and sickle cell trait in national neonatal screening studies

    OpenAIRE

    Luciana Garcia Lervolino; Paulo Eduardo Almeida Baldin; Silvia Miguéis Picado; Karina Barreto Calil; Ana Amélia Viel; Luiz Alexandre Freixo Campos

    2011-01-01

    Sickle cell anemia is the best known hereditary blood disorder; there are serious complications associated with the condition. Diagnosis and early intervention reduce morbidity and mortality. These benefits have resulted in the widespread use of newborn screening education programs. In Brazil, the National Neonatal Screening Program established by decree 822/01 included sickle cell disease in the list of diseases tested in the so called "heel prick test". Since then, national studies of the r...

  15. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging

    International Nuclear Information System (INIS)

    We demonstrate the feasibility of the production of isotopically-enriched gadolinium oxysulfide scintillator screens for the high spatial-resolution neutron imaging. Approximately 10 g of 157Gd2O2S:Tb was produced in the form of fine powder (particle size approximately 2 µm). The level of 157Gd enrichment was above 88%. Approximately 2.5 µm thick 157Gd2O2S:Tb scintillator screens were produced and tested for the absorption power and the light output. The results are compared to the reference screens based on natGd2O2S:Tb. The isotopically enriched screens provided increase by a factor of 3.8 and 3.6 for the absorption power and the light output, respectively. The potential of the scintillator screens based on 157Gd2O2S phosphor for the purpose of the (high-resolution) neutron imaging is discussed

  16. Background generation at input screens of x-ray image intensifiers

    International Nuclear Information System (INIS)

    The background luminance due to the input screen of an X-ray image intensifier (I.I.) was investigated quantitatively as a function of several parameters by means of contrast ratios. The contrast ratio of the input screen increases as the curvature of the screen, the transparency of the photoelectric surface or the reflectance at the inner surface of the electrodes decreases. By comparing measured contrast ratios of actual I.I.s, the contribution of the background luminance at the input screen to that of the I.I. was estimated. The contrast ratio of the input screen ranges from 40 to 200, while those of the ordinary I.I. and the ordinary output screen are 14 and 26 respectively. (author)

  17. A low cost touch-screen interface for image collage

    Directory of Open Access Journals (Sweden)

    Idanis Díaz Bolaño

    2011-01-01

    Full Text Available En este artículo se presenta el diseño de una interfaz de bajo costo basada en interacción touch-screen para crear collage de imágenes. La interfaz fue diseñada para propósitos de rehabilitación, tales como la estimulación de desarrollo cognitivo, habilidades motoras, creatividad y expresividad. La interacción touch-screen de la interfaz se basa en la utilización de un control remoto de Wii. Para evaluar la eficiencia de la interfaz, el diseño touch-screen fue comparado con un diseño basado en interacción con el mouse. A pesar de los problemas inherentes a la baja resolución de la cámara infrarroja del Wii Remote, los resultados experimentales obtenidos muestran que la versión del sistema touch-screen permitió un mejor desempeño para realizar tareas que requieren habilidades motoras finas, tales como delinear la forma libre de una figura.

  18. The role and design of screen images in software documentation

    NARCIS (Netherlands)

    Meij, van der H.

    2000-01-01

    Software documentation for the novice user typically must try to achieve at least three goals: to support basic knowledge and skills development; to prevent or support the handling of mistakes, and to support the joint handling of manual, input device and screen. This paper concentrates on the latte

  19. Imaging screening of breast cancer: primary results in 5307 cases

    International Nuclear Information System (INIS)

    Objective: To discuss the values of three screening methods for the detection of early breast cancer, and to analyze the features of the screening cancer. Methods: The first screening of breast cancer were performed in 5307 women who aged from 20 to 76 years with median age of 49 years. The three screening methods included physical examination with ultrasound and mammography, physical examination with mammography and mammography only. The rate of recall, biopsy, cancer detection of three methods were analyzed and the mammographic findings were reviewed. Chi-square test or Fisher's exact test were used for the statistics. Results: The recall rates were 4.90% (49/1001), 6.90% (166/2407) and 4. 48% (85/1899) in three methods respectively, the biopsy rates were 1.60% (16/1001), 1.04% (25/2407) and 0.63% (12/1899), the cancer detection rates were 0.50% (5/1001), 0.17% (4/2407) and 0 (0/1899). There were statistical differences among the three groups (χ2=12.99,6.264,8.764, P<0.05). Physical examination with ultrasound and mammography had the highest cancer detection rate, ten breast cancers were detected and 8 were early stage breast cancer. Of seven cancers detected by mammography, only two were found by ultrasound. A cluster of calcifications were found in 2 cases, linear calcifications in 2 cases. One case presented as a asymmetric density, one as a asymmetric density with calcifications, one as multiple nodules with a cluster of calcifications. Two breast cancers presented as asymmetric density were missed on mammography and diagnosed correctly after retrospective review. Conclusion: Physical examination with ultrasound and mammography is the best method for breast cancer screening. The breast cancer can be detected by mammography earlier than other methods. (authors)

  20. Multiple myeloma: Screening by Gd-DTPA enhanced opposed-phase gradient-echo MR imaging

    International Nuclear Information System (INIS)

    MR imaging was performed in 19 patients with proven multiple myeloma. Both plain and Gd-DTPA enhanced in-phase and opposed-phase gradient-echo techniques were used (0.1 mmol Magnevist/kg body weight). Plain, opposed-phase imaging demonstrated more lesions than plain in-phase imaging (35 vs. 16); enhanced opposed-phase imaging demonstrated more lesions than plain opposed-phase and enhanced in-phase imaging (47 vs. 35 and 17 lesions). These results suggest that enhanced opposed-phase images which have a high contrast between normal and infiltrated bone marrow are especially suited for MR screening in multiple myeloma. (orig.)

  1. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  2. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  3. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  4. Black Images in the American Theatre: NAACP Protest Campaigns--Stage, Screen, Radio & Television.

    Science.gov (United States)

    Archer, Leonard C.

    Black America's struggle to create a new image of Negro Americans on the stage and screen, in literature, and in the news media is the focus of this book. Chapters review the history of the black image and the early and persistent efforts of the National Association for the Advancement of Colored People (NAACP) to achieve realistic and unbiased…

  5. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available In polyglutamine (polyQ diseases including Huntington's disease (HD, mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.

  6. New mammography screen/film combinations: Imaging characteristics and radiation dose

    International Nuclear Information System (INIS)

    Five types of film (Kodak OM, Kodak OM-SO177, Konica CM, Dupont Microvision, and Fuji MiMa) exposed in combination with seven different intensifying screens (Min R, Min R Medium, Siemens Orthox MA, Kyokka HR Mammo Fine, Agfa Gevaert Detail S (old and new), and Konica Monarch) were processed for either 90 sec (at 33.3 degrees C) or 3 min (at 35.0 degrees C). The films imaged a Computerized Imaging Reference System phantom with additional detail test objects placed on its surface to produce four groups of objects with which to evaluate resolution and contrast. For objects that tested resolution, the Kyokka HR Mammo Fine (Fuji) screen was statistically significantly superior; for objects that tested contrast, the Konica Monarch screen was statistically significantly superior. Extended processing did not affect Dupont and Kodak OM film as much as it affected the other films. It did affect contrast for the other films tested. The mean glandular doses from gridless exposures ranged from 32 to 80 mrad (0.32-0.80 mGy) over all film/screen/processing combinations for a 4.5-cm-thick test object. Several new film/screen combinations can provide images superior to the Kodak Min R/OM combination at a reduced radiation dose. The Kyokka HR Mammo Fine (Fuji) screen was found statistically superior in radiographic resolution of mammographic test objects and the Konica Monarch screen was found to be superior in defining contrast

  7. Streptomyces: A Screening Tool for Bacterial Cell Division Inhibitors

    Science.gov (United States)

    Jani, Charul; Tocheva, Elitza I.; McAuley, Scott; Craney, Arryn; Jensen, Grant J.; Nodwell, Justin

    2016-01-01

    Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. Despite the lack of essentiality, the streptomycetes divisome is similar to that of other prokaryotes. Therefore, the chemical inhibitors of sporulation in model streptomycetes may interfere with the cell division in rod-shaped bacteria as well. To test this, we investigated 196 compounds that inhibit sporulation in S. coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA-damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, Fil-2, and Fil-3) confer distinct cell division defects on B. subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the sporulation pathway of streptomycetes but is also dependent on the divisome. We discuss ways in which these differing phenotypes can be used in screens for cell division inhibitors. PMID:25256667

  8. Imaging of sickle cell disease

    International Nuclear Information System (INIS)

    Sickle cell disease is an important health care issue in the United States and in certain areas in Africa, the Middle East and India. Although a great deal of progress has been made in understanding the disease at the molecular and pathophysiologic level, specific treatment which is safe and accessible for most patients is still elusive. Going into the next millennium, the management of this disease is still largely dependent on early diagnosis and the treatment of complications with supportive care. Thus, diagnosis and evaluation of the complications of the disease are crucial in directing clinical care at the bedside. Modern imaging modalities have greatly improved, and their application in the patient with the sickling disorders has enhanced the decision - making process. The purpose of this article is to review the clinical aspects of common complications of the disease and to discuss imaging approaches which are useful in their evaluation. (orig.)

  9. Imaging of sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, J.J. [Department of Pediatric Imaging, Children`s Hospital of Michigan, Detroit (United States); Sarnaik, S. [Sickle Cell Center, Children`s Hospital of Michigan, Detroit (United States)

    1999-09-01

    Sickle cell disease is an important health care issue in the United States and in certain areas in Africa, the Middle East and India. Although a great deal of progress has been made in understanding the disease at the molecular and pathophysiologic level, specific treatment which is safe and accessible for most patients is still elusive. Going into the next millennium, the management of this disease is still largely dependent on early diagnosis and the treatment of complications with supportive care. Thus, diagnosis and evaluation of the complications of the disease are crucial in directing clinical care at the bedside. Modern imaging modalities have greatly improved, and their application in the patient with the sickling disorders has enhanced the decision - making process. The purpose of this article is to review the clinical aspects of common complications of the disease and to discuss imaging approaches which are useful in their evaluation. (orig.) With 15 figs., 102 refs.

  10. Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans

    Directory of Open Access Journals (Sweden)

    Bhagwati P. Gupta

    2016-07-01

    Full Text Available The nematode C. elegans (worm is a small invertebrate animal widely used in studies related to fundamental biological processes, disease modelling, and drug discovery. Due to their small size and transparent body, these worms are highly suitable for experimental manipulations. In recent years several microfluidic devices and platforms have been developed to accelerate worm handling, phenotypic studies and screens. Here we review major tools and briefly discuss their usage in C. elegans research.

  11. Non-Small Cell Lung Cancer: Screening, Diagnosis, and Staging

    OpenAIRE

    Ferreira, J; Magalhães, M; Rocha, E; Marques, F

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Tobacco consumption is the primary cause of lung cancer, accounting for more than 85% 90% of all lung cancer deaths. Non-small cell lung cancer accounts for about 85% of all lung cancers. Several studies have shown that low-dose helical CT of the lung detects more nodules and lung cancers, including early-stage cancers, than does chest radiography. The National Lung Cancer Screening Trial results show that three annual roun...

  12. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system, the...

  13. Image processing techniques to evaluate mammography screening quality

    International Nuclear Information System (INIS)

    Mammography imaging has proved to be the best noninvasive method for breast cancer diagnosis, but it requires that irradiation parameters are set within Protocols recommendations (minimal dose delivering). This work presents an investigation on mammography image formation by means of validated Monte Carlo simulations along with further image analysis and mathematical processing. Several image processing methods have been suitably introduced and investigated according to their capability for micro-calcification detection and quality evaluation. The obtained results suggest the feasibility of all the proposed methods. Furthermore, it was possible to characterize the reliability of each and to infer the corresponding advantages or disadvantages, obtaining an image quality evaluation as a function of several parameters configurations. (author)

  14. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  15. Investigation of the relationship between mammary gland doses and image quality of screening mammography in Oita

    International Nuclear Information System (INIS)

    We investigated the current status of screening mammography in Oita and then examined the relationship between mammary gland dose and image quality using a RMI 156 phantom. There was a marked difference of mammary gland dose by a factor of 4.25 among facilities. This difference in dose may be due to differences in the mammography detection system and ages of the women examined. For the film-screen detection system, the image quality increased with increasing dose, whereas this was not the case for the CR system. Our findings suggest that screening mammography should be done using a highly sensitive film-screen detection system and a grid after determining the most suitable tube voltage for each facility. (author)

  16. Screening of Highly Expressed CPEΔN Lung Cancer H1299 Cells

    Directory of Open Access Journals (Sweden)

    Jing SUN

    2015-06-01

    Full Text Available Background and objective The N-terminal truncated carboxypeptidase E (CPEΔN protein is a novel biomarker of tumor metastasis. This study screened the H1299 cell line with a highly expressed CPEΔN gene for in vivo imaging experiment. Methods Human CPEΔN gene was cloned into the luciferase lentiviral vector. H1299 cells transduced with CPEΔN or control lentiviral vectors were selected with 2 µg/mL puromycin. The expression of CPEΔN was identified through Western blot analysis, and luciferase activity was measured using luciferase reporters. Results The human CPEΔN lentiviral expression vector was successfully constructed. The transfection rate of H1299 cells by the lentivirus achieved 80%, with an infection multiplicity of 20. The H1299 cell line with high CPEΔN (H1299-CPEΔN expression was established, with an increase in CPEΔN expression by four times compared with the control lentivirus-transfected H1299 cell line (H1299-control. As H1299-CPEΔN and H1299-control can effectively decompose luciferase substrates, they can be applied in in vivo imaging. Conclusion H1299-CPEΔN and H1299-control can be used in in vivo imaging experiment for further research on molecular mechanisms and signal transduction to elucidate the role of CPEΔN in lung cancer metastasis.

  17. Fundus autofluorescence and colour fundus imaging compared during telemedicine screening in patients with diabetes.

    Science.gov (United States)

    Kolomeyer, Anton M; Baumrind, Benjamin R; Szirth, Bernard C; Shahid, Khadija; Khouri, Albert S

    2013-06-01

    We investigated the use of fundus autofluorescence (FAF) imaging in screening the eyes of patients with diabetes. Images were obtained from 50 patients with type 2 diabetes undergoing telemedicine screening with colour fundus imaging. The colour and FAF images were obtained with a 15.1 megapixel non-mydriatic retinal camera. Colour and FAF images were compared for pathology seen in nonproliferative and proliferative diabetic retinopathy (NPDR and PDR, respectively). A qualitative assessment was made of the ease of detecting early retinopathy changes and the extent of existing retinopathy. The mean age of the patients was 47 years, most were male (82%) and most were African American (68%). Their mean visual acuity was 20/45 and their mean intraocular pressure was 14.3 mm Hg. Thirty-eight eyes (76%) did not show any diabetic retinopathy changes on colour or FAF imaging. Seven patients (14%) met the criteria for NPDR and five (10%) for severe NPDR or PDR. The most common findings were microaneurysms, hard exudates and intra-retinal haemorrhages (IRH) (n = 6 for each). IRH, microaneurysms and chorioretinal scars were more easily visible on FAF images. Hard exudates, pre-retinal haemorrhage and fibrosis, macular oedema and Hollenhorst plaque were easier to identify on colour photographs. The value of FAF imaging as a complementary technique to colour fundus imaging in detecting diabetic retinopathy during ocular screening warrants further investigation. PMID:24163061

  18. A new large area scintillator screen for X-ray imaging

    International Nuclear Information System (INIS)

    We report on the development of a new, large area, powdered scintillator screen based on Lu2O3(Eu). As reported earlier, the transparent ceramic form of this material has a very high density of 9.4 g/cm3, a high light output comparable to that of CsI(Tl), and emits in a narrow spectral band centered at about 610 nm. Research into fabrication of this ceramic scintillator in a large area format is currently underway, however the process is not yet practical for large scale production. Here we have explored fabrication of large area screens using precursor powders from which the ceramics are fabricated. To date we have produced up to 16 x 16 cm2 area screens with thickness in the range of 18 mg/cm2. This paper outlines the screen fabrication technique and presents its imaging performance in comparison with a commercial Gd2O2S:Tb (GOS) screen

  19. Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening

    OpenAIRE

    2010-01-01

    Breast cancer is the most common malignancy in women. Screen-film mammography (SFM) has been considered the gold standard for breast cancer screening and detection. Despite its recognized value in detecting and characterizing breast disease, mammography has important limitations and its false-negative rate ranges from 4% to 34%. Given these limitations, development of imaging modalities that would enhance, complement, or replace mammography has been a priority. Digital mammography (FFDM) and ...

  20. Body Image Screening Questionnaire for eating disorder early detection: a Romanian replication

    OpenAIRE

    Tomsa, Raluca; Istfan, Nicoleta; Jenaro, Cristina; Flores, Noelia; G. Bermejo, Belén

    2012-01-01

    Eating disorders adversely affect physical health, eating habits, social and family relationships, mood, work and school performance. We tested for cross-cultural validity of the Body Image Screening Questionnaire (BISQ), a screening measure validated in Spain, which assesses potential eating disorders related to anorexia, perception of obesity, orthorexia and vigorexia, in a Romanian sample from both clinical and general populations. The measure showed adequate internal consistency and allow...

  1. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography.

    Science.gov (United States)

    Naha, Pratap C; Lau, Kristen C; Hsu, Jessica C; Hajfathalian, Maryam; Mian, Shaameen; Chhour, Peter; Uppuluri, Lahari; McDonald, Elizabeth S; Maidment, Andrew D A; Cormode, David P

    2016-07-14

    Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various analytical methods. DEM and computed tomography (CT) phantom imaging showed that GSAN produced robust contrast that was comparable to silver alone. Cell viability, reactive oxygen species generation and DNA damage results revealed that the formulations with 30% or higher gold content are cytocompatible to Hep G2 and J774A.1 cells. In vivo imaging was performed in mice with and without breast tumors. The results showed that GSAN produce strong DEM and CT contrast and accumulated in tumors. Furthermore, both in vivo imaging and ex vivo analysis indicated the excretion of GSAN via both urine and feces. In summary, GSAN produce strong DEM and CT contrast, and has potential for both blood pool imaging and for breast cancer screening. PMID:27412458

  2. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions

    International Nuclear Information System (INIS)

    The objective of this study was to compare screen-film mammography (SFM) to full-field digital mammography (FFDM) regarding image quality as well as detectability and characterization of lesions using equivalent images of the same patient acquired with both systems. Two mammography units were used, one with a screen-film system (Senographe DMR) and the other with a digital detector (Senographe 2000D, both GEMS). Screen-film and digital mammograms were performed on 55 patients with cytologically or histologically proven tumors on the same day. Together with these, 75 digital mammograms of patients without tumor and the corresponding previous screen-film mammograms not older than 1.5 years were reviewed by three observers in a random order. Contrast, exposure, and the presence of artifacts were evaluated. Different details, such as the skin, the retromamillary region, and the parenchymal structures, were judged according to a three-point ranking scale. Finally, the detectability of microcalcifications and lesions were compared and correlated to histology. Image contrast was judged to be good in 76%, satisfactory in 20%, and unsatisfactory in 4% of screen-film mammograms. Digital mammograms were judged to be good in 99% and unsatisfactory in 1% of cases. Improper exposure of screen-film system occurred in 18% (10% overexposed and 8% underexposed). Digital mammograms were improperly exposed in 4% of all cases but were of acceptable quality after post-processing. Artifacts, most of them of no significance, were found in 78% of screen-film and in none of the digital mammograms. Different anatomical regions, such as the skin, the retromamillary region, and dense parenchymal areas, were better visualized in digital than in screen-film mammography. All malignant tumors were seen by the three radiologists; however, digital mammograms allowed a better characterization of these lesions to the Breast Imaging Reporting and Data System (BI-RADSZZZ;) categories (FFDM better than

  3. Reduction of radiation dose and imaging costs in scoliosis radiography. Application of large-screen image intensifier photofluorography

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, H.; Kiekara, O.; Soimakallio, S.; Vainio, J.

    1988-04-01

    Photofluorography using a large-field image intensifier (Siemens Optilux 57) was applied to scoliosis radiography and compared with a full-size rare-earth screen/film technique. When scoliosis radiography (PA-projection) was performed on 25 adolescent patients, the photofluorographs were found to be of comparable diagnostic quality with full-size films. A close correspondence between the imaging techniques was found in the Cobb angle measurements as well as in the grading of rotation with the pedicle method. The use of photofluorography results in a radiation dose reduction of about one-half and considerable savings in direct imaging costs and archive space. In our opinion the method is particularly well-suited for follow-up and screening evaluation of scoliosis, but in tall patients the image field size of 40 x 40 cm restricts its usefulness as initial examination.

  4. Live cell imaging in Drosophila melanogaster.

    Science.gov (United States)

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila. PMID:20360379

  5. Powder-phosphor screens combined with interference filters for X-ray imaging with increased brightness

    CERN Document Server

    Koch, A

    1999-01-01

    Powder-phosphor screens are frequently used in X-ray imaging devices. They have an angular light emission characteristic which is close to a cosine distribution (Lambertian) of photometric intensity. If interference filters are combined with these screens, the angular-emission characteristic changes. We have developed interference filters for powder-phosphor screens with increased brightness perpendicular to the screen. This is particularly advantageous for screens viewed by lens-optic or fiber-optic systems. Measurements on powder-phosphor screens (Gd sub 2 O sub 2 S:Tb screens, thickness 50 mu m) with interference filters were carried out at X-ray photon energies of 18 keV. For an optical system with a numerical aperture of 0.25, the transmitted signal power increased by 70%. However, the spatial resolution was worse compared to the same screen without a filter; 31 mu m fwhm was measured without a filter and 43 mu m fwhm with a filter. (author)

  6. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    OpenAIRE

    Mariella Milagros Azzato

    2011-01-01

    This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for rea...

  7. Design for a coherent-scatter imaging system compatible with screening mammography.

    Science.gov (United States)

    Kern, Katie; Peerzada, Lubna; Hassan, Laila; MacDonald, Carolyn

    2016-07-01

    A system using a wide-slot beam and simple antiscatter grids or slots has been designed to provide a localized map of tissue type that could be overlaid on the simultaneous conventional transmission image to provide an inexpensive, low dose adjunct to conventional screening mammography. Depth information is obtainable from the stereoscopic viewing angles. The system was demonstrated to produce observable contrast between adipose tissue and a phantom chosen to mimic carcinoma at an exposure comparable with screening mammography. Imaging data was collected over a range of system parameters to optimize contrast and to allow verification of simulation modeling. PMID:27610395

  8. Imaging evaluation of infants with neuroblastoma detected by VMA screening spot test

    International Nuclear Information System (INIS)

    In the Saitama Prefecture in Japan, VMA (vanillyl manderic acid) screening spot test for detection of neuroblastoma has been performed in 173,046 infants in the years 1981-1986 and 15 infants were found to have neuroblastoma. Two infants had mediastinal tumors and the remainder, 13, had intraabdominal tumors. Only 7 infants had palpable masses. Although CT was documented to be the best imaging procedure to provide sufficient information for treatment, conventional radiographic examinations of the chest and abdomen, and abdominal ultrasonography were able, as initial imaging procedures, to detect reasonably small neuroblastomas in infants with a positive VMA screening test. (orig.)

  9. Fixed-Cell Imaging of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M; Bagley, Steven

    2016-01-01

    The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. PMID:27371603

  10. Stem Cell Imaging: Tools to Improve Cell Delivery and Viability

    Science.gov (United States)

    Wang, Junxin; Jokerst, Jesse V.

    2016-01-01

    Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field. PMID:26880997

  11. Image quality parameters of screen-film combinations: modulation transfer function and Wiener spectrum

    International Nuclear Information System (INIS)

    Image quality in medical X-ray diagnosis is strongly influenced by two parameters of the screen-film combinations: the ability to image small details with high contrast described by the modulation transfer function T(R), and the noise described by the Wiener spectrum W. The MTF is usually measured by exposing the screen-film combination behind a lead bar pattern and by evaluating the resulting image. It is shown that Fourier analysis of this image extends the usable range of spatial frequencies by also using third harmonics. Resulting MTF curves, allowing intercomparison between CaWO4 and rare-earth screens, are given, which show the superiority of the rare-earth systems as far as the modulation transfer function is concerned. An attempt is made to correlate scarcely visible differences in sharpness of the imaged bar pattern with differences in the appropriate modulation transfer functions. The measurement of Wiener spectra is briefly described. Wiener spectra for various systems with different speeds are presented. The importance of Wiener spectra both for understanding the basic properties of screen-film systems and for describing the visual impression of graininess is shown. (author)

  12. Liquid marbles for high-throughput biological screening of anchorage-dependent cells.

    Science.gov (United States)

    Oliveira, Nuno M; Correia, Clara R; Reis, Rui L; Mano, João F

    2015-01-28

    Stable liquid marbles (LM) are produced by coating liquid droplets with a hydrophobic powder. The used hydrophobic powder is produced by fluorosi-lanization of diatomaceous earth, used before to produce superhydrophobic structures. Here, the use of LM is proposed for high-throughput drug screening on anchorage-dependent cells. To provide the required cell adhesion sites inside the liquid environment of LM, surface-modified poly(l-lactic acid) microparticles are used. A simple method that takes advantage from LM appealing features is presented, such as the ability to inject liquid on LM without disrupting (self-healing ability), and to monitor color changes inside of LM. After promoting cell adhesion, a cytotoxic screening test is performed as a proof of concept. Fe(3+) is used as a model cytotoxic agent and is injected on LM. After incubation, AlamarBlue reagent is injected and used to assess the presence of viable cells, by monitoring color change from blue to red. Color intensity is measured by image processing and the analysis of pictures takes using an ordinary digital camera. The proposed method is fully validated in counterpoint to an MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carbo​xymethoxyphenyl)-2-(4-sulfophenyl)-2H-te​trazolium) colorimetric assay, a well-known method used for the cytotoxicity assessment. PMID:25091700

  13. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  14. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hui Su

    2001-05-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sub 2} for 40-{micro}m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  15. High-Throughput Screening and Optimization of Binary Quantum Dots Cosensitized Solar Cell.

    Science.gov (United States)

    Yuan, Ding; Xiao, Lina; Luo, Jianheng; Luo, Yanhong; Meng, Qingbo; Mao, Bing-Wei; Zhan, Dongping

    2016-07-20

    Quantum dots (QDs) are considered as the alternative of dye sensitizers for solar cells. However, interfacial construction and evaluation of photocatalytic nanomaterials still remains challenge through the conventional methodology involving demo devices. We propose here a high-throughput screening and optimizing method based on combinatorial chemistry and scanning electrochemical microscopy (SECM). A homogeneous TiO2 catalyst layer is coated on a FTO substrate, which is then covered by a dark mask to expose the photocatalyst array. On each photocatalyst spot, different successive ionic layer adsorption and reaction (SILAR) processes are performed by a programmed solution dispenser to load the binary PbxCd1-xS QDs sensitizers. An optical fiber is employed as the scanning tip of SECM, and the photocatalytic current is recorded during the imaging experiment, through which the optimized technical parameters are figured out. To verify the validity of the combinatorial SECM imaging results, the controlled trials are performed with the corresponding photovoltaic demo devices. The harmonious accordance proved that the methodology based on combinatorial chemistry and SECM is valuable for the interfacial construction, high-throughput screening, and optimization of QDSSCs. Furthermore, the PbxCd1-xS/CdS QDs cosensitized solar cell optimized by SECM achieves a short circuit current density of 24.47 mA/cm(2), an open circuit potential of 421 mV, a fill factor of 0.52, and a photovoltaic conversion efficiency of 5.33%. PMID:27355523

  16. PRELIMINARY APPLICATION OF WHOLE BODY DIFFUSION WEIGHTED IMAGING IN SCREENING METASTASIS

    Institute of Scientific and Technical Information of China (English)

    Yong-jing Guan; Hua-wei Ling; Ke-min Chen

    2008-01-01

    Objective To investigate the feasibility of whole body diffusion weighted imaging (WB-DWI) in screening metastasis.Methods WB-DWI was performed in 24 patients diagnosed with various types of primary tumors. The three-dimensional maximum intensity projection reconstruction and black-and-white flip technique were used to observe metastatic lesions, and the results were compared with those of bone scintigraphy. Results By WB-DWI scanning sequence at b = 800 s/mm2, all the bone lesions found by bone scintigraphy in the cohort were well identified, and other lesions of soft tissue and organs were also well demonstrated. Its screening capability was equivalent with bone scintigraphy in screening metastases in bones (P = 0.062). Conclusion WB-DWI was practicable with the parameter settings attempted in metastases screening.

  17. Preventative imaging without radiation - introducing an MR-based screening strategy

    International Nuclear Information System (INIS)

    Recent advances in hardware technology, noninvasiveness, lack of radiation and high diagnostic accuracy combine to allow the usage of magnetic resonance imaging (MRI) for disease screening in asymptomatic people. 175 volunteers were examined by means of a comprehensive 60-minute MR-screening-protocol covering four organ systems: the brain, the arterial vasculature, the heart and the colon. In 28% of the cases vascular pathology (cerebral, peripheral or cardiovascular) was detected. In up to 17% of the single examination parts relevant incidental findings were seen. The outlined comprehensive MR-protocol is an accurate and patient-friendly imaging tool for the detection of vascular pathology as well as colonic polyps. The socio-economic relevance of this screening exam has to be further investigated in larger patient cohorts. (orig.)

  18. Retinal Image Classification for the Screening of Age-Related Macular Degeneration

    Science.gov (United States)

    Hijazi, Mohd Hanafi Ahmad; Coenen, Frans; Zheng, Yalin

    Age-related Macular Degeneration (AMD) is the most common cause of blindness in old-age. Early identification of AMD can allow for mitigation (but not cure). One of the fist symptoms of AMD is the presence of fatty deposits, called drusen, on the retina. The presence of drusen may be identified through inspection of retina images. Given the aging global population, the prevalence of AMD is increasing. Many health authorities therefore run screening programmes. The automation, or at least partial automation, of retina image screening is therefore seen as beneficial. This paper describes a Case Based Reasoning (CBR) approach to retina image classification to provide support for AMD screening programmes. In the proposed approach images are represented in the form of spatial-histograms that store both colour and spatial image information. Each retina image is represented using a series of histograms each encapsulated as a time series curve. The Case Base (CB) is populated with a labelled set of such curves. New cases are classified by finding the most similar case (curve) in the CB. Similarity checking is achieved using the Dynamic Time warping (DTW).

  19. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening

    OpenAIRE

    Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying

    2013-01-01

    Background High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. Results We propose an automated analysis method with novel descript...

  20. Performance assessment of CsI(Tl) screens on various substrates for X-ray imaging

    Institute of Scientific and Technical Information of China (English)

    FENG Zhao-Dong; JIANG Peng; ZHANG Hong-Kai; ZHAO Bo-Zhen; QIN Xiu-Bo; WEI Cun-Feng; LIU Yu

    2015-01-01

    Thallium-doped cesium iodide (CsI(Tl)) screens are widely used in X-ray imaging devices because of the columnar structure of the CsI(Tl) layer,but few reports focus on the optical role of the substrate in the screen system.In this paper,four substrates including fused silica (SiO2),silver-film coated SiO2,graphite (C) and fiber optic plate (FOP) are used to fabricate CsI(Tl) screens by thermal evaporation.Their imaging performance is evaluated by relative light output (RLO),modulation transfer function (MTF),normalized noise power spectrum (NNPS) and noise equivalent quanta (NEQ).The results reveal that although CsI(Tl) film on graphite plate yields images with the lowest light output,it presents relatively higher spatial resolution and better signal-to-noise characteristics.However,films on SiO2 plate obtain low MTF but high NNPS curves,whether they are coated with silver film or not.Furthermore,scintillation screens on FOP have bright images with low NNPS and high NEQ,but have the lowest MTF.By controlling the substrate optical features,CsI(Tl) films can be tailored to suit a given application.

  1. Performance assessment of CsI(Tl) screens on various substrates for X-ray imaging

    CERN Document Server

    Feng, Zhaodong; Zhang, Hongkai; Zhao, Bozhen; Qin, Xiubo; Wei, Cunfeng; Liu, Yu; Wei, Long

    2015-01-01

    Thallium-doped cesium iodide (CsI(Tl)) screens are widely used in X-ray imaging devices because of the columnar structure of CsI(Tl) layer, but few reports focus on the optical role of the substrate in the screen system. In this paper, four substrates including fused silica (SiO2), silver-film coated SiO2, graphite (C) and fiber optic plate (FOP) are used to fabricate CsI(Tl) screens by thermal evaporation. Their imaging performance is evaluated by relative light output (RLO), modulation transfer function (MTF), normalized noise power spectrum (NNPS) and noise equivalent quanta (NEQ). The results reveal that although CsI(Tl) film on graphite plate yields images with the lowest light output, it presents relatively higher spatial resolution and better signal-to-noise characteristics. However, films on SiO2 plate obtain low MTF but high NNPS curves, whether or not coated with silver film. Furthermore, scintillation screens on FOP have bright images with low NNPS and high NEQ, but have the lowest MTF. By controll...

  2. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion

    Institute of Scientific and Technical Information of China (English)

    Xingbao Zhu; Xinghua Pan; Junli Luo; Yun Liu; Guolong Chen; Song Liu; Qiangjin Ruan; Xunding Deng; Dianchun Wang; Quanshui Fan

    2012-01-01

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.

  3. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    International Nuclear Information System (INIS)

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid

  4. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography

    Science.gov (United States)

    Naha, Pratap C.; Lau, Kristen C.; Hsu, Jessica C.; Hajfathalian, Maryam; Mian, Shaameen; Chhour, Peter; Uppuluri, Lahari; McDonald, Elizabeth S.; Maidment, Andrew D. A.; Cormode, David P.

    2016-07-01

    Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various analytical methods. DEM and computed tomography (CT) phantom imaging showed that GSAN produced robust contrast that was comparable to silver alone. Cell viability, reactive oxygen species generation and DNA damage results revealed that the formulations with 30% or higher gold content are cytocompatible to Hep G2 and J774A.1 cells. In vivo imaging was performed in mice with and without breast tumors. The results showed that GSAN produce strong DEM and CT contrast and accumulated in tumors. Furthermore, both in vivo imaging and ex vivo analysis indicated the excretion of GSAN via both urine and feces. In summary, GSAN produce strong DEM and CT contrast, and has potential for both blood pool imaging and for breast cancer screening.Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various

  5. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hui Su

    2001-05-25

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm{sup 2} for 40-{micro}m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  6. Cell-based phenotypic screening of mast cell degranulation unveils kinetic perturbations of agents targeting phosphorylation

    Science.gov (United States)

    Qin, Shenlu; Wang, Xumeng; Wu, Huanwen; Xiao, Peng; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai

    2016-01-01

    Mast cells play an essential role in initiating allergic diseases. The activation of mast cells are controlled by a complicated signal network of reversible phosphorylation, and finding the key regulators involved in this network has been the focus of the pharmaceutical industry. In this work, we used a method named Time-dependent cell responding profile (TCRP) to track the process of mast cell degranulation under various perturbations caused by agents targeting phosphorylation. To test the feasibility of this high-throughput cell-based phenotypic screening method, a variety of biological techniques were used. We further screened 145 inhibitors and clustered them based on the similarities of their TCRPs. Stat3 phosphorylation has been widely reported as a key step in mast cell degranulation. Interestingly, our TCRP results showed that a Stat3 inhibitor JSI124 did not inhibit degranulation like other Stat3 inhibitors, such as Stattic, clearly inhibited degranulation. Regular endpoint assays demonstrated that the distinctive TCRP of JSI124 potentially correlated with the ability to induce apoptosis. Consequently, different agents possibly have disparate functions, which can be conveniently detected by TCRP. From this perspective, our TCRP screening method is reliable and sensitive when it comes to discovering and selecting novel compounds for new drug developments. PMID:27502076

  7. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  8. Droplet microfluidic technology for single-cell high-throughput screening

    OpenAIRE

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J. Brian; Rothberg, Jonathan M.; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-01-01

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform t...

  9. Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time

    Indian Academy of Sciences (India)

    Maleppillil Vavachan Vijayakumar; Amrendra Kumar Ajay; Manoj Kumar Bhat

    2010-12-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to cell membrane leading to glucose uptake is the rate-limiting step in diabetes. It is also a defined target of antidiabetic drug research. Existing GLUT4 translocation assays are based on time-consuming immunoassays and are hampered by assay variability and low sensitivity. We describe a real-time, visual, cell-based qualitative GLUT4 translocation assay using CHO-HIRc-myc-GLUT4eGFP cells that stably express myc- and eGFP-tagged GLUT4 in addition to human insulin receptor (HIRc). GLUT4 translocation is visualized by live cell imaging based on GFP fluorescence by employing a cooled charge-coupled device camera attached to a fluorescent microscope. This video imaging method and further quantitative analysis of GLUT4 on the cell membrane provide rapid and foolproof visual evidence that this method is suitable for screening GLUT4 translocation modulators.

  10. Use of a Fluorometric Imaging Plate Reader in high-throughput screening

    Science.gov (United States)

    Groebe, Duncan R.; Gopalakrishnan, Sujatha; Hahn, Holly; Warrior, Usha; Traphagen, Linda; Burns, David J.

    1999-04-01

    High-throughput screening (HTS) efforts at Abbott Laboratories have been greatly facilitated by the use of a Fluorometric Imaging Plate Reader. The FLIPR consists of an incubated cabinet with integrated 96-channel pipettor and fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorometer. An argon laser is used to excite fluorophores in a 96-well microtiter plate and the emitted fluorescence is imaged by a cooled CCD camera. The image data is downloaded from the camera and processed to average the signal form each well of the microtiter pate for each time point. The data is presented in real time on the computer screen, facilitating interpretation and trouble-shooting. In addition to fluorescence, the camera can also detect luminescence form firefly luciferase.

  11. In vivo cell tracking with bioluminescence imaging

    International Nuclear Information System (INIS)

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed

  12. In vivo cell tracking with bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of)

    2015-03-15

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  13. Molecular probes for imaging cell growth and cell differentiation

    International Nuclear Information System (INIS)

    This paper summarizes PET/SPECT probes for the in vivo imaging of cell behavior such as cell growth, differentiation, migration, adhesion, angiogenesis, and apoptosis. These probes may be indispensable for the fundamental research of regenerative medicine. (author)

  14. Evaluation of scattered radiation from radiographic intensifying screen on dental image contrast using Monte Carlo code

    International Nuclear Information System (INIS)

    The most dental imaging is performed by means a imaging system consisting of a film/screen combination. Fluorescent intensifying screens for X-ray films are used in order to reduce the radiation dose. They produce visible light which increases the efficiency of the film. In addition, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering) which will degrade the image resolution. Scattered radiation produced in Gd2O2S:Tb intensifying screens was simulated by using a Monte Carlo radiation transport code - the EGS4. The magnitude of scattered radiation striking the film is typically quantified using the scatter to primary radiation and the scatter fraction. The angular distribution of the intensity of the scattered radiation (sum of both the scattering effects) was simulated, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 5.67% and 3.28 % and the scatter function is about 5.27% and 3.18% for the front and back screen, respectively, over the range from 0 to π rad. (author)

  15. Immunomagnetic Nano-Screening Chip for Circulating Tumor Cells Detection in Blood

    Science.gov (United States)

    Horton, A. P.; Lane, N.; Tam, J.; Sokolov, K.; Garner, H. R.; Uhr, J. W.; Zhang, X. J.

    2010-03-01

    We present a novel method towards diagnose cancer at an early stage via a blood test. Early diagnosis is high on the future agenda of oncologists because of significant evidence that it will result in a higher cure rate. Capture of circulating tumor cells (CTCs) which are known to escape from carcinomas at an early stage offers such an opportunity. We design, fabricate and optimize the nanomagnetic-screening chip that captures the CTCs in microfluid, and further integrate the nano-chip with the new multispectral imaging system so that it can quantify different tumor markers and automate the entire instrument. Specifically, hybrid plasmonic (Fe2O3-core Au shell) nanoparticles, conjugated a collection of antibodies especially chosen to target breast cancer CTCs, with high magnetic susceptibility will be used for effective immunomagnetic CTC isolation. Greatly increased sensitivity over previous attempts is demonstrated by decreasing the length scale for interactions between the magnetic-nanoparticle-tagged CTCs and the isolative magnetic field, while increasing the effective cross-sectional area over which this interaction takes place. The screening chip is integrated with a novel hyperspectral microscopic imaging (HMI) platform capable of recording the entire emission spectra in a single pass evaluation. The combined system will precisely quantify up to 10 tumor markers on CTCs.

  16. Quality of image and dose in mammography: comparison of two screen/film combination

    International Nuclear Information System (INIS)

    Full text: The mammography film is a essential link of the image chain for the early diagnosis of breast cancer. Concretely the screen/film combination is one of the most factors that affects the radiation dose that patient receives. On the other hand, the mammography images should be capable to reproduce minimal details for an effective diagnosis and this capability is directly related with the film features. Currently in Peru, there is not a rule that applies the features of the screen/film combinations related to the image quality as it is the case the AS/DIN system for the picture. Due to the lack of this rule, the data provided by the manufacturers can not be comparable among themselves. The lack of comparability as well as the great quantity of available material and the possible screen/film combinations justify the need of comparative studies that inform to the health professionals involved with the diagnosis for images about the options they could use according to their diagnostic requirements. The public or private diagnostic centers perform the mamographies using the mammography films of major demand in our way, with some differences related to image quality and dose. This study tries to compare the screen/film features of mammography films of major use: AGFA HDR-PLUS/MAMORAY-HD and KODAK MIN-R /MIN-R 2000 in qualitative and quantitative way following the evaluation parameters of the image quality and dose according to protocol ARCAL XLIX / LV - Quality Control in mammography 2006-IAEA-TECDOC 1517. For this study, an X-ray system SOPHIE - PLANMED, an automatic processor KODAK x-OMAT 2000 (previously tested with quality control tests), a breast phantom AXCR made of polymethylmetacrylate, a standard of spatial resolution, a 3 cc ionization chamber with an adequate electrometer, a sensitometer and densitometer , all due calibrated. A the end of study, the importance of the features of the screen/film combinations related to the image and associated dose will

  17. Image quality of mammography in Croatian nationwide screening program: Comparison between various types of facilities

    International Nuclear Information System (INIS)

    Purpose: The study was aimed to provide objective evidence about the mammographic image quality in Croatia, to compare it between different types of MG facilities and to identify the most common deficiencies and possible reasons as well as the steps needed to improve image quality. Materials and methods: A total of 420 mammographic examinations collected from 84 mammographic units participating in the Croatian nationwide breast cancer screening program were reviewed in terms of four image quality categories: identification of patient and examination, breast positioning and compression, exposure and contrast, and artifacts. Those were rated using image evaluating system based on American College of Radiology and European Commission proposals. The results were compared among different types of mammographic units, and common image quality deficiencies were identified. Results: Total image quality scores of 12.8, 16.1, 13.0 and 13.7 were found for general hospitals, university hospitals, private clinics and public healthcare centres, respectively. Average score for all mammographic units was 13.5 (out of 25 points). University hospitals were significantly better than all other mammography units in overall image quality, which was mostly contributed by better breast positioning practices. Private clinics showed the worst results in identification, exposure, contrast and artifacts. Conclusions: Serious deficiencies in identification and breast positioning, which might compromise breast cancer screening outcome, were detected in our material. They occur mainly due to subjective reasons and could be corrected through additional staff training and improvement of working discipline.

  18. Optimization of patient protection using rare earth screen in conventional imaging procedure

    International Nuclear Information System (INIS)

    The purpose of this study was to optimize patient protection using rare earth screen of speed 400 in place of conventional screen-film of speed 200. The entrance surface dose (ESD) for the two screen-film systems was determined for patients undergoing simple radiographic examinations (chest, lumbar spine and pelvis series). The determination of the ESD included backscatter factors. The ESD was the optimizing parameter and its trade off with the image quality assessment, which was surveyed based on the information obtained through standardized questionnaire. The estimated ESDs were compared with reference levels set by the Community of European Commission (CEC) for a standard adult patient. For chest PA, ESD estimates were lower than the CEC reference levels whilst that of lumbar spine AP and LAT and pelvis AP were high. Upon the adoption of rare earth screen of speed 400, a dose reduction of 33% for chest, 17% for lumbar spine and 28% for pelvis examinations was achieved. From the observations made from this study, some corrective actions such as equipment quality control of parameters that affect patient dose and image quality like kVp accuracy and consistency, mAs accuracy and consistency, optimal film processing conditions, regular film reject analysis to detect and minimize the root causes and contributory factors to poor image quality and periodic training of staff on dose reduction techniques must be undertaken. Regular assessment of patient dose and image quality, equipment quality control, adoption of faster rare earth screens and optimum radiographic technique are therefore recommended in order to achieve optimization goals. (author)

  19. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    Science.gov (United States)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that

  20. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles

    OpenAIRE

    Ma Jinwen; Zhu Jinmin; Zhou Xiaobo; Li Fuhai; Huang Xudong; Wong Stephen TC

    2007-01-01

    Abstract Background High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be a...

  1. Imaging and characterizing cells using tomography.

    Science.gov (United States)

    Do, Myan; Isaacson, Samuel A; McDermott, Gerry; Le Gros, Mark A; Larabell, Carolyn A

    2015-09-01

    We can learn much about cell function by imaging and quantifying sub-cellular structures, especially if this is done non-destructively without altering said structures. Soft X-ray tomography (SXT) is a high-resolution imaging technique for visualizing cells and their interior structure in 3D. A tomogram of the cell, reconstructed from a series of 2D projection images, can be easily segmented and analyzed. SXT has a very high specimen throughput compared to other high-resolution structure imaging modalities; for example, tomographic data for reconstructing an entire eukaryotic cell is acquired in a matter of minutes. SXT visualizes cells without the need for chemical fixation, dehydration, or staining of the specimen. As a result, the SXT reconstructions are close representations of cells in their native state. SXT is applicable to most cell types. The deep penetration of soft X-rays allows cells, even mammalian cells, to be imaged without being sectioned. Image contrast in SXT is generated by the differential attenuation soft X-ray illumination as it passes through the specimen. Accordingly, each voxel in the tomographic reconstruction has a measured linear absorption coefficient (LAC) value. LAC values are quantitative and give rise to each sub-cellular component having a characteristic LAC profile, allowing organelles to be identified and segmented from the milieu of other cell contents. In this chapter, we describe the fundamentals of SXT imaging and how this technique can answer real world questions in the study of the nucleus. We also describe the development of correlative methods for the localization of specific molecules in a SXT reconstruction. The combination of fluorescence and SXT data acquired from the same specimen produces composite 3D images, rich with detailed information on the inner workings of cells. PMID:25602704

  2. Towards a full karyotype screening of interphase cells: 'FISH and chip' technology

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulli G.; Munne, Santiago; Lersch, Robert A.; Hsieh, H.-Ben; Smida, Jan; Chen, Xiao-Ning; Korenberg, Julie R.; Pedersen, Roger A.; Fung, Jingley

    2003-06-23

    Numerical chromosome aberrations are incompatible with normal human development. Our laboratories develop hybridization based screening tools that generate a maximum of cytogenetic information for each polar body or blastomere analyzed. The methods are developed considering that the abnormality might require preparation of case-specific probes and that only one or two cells will be available for diagnosis, most of which might be in the interphase stage. Further more, assay efficiencies have to be high, since there is typically not enough time to repeat an experiment or reconfirm a result prior to fertilization or embryo transfer. Structural alterations are delineated with break point-spanning probes. When screening for numerical abnormalities, we apply a Spectral Imaging-based approach to simultaneously score as many as ten different chromosome types in individual inter phase cells. Finally, DNA micro-arrays are under development to score all of the human chromosomes in a single experiment and to increase the resolution with which micro-deletions can be delineated.

  3. Measurements and simulations of scatter imaging as a simultaneous adjunct for screening mammography

    Science.gov (United States)

    Kern, Katie; Hassan, Laila; Peerzada, Lubna; Ur-Rehman, Mahboob; MacDonald, C. A.

    2015-03-01

    X-ray coherent scatter is dependent upon the molecular structure of the scattering material and hence allows differentiation between tissue types with potentially much higher contrast than conventional absorption-based radiography. Coherent-scatter computed tomography has been used to produce images based on the x-ray scattering properties of the tissue. However, the geometry for CT imaging requires a thin fan beam and multiple projections and is incommensurate with screening mammography. In this work we demonstrate progress in a developing a system using a wide slot beam and simple anti-scatter grid which is adequate to differentiate between scatter peaks to remove the fat background from the coherent scatter image. Adequate intensity in the coherent scatter image can be achieved at the dose commonly used for screening mammography to detect carcinoma surrogates as small as 2 mm in diameter. This technique would provide an inexpensive, low dose, simultaneous adjunct to conventional screening mammography to provide a localized map of tissue type that could be overlaid on the conventional transmission mammogram. Comparisons between phantom measurements and Monte Carlo simulations show good agreement, which allowed for detailed examination of the visibility of carcinoma under realistic conditions.

  4. Pancreatic cancer screening employing noncontrast magnetic resonance imaging combined with ultrasonography

    International Nuclear Information System (INIS)

    We have conducted an initial evaluation on the potential of combining noncontrast magnetic resonance imaging (MRI) and ultrasonography (US) to screen for pancreatic cancer. An independent ethics committee approved this study. A total of 2511 patients who underwent US were enrolled. Among them, noncontrast MRI was performed in patients in whom the entire pancreas was difficult to depict or in those with US-suspected pancreatic lesions. In total, using 1.5-T MRI, T1- and T2-weighted imaging, magnetic resonance cholangiopancreatography, and diffusion-weighted imaging, we acquired a variety of images. The efficacy of US and MRI in screening for pancreatic lesions, including pancreatic cancer, was evaluated. Of 2511 patients, 184 underwent MRI, and the pancreas was demonstrated in all of them. Among the 2511, five pancreatic cancers were detected by MRI combined with US (detection rate 0.20%). Of the five pancreatic cancers, three were detected by US (detection rate 0.12%) and two by MRI. Four of the five pancreatic cancers were resectable. By combining noncontrast MRI with US, pancreatic cancer can be detected with high accuracy. Other pancreatic lesions that require follow-up, including intraductal papillary mucinous neoplasms, can also be detected. Thus, pancreatic cancer screening with a combination of US and MRI is suggested. (author)

  5. Proximal surface caries detection with direct-exposure and rare earth screen/film imaging

    International Nuclear Information System (INIS)

    This laboratory study compared five imaging systems for their diagnostic accuracy in detection of proximal surface dental caries. Ten viewers provided data on radiographic detectability of carious lesions. The diagnostic accuracy of each system was determined with receiver operating characteristic (ROC) curves by comparing viewer data with the true state of the teeth as determined microscopically. D-speed film marginally outperformed the other four systems, but the three screen/film systems matched the diagnostic accuracy of E-speed film. Radiation reductions between 62% and 92% were achieved with the screen/film systems when compared to the two conventional dental films. The feasibility of designing a screen/film bite-wing cassette was shown, but the poor diagnostic accuracy of the present bite-wing system indicated a need for a new technology in caries detection

  6. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  7. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Science.gov (United States)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  8. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  9. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    Science.gov (United States)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  10. Nipple discharge in a screening programme: Imaging findings with pathological correlation

    International Nuclear Information System (INIS)

    BreastScreen Australia provides free mammographic screening for asymptomatic women over the age of 40, targeting women aged 50–69. Occasionally women will present to screening programmes with a history of nipple discharge, which is uncommonly associated with significant underlying breast disease. Seventy-six women with a history of nipple discharge were recalled to BreastScreen Western Australia assessment centres from 2004 to 2008, of whom 72 were recalled primarily for their symptoms. Thirty-six of these patients had pathology investigations, including 18 nipple discharge smears, 17 fine needle aspirations, 11 core biopsies and eight surgical biopsies or therapeutic resections. The biopsies found 11 intraduct papillomas and one invasive ductal carcinoma with ductal carcinoma in situ. Fourteen patients had imaging findings consistent with benign mammary duct ectasia. Our findings confirm that the presentation of nipple discharge in a screening programme is uncommonly associated with significant breast disease, and present representative cases of the radiological findings with pathological correlation of benign and malignant causes including mammary duct ectasia, intraduct papillomas, multiple papillomas, invasive ductal carcinoma and ductal carcinoma in situ.

  11. [Primary peripheral T-cell lymphoma of the vagina incidentally found at cervical cancer screening].

    Science.gov (United States)

    Isobe, Rei; Mituishi, Toshimi; Omote, Mayuko; Mori, Yuichi; Ida, Koichi; Oguchi, Osamu; Nakai, Ikuko; Oguchi, Masahiko

    2016-01-01

    A 50-year-old woman was referred to our hospital because a mass lesion had been palpable through the vaginal wall during a cervical cancer screening examination. A contrast-enhanced computed tomography (CT) scan and magnetic resonance imaging (MRI) revealed marked thickening of the vaginal wall, constituting a mass 96 mm in diameter. Abnormal FDG uptake was observed in the vaginal mass, but no other lesions were detected by positron emission tomography (PET/CT). A transvaginal biopsy from the tumor revealed peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS). Although endoscopic examinations revealed no signs of infiltration in either the bladder or the rectum, the MRI findings suggested invasion into the adjacent rectal wall. She achieved complete remission after six courses of biweekly THP-COP therapy, to which field radiation (39.6 Gy) was added. PTCL of the vagina is rare and this case therefore merits description in the literature. PMID:26861099

  12. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    Science.gov (United States)

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages. PMID:27325232

  13. Pain and stress assessment after retinopathy of prematurity screening examination: Indirect ophthalmoscopy versus digital retinal imaging

    OpenAIRE

    Moral-Pumarega M; Caserío-Carbonero Sonia; De-La-Cruz-Bértolo Javier; Tejada-Palacios Pilar; Lora-Pablos David; Pallás-Alonso Carmen R

    2012-01-01

    Abstract Background Increasingly, neonatal clinics seek to minimize painful experiences and stress for premature infants. Fundoscopy performed with a binocular indirect ophthalmoscope is the reference examination technique for screening of retinopathy of prematurity (ROP), and it is associated with pain and stress. Wide-field digital retinal imaging is a recent technique that should be evaluated for minimizing infant pain and stress. Methods The purpose of the study was to assess and compare ...

  14. Adapting Cell-Based Assays to the High Throughput Screening Platform: Problems Encountered and Lessons Learned

    OpenAIRE

    Maddox, Clinton B; Rasmussen, Lynn; White, E. Lucile

    2008-01-01

    In recent years, cell-based phenotypic assays have emerged as an effective and robust addition to the array of assay technologies available for drug discovery in the high throughput screening arena. Previously, biochemical target-based assays have been the technology of choice. With the emergence of stem cells as a basis for a new screening technology, it is important to keep in mind the lessons that have been learned from the adaptation of existing stable cell lines onto the high throughput ...

  15. Image-based Evaluation of the Molecular Events Underlying HC11 Mammary Epithelial Cell Differentiation

    OpenAIRE

    Shan, Liang; Zhang, Renshu; Zhang, Wanghai; Lee, Edward; Sridhar, Rajagopalan; Snyderwine, Elizabeth G.; Wang, Paul C.

    2008-01-01

    We have developed an image-based technique for signal pathway analysis, target validation and compound screening related to mammary epithelial cell differentiation. This technique utilized the advantages of optical imaging and HC11-Lux model system. HC11-Lux cell line is a subclone of HC11 mammary epithelial cells transfected stably with a luciferase construct of β-casein gene promoter (p-344/-1βc-Lux). The promoter activity was imaged optically in real time following lactogenic induction. Th...

  16. Screen image sequence compression method utilizing adaptive block size coding and hierarchical GOP structure

    Institute of Scientific and Technical Information of China (English)

    WU Xing; MEI Liang; XI Qi; ZHANG Shen-sheng; CHEN Yan-wei

    2010-01-01

    To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP)structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81%lower CPU utilization than these general video codecs.

  17. Previous imaging findings of breast cancers that occurred in combined screening negatives

    Energy Technology Data Exchange (ETDEWEB)

    Han, Boo-Kyung, E-mail: bkhan@skku.ed [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710 (Korea, Republic of); Hahn, Soo Yeon; Ko, Eun Young; Shin, Jung Hee; Kang, Seok Seon [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710 (Korea, Republic of)

    2010-07-15

    Purpose: To retrospectively evaluate previous imaging findings of breast cancers that occurred in women whose combined screening using both mammography and ultrasonography was negative. Materials and methods: A search of the institutional database identified 65 patients with breast cancers who had comparable previous negative screening mammography and ultrasonography (BI-RADS category 1 or 2) within 2 years. We classified each case as true or false negative. The previous imaging findings and the final outcome were analyzed. Results: Among 65 cases, 42 (65%) were true negatives, 23 (35%) were false negatives. The abnormalities of false negatives were underestimated in 16 (70%) and unrecognized in 7 (30%). The findings were calcifications (n = 8) or a mass (n = 6) on mammography, a mass (n = 5) or a non-mass (n = 3) on ultrasonography and a density on mammography correlated with non-mass on ultrasonography (n = 1). Ductal carcinoma in situ among false and true negatives accounted for 5 (22%) and 7 (17%), respectively. Symptomatic cancers among false and true negatives were 6 (26%) and 13 (31%), respectively. Conclusion: Breast cancers that rarely occurred in combined screening negatives are often retrospectively seen as minimal abnormalities on previous imaging studies.

  18. Imaging retinal ganglion cells: enabling experimental technology for clinical application.

    Science.gov (United States)

    Smith, Corey A; Chauhan, Balwantray C

    2015-01-01

    Recent advances in clinical ophthalmic imaging have enhanced patient care. However, the ability to differentiate retinal neurons, such as retinal ganglion cells (RGCs), would advance many areas within ophthalmology, including the screening and monitoring of glaucoma and other optic neuropathies. Imaging at the single cell level would take diagnostics to the next level. Experimental methods have provided techniques and insight into imaging RGCs, however no method has yet to be translated to clinical application. This review provides an overview of the importance of non-invasive imaging of RGCs and the clinically relevant capabilities. In addition, we report on experimental data from wild-type mice that received an in vivo intravitreal injection of a neuronal tracer that labelled RGCs, which in turn were monitored for up to 100 days post-injection with confocal scanning laser ophthalmoscopy. We were able to demonstrate efficient and consistent RGC labelling with this delivery method and discuss the issue of cell specificity. This type of experimental work is important in progressing towards clinically applicable methods for monitoring loss of RGCs in glaucoma and other optic neuropathies. We discuss the challenges to translating these findings to clinical application and how this method of tracking RGCs in vivo could provide valuable structural and functional information to clinicians. PMID:25448921

  19. Development of x-ray imaging technique for liquid screening at airport

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Nurhani binti, E-mail: nhani.sulaiman@gmail.com; Srisatit, Somyot, E-mail: somyot.s@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok 10330 (Thailand)

    2016-01-22

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  20. Development of x-ray imaging technique for liquid screening at airport

    Science.gov (United States)

    Sulaiman, Nurhani binti; Srisatit, Somyot

    2016-01-01

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  1. Confocal Raman imaging for cancer cell classification

    Science.gov (United States)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  2. Thermographic image analysis as a pre-screening tool for the detection of canine bone cancer

    Science.gov (United States)

    Subedi, Samrat; Umbaugh, Scott E.; Fu, Jiyuan; Marino, Dominic J.; Loughin, Catherine A.; Sackman, Joseph

    2014-09-01

    Canine bone cancer is a common type of cancer that grows fast and may be fatal. It usually appears in the limbs which is called "appendicular bone cancer." Diagnostic imaging methods such as X-rays, computed tomography (CT scan), and magnetic resonance imaging (MRI) are more common methods in bone cancer detection than invasive physical examination such as biopsy. These imaging methods have some disadvantages; including high expense, high dose of radiation, and keeping the patient (canine) motionless during the imaging procedures. This project study identifies the possibility of using thermographic images as a pre-screening tool for diagnosis of bone cancer in dogs. Experiments were performed with thermographic images from 40 dogs exhibiting the disease bone cancer. Experiments were performed with color normalization using temperature data provided by the Long Island Veterinary Specialists. The images were first divided into four groups according to body parts (Elbow/Knee, Full Limb, Shoulder/Hip and Wrist). Each of the groups was then further divided into three sub-groups according to views (Anterior, Lateral and Posterior). Thermographic pattern of normal and abnormal dogs were analyzed using feature extraction and pattern classification tools. Texture features, spectral feature and histogram features were extracted from the thermograms and were used for pattern classification. The best classification success rate in canine bone cancer detection is 90% with sensitivity of 100% and specificity of 80% produced by anterior view of full-limb region with nearest neighbor classification method and normRGB-lum color normalization method. Our results show that it is possible to use thermographic imaging as a pre-screening tool for detection of canine bone cancer.

  3. Cell-Based Chemical Genetic Screen Identifies Damnacanthal as an Inhibitor of HIV-1 Vpr Induced Cell Death

    OpenAIRE

    Kamata, Masakazu; Wu, Raymond P.; An, Dong Sung; Saxe, Jonathan P; Damoiseaux, Robert; Phelps, Michael E.; Huang, Jing; Chen, Irvin S. Y.

    2006-01-01

    Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified Damnacanthal (Dam), a component of non...

  4. A multi-step system for screening and localization of hard exudates in retinal images

    Science.gov (United States)

    Bopardikar, Ajit S.; Bhola, Vishal; Raghavendra, B. S.; Narayanan, Rangavittal

    2012-03-01

    The number of people being affected by Diabetes mellitus worldwide is increasing at an alarming rate. Monitoring of the diabetic condition and its effects on the human body are therefore of great importance. Of particular interest is diabetic retinopathy (DR) which is a result of prolonged, unchecked diabetes and affects the visual system. DR is a leading cause of blindness throughout the world. At any point of time 25 - 44% of people with diabetes are afflicted by DR. Automation of the screening and monitoring process for DR is therefore essential for efficient utilization of healthcare resources and optimizing treatment of the affected individuals. Such automation would use retinal images and detect the presence of specific artifacts such as hard exudates, hemorrhages and soft exudates (that may appear in the image) to gauge the severity of DR. In this paper, we focus on the detection of hard exudates. We propose a two step system that consists of a screening step that classifies retinal images as normal or abnormal based on the presence of hard exudates and a detection stage that localizes these artifacts in an abnormal retinal image. The proposed screening step automatically detects the presence of hard exudates with a high sensitivity and positive predictive value (PPV ). The detection/localization step uses a k-means based clustering approach to localize hard exudates in the retinal image. Suitable feature vectors are chosen based on their ability to isolate hard exudates while minimizing false detections. The algorithm was tested on a benchmark dataset (DIARETDB1) and was seen to provide a superior performance compared to existing methods. The two-step process described in this paper can be embedded in a tele-ophthalmology system to aid with speedy detection and diagnosis of the severity of DR.

  5. Pain and stress assessment after retinopathy of prematurity screening examination: Indirect ophthalmoscopy versus digital retinal imaging

    Directory of Open Access Journals (Sweden)

    Moral-Pumarega M

    2012-08-01

    Full Text Available Abstract Background Increasingly, neonatal clinics seek to minimize painful experiences and stress for premature infants. Fundoscopy performed with a binocular indirect ophthalmoscope is the reference examination technique for screening of retinopathy of prematurity (ROP, and it is associated with pain and stress. Wide-field digital retinal imaging is a recent technique that should be evaluated for minimizing infant pain and stress. Methods The purpose of the study was to assess and compare the impact of using a binocular indirect ophthalmoscope (BIO, or wide-field digital retinal imaging (WFDRI on pain and stress in infants undergoing ROP screening examination. This was a comparative evaluation study of two screening procedures. Ophthalmologic examinations (N = 70 were performed on 24 infants with both BIO and WFDRI. Pain assessments were performed with two specific neonatal scales (Crying, requires oxygen, increased vital signs, expression and sleeplessness, CRIES and, Premature infant pain profile, PIPP just prior to the examination, and 30 seconds, 1 hour, and 24 hours later after ending the examination. Results Changes over time were significantly different between BIO and WFDRI with both scales (PIPP score, p = .007, and CRIES score, p = .001. Median PIPP score (interquartile interval at baseline was 4 (3–5. At 30 seconds the score was 8 (6–9 for BIO and 6 (5–7 for WFDRI, respectively. The increase in PIPP score between baseline and 30 seconds was significantly lower with WFDRI (p = .006. The median increase in CRIES score from baseline to 30 seconds was 1 point lower for WFDRI than for BIO (p  Conclusions A transient short-term pain and stress response occurs with both BIO and WFDRI. Infants examined for screening of ROP with digital retinal imaging present less pain and stress at 30 seconds following completion of the exam when compared with binocular indirect ophthalmoscopy.

  6. Langerhans cell histiocytosis of bone: MR imaging

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) images of 12 pathologically proven lesions of Langerhans cell histiocytosis (LCH) of bone were reviewed retrospectively. MR identified all lesions, three of which were not identified on plain radiographs. In all cases, MR showed greater abnormality than did plain radiographs. With one exception, all lesions were hypointense on T1-weighted images and hyperintense on T2-weighted images. The lesions and associated soft tissue abnormalities were very conspicuous on short TI inversion sequences and T1-weighted post-contrast images. Follow-up MR studies in two patients after chemotherapy showed decreased size and enhancement of lesions compared with baseline studies. (orig.)

  7. Skeletal MR imaging in sickle cell disease

    International Nuclear Information System (INIS)

    The authors evaluated eight patients with sickle cell disease (mean age, 15.75 years; range 5-19 years) using MR imaging performed 24-72 hours after hospital admission for crisis. Coronal images of the lower extremities were obtained with a General Electric 1.5-T system and pulse sequences of TR/TE = 500/25 msec and 2,000/40, 80 msec. In three patients a mild decrease in signal intensity was seen on both T1- and T2-weighted images, probably secondary to marrow hyperplasia. In two patients a marked decrease in signal intensity was seen on both T1- and T2-weighted images, probably secondary to the diamagnetic effects of marrow iron. Six patients had bone infarct(s) which appeared as well-defined areas with prolonged T2 relaxation times. MR imaging appears promising for the evaluation of bone marrow in sickle cell anemia

  8. Bioluminescence imaging in live cells and animals.

    Science.gov (United States)

    Tung, Jack K; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E

    2016-04-01

    The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment. PMID:27226972

  9. Systematic Analysis of the Crosstalk between Mitosis and DNA Damage by a Live Cell siRNA Screen

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi

    Recent research has shown, that the biological processes of DNA replication, DNA damage, cell cycle and mitosis cannot be considered as isolated cellular functions but are mechanistically linked in many ways. For instance, when cells are exposed to replication stress and enter mitosis with...... unresolved replication intermediates, it can give rise to chromosome lesions, which are then transmitted to the next cell cycle. Aberrations in the mitotic process itself can potentially give rise to post-mitotic DNA damage with serious onsequences for genome integrity in the ensuing cell generations. The...... relative proportion and crosstalk between these causative versus consequent genome-destabilizing events remains elusive. The aim of this thesis was to assess the relationship between DNA damage and mitotic perturbations. Using large-scale, real-time siRNA screens and a live cell imaging approach...

  10. Stem cells: a model for screening, discovery and development of drugs

    Directory of Open Access Journals (Sweden)

    Kitambi SS

    2011-09-01

    Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

  11. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  12. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  13. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  14. Geant4 simulation of the response of phosphor screens for X-ray imaging

    International Nuclear Information System (INIS)

    In order to predict and optimize the response of phosphor screens, it is important to understand the role played by the different physical processes inside the scintillator layer. A simulation model based on the Monte Carlo code Geant4 was developed to determine the Modulation Transfer Function (MTF) of phosphor screens for energies used in X-ray medical imaging and nondestructive testing applications. The visualization of the dose distribution inside the phosphor layer gives an insight into how the MTF is progressively degraded by X-ray and electron transport. The simulation model allows to study the influence of physical and technological parameters on the detector performances, as well as to design and optimize new detector configurations. Preliminary MTF measurements have been carried out and agreement with experimental data has been found in the case of a commercial screen (Kodak Lanex Fine) at an X-ray tube potential of 100 kV. Further validation with other screens (transparent or granular) at different energies is under way

  15. Geant4 simulation of the response of phosphor screens for X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pistrui-Maximean, S.A. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France)]. E-mail: simona.pistrui@insa-lyon.fr; Freud, N. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France); Letang, J.M. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France); Koch, A. [Thales Electron Devices, 38430 Moirans (France); Munier, B. [Thales Electron Devices, 38430 Moirans (France); Walenta, A.H. [Department of Detectors and Electronics, FB Physik, University of Siegen, 57068 Siegen (Germany); Montarou, G. [Corpuscular Physics Laboratory, Blaise Pascal University, 63177 Aubiere Cedex (France); Babot, D. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France)

    2006-07-01

    In order to predict and optimize the response of phosphor screens, it is important to understand the role played by the different physical processes inside the scintillator layer. A simulation model based on the Monte Carlo code Geant4 was developed to determine the Modulation Transfer Function (MTF) of phosphor screens for energies used in X-ray medical imaging and nondestructive testing applications. The visualization of the dose distribution inside the phosphor layer gives an insight into how the MTF is progressively degraded by X-ray and electron transport. The simulation model allows to study the influence of physical and technological parameters on the detector performances, as well as to design and optimize new detector configurations. Preliminary MTF measurements have been carried out and agreement with experimental data has been found in the case of a commercial screen (Kodak Lanex Fine) at an X-ray tube potential of 100 kV. Further validation with other screens (transparent or granular) at different energies is under way.

  16. Computer-aided diagnostics of screening mammography using content-based image retrieval

    Science.gov (United States)

    Deserno, Thomas M.; Soiron, Michael; de Oliveira, Júlia E. E.; de A. Araújo, Arnaldo

    2012-03-01

    Breast cancer is one of the main causes of death among women in occidental countries. In the last years, screening mammography has been established worldwide for early detection of breast cancer, and computer-aided diagnostics (CAD) is being developed to assist physicians reading mammograms. A promising method for CAD is content-based image retrieval (CBIR). Recently, we have developed a classification scheme of suspicious tissue pattern based on the support vector machine (SVM). In this paper, we continue moving towards automatic CAD of screening mammography. The experiments are based on in total 10,509 radiographs that have been collected from different sources. From this, 3,375 images are provided with one and 430 radiographs with more than one chain code annotation of cancerous regions. In different experiments, this data is divided into 12 and 20 classes, distinguishing between four categories of tissue density, three categories of pathology and in the 20 class problem two categories of different types of lesions. Balancing the number of images in each class yields 233 and 45 images remaining in each of the 12 and 20 classes, respectively. Using a two-dimensional principal component analysis, features are extracted from small patches of 128 x 128 pixels and classified by means of a SVM. Overall, the accuracy of the raw classification was 61.6 % and 52.1 % for the 12 and the 20 class problem, respectively. The confusion matrices are assessed for detailed analysis. Furthermore, an implementation of a SVM-based CBIR system for CADx in screening mammography is presented. In conclusion, with a smarter patch extraction, the CBIR approach might reach precision rates that are helpful for the physicians. This, however, needs more comprehensive evaluation on clinical data.

  17. Portable retinal imaging for eye disease screening using a consumer-grade digital camera

    Science.gov (United States)

    Barriga, Simon; Larichev, Andrey; Zamora, Gilberto; Soliz, Peter

    2012-03-01

    The development of affordable means to image the retina is an important step toward the implementation of eye disease screening programs. In this paper we present the i-RxCam, a low-cost, hand-held, retinal camera for widespread applications such as tele-retinal screening for eye diseases like diabetic retinopathy (DR), glaucoma, and age-related ocular diseases. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities. The i-RxCam uses a Nikon D3100 digital camera body. The camera has a CMOS sensor with 14.8 million pixels. We use a 50mm focal lens that gives a retinal field of view of 45 degrees. The internal autofocus can compensate for about 2D (diopters) of focusing error. The light source is an LED produced by Philips with a linear emitting area that is transformed using a light pipe to the optimal shape at the eye pupil, an annulus. To eliminate corneal reflex we use a polarization technique in which the light passes through a nano-wire polarizer plate. This is a novel type of polarizer featuring high polarization separation (contrast ratio of more than 1000) and very large acceptance angle (>45 degrees). The i-RxCam approach will yield a significantly more economical retinal imaging device that would allow mass screening of the at-risk population.

  18. Theory of direct sunlight transmission through orthogonal screen cells

    International Nuclear Information System (INIS)

    The Purpose of this paper is to investigate the feasibility of using the Rawshan screens to control high light intensity and to avoid excessive solar radiation penetrating inside the building interior. The exploration of the environmental characteristics of this device indicates an ideal solution to utilize available daylight in the arid atmosphere, reduces energy consumption due to the us of artificial light and ensures the continuity of the traditional architecture and the country heritage. A systematic analysis of direct sunlight transmission has been explored using a mathematical approach. The study intends to construct a predictive tool for the architects through which different specifications of the Rawshan screens were identified as far as direct beam of light concerned. The predictive tool was set-up to investigate various parameters of the screen such as the screen configurations, the aperture configurations, the change in orientation and the effect of the sky condition. The analysis of light transmission through the screen were set-up for orthogonal shapes

  19. Can laptops be left inside passenger bags if motion imaging is used in X-ray security screening?

    Directory of Open Access Journals (Sweden)

    Marcia eMendes

    2013-10-01

    Full Text Available This paper describes a study where a new X-ray machine for security screening featuring motion imaging (i.e. 5 views of a bag are shown as an image sequence was evaluated and compared to single view imaging available on conventional X-ray screening systems. More specifically, it was investigated whether with this new technology X-ray screening of passenger bags could be enhanced to such an extent that laptops could be left inside passenger bags, without causing a significant impairment in threat detection performance. An X-ray image interpretation test was created in four different versions, manipulating the factors packing condition (laptop and bag separate vs. laptop in bag and display condition (single vs. motion imaging. There was a highly significant and large main effect of packing condition. When laptops and bags were screened separately, threat item detection was substantially higher. For display condition, a medium effect was observed. Detection could be slightly enhanced through the application of motion imaging. There was no interaction between display and packing condition, implying that the high negative effect of leaving laptops in passenger bags could not be fully compensated by motion imaging. Additional analyses were carried out to examine effects depending on different threat categories (guns, improvised explosive devices, knives, others, the placement of the threat items (in bag vs. in laptop and viewpoint (easy vs. difficult view. In summary, although motion imaging provides an enhancement, it is not strong enough to allow leaving laptops in bags for security screening.

  20. A system for optical high resolution screening of electrical excitable cells.

    Science.gov (United States)

    Müller, Oliver; Tian, Qinghai; Zantl, Roman; Kahl, Valentin; Lipp, Peter; Kaestner, Lars

    2010-03-01

    The application of primary excitable cells for high content screening (HCS) requires a multitude of novel developments including cell culture and multi-well plates. Here we introduce a novel system combining optimised culture conditions of primary adult cardiomyocytes with the particular needs of excitable cells for arbitrary field stimulation of individual wells. The major advancements of our design were tested in calcium imaging experiments and comprise (i) each well of the plate can be subjected to individual pulse protocols, (ii) the software driving electrical stimulation can run as a stand-alone application but also as a plug-in in HCS software packages, (iii) the optical properties of the plastic substrate (foil) resemble those of glass coverslips fostering high resolution immersion-based microscopy, (iv) the bottom of the foil is coated with an oleophobic layer that prevents immersion oil from sticking, (v) the top of the foil is coated with an elastic film. The latter enables cardiomyocytes to display loaded contractions by mimicking the physiologically occurring local elastic network (e.g. extracellular matrix) and results in significantly increased contractions (with identical calcium transients) when compared to non-elastic substrates. Thus, our novel design and culture conditions represent an essential further step towards the application of primary cultured adult cardiomyocytes for HCS applications. PMID:20036001

  1. Quality control: comparison of images quality with screen film system and digital mammography CR

    International Nuclear Information System (INIS)

    The mammography screen film system should be used as part of processing chemicals, revelation process, equipment and this system has have a progressive replacing by the digital technology Full Field Digital Mammography FFDM, Computed Radiography (CR) Mammography and hardcopy. This new acquisition process of medical images has improved radiology section; however it is necessary efficient means for evaluating of the quality parameters. It should be considered taking into account the adaptation of the existent equipment and that procedures adopted for the exam, as well the adaptation of the new mammography films, the radiologist view box constitutes a part of the quality control program. This program aims at obtaining radiography with good quality that allows obtaining more information for the diagnosis and decreases the patient dose. For evaluation the quality image, this article is focused on presenting the differences regarding the acquired images through simulator mammography radiographic PMMA (Poly methyl methacrylate) in CR Mammography system and screen film system. The tests were accomplished at the same equipment of Mammography with the Automatic Exposure Control using a tension of 28 kV for both systems. The quality tests evaluated the spatial resolution, the own structures of the phantom, artifacts, optical density and contrast with conventional and laser films by mammography system. The installation for the accomplishment of the test has a quality control program. The evaluation was based on the pattern developed by the competent organ of the State of Minas Gerais. In this study, it was verified that the suitable Phantom Mama used by the Brazilian School of Radiology for conventional mammography did not obtain satisfactory result for Spatial Resolution in the digital mammography system CR. The final aim of this work is to obtain parameters to characterize the reference phantom quality image in an objective way. These parameters will be used to compare

  2. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  3. Women's attitude towards prenatal screening for red blood cell antibodies, other than RhD

    Directory of Open Access Journals (Sweden)

    van der Schoot CE

    2008-11-01

    Full Text Available Abstract Background Since July 1998 all Dutch women (± 200,000/y are screened for red cell antibodies, other than anti-RhesusD (RhD in the first trimester of pregnancy, to facilitate timely treatment of pregnancies at risk for hemolytic disease of the fetus and newborn (HDFN. Evidence for benefits, consequences and costs of screening for non-RhD antibodies is still under discussion. The screening program was evaluated in a nation-wide study. As a part of this evaluation study we investigated, according to the sixth criterium of Wilson and Jüngner, the acceptance by pregnant women of the screening program for non-RhD antibodies. Methods Controlled longitudinal survey, including a prenatal and a postnatal measurement by structured questionnaires. Main outcome measures: information satisfaction, anxiety during the screening process (a.o. STAI state inventory and specific questionnaire modules, overall attitude on the screening program. Univariate analysis was followed by standard multivariate analysis to identify significant predictors of the outcome measures. Participants: 233 pregnant women, distributed over five groups, according to the screening result. Results Satisfaction about the provided information was moderate in all groups. All screen- positive groups desired more supportive information. Anxiety increased in screen- positives during the screening process, but decreased to basic levels postnatally. All groups showed a strongly positive balance between perceived utility and burden of the screening program, independent on test results or background characteristics. Conclusion Women highly accept the non-RhD antibody screening program. However, satisfaction about provided information is moderate. Oral and written information should be provided by obstetric care workers themselves, especially to screen-positive women.

  4. Imaging neurotransmitter release kinetics in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Weihong [Univ. of Florida, Gainesville, FL (United States); Yeung, E.S. [Ames Lab., IA (United States); Haydon, P.G. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    A new UV-laser based optical microscope and CCD detection system has been developed to image neurotransmitter in living biological cells. We demonstrate the detection of serotonin that has been taken up into and released from individual living glial cells (astrocytes) based on its native fluorescence. The detection methodology has high sensitivity, low limit of detection and does not require coupling to fluorescence dyes. We have studied serotonin uptake kinetics and its release dynamics in single glial cells. Different regions of a glial cell have taken up different amounts of serotonin with a variety of kinetics. Similarly, different serotonin release mechanisms have been observed in different astrocyte cell regions. The temporal resolution of this detection system is as fast as 50 ms, and the spatial resolution is diffraction limited. We will also report on single enzyme molecule reaction studies and single metal ion detection based on CCD imaging of pL reaction vials formed by micromachining on fused silica.

  5. Thermal imaging in screening of joint inflammation and rheumatoid arthritis in children

    International Nuclear Information System (INIS)

    Potential of modern thermal imaging for screening and differentiation of joint inflammation has not been assessed in child and juvenile patient populations, typically demanding groups in diagnostics of musculoskeletal disorders. We hypothesize that thermal imaging can detect joint inflammation in patients with juvenile idiopathic arthritis or autoimmune disease with arthritis such as systemic lupus erythematosus. To evaluate the hypothesis, we studied 58 children exhibiting symptoms of joint inflammation. First, the patients’ joints were examined along clinical procedure supplemented with ultrasound imaging when deemed necessary by the clinician. Second, thermal images were acquired from patients’ knees and ankles. Results of thermal imaging were compared to clinical evaluations in knee and ankle. The temperatures were significantly (pmax = 0.044, pmean < 0.001) higher in inflamed ankle joints, but not in inflamed knee joints. No significant difference was found between the skin surface temperatures of medial and lateral aspects of ankle joints. In knee joints the mean temperatures of medial and lateral aspect differed significantly (p = 0.004). We have demonstrated that thermal imaging may have potential for detecting joint inflammation in ankle joints of children. For knee joints our results are inconclusive and further research is warranted. (paper)

  6. A new antiviral screening method that simultaneously detects viral replication, cell viability, and cell toxicity.

    Science.gov (United States)

    Matza-Porges, Sigal; Eisen, Kobi; Ibrahim, Hadeel; Haberman, Adva; Fridlender, Bertold; Joseph, Gili

    2014-11-01

    Viruses cause a variety of illnesses in humans, yet only a few antiviral drugs have been developed; thus, new antiviral drugs are urgently needed. Plants could be a good source of antiviral drugs, they do not have mobility and can only defend themselves by producing compounds against pathogens such as viruses in their own fix environment. These compounds may have the potential to inhibit animal and human viruses as well. In this study, a fast and reliable method for screening plant extracts for specific antiviral activity against Herpes simplex virus type-1 (HSV-1) was developed. This method distinguishes between host cell death due to infectivity and multiplicity of the virus versus toxicity of the plant extract. Extracts from 80 plant and plant organs were screened using this approach. Six plant extracts showed potential to exert specific HSV-1 growth inhibition activity. In two cases, different organs from the same plant showed similar active results. With this method it is possible to screen a large number of extracts in a rapid and accurate way to detect antiviral substances against HSV-I and other viruses. PMID:25152527

  7. Effects of image compression and degradation on an automatic diabetic retinopathy screening algorithm

    Science.gov (United States)

    Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.

    2010-03-01

    Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.

  8. Screening for Stromal and Matrix Effects in 3D Microenvironments of Breast Cancer Cells

    Science.gov (United States)

    Montanez-Sauri, Sara I.

    Breast cancer progression ensures through the acquisition of genetic mutations, the uncontrollable growth of cells, and their progression to invasion. Studies have shown that the surrounding three-dimensional (3D) microenvironment can also influence breast cancer cell progression by controlling the morphology, differentiation, proliferation, and migration of cells. However, most of the currently available in vitro screening platforms are based on the two-dimensional (2D) culture of cells, and do not provide cells with the complex 3D microenvironment that exists in vivo. Therefore, there is a need for more biologically relevant in vitro platforms to help decipher the complexity of the microenvironment and its influence in breast cancer. In this dissertation we present an automated microfluidic platform that allows to efficiently screen for the effect of multiple matrix and stromal microenvironment in 3D cultures of breast cancer cells. Several extracellular matrix (ECM) compositions and stromal cells are included in the 3D microenvironments to examine their influence on breast cancer cell behavior. The screening results suggest that collagen gels with fibronectin might be influencing paracrine signals between breast cancer cells and stromal cells. The ability of the platform to culture and treat cells in 3D microenvironments offers a powerful screening tool for the identification of compounds and interactions using more in vivo-like 3D microenvironments. The identification of these mechanisms will increase our current understanding of breast cancer, and will aid in the identification of potential therapeutics.

  9. A protein network-guided screen for cell cycle regulators in Drosophila

    Directory of Open Access Journals (Sweden)

    Kashat Maria A

    2011-05-01

    Full Text Available Abstract Background Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. Results We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3 complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. Conclusions Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results

  10. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    Science.gov (United States)

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  11. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.

    Science.gov (United States)

    Miki, Tomohiro; Nakaoka, Yuki; Goshima, Gohta

    2016-01-01

    RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth. PMID:27581297

  12. Advances in Tumor Screening, Imaging, and Avatar Technologies for High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Anders eOhman

    2014-11-01

    Full Text Available The majority of high-grade serous ovarian carcinoma cases are detected in advanced stages when treatment options are limited. Surgery is less effective at eradicating the disease when it is widespread, resulting in high rates of disease relapse and chemoresistance. Current screening techniques are ineffective for early tumor detection and consequently, BRCA mutations carriers, with an increased risk for developing high-grade serous ovarian cancer, elect to undergo risk-reducing surgery. While prophylactic surgery is associated with a significant reduction in the risk of cancer development, it also results in surgical menopause and significant adverse side effects. The development of efficient early-stage screening protocols and imaging technologies is critical to improving the outcome and quality of life for current patients and women at increased risk. In addition, more accurate animal models are necessary in order to provide relevant in vivo testing systems and advance our understanding of the disease origin and progression. Moreover, both genetically engineered and tumor xenograft animal models enable the preclinical testing of novel imaging techniques and molecularly targeted therapies as they become available. Recent advances in xenograft technologies have made possible the creation of avatar mice, personalized tumorgrafts, which can be used as therapy testing surrogates for individual patients prior to or during treatment. High-grade serous ovarian cancer may be an ideal candidate for use with avatar models based on key characteristics of the tumorgraft platform. This review explores multiple strategies, including novel imaging and screening technologies in both patients and animal models, aimed at detecting cancer in the early stages and improving the disease prognosis.

  13. Sensitivity and specificity of nonmydriatic digital imaging in screening diabetic retinopathy in Indian eyes

    Directory of Open Access Journals (Sweden)

    Vishali Gupta

    2014-01-01

    Full Text Available Background: Nonmydriatic digital imaging (NMDI is ideal for screening diabetic retinopathy (DR, but its use in Indian eyes has not been evaluated. Aim: The aim was to evaluate the sensitivity and specificity of NMDI as a screening tool in detecting DR in Indian eyes. Design: A prospective, nonrandomized, noncomparative, noninterventional study. Materials and Methods: A total of 500 diabetic patients visiting the endocrinology clinic (September 2008-June 2010 underwent NMDI (Zeiss Procam, followed by routine dilated fundus photography (FP; Zeiss Visupac 450+ of 345° retinal fields (1 optic disc and macula, (2 superotemporal, and (3 nasal to optic disc. Two-masked retina specialists graded the images for quality and severity of DR, and compared between NMDI and dilated FP. Statistical Analysis: SPSS Windows 17 for version. Results: Mean age was 52.97 ± 13.46 years (306 males: 194 females. The rate of ungradable images was 30.6% and 31% by the two observers. By observer 1, the sensitivity and specificity of detecting any DR was 58.8% and 69.1%, respectively, (κ = 0.608 and sight-threatening DR (STDR was 63.1% and 68.9%, respectively, (κ = 0.641. By observer 2, the sensitivity and specificity was 57.3% and 68.3%, respectively, for any DR (κ = 0.593 and 62.8% and 68.3%, respectively, for STDR (κ = 0.637. The level of agreement between two observers was high (κ = 0.96. Conclusion: A high rate of poor quality photographs and low sensitivity limited the use of NMDI as a perfect screening system, particularly in dark iris population with diabetes as seen in Indian eyes.

  14. Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry.

    Science.gov (United States)

    Lacson, Ronilda; Harris, Kimberly; Brawarsky, Phyllis; Tosteson, Tor D; Onega, Tracy; Tosteson, Anna N A; Kaye, Abby; Gonzalez, Irina; Birdwell, Robyn; Haas, Jennifer S

    2015-10-01

    Breast cancer screening is central to early breast cancer detection. Identifying and monitoring process measures for screening is a focus of the National Cancer Institute's Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) initiative, which requires participating centers to report structured data across the cancer screening continuum. We evaluate the accuracy of automated information extraction of imaging findings from radiology reports, which are available as unstructured text. We present prevalence estimates of imaging findings for breast imaging received by women who obtained care in a primary care network participating in PROSPR (n = 139,953 radiology reports) and compared automatically extracted data elements to a "gold standard" based on manual review for a validation sample of 941 randomly selected radiology reports, including mammograms, digital breast tomosynthesis, ultrasound, and magnetic resonance imaging (MRI). The prevalence of imaging findings vary by data element and modality (e.g., suspicious calcification noted in 2.6% of screening mammograms, 12.1% of diagnostic mammograms, and 9.4% of tomosynthesis exams). In the validation sample, the accuracy of identifying imaging findings, including suspicious calcifications, masses, and architectural distortion (on mammogram and tomosynthesis); masses, cysts, non-mass enhancement, and enhancing foci (on MRI); and masses and cysts (on ultrasound), range from 0.8 to1.0 for recall, precision, and F-measure. Information extraction tools can be used for accurate documentation of imaging findings as structured data elements from text reports for a variety of breast imaging modalities. These data can be used to populate screening registries to help elucidate more effective breast cancer screening processes. PMID:25561069

  15. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario

    Science.gov (United States)

    Güren, Onan; Çayören, Mehmet; Tükenmez Ergene, Lale; Akduman, Ibrahim

    2014-10-01

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  16. Utilization and cost of diagnostic imaging and biopsies following positive screening mammography in the southern breast cancer screening region of the Netherlands, 2000-2005

    International Nuclear Information System (INIS)

    We prospectively assessed trends in utilization and costs of diagnostic services of screen-positive women in a biennial breast cancer screening program for women aged 50-75 years. All 2,062 women with suspicious findings at screening mammography in the southern region of the Netherlands between 1 January 2000 and 1 July 2005 (158,997 screens) were included. Data were collected on any diagnostic examinations, interventional procedures, and surgical consultations with two-year follow-up. We used national reimbursement rates to estimate imaging costs and percutaneous biopsy costs. Cost prices, charged by hospitals, were used to estimate open surgical biopsy costs and surgical consultation costs. The largest increase in utilization of diagnostic procedures per 100 referrals was observed for axillary ultrasound (from 3.9 in 2000 to 33.5 in 2005) and for stereotactic core biopsy (from 2.1 in 2000 to 26.8 in 2005). Per 100 referrals, the open surgical biopsy rate decreased from 34.7 (2000) to 4.6 (2005) and the number of outpatient surgical consultations fluctuated between 269.8 (2000) and 309.7 (2004). Mean costs for the diagnosis of one cancer were EUR1,501 and ranged from EUR1,223 (2002) to EUR1,647 (2003). Surgical biopsies comprised 54.1% of total diagnostic costs for women screened in 2000, but decreased to 9.9% for women screened in 2005. Imaging costs increased from 23.7 to 43.8%, percutaneous biopsy costs from 9.9 to 27.2%, and consultation costs from 12.3 to 19.1%. We conclude that diagnostic costs per screen-detected cancer remained fairly stable through the years, although huge changes in the use of different diagnostic procedures were observed. (orig.)

  17. Storage phosphor digital radiography in portable chest imaging: comparison of image quality with conventional film-screen system with variation of mAs

    International Nuclear Information System (INIS)

    To compare image quality of storage phosphor digital radiography (DR) with film-screen radiography in portable chest imaging, and to assess the minimum X-ray dose that can be applied to DR in adults without image degradation, and also to compare image qualities of low dose and standard dose DR. A geometrical phantom similar to the human thorax was imaged by a portable radiographic unit with fixed kVp and variable mAs in both film-screen and DR systems. Three radiologists scored the images by four grades in four categories of 1) contrast between mediastinum and lung, 2) definition of the nodule in the lung, 3) definition of another nodule through the mediastinal shadow, and 4) grainess (noise: assessed only in DR). Additionally, portable chest images were obtained in 10 patients in a intensive care unit by film-screen, standard dose and half dose DR in consecutive days. The same readers scored the images by four grades in six categories of 1) the lungs and hila, 2)the mediastinum, 3) subphrenic area. 4) musculoskeletal shadow, 5) tubes and lines, and 6) grainess (only in DR). The images with superior quality were assessed by paired t-test. In phantom study, the minimum dose of digital images scored 3 or more by all readers was 39% of the standard dose. In patient study, DR was superior to film-screen radiography in all categories except tube and line. Low dose DR was not inferior to standard dose DR in five categories other than grainess to two readers or more. In portable chest imaging, storage phosphor DR image was superior to conventional film-screen radiography and half dose DR was comparable to standard dose DR despite of more noise

  18. Neurologic screening by magnetic resonance imaging in asymptomatic subjects in Self Defence Force Maizuru guard area

    International Nuclear Information System (INIS)

    To clarify usefulness of cranial magnetic resonance imaging (MRI) for group health care. We performed 1136 cranial MRI and MRA examinations between March 1992 and February 1997 in members of the Self Defense Force (SDF) stationed in the Maizuru area. We selected subjects when they reached the age of 40 years, when they retired, or when they were found to have risk factors for cerebrovascular disease. Furthermore, we investigated occurrence of symptomatic cerebral disease of our subjects and non-subjects in SDF Maizuru area during MRI screening. We found 77 asymptomatic cerebral infarctions, 8 unruptured cerebral aneurysms, 2 pituitary adenomas, 4 venous angiomas and 4 arachnoid cysts. Among asymptomatic cerebral disease, the number of cerebral infarctions was significantly greater in the risk factor and retired group compared to the 40-year-old group. In 24 patients with asymptomatic cerebral infarction whom we were able to follow, we prescribed antiplatelet drugs and none became symptomatic. Unruptured cerebral aneurysms and pituitary tumors we treated operatively, resulting in good functional outcomes in all patients. There were less symptomatic cerebral diseases in the subject group (0.08%) vs. in the non-subject group (0.3%). However, the difference was not statistically significant (p=.20). Screening cranial MRI and MRA examinations indicated considerable overall utility. However, further human study is warranted to identify usefulness of MRI screening system. (author)

  19. Neurologic screening by magnetic resonance imaging in asymptomatic subjects in Self Defence Force Maizuru guard area

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, Youichi; Saitoh, Daizoh; Terai, Chikanori; Okada, Yoshiaki [National Defence Medical Coll., Tokorozawa, Saitama (Japan). Hospital; Nawashiro, Hiroshi; Shima, Katsuji

    1998-12-01

    To clarify usefulness of cranial magnetic resonance imaging (MRI) for group health care. We performed 1136 cranial MRI and MRA examinations between March 1992 and February 1997 in members of the Self Defense Force (SDF) stationed in the Maizuru area. We selected subjects when they reached the age of 40 years, when they retired, or when they were found to have risk factors for cerebrovascular disease. Furthermore, we investigated occurrence of symptomatic cerebral disease of our subjects and non-subjects in SDF Maizuru area during MRI screening. We found 77 asymptomatic cerebral infarctions, 8 unruptured cerebral aneurysms, 2 pituitary adenomas, 4 venous angiomas and 4 arachnoid cysts. Among asymptomatic cerebral disease, the number of cerebral infarctions was significantly greater in the risk factor and retired group compared to the 40-year-old group. In 24 patients with asymptomatic cerebral infarction whom we were able to follow, we prescribed antiplatelet drugs and none became symptomatic. Unruptured cerebral aneurysms and pituitary tumors we treated operatively, resulting in good functional outcomes in all patients. There were less symptomatic cerebral diseases in the subject group (0.08%) vs. in the non-subject group (0.3%). However, the difference was not statistically significant (p=.20). Screening cranial MRI and MRA examinations indicated considerable overall utility. However, further human study is warranted to identify usefulness of MRI screening system. (author)

  20. Lensless imaging system to quantify cell proliferation

    Science.gov (United States)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  1. A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae

    Science.gov (United States)

    Zhao, Lei; Yang, Qian; Zheng, Ju; Zhu, Xuefeng; Hao, Xinxin; Song, Jia; Lebacq, Tom; Franssens, Vanessa; Winderickx, Joris; Nystrom, Thomas; Liu, Beidong

    2016-01-01

    Synphilin-1 is a major component of Parkinson’s disease (PD) inclusion bodies implicated in PD pathogenesis. However, the machinery controlling synphilin-1 inclusion formation remains unclear. Here, we investigated synphilin-1 inclusion formation using a systematic genome-wide, high-content imaging based screening approach (HCI) in the yeast Saccharomyces cerevisiae. By combining with a secondary screening for mutants showing significant changes on fluorescence signal intensity, we filtered out hits that significantly decreased the expression level of synphilin-1. We found 133 yeast genes that didn’t affect synphilin-1 expression but that were required for the formation of synphilin-1 inclusions. Functional enrichment and physical interaction network analysis revealed these genes to encode for functions involved in cytoskeleton organization, histone modification, sister chromatid segregation, glycolipid biosynthetic process, DNA repair and replication. All hits were confirmed by conventional microscopy. Complementation assays were performed with a selected group of mutants, results indicated that the observed phenotypic changes in synphilin-1 inclusion formation were directly caused by the loss of corresponding genes of the deletion mutants. Further growth assays of these mutants showed a significant synthetic sick effect upon synphilin-1 expression, which supports the hypothesis that matured inclusions represent an end stage of several events meant to protect cells against the synphilin-1 cytotoxicity. PMID:27440388

  2. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  3. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  4. Global quality control perspective for the physical and technical aspects of screen-film mammography - Image quality and radiation dose

    International Nuclear Information System (INIS)

    The systematic monitoring of image quality and radiation dose is an ultimate solution to ensuring the continuously high quality of mammography examination. At present several protocols exist around the world, and different test objects are used for quality control (QC) of the physical and technical aspects of screen-film mammography. This situation may lead to differences in radiation image quality and dose reported. This article reviews the global QC perspective for the physical and technical aspects of screen-film mammography with regard to image quality and radiation dose. It points out issues that must be resolved in terms of radiation dose and that also affect the comparison. (authors)

  5. Recent Advances in Morphological Cell Image Analysis

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.

  6. Value of breast imaging reporting and data system in Chinese breast cancer screening

    International Nuclear Information System (INIS)

    Objective: To study the value of breast imaging reporting and data system (BI-RADS) in Chinese breast cancer screening. Methods: A total number of 3483 women participated in breast cancer screening with mammography in Hexi district in Tianjin from August to December 2009, which was organized by ministry of public health. BI-RADS assessment categories and recommendations were compared with histological findings. The precision, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Results: Among 3483 screening mammography cases, 267 were almost entirely fat breast, 1245 were scattered fibroglandular, 1890 were dense and 81 extremely dense. There were 1011 patients (29.0%) with category 1, 1741 (50.0%) with category 2, 383 (11.0%) with category 3, 59 patients (1.7%) with category 4 and 16 (0.5%) with category 5 according to BI-RADS assessment categories. Totally, 71 women with 77 lesions were confirmed by histological examinations. There were 29 malignant and 48 benign lesions. The diagnostic precision, sensitivity, specificity of' BI-RADS were 63.6% (49/77), 93.1% (27/29) and 45.8% (22/48). The general PPV of BI-RADS was 50.9% (27/53). The PPV of categories 0.4, 5 were 25.0% (1/4), 36.4% (12/33) and 87.5% (14/16). The NPV of categories 2 and 3 were 90.9% (10/11), 100.0% (12/12). Conclusions: BI-RADS is of much value in assessing the breast malignancy. It is applicable in Chinese breast cancer screening. (authors)

  7. Advances in retinal ganglion cell imaging.

    Science.gov (United States)

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-10-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  8. Auditing Mammographic Dose and Image Quality in the UK Breast Screening Programme

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.C.; Ramsdale, M.L.; Rust, A

    1998-07-01

    A national audit of image quality and dose has been conducted across 267 mammography X ray sets in the UK Breast Screening Programme, repeating a previous survey in 1991. The main parameters were film density, film contrast, mean glandular dose to the standard breast (MGD) and image quality (IQ) measured with a TOR(MAM) test object. Film density has increased from a mean of 1.33 in 1991 to a mean of 1.61 in 1996 as a result of national guidelines. Over the same period the average MGD has increased from 1.28 to 1.36 mGy. Average film gradient ranged from 2.2 to 3.9 with a mean of 3.2. IQ ranged from 48 to 86 with a mean of 69. Causes of reduced IQ were low film densities, medium screens and older designs of mammography X ray set. Although film density and MGD were generally satisfactory, there appears to be room for further optimisation of film contrast and IQ. (author)

  9. Computer-assisted static/dynamic renal imaging: a screening test for renovascular hypertension

    International Nuclear Information System (INIS)

    Computer-assisted static/dynamic renal imaging with [197Hg] chlormerodrin and [/sup 99m/Tc] pertechnetate was evaluated prospectively as a screening test for renovascular hypertension. Results are reported for 51 patients: 33 with benign essential hypertension and 18 with renovascular hypertension, and for 21 normal controls. All patients underwent renal arteriography. Patients with significant obesity, renal insufficiency, or renoparenchymal disease were excluded from this study. Independent visual analyses of renal gamma images and time-activity transit curves identified 17 of the 18 patients with renovascular hypertension; one study was equivocal. There were five equivocal and three false-positive results in the essential hypertension and normal control groups. The sensitivity of the method was 94% and the specificity 85%. Since the prevalence of the renovascular subset of hypertension is approximately 5%, the predictive value is only 25%. Inclusion of computer-generated data did not improve this result. Accordingly, this method is not recommended as a primary screening test for renovascular hypertension

  10. An integrated microfluidic biosensor for the rapid screening of foodborne pathogens by surface plasmon resonance imaging

    Science.gov (United States)

    Zordan, Michael D.; Grafton, Meggie M. G.; Leary, James F.

    2011-03-01

    The rapid detection of foodborne pathogens is of vital importance to keep the food supply rid of contamination. Previously we have demonstrated the design of a hybrid optical device that performs real-time surface plasmon resonance (SPR) and epi-fluorescence imaging. Additionally we have developed a biosensor array chip that is able to specifically detect the presence of two known pathogens. This biosensor detects the presence of the pathogen strains by the selective capture of whole pathogens by peptide ligands functionalized to the spots of the array. We have incorporated this biosensor array into a self contained PDMS microfluidic chip. The enclosure of the biosensor array by a PDMS microfluidic chip allows for a sample to be screened for many strains of pathogens simultaneously in a safe one time use biochip. This disposable optical biochip is inserted into with the hybrid SPR/epi-fluorescence imaging device to form an integrated system for the detection of foodborne pathogens. Using this integrated system, we can selectively detect the presence of E. coli 0157:H7 or S. enterica in a simultaneously in real-time. Additionally, we have modeled the mechanical properties of the microfluidic biochip in order to manipulate the flow conditions to achieve optimal pathogen capture by the biosensor array. We have developed an integrated system that is able to screen a sample for multiple foodborne pathogens simultaneously in a safe, rapid and label-free manner.

  11. Auditing Mammographic Dose and Image Quality in the UK Breast Screening Programme

    International Nuclear Information System (INIS)

    A national audit of image quality and dose has been conducted across 267 mammography X ray sets in the UK Breast Screening Programme, repeating a previous survey in 1991. The main parameters were film density, film contrast, mean glandular dose to the standard breast (MGD) and image quality (IQ) measured with a TOR(MAM) test object. Film density has increased from a mean of 1.33 in 1991 to a mean of 1.61 in 1996 as a result of national guidelines. Over the same period the average MGD has increased from 1.28 to 1.36 mGy. Average film gradient ranged from 2.2 to 3.9 with a mean of 3.2. IQ ranged from 48 to 86 with a mean of 69. Causes of reduced IQ were low film densities, medium screens and older designs of mammography X ray set. Although film density and MGD were generally satisfactory, there appears to be room for further optimisation of film contrast and IQ. (author)

  12. Noninvasive Imaging of Administered Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  13. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels.

    Science.gov (United States)

    George, Subin M; Moon, Hyejin

    2015-03-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  14. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson; Joensson, Haakan N.

    2015-01-01

    directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...

  15. Cell-based drug combination screening with a microfluidic droplet array system.

    Science.gov (United States)

    Du, Guan-Sheng; Pan, Jian-Zhang; Zhao, Shi-Ping; Zhu, Ying; den Toonder, Jaap M J; Fang, Qun

    2013-07-16

    We performed cell-based drug combination screening using an integrated droplet-based microfluidic system based on the sequential operation droplet array (SODA) technique. In the system, a tapered capillary connected with a syringe pump was used for multistep droplet manipulations. An oil-covered two-dimensional droplet array chip fixed in an x-y-z translation stage was used as the platform for cell culture and analysis. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel in the semiopen droplet array, using multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Long-term cell culture as long as 11 days was performed in oil-covered 500 nL droplets by changing the culture medium in each droplet every 24 h. The present system was applied in parallel schedule-dependent drug combination screening for A549 nonsmall lung cancer cells with the cell cycle-dependent drug flavopiridol and two anticancer drugs of paclitaxel and 5-fluorouracil. The highest inhibition efficiency was obtained with a schedule combination of 200 nM flavopiridol followed by 100 μM 5-fluorouracil. The drug consumption for each screening test was substantially decreased to 5 ng-5 μg, corresponding to 10-1000-fold reductions compared with traditional drug screening systems with 96-well or 384-well plates. The present work provides a novel and flexible droplet-based microfluidic approach for performing cell-based screening with complex and multistep operation procedures. PMID:23786644

  16. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    OpenAIRE

    Yang Cao; Nicole L. Hoppman; Sarah E Kerr; Sattler, Christopher A.; Borowski, Kristi S.; Wick, Myra J.; Edward Highsmith, W.; Umut Aypar

    2016-01-01

    Background. Noninvasive prenatal screening (NIPS) is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA) circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and speci...

  17. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT

    International Nuclear Information System (INIS)

    In this paper, an image processing algorithm for computer-aided diagnosis of lung cancer by X-ray CT is described, which has been developed by my research group for these 10 years or so. CT lung images gathered at the mass screening stage are almost all normal, and lung cancer nodules will be found as the rate of less than 10%. To pick up such a very rare nodules with the high accuracy, a very sensitive detection algorithm is requested which is detectable local and very slight variation of the image. On the contrary, such a sensitive detection algorithm introduces a bad effect that a lot of normal shadows will be detected as abnormal shadows. In this paper I describe how to compromise this complicated subject and realize a practical computer-aided diagnosis tool by the image processing algorithm developed by my research group. Especially, I will mainly focus my description to the principle and characteristics of the Quoit filter which is newly developed as a high sensitive filter by my group. (author)

  18. Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images

    Science.gov (United States)

    Phan, Thanh Vân; Seoud, Lama; Chakor, Hadi; Cheriet, Farida

    2016-01-01

    Age-related macular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color, and visual context in fundus images. A support vector machine and a random forest were used to classify images according to the different AMD stages following the AREDS protocol and to evaluate the features' relevance. Experiments were conducted on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task, our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between 0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality.

  19. Development of a screening tool for staging of diabetic retinopathy in fundus images

    Science.gov (United States)

    Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Bency, Mayur Joseph; Rangayyan, Rangaraj M.; Bansal, Reema; Gupta, Amod

    2015-03-01

    Diabetic retinopathy is a condition of the eye of diabetic patients where the retina is damaged because of long-term diabetes. The condition deteriorates towards irreversible blindness in extreme cases of diabetic retinopathy. Hence, early detection of diabetic retinopathy is important to prevent blindness. Regular screening of fundus images of diabetic patients could be helpful in preventing blindness caused by diabetic retinopathy. In this paper, we propose techniques for staging of diabetic retinopathy in fundus images using several shape and texture features computed from detected microaneurysms, exudates, and hemorrhages. The classification accuracy is reported in terms of the area (Az) under the receiver operating characteristic curve using 200 fundus images from the MESSIDOR database. The value of Az for classifying normal images versus mild, moderate, and severe nonproliferative diabetic retinopathy (NPDR) is 0:9106. The value of Az for classification of mild NPDR versus moderate and severe NPDR is 0:8372. The Az value for classification of moderate NPDR and severe NPDR is 0:9750.

  20. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    OpenAIRE

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment...

  1. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  2. Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing

    Science.gov (United States)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2011-01-01

    A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.

  3. DIAGNOSTIC VALUE OF WHOLE BODY DIFFUSION WEIGHTED IMAGING FOR SCREENING PRIMARY TUMORS OF PATIENTS WITH METASTASES

    Institute of Scientific and Technical Information of China (English)

    Tai-fu Gu; Xin-lan Xiao; Fei Sun; Jian-hua Yin; Hai Zhao

    2008-01-01

    Objective To evaluate the values of whole body diffusion weighted imaging (DWI) in screening primary unknown tumor in patients with metastases.Methods Totally, 34 patients with metastases of primary unknown tumors were scanned with whole body DWI, and conventional magnetic resonance (MR) imaging was performed if suspected lesions were detected. All the metastases including 27 cases of osseous metastases, 2 brain metastases, 2 liver metastases, 1 pulmonary multiple metastasis, 1 neck metastasis and 1 malignant ascites, were diagnosed by computed tomography, single photon emission computed tomography, or MR imaging. For the proven primary tumors diagnosed by biopsy or pathology of surgical specimens, apparent diffusion coefficient (ADC) values of the primary and metastatic lesions were measured respectively. The sensitivity and specificity of this technique for screening primary tumors were evaluated. Results We found 24 cases with suspected primary lesions, in which 23 lesions were proved to be primary tumors, and 1 was proved to be benign lesion. And no definite primary lesion was found in 10 cases on whole body DWI, but in which 1 case was diagnosed with primary tumor by biopsy later, and the other 9 cases remained unknown within follow-up of over half a year. The difference was not significant in ADC values between primary and metastatic lesions (P>0.05). The sensitivity and specificity of whole body DWI for searching primary tumors was 95.8% and 90.0%, respectively. Conclusion Combined with conventional MR scanning, whole body DWI can help to search primary lesions of patients with metastases.

  4. An open source based high content screening method for cell biology laboratories investigating cell spreading and adhesion.

    Directory of Open Access Journals (Sweden)

    Andre Schmandke

    Full Text Available BACKGROUND: Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators. However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and economical high-content screening approaches are urgently needed. RESULTS: We established a fully open source high-content screening method for identifying modulators of adhesion. We successfully used this method to detect small molecules that are able to influence cell adhesion and cell spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-Δ20-induced inhibition of adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit Nogo-A-Δ20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum. CONCLUSIONS: We have developed and validated a high content screening approach that can be used in any ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on adhesion and adhesion-modulating molecules.

  5. Research of the relief images forming process on the imprints by means of screen UV-varnishes

    OpenAIRE

    Sergіy Piknevych; Vyacheslav Repeta

    2014-01-01

    This article describes the process of relief image forming by UV-varnishes on self-adhesive labels done by means of screen printing plates with different screen mesh - 36 and 90 lines per cm. The influence of substrates’ surface energy on the process of UV-varnish transfer has been investigated. It was defined a disproportional distribution of surface energy on nonprinted self-adhesive paper and it was determined the influence of screen ruling on the varnishing relief’s height as well as the ...

  6. Imaging in haematopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J

    2003-03-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants.

  7. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.

    Science.gov (United States)

    Iles, LaKesla R; Bartholomeusz, Geoffrey A

    2016-01-01

    The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens. PMID:27581289

  8. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration

    OpenAIRE

    McLaughlin, Laura M.; Xu, Hui; Carden, Sarah E.; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C.; Monack, Denise M.

    2014-01-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involv...

  9. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  10. Time-Lapse Imaging of Cell Death.

    Science.gov (United States)

    Wallberg, Fredrik; Tenev, Tencho; Meier, Pascal

    2016-03-01

    The best approach to distinguish between necrosis and apoptosis is time-lapse video microscopy. This technique enables a biological process to be photographed at regular intervals over a period, which may last from a few hours to several days, and can be applied to cells in culture or in vivo. We have established two time-lapse microscopy methods based on different ways of calculating cell death: semiautomated and automated. In the semiautomated approach, cell death can be visualized by staining with combinations of Alexa Fluor 647-conjugated Annexin V and Sytox Green (SG), or Annexin V(FITC) and Propidium iodide (PI). The automated method is similar except that all cells are labeled with dyes. This allows faster quantification of data. To this end Cell Tracker Green is used to label all cells at time zero in combination with PI and Alexa Fluor 647-conjugated Annexin V. Necrotic cell death is accompanied by either simultaneous labeling with Annexin V and PI or SG (double-positive), or direct PI or SG staining. Additionally, necrotic cells display characteristic morphology, such as cytoplasmic swelling. In contrast to necrosis where membrane permeabilization is an early event, cells that die by apoptosis lose their membrane permeability relatively late. Therefore, the time between Annexin V staining and PI or SG uptake (double-positive) can be used to distinguish necrosis from apoptosis. This protocol describes the analysis of cell death by time-lapse imaging of HT1080 and L929 cells stained with these dyes, but it can be readily adapted to other cell types of interest. PMID:26933245

  11. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    DEFF Research Database (Denmark)

    Hammar, Petter; Angermayr, S. Andreas; Sjostrom, Staffan L.;

    2015-01-01

    Background: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.Results: We present a method for high-throughput, single-cell analy......Background: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.Results: We present a method for high-throughput, single...... stalled cells.Conclusions: The workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology....

  12. Magnetic resonance imaging of ganglion cell tumours

    International Nuclear Information System (INIS)

    The MRI and CT studies of four patients with ganglion cell tumours, one with a cerebellar gangliocytoma (Lhermitte-Duclos disease), and three with gangliogliomas are reported. MRI in Lhermitte-Duclos disease clearly demonstrated a mass of low signal intensity in the left cerebellum on T1-weighted spin-echo (SE) images and an area of high signal intensity with a blurred margin on T2-weighted SE images. These MRI studies were useful for delineating the lesion, which was verified at surgery. In the ganglioglioma, MRI demonstrated two isointense solid masses on T1-weighted SE images, which enhanced clearly with Gd-DTPA. The enhancement study was advantageous in planning surgery. (orig.)

  13. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  14. Improvement of an X-ray imaging detector based on a scintillating guides screen

    International Nuclear Information System (INIS)

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achieved using a standard dental X-ray source and doses in the order of those used at the moment by dentists (around 25 mR)

  15. Assessment of stereoscopic optic disc images using an autostereoscopic screen – experimental study

    Directory of Open Access Journals (Sweden)

    Vaideanu Daniella

    2008-07-01

    Full Text Available Abstract Background Stereoscopic assessment of the optic disc morphology is an important part of the care of patients with glaucoma. The aim of this study was to assess stereoviewing of stereoscopic optic disc images using an example of the new technology of autostereoscopic screens compared to the liquid shutter goggles. Methods Independent assessment of glaucomatous disc characteristics and measurement of optic disc and cup parameters whilst using either an autostereoscopic screen or liquid crystal shutter goggles synchronized with a view switching display. The main outcome measures were inter-modality agreements between the two used modalities as evaluated by the weighted kappa test and Bland Altman plots. Results Inter-modality agreement for measuring optic disc parameters was good [Average kappa coefficient for vertical Cup/Disc ratio was 0.78 (95% CI 0.62–0.91 and 0.81 (95% CI 0.6–0.92 for observer 1 and 2 respectively]. Agreement between modalities for assessing optic disc characteristics for glaucoma on a five-point scale was very good with a kappa value of 0.97. Conclusion This study compared two different methods of stereo viewing. The results of assessment of the different optic disc and cup parameters were comparable using an example of the newly developing autostereoscopic display technologies as compared to the shutter goggles system used. The Inter-modality agreement was high. This new technology carries potential clinical usability benefits in different areas of ophthalmic practice.

  16. Imaging of ovarian clear cell carcinoma

    International Nuclear Information System (INIS)

    The aim of this study is to examine the appearance of ovarian clear cell adenocarcinoma (OCCA) on MR, CT, US. In 39 cases with OCCA, the imaging characteristics of OCCA were evaluated morphologically and classified into three groups, that was, monomural nodule type, multi-mural nodule type and predominantly solid type. Forty-three percent of the patients had endometriosis. Contrast material-enhanced MRI was the most useful method for diagnosis of OCCA. (author)

  17. Imaging of ovarian clear cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toshihiko; Sawano, Seishi; Yamada, Keiko [Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital] (and others)

    1999-12-01

    The aim of this study is to examine the appearance of ovarian clear cell adenocarcinoma (OCCA) on MR, CT, US. In 39 cases with OCCA, the imaging characteristics of OCCA were evaluated morphologically and classified into three groups, that was, monomural nodule type, multi-mural nodule type and predominantly solid type. Forty-three percent of the patients had endometriosis. Contrast material-enhanced MRI was the most useful method for diagnosis of OCCA. (author)

  18. Pre- and postmortem imaging of transplanted cells

    OpenAIRE

    Andrzejewska A; Nowakowski A; Janowski M; Bulte JWM; Gilad AA; Walczak P; Lukomska B

    2015-01-01

    Anna Andrzejewska,1 Adam Nowakowski,1 Miroslaw Janowski,1–4 Jeff WM Bulte,3–7 Assaf A Gilad,3,4 Piotr Walczak,3,4,8 Barbara Lukomska11NeuroRepair Department, 2Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; 3Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, 4Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, 5Department of Biomedical En...

  19. A new level set model for cell image segmentation

    Institute of Scientific and Technical Information of China (English)

    Ma Jing-Feng; Hou Kai; Bao Shang-Lian; Chen Chun

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  20. Enhanced CellClassifier: a multi-class classification tool for microscopy images

    Directory of Open Access Journals (Sweden)

    Horvath Peter

    2010-01-01

    Full Text Available Abstract Background Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. Results We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. Conclusion Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening.

  1. Cells Cultured on Core-Shell Photonic Crystal Barcodes for Drug Screening.

    Science.gov (United States)

    Fu, Fanfan; Shang, Luoran; Zheng, Fuyin; Chen, Zhuoyue; Wang, Huan; Wang, Jie; Gu, Zhongze; Zhao, Yuanjin

    2016-06-01

    The development of effective drug screening platforms is an important task for biomedical engineering. Here, a novel methacrylated gelatin (GelMA) hydrogel-encapsulated core-shell photonic crystal (PhC) barcode particle was developed for three-dimensional cell aggregation culture and drug screening. The GelMA shells of the barcode particles enable creation of a three-dimensional extracellular matrix (ECM) microenvironment for cell adhesion and growth, while the PhC cores of the barcode particles provide stable diffraction peaks that can encode different cell spheroids during culture and distinguish their biological response during drug testing. The applicability of this cell spheroids-on-barcodes platform was investigated by testing the cytotoxic effect of tegafur (TF), a prodrug of 5-fluorouracil (5-FU), on barcode particle-loaded liver HepG2 and HCT-116 colonic tumor cell spheroids. The cytotoxicity of TF against the HCT-116 tumor cell spheroids was enhanced in systems using cocultures of HepG2 and NIH-3T3 cells, indicating the effectiveness of this multiple cell spheroids-on-barcodes platform for drug screening. PMID:27214156

  2. Screen-film versus digital radiography of sacroiliac joints: Evaluation of image quality and dose to patients

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the image quality and dose to patients in the radiography of sacroiliac joints and to perform a clinical comparative study of digital and conventional screen-film radiography. Routine radiography of sacroiliac joint was performed in 60 patients using digital and screen-film radiography. The visibility of five anatomical regions and the overall image quality were rated by experienced radiologists. Patient dose assessment in terms of entrance surface air kerma (ESAK) was performed. The digital system showed slightly improved visualisation of specific anatomical structures. Overall image quality was significantly better in the digital when compared with the screen-film imaging system. The average ESAK was 2.4 mGy in screen-film and 3.6 mGy in digital radiography. The digital radiography provided equal or better visibility of anatomical details and overall image quality, but on higher dose levels. Therefore, the practice on digital systems must be optimised. (authors)

  3. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles

    Directory of Open Access Journals (Sweden)

    Ma Jinwen

    2007-10-01

    Full Text Available Abstract Background High content screening (HCS-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. Results The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1 The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2 a novel local intensity maxima detection method based on the gradient vector field has been established; and (3 a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. Conclusion The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  4. Quantitative mammalian cell mutagenesis and mutagen screening: study with CHO cells

    International Nuclear Information System (INIS)

    The CHO/HGPRT system has been developed and defined for quantifying mutation induced by various physical and chemical agents at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells. In all direct-acting chemical mutagens studied, mutation induction increases linearly as a function of the concentration, with no apparent threshold. Some chemicals induce mutation at non-cytotoxic concentrations. The mutagenicity of ethyl methanesulfonate has been quantified as a function of exposure concentration x treatment time. The sensitive and quantitative nature of the system enables studies of the structure-activity (mutagenicity) relationships of various classes of chemicals, including alkylating agents, heterocyclic nitrogen mustards, and platinum compounds. When rat liver S9-mediated metabolic activation is present, procarcinogens such as benzo(a)pyrene, 2-acetylaminofluorene, and dimethylnitrosamine are mutagenic, whereas their noncarcinogenic structural analogues pyrene, fluorene, and dimethylamine are not. The system has been shown to be useful in determining the interactive effects between physical and chemical agents, and in screening for mutagenicity of fractionated organic mixtures and industrial chemicals in both liquid and gaseous state. For the system to be used successfully in routine screening, further studies should be directed toward the development of a metabolic activation system suitable for a broad spectrum of chemicals, a sensitive and reliable statistical method, and an experimental design to determine compounds with low mutagenicity. The system has been expanded for determination of mutagen-induced chromosome aberration, sister-chromatid exchange, and micronucleus formation in addition to gene mutation and cytotoxicity; it can also be used to study inhibition of DNA synthesis

  5. Genome-Wide siRNA Screening Using Forward Transfection: Identification of Modulators of Membrane Trafficking in Mammalian Cells.

    Science.gov (United States)

    Bexiga, Mariana G; Simpson, Jeremy C

    2016-01-01

    RNA interference (RNAi) has become an essential tool for molecular and cellular biologists to dissect cell function. In recent years its application has been extended to genome-wide studies, enabling the systematic identification of new cell regulation mechanisms and drug targets. In this chapter, a protocol for a genome-wide RNAi screen coupled to high-content microscopy is presented. Specifically we describe key features of assay design, plate layout, and a protocol for forward transfection of small interfering RNAs (siRNAs) in a 384-well plate format. As an example of its application in identifying modulators of membrane trafficking, we also provide a protocol to measure the efficacy of intracellular delivery of the B subunit of Shiga-like toxin to the Golgi complex. Finally we show an automated image analysis routine that can be used to extract single cell data from the screen, thereby providing a quantitative ranking of how a large panel of siRNAs affects this biological process. PMID:27581283

  6. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  7. Imaging nanoparticles in cells by nanomechanical holography

    Science.gov (United States)

    Tetard, Laurene; Passian, Ali; Venmar, Katherine T.; Lynch, Rachel M.; Voy, Brynn H.; Shekhawat, Gajendra; Dravid, Vinayak P.; Thundat, Thomas

    2008-08-01

    Nanomaterials have potential medical applications, for example in the area of drug delivery, and their possible adverse effects and cytotoxicity are curently receiving attention. Inhalation of nanoparticles is of great concern, because nanoparticles can be easily aerosolized. Imaging techniques that can visualize local populations of nanoparticles at nanometre resolution within the structures of cells are therefore important. Here we show that cells obtained from mice exposed to single-walled carbon nanohorns can be probed using a scanning probe microscopy technique called scanning near field ultrasonic holography. The nanohorns were observed inside the cells, and this was further confirmed using micro Raman spectroscopy. Scanning near field ultrasonic holography is a useful technique for probing the interactions of engineered nanomaterials in biological systems, which will greatly benefit areas in drug delivery and nanotoxicology.

  8. Imaging nanoparticles in cells by nanomechanical holography

    Energy Technology Data Exchange (ETDEWEB)

    Tetard, Laurene [ORNL; Passian, Ali [ORNL; Venmar, Katherine T [ORNL; Lynch, Rachel M [ORNL; Voy, Brynn H [ORNL; Shekhawat, Gajendra [Northwestern University, Evanston; Dravid, Vinayak [Northwestern University, Evanston; Thundat, Thomas George [ORNL

    2008-06-01

    Nanomaterials have potential medical applications, for example in the area of drug delivery, and their possible adverse effects and cytotoxicity are curently receiving attention1,2. Inhalation of nanoparticles is of great concern, because nanoparticles can be easily aerosolized. Imaging techniques that can visualize local populations of nanoparticles at nanometre resolution within the structures of cells are therefore important3. Here we show that cells obtained from mice exposed to single-walled carbon nanohorns can be probed using a scanning probe microscopy technique called scanning near field ultrasonic holography. The nanohorns were observed inside the cells, and this was further confirmed using micro Raman spectroscopy. Scanning near field ultrasonic holography is a useful technique for probing the interactions of engineered nanomaterials in biological systems, which will greatly benefit areas in drug delivery and nanotoxicology.

  9. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    NARCIS (Netherlands)

    P. Hammar; S.A. Angermayr; S.L. Sjostrom; J. van der Meer; K.J. Hellingwerf; E.P. Hudson; H.N. Joensson

    2015-01-01

    BACKGROUND: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. RESULTS: We present a method for high-throughput, single-cell analysi

  10. Quality Indicator Development for Positive Screen Follow-up for Sickle Cell Disease and Trait.

    Science.gov (United States)

    Faro, Elissa Z; Wang, C Jason; Oyeku, Suzette O

    2016-07-01

    Extensive variation exists in the follow-up of positive screens for sickle cell disease. Limited quality indicators exist to measure if the public health goals of screening-early initiation of treatment and enrollment to care-are being achieved. This manuscript focuses on the development of quality indicators related to the follow-up care for individuals identified with sickle cell disease and trait through screening processes. The authors used a modified Delphi method to develop the indicators. The process included a comprehensive literature review with rating of the evidence followed by ratings of draft indicators by an expert panel held in September 2012. The expert panel was nominated by leaders of various professional societies, the Health Resources and Services Administration, and the National Heart, Lung, and Blood Institute and met face to face to discuss and rate each indicator. The panel recommended nine quality indicators focused on key aspects of follow-up care for individuals with positive screens for sickle cell disease and trait. Public health programs and healthcare institutions can use these indicators to assess the quality of follow-up care and provide a basis for improvement efforts to ensure appropriate family education, early initiation of treatment, and appropriate referral to care for individuals identified with sickle cell disease and trait. PMID:27320465

  11. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    DEFF Research Database (Denmark)

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne;

    2005-01-01

    discovery is described, and proof-of-concept data from a pilot screen with a CXCR4 assay are presented. This chemokine receptor is a highly relevant drug target which plays an important role in the pathogenesis of inflammatory disease and also has been shown to be a co-receptor for entry of HIV into cells...

  12. Stem cells: a model for screening, discovery and development of drugs

    OpenAIRE

    Kitambi SS; Chandrasekar G

    2011-01-01

    Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficac...

  13. Development of a High-Throughput Functional Screen Using Nanowell-Assisted Cell Patterning.

    Science.gov (United States)

    Ozkumur, Ayca Yalcin; Goods, Brittany A; Love, J Christopher

    2015-09-01

    Living-cell-based screens can facilitate lead discovery of functional therapeutics of interest. A versatile and scalable method is reported that uses dense arrays of nanowells for imparting defined patterns on monolayers of cells. It is shown that this approach can coordinate a multi-component biological assay by designing and implementing a high-throughput, functional nanoliter-scale neutralization assay to identify neutralizing antibodies against HIV. PMID:26121321

  14. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    OpenAIRE

    Xu, Feng; Wu, Jinhui; Wang, Shuqi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumpti...

  15. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2016-01-01

    Full Text Available Background. Noninvasive prenatal screening (NIPS is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information.

  16. False Negative Cell-Free DNA Screening Result in a Newborn with Trisomy 13

    Science.gov (United States)

    Cao, Yang; Hoppman, Nicole L.; Kerr, Sarah E.; Sattler, Christopher A.; Borowski, Kristi S.; Wick, Myra J.; Highsmith, W. Edward; Aypar, Umut

    2016-01-01

    Background. Noninvasive prenatal screening (NIPS) is revolutionizing prenatal screening as a result of its increased sensitivity, specificity. NIPS analyzes cell-free fetal DNA (cffDNA) circulating in maternal plasma to detect fetal chromosome abnormalities. However, cffDNA originates from apoptotic placental trophoblast; therefore cffDNA is not always representative of the fetus. Although the published data for NIPS testing states that the current technique ensures high sensitivity and specificity for aneuploidy detection, false positives are possible due to isolated placental mosaicism, vanishing twin or cotwin demise, and maternal chromosome abnormalities or malignancy. Results. We report a case of false negative cell-free DNA (cfDNA) screening due to fetoplacental mosaicism. An infant male with negative cfDNA screening result was born with multiple congenital abnormalities. Postnatal chromosome and FISH studies on a blood specimen revealed trisomy 13 in 20/20 metaphases and 100% interphase nuclei, respectively. FISH analysis on tissues collected after delivery revealed extraembryonic mosaicism. Conclusions. Extraembryonic tissue mosaicism is likely responsible for the false negative cfDNA screening result. This case illustrates that a negative result does not rule out the possibility of a fetus affected with a trisomy, as cffDNA is derived from the placenta and therefore may not accurately represent the fetal genetic information. PMID:26998368

  17. Generation of a predictive melphalan resistance index by drug screen of B-cell cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Martin Boegsted

    Full Text Available BACKGROUND: Recent reports indicate that in vitro drug screens combined with gene expression profiles (GEP of cancer cell lines may generate informative signatures predicting the clinical outcome of chemotherapy. In multiple myeloma (MM a range of new drugs have been introduced and now challenge conventional therapy including high dose melphalan. Consequently, the generation of predictive signatures for response to melphalan may have a clinical impact. The hypothesis is that melphalan screens and GEPs of B-cell cancer cell lines combined with multivariate statistics may provide predictive clinical information. MATERIALS AND METHODS: Microarray based GEPs and a melphalan growth inhibition screen of 59 cancer cell lines were downloaded from the National Cancer Institute database. Equivalent data were generated for 18 B-cell cancer cell lines. Linear discriminant analyses (LDA, sparse partial least squares (SPLS and pairwise comparisons of cell line data were used to build resistance signatures from both cell line panels. A melphalan resistance index was defined and estimated for each MM patient in a publicly available clinical data set and evaluated retrospectively by Cox proportional hazards and Kaplan-Meier survival analysis. PRINCIPAL FINDINGS: Both cell line panels performed well with respect to internal validation of the SPLS approach but only the B-cell panel was able to predict a significantly higher risk of relapse and death with increasing resistance index in the clinical data sets. The most sensitive and resistant cell lines, MOLP-2 and RPMI-8226 LR5, respectively, had high leverage, which suggests their differentially expressed genes to possess important predictive value. CONCLUSION: The present study presents a melphalan resistance index generated by analysis of a B-cell panel of cancer cell lines. However, the resistance index needs to be functionally validated and correlated to known MM biomarkers in independent data sets in order to

  18. DNA-electrophoresis of single cells - a method to screen for irradiated foodstuffs

    International Nuclear Information System (INIS)

    Microelectrophoresis of single cells can be used to detect γ-irradiation over a wide dose range and for a variety of products. It is a simple and rapid test for DNA damages and can be used for screening. The method was tested on cell suspensions of bone marrow and muscle cells from frozen chicken legs, chicken heart, turkey liver, beef and pork irradiated with doses up to 3 kGy. Cell suspensions were prepared by incubation of tissues in EDTA-SDS-buffer at pH 8. Single cell electrophoresis was performed in 0.75% agarose gel. DNA was visualised by silver staining. In unirradiated samples no or only a small amount of DNA penetrated the cell membranes. Cells of irradiated samples appeared like a ''comet'' due to to migration of DNA-fragments out of cell. (orig.)

  19. SDOCT imaging to identify macular pathology in patients diagnosed with diabetic maculopathy by a digital photographic retinal screening programme.

    Directory of Open Access Journals (Sweden)

    Sarah Mackenzie

    Full Text Available INTRODUCTION: Diabetic macular edema (DME is an important cause of vision loss. England has a national systematic photographic retinal screening programme to identify patients with diabetic eye disease. Grading retinal photographs according to this national protocol identifies surrogate markers for DME. We audited a care pathway using a spectral-domain optical coherence tomography (SDOCT clinic to identify macular pathology in this subset of patients. METHODS: A prospective audit was performed of patients referred from screening with mild to moderate non-proliferative diabetic retinopathy (R1 and surrogate markers for diabetic macular edema (M1 attending an SDOCT clinic. The SDOCT images were graded by an ophthalmologist as SDOCT positive, borderline or negative. SDOCT positive patients were referred to the medical retina clinic. SDOCT negative and borderline patients were further reviewed in the SDOCT clinic in 6 months. RESULTS: From a registered screening population of 17 551 patients with diabetes mellitus, 311 patients met the inclusion criteria between (March 2008 and September 2009. We analyzed images from 311 patients' SDOCT clinic episodes. There were 131 SDOCT negative and 12 borderline patients booked for revisit in the OCT clinic. Twenty-four were referred back to photographic screening for a variety of reasons. A total of 144 were referred to ophthalmology with OCT evidence of definite macular pathology requiring review by an ophthalmologist. DISCUSSION: This analysis shows that patients with diabetes, mild to moderate non-proliferative diabetic retinopathy (R1 and evidence of diabetic maculopathy on non-stereoscopic retinal photographs (M1 have a 42.1% chance of having no macular edema on SDOCT imaging as defined by standard OCT definitions of DME when graded by a retinal specialist. SDOCT imaging is a useful adjunct to colour fundus photography in screening for referable diabetic maculopathy in our screening population.

  20. Characterization of mortality in children with sickle cell disease diagnosed through the Newborn Screening Program

    Directory of Open Access Journals (Sweden)

    Alessandra P. Sabarense

    2015-06-01

    Full Text Available OBJECTIVE: To characterize the deaths of 193 children with sickle cell disease screened by a neonatal program from 1998 to 2012 and contrast the initial years with the final years. METHODS: Deaths were identified by active surveillance of children absent to scheduled appointments in Blood Bank Clinical Centers (Hemominas. Clinical and epidemiological data came from death certificates, neonatal screening database, medical records, and family interviews. RESULTS: Between 1998 and 2012, 3,617,919 children were screened and 2,591 had sickle cell disease (1:1,400. There were 193 deaths (7.4%: 153 with SS/Sß0-talassemia, 34 SC and 6 Sß+thalassemia; 76.7% were younger than five years; 78% died in the hospital and 21% at home or in transit. The main causes of death were infection (45%, indeterminate (28%, and acute splenic sequestration (14%. In 46% of death certificates, the term "sickle cell" was not recorded. Seven-year death rate for children born between 1998 and 2005 was 5.43% versus 5.12% for those born between 2005 and 2012 (p = 0.72. Medical care was provided to 75% of children; 24% were unassisted. Medical care was provided within 6 hours of symptom onset in only half of the interviewed cases. In 40.5% of cases, death occurred within the first 24 hours. Low family income was recorded in 90% of cases, and illiteracy in 5%. CONCLUSIONS: Although comprehensive and effective, neonatal screening for sickle cell disease was not sufficient to significantly reduce mortality in a newborn screening program. Economic and social development and increase of the knowledge on sickle cell disease among health professionals and family are needed to overcome excessive mortality.

  1. MR imaging of intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki; Takashima, Tsutomu; Akakura, Yukari (Kanazawa Univ. (Japan). School of Medicine) (and others)

    1994-04-01

    MRI of 13 patients with intracranial germ cell tumor (GCT) was performed with a 1.5 T superconductive scanner. T1-and T2-weighted images (T1WI and T2WI) and Gd-DTPA-enhanced T1-weighted images (Gd-T1WI) were obtained. On T1WI and T2WI, five germinomas and one teratoma were homogeneously isointense with gray matter. Two germinomas with cystic component exhibited markedly hypointense and hyperintense areas, respectively. Three teratomas were heterogeneous on both sequences due to cystic portion, fat, and hemorrhage. Yolk sac tumor (YST) was isointense on T1WI and heterogeneous on T2WI. On Gd-T1WI, five germinomas and YST were homogeneously enhanced. All but one of the others were heterogeneously enhanced. There were increased AFP in YST and increased HCG in malignant teratoma. Differential diagnosis of GCT may be possible with MRI. However, tumor markers should be taken into consideration. (author).

  2. Investigation of the screen printed contacts of silicon solar cells using Transmission Line Model

    Directory of Open Access Journals (Sweden)

    P. Panek

    2010-07-01

    Full Text Available Purpose: The aim of the paper is to analyze how to improve the quality of the screen printed contacts of silicon solar cells. This means forming front side grid in order to decrease contact resistance.Design/methodology/approach: The topography of screen printed contacts were investigated using ZEISS SUPRA 25 scanning electron microscope (SEM with an energy dispersive X-ray (EDS spectrometer for microchemical analysis. Front collection grid was created using two types of Ag pastes.The Transmission Line Model (TLM patterns were fabricated by screen printing method on p – type Czochralski silicon Cz-Si wafer with n+ emitter without texture and with a titanium oxide (TiOx layer as an antireflection coating (ARC. Electrical properties of contacts were investigated using TLM.Findings: This work presents a conventional analysis of a screen printing process for contact formation in the crystalline silicon solar cells. The seed layer was created using silver pasts by the screen printed metallization. These contact structures were investigated using SEM to gain a better understanding of the obtained electrical parameters.Research limitations/implications: The contact resistance of the screen-printed metallization depends not only on the kind of applied paste and firing conditions, but is also strongly influenced by the surface morphology of the silicon substrate.Practical implications: Contact formation is an important production step to be optimized in the development of high efficiency solar cells.Originality/value: The effect of co-firing different pasts (especially a past, which was prepared using silver nano-powder on electrical properties of silicon wafers.

  3. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    International Nuclear Information System (INIS)

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca2+ flux readouts synchronous with beating, and cell viability. A number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of

  4. A sensitive mutation screening method supporting cell line development for biotherapeutics.

    Science.gov (United States)

    Valisheva, Ildana; Harris, Reed J; Zhu-Shimoni, Judith

    2016-07-15

    Random genetic mutations, which can occur during cell line development, can lead to sequence variants that comprise pharmaceutical product quality generated by recombinant technology. Mutation screening can minimize the probability of selecting clones harboring sequence variants. Here we report a polymerase chain reaction (PCR)-based mutation screening approach using high-resolution melting (HRM) analysis combined with a mutation enrichment step using limiting dilution to detect low-level mutations at 0.5%. The method allows unknown mutation discovery regardless of its location in a transgene as well as independent of its position in an HRM fragment, ranging from approximately 200 to 300 bp in size. PMID:27108188

  5. Leishmania chagasi T-cell antigens identified through a double library screen.

    Science.gov (United States)

    Martins, Daniella R A; Jeronimo, Selma M B; Donelson, John E; Wilson, Mary E

    2006-12-01

    Control of human visceral leishmaniasis in regions where it is endemic is hampered in part by limited accessibility to medical care and emerging drug resistance. There is no available protective vaccine. Leishmania spp. protozoa express multiple antigens recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the cause of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T-cell antigens and T-dependent B-cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide by screening with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second-step screen for their ability to cause proliferation and gamma interferon responses in T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The corresponding antigens were derived from glutamine synthetase, a transitional endoplasmic reticulum ATPase, elongation factor 1gamma, kinesin K39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these proteins. Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines. PMID:17000724

  6. The Effect of Rapid Thermal Annealing Towards the Performance of Screen-Printed Si Solar Cell

    Directory of Open Access Journals (Sweden)

    Shahrul Anizan

    2011-01-01

    Full Text Available Problem statement: Solar cells are used to capture the photons which generate the energy. However the efficiency of the cells to turn the amount of photon to electricity needs to be high and so the cells enhancement is needed. This involved the whole process of the developing of the cells, thus annealing process is one of the important steps that needs to be optimised. Approach: Only Si solar cells will be discussed and the processes involved would be metal contact screen printing and metal paste co-firing. The contacts were first screen printed with Al paste for the rear side and Ag paste for the front side of the cell. Cells are then fired in the annealing furnace using selected temperature profile. Few sets of temperature profiles were used in every cycle. Results: After the IV characteristics were measured such as Voc, Isc, Pmax and fill factor, it shows that when higher annealing temperature of the profile was used, all the parameter will increase accordingly. However, profile with the highest annealing temperature will burn the paste as it will decrease the quality of the cell. This is considered as over heat to the paste. Conclusion: So by optimising the thermal treatment of the annealing process does improve the performance of the Si solar cell.

  7. A method for 3D electron density imaging using single scattered x-rays with application to mammographic screening

    Science.gov (United States)

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2008-10-01

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal, heterogeneous tissue. In this work, we examine the potential of single scattered photon electron density imaging in a mammographic environment. Simulating a low-energy (electron density images from a single projection. We have tested the algorithm by imaging parts of a simulated mammographic accreditation phantom containing lesions of various sizes. The results indicate that the group of imaged lesions differ significantly from background breast tissue (p electron density imaging may be a useful diagnostic test for the presence of breast cancer.

  8. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    Science.gov (United States)

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  9. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Crystal M Darby

    Full Text Available Bacterial pathogens like Mycobacterium tuberculosis (Mtb encounter acidic microenvironments in the host and must maintain their acid-base homeostasis to survive. A genetic screen identified two Mtb strains that cannot control intrabacterial pH (pHIB in an acidic environment; infection with either strain led to severe attenuation in mice. To search for additional proteins that Mtb requires to survive at low pH, we introduced a whole-cell screen for compounds that disrupt pHIB, along with counter-screens that identify ionophores and membrane perturbors. Application of these methods to a natural product library identified four compounds of interest, one of which may inhibit novel pathway(s. This approach yields compounds that may lead to the identification of pathways that allow Mtb to survive in acidic environments, a setting in which Mtb is resistant to most of the drugs currently used to treat tuberculosis.

  10. A multilayer microdevice for cell-based high-throughput drug screening

    International Nuclear Information System (INIS)

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption. (paper)

  11. Impact of Cell-Free Fetal DNA Screening on Patients’ Choice of Invasive Procedures after a Positive California Prenatal Screen Result

    Directory of Open Access Journals (Sweden)

    Forum T. Shah

    2014-07-01

    Full Text Available Until recently, maternal serum analyte levels paired with sonographic fetal nuchal translucency measurement was the most accurate prenatal screen available for Trisomies 18 and 21, (91% and 94% detection and false positive rates of 0.31% and 4.5% respectively. Women with positive California Prenatal Screening Program (CPSP results have the option of diagnostic testing to determine definitively if the fetus has a chromosomal abnormality. Cell-free fetal (cff- DNA screening for Trisomies 13, 18, and 21 was first offered in 2012, allowing women with positive screens to choose additional screening before diagnostic testing. Cff-DNA sensitivity rates are as high as 99.9% and 99.1%, with false positive rates of 0.4% and 0.1%, for Trisomies 18 and 21, respectively. A retrospective chart review was performed in 2012 on 500 CPSP referrals at the University of California, San Diego Thornton Hospital. Data were collected prior to and after the introduction of cff-DNA. There was a significant increase in the number of participants who chose to pursue additional testing and a decrease in the number of invasive procedures performed after cff-DNA screening was available. We conclude that as fetal aneuploidy screening improves, the number of invasive procedures will continue to decrease.

  12. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    Science.gov (United States)

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently. PMID:26777131

  13. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    Science.gov (United States)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  14. X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: Principles, performance and potential for security screening

    International Nuclear Information System (INIS)

    The steadily increasing number of explosive threat classes, including home-made explosives (HMEs), liquids, amorphous and gels (LAGs), is forcing up the false-alarm rates of security screening equipment. This development can best be countered by increasing the number of features available for classification. X-ray diffraction intrinsically offers multiple features for both solid and LAGs explosive detection, and is thus becoming increasingly important for false-alarm and cost reduction in both carry-on and checked baggage security screening. Following a brief introduction to X-ray diffraction imaging (XDI), which synthesizes in a single modality the image-forming and material-analysis capabilities of X-rays, the Multiple Inverse Fan Beam (MIFB) XDI topology is described. Physical relationships obtaining in such MIFB XDI components as the radiation source, collimators and room-temperature detectors are presented with experimental performances that have been achieved. Representative X-ray diffraction profiles of threat substances measured with a laboratory MIFB XDI system are displayed. The performance of Next-Generation (MIFB) XDI relative to that of the 2nd Generation XRD 3500TM screener (Morpho Detection Germany GmbH) is assessed. The potential of MIFB XDI, both for reducing the exorbitant cost of false alarms in hold baggage screening (HBS), as well as for combining “in situ” liquid and solid explosive detection in carry-on luggage screening is outlined. - Highlights: ► X-ray diffraction imaging (XDI) synthesizes analysis and imaging in one x-ray modality. ► A novel XDI beam topology comprising multiple inverse fan-beams (MIFB) is described. ► The MIFB topology is technically easy to realize and has high photon collection efficiency. ► Applications are envisaged in checkpoint, hold baggage and cargo screening.

  15. Potential of near-infrared hyperspectral reflectance imaging for screening of farm feed contamination

    Science.gov (United States)

    Wang, Wenbo; Paliwal, Jitendra

    2005-09-01

    With the outbreak of Bovine Spongiform Encephalopathy (BSE) (commonly known as mad cow disease) in 1987 in the United Kingdom and a recent case discovered in Alberta, more and more emphasis is placed on food and farm feed quality and safety issues internationally. The disease is believed to be spread through farm feed contamination by animal byproducts in the form of meat-and-bone-meal (MBM). The paper reviewed the available techniques necessary to the enforcement of legislation concerning the feed safety issues. The standard microscopy method, although highly sensitive, is laborious and costly. A method to routinely screen farm feed contamination certainly helps to reduce the complexity of safety inspection. A hyperspectral imaging system working in the near-infrared wavelength region of 1100-1600 nm was used to study the possibility of detection of ground broiler feed contamination by ground pork. Hyperspectral images of raw broiler feed, ground broiler feed, ground pork, and contaminated feed samples were acquired. Raw broiler feed samples were found to possess comparatively large spectral variations due to light scattering effect. Ground feed adulterated with 1%, 3%, 5%, and 10% of ground pork was tested to identify feed contamination. Discriminant analysis using Mahalanobis distance showed that the model trained using pure ground feed samples and pure ground pork samples resulted in 100% false negative errors for all test replicates of contaminated samples. A discriminant model trained with pure ground feed samples and 10% contamination level samples resulted in 12.5% false positive error and 0% false negative error.

  16. A novel scheme for abnormal cell detection in Pap smear images

    Science.gov (United States)

    Zhao, Tong; Wachman, Elliot S.; Farkas, Daniel L.

    2004-07-01

    Finding malignant cells in Pap smear images is a "needle in a haystack"-type problem, tedious, labor-intensive and error-prone. It is therefore desirable to have an automatic screening tool in order that human experts can concentrate on the evaluation of the more difficult cases. Most research on automatic cervical screening tries to extract morphometric and texture features at the cell level, in accordance with the NIH "The Bethesda System" rules. Due to variances in image quality and features, such as brightness, magnification and focus, morphometric and texture analysis is insufficient to provide robust cervical cancer detection. Using a microscopic spectral imaging system, we have produced a set of multispectral Pap smear images with wavelengths from 400 nm to 690 nm, containing both spectral signatures and spatial attributes. We describe a novel scheme that combines spatial information (including texture and morphometric features) with spectral information to significantly improve abnormal cell detection. Three kinds of wavelet features, orthogonal, bi-orthogonal and non-orthogonal, are carefully chosen to optimize recognition performance. Multispectral feature sets are then extracted in the wavelet domain. Using a Back-Propagation Neural Network classifier that greatly decreases the influence of spurious events, we obtain a classification error rate of 5%. Cell morphometric features, such as area and shape, are then used to eliminate most remaining small artifacts. We report initial results from 149 cells from 40 separate image sets, in which only one abnormal cell was missed (TPR = 97.6%) and one normal cell was falsely classified as cancerous (FPR = 1%).

  17. Paper-based microreactor array for rapid screening of cell signaling cascades.

    Science.gov (United States)

    Huang, Chia-Hao; Lei, Kin Fong; Tsang, Ngan-Ming

    2016-08-01

    Investigation of cell signaling pathways is important for the study of pathogenesis of cancer. However, the related operations used in these studies are time consuming and labor intensive. Thus, the development of effective therapeutic strategies may be hampered. In this work, gel-free cell culture and subsequent immunoassay has been successfully integrated and conducted in a paper-based microreactor array. Study of the activation level of different kinases of cells stimulated by different conditions, i.e., IL-6 stimulation, starvation, and hypoxia, was demonstrated. Moreover, rapid screening of cell signaling cascades after the stimulations of HGF, doxorubicin, and UVB irradiation was respectively conducted to simultaneously screen 40 kinases and transcription factors. Activation of multi-signaling pathways could be identified and the correlation between signaling pathways was discussed to provide further information to investigate the entire signaling network. The present technique integrates most of the tedious operations using a single paper substrate, reduces sample and reagent consumption, and shortens the time required by the entire process. Therefore, it provides a first-tier rapid screening tool for the study of complicated signaling cascades. It is expected that the technique can be developed for routine protocol in conventional biological research laboratories. PMID:27377153

  18. Breast Cancers Detected at Screening MR Imaging and Mammography in Patients at High Risk: Method of Detection Reflects Tumor Histopathologic Results.

    Science.gov (United States)

    Sung, Janice S; Stamler, Sarah; Brooks, Jennifer; Kaplan, Jennifer; Huang, Tammy; Dershaw, D David; Lee, Carol H; Morris, Elizabeth A; Comstock, Christopher E

    2016-09-01

    Purpose To compare the clinical, imaging, and histopathologic features of breast cancers detected at screening magnetic resonance (MR) imaging, screening mammography, and those detected between screening examinations (interval cancers) in women at high risk. Materials and Methods This retrospective institutional review board-approved, HIPAA-compliant review of 7519 women at high risk for breast cancer who underwent screening with MR imaging and mammography between January 2005 and December 2010 was performed to determine the number of screening-detected and interval cancers diagnosed. The need for informed consent was waived. Medical records were reviewed for age, risk factors (family or personal history of breast cancer, BRCA mutation status, history of high-risk lesion or mantle radiation), tumor histopathologic results, and time between diagnosis of interval cancer and most recent screening examination. The χ(2) test and logistic regression methods were used to compare the features of screening MR imaging, screening mammography, and interval cancers. The Wilcoxon signed-rank test was used to calculate P values. Results A total of 18 064 screening MR imaging examinations and 26 866 screening mammographic examinations were performed. Two hundred twenty-two cancers were diagnosed in 219 women, 167 (75%) at MR imaging, 43 (19%) at mammography, and 12 (5%) interval cancers. Median age at diagnosis was 52 years. No risk factors were associated with screening MR imaging, screening mammography, or interval cancer (P > .06). Cancers found at screening MR imaging were more likely to be invasive cancer (118 of 167 [71%]; P mammography, 38 (88%) manifested as calcifications and 28 (65%) were ductal carcinoma in situ. Interval cancers were associated with nodal involvement (P = .005) and the triple-negative subtype (P = .03). Conclusion In women at high risk for breast cancer who underwent screening with mammography and MR imaging, invasive cancers were more likely to be

  19. miRNAs modified by dietary lipids in Caco-2 cells. A microarray screening

    Directory of Open Access Journals (Sweden)

    Lidia Daimiel

    2015-09-01

    Full Text Available We performed a screening of miRNAs regulated by dietary lipids in a cellular model of enterocytes, Caco-2 cells. Our aim was to describe new lipid-modified miRNAs with an implication in lipid homeostasis and cardiovascular disease [1,2]. For that purpose, we treated differentiated Caco-2 cells with micelles containing the assayed lipids (cholesterol, conjugated linoleic acid and docosahexaenoic acid and the screening of miRNAs was carried out by microarray using the μParaflo®Microfluidic Biochip Technology of LC Sciences (Huston, TX, USA. Experimental design, microarray description and raw data have been made available in the GEO database with the reference number of GSE59153. Here we described in detail the experimental design and methods used to obtain the relative expression data.

  20. Characterization of screen printed carbon counter electrodes for Co(II)/(III) mediated photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, Fouad [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, B.P. 92208, 44322, Nantes cedex 3 (France); Pitson, Robbin [Gwent Electronics Materials Ltd, Monmouth House, Mamhilad Park, Pontypool, NP4 0HZ (United Kingdom); Odobel, Fabrice [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, B.P. 92208, 44322, Nantes cedex 3 (France); Boujtita, Mohammed, E-mail: mohammed.boujtita@univ-nantes.f [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, B.P. 92208, 44322, Nantes cedex 3 (France); Caramori, Stefano [Dipartmento di Chimica, Universita di Ferrara, Via L.Borsari, 46, 44100 Ferrara (Italy); Bignozzi, Carlo A., E-mail: g4s@unife.i [Dipartmento di Chimica, Universita di Ferrara, Via L.Borsari, 46, 44100 Ferrara (Italy)

    2010-09-01

    A screen printed carbon electrode associated with Tris(4,4'-di-tert-butyl-2,2'-bipyridine)Cobalt(II) as redox mediator was investigated as possible alternative to the volatile and corrosive iodide/triodide system in dye sensitized solar cells (DSSCs). We report here a first study on the screen printing technology for the manufacturing of an advanced and stable carbon cathode for dye sensitized solar cell. The electrode surface was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) while the electrochemical response towards the cobalt complex was evaluated by using cyclic voltammetry. Photocurrent-voltage characteristics of DSSCs based on the new cathode/Cobalt complex system were 30% lower than those recorded with Pt/iodide.

  1. Adaptive Neuro-Fuzzy Inference System Approach for the Automatic Screening of Diabetic Retinopathy in Fundus Images

    Directory of Open Access Journals (Sweden)

    S. Kavitha

    2011-01-01

    Full Text Available Problem statement: Diabetic retinopathy is one of the most significant factors contributing to blindness and so early diagnosis and timely treatment is particularly important to prevent visual loss. Approach: An integrated approach for extraction of blood vessels and exudates detection was proposed to screen diabetic retinopathy. An automated classifier was developed based on Adaptive Neuro-Fuzzy Inference System (ANFIS to differentiate between normal and nonproliferative eyes from the quantitative assessment of monocular fundus images. Feature extraction was performed on the preprocessed fundus images. Structure of Blood vessels was extracted using Multiscale analysis. Hard Exudates were detected using CIE Color channel transformation, Entropy Thresholding and Improved Connected Component Analysis from the fundus images. Features like Wall to Lumen ratio in blood vessels, Texture, Homogeneity properties and area occupied by Hard Exudates, were given as input to ANFIS.ANFIS was trained with Back propagation in combination with the least squares method. Proposed method was evaluated on 200 real time images comprising 70 normal and 130 retinopathic eyes. Results and Conclusion: All of the results were validated with ground truths obtained from expert ophthalmologists. Quantitative performance of the method, detected exudates with an accuracy of 99.5%. Receiver operating characteristic curve evaluated for real time images produced better results compared to the other state of the art methods. ANFIS provides best classification and can be used as a screening tool in the analysis and diagnosis of retinal images.

  2. Maternal Cell free DNA based screening for fetal microdeletion and the importance of careful diagnostic follow up

    OpenAIRE

    Yatsenko, Svetlana A.; Peters, David; Saller, Devereux; Chu, Tianjiao; Clemens, Michelle; Rajkovic, Aleksandar

    2015-01-01

    Background Noninvasive prenatal screening (NIPS) by next-generation sequencing of cell free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21, in high risk pregnancies. NIPS can identify fetal genomic microdeletions, however sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) witho...

  3. High-throughput methods for screening liposome-macrophage cell interaction.

    OpenAIRE

    Kelly, Ciara; Lawlor, Ciaran; Burke, Colin; Barlow, James W; Ramsey, Joanne M; Jefferies, Caroline; Cryan, Sally-Ann

    2014-01-01

    Carriers are often an essential element of drug delivery, bestowing attributes to their cargo such as biocompatibility, enhanced delivery, extended half-life and efficacy as well as mediating specific targeting at a tissue, cell or intracellular level. Liposomes and lipid-based carriers have been investigated for decades for this purpose, many achieving clinical approval including products such as Doxil® and Myocet™. Large-scale compound screens are routinely carried out in the field of drug ...

  4. Screening of cell-drug interactions using acoustic trapping and MALDI MS

    OpenAIRE

    Teppo, Jaakko

    2015-01-01

    The properties of liquid and gas flows in microscale systems differ from those in macroscale; microfluidics is a field of science in which these properties are investigated and utilized for the development of microscale systems. Acoustofluidics is a branch of microfluidics focusing on the movement (acoustophoresis) or localization (acoustic trapping) of particles in microchannels using ultrasound. In this work, the suitability of a new miniaturized method for the screening of cell-drug in...

  5. In-vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells

    OpenAIRE

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), di...

  6. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Xiankun Zeng; Lili Han; Shree Ram Singh; Hanhan Liu; Ralph A. Neumüller; Dong Yan; Yanhui Hu; Ying Liu; Wei Liu; Xinhua Lin; Steven X. Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further deve...

  7. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    OpenAIRE

    Zeng, Xiankun; Han, Lili; Singh, Shree Ram; Liu, Hanhan; Neumüller, Ralph A.; Yan, Dong; Hu, Yanhui; Liu, Ying; Liu, Wei; Lin, Xinhua; Steven X Hou

    2015-01-01

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. Through integrating these genes into publicly available interaction databases, we further...

  8. High-Throughput Secondary Screening at the Single-Cell Level

    OpenAIRE

    Robinson, J. Paul; Patsekin, Valery; Holdman, Cheryl; Ragheb, Kathy; Sturgis, Jennifer; Fatig, Ray; Avramova, Larisa V.; Rajwa, Bartek; Davisson, V. Jo; Lewis, Nicole; Narayanan, Padma; Li, Nianyu; Qualls, C. W.

    2012-01-01

    We have developed an automated system for drug screening using a single-cell–multiple functional response technology. The approach uses a semiautomated preparatory system, high-speed sample collection, and a unique analytical tool that provides instantaneous results for compound dilutions using 384-well plates. The combination of automation and rapid robotic sampling increases quality control and robustness. High-speed flow cytometry is used to collect single-cell results together with a newl...

  9. Cervical acid phosphatase detection: A guide to abnormal cells in cytology smear screening for cervical cancer

    OpenAIRE

    Deb Prabal; Iyer Venkateswaran; Bhatla Neerja; Markovic O; Verma Kusum

    2008-01-01

    Background: Cervical acid phosphatase-Papanicolaou (CAP-PAP) test has recently been described for detection of acid phosphatase enzyme in abnormal squamous cells, and has been proposed as a biomarker-based technology for the screening of cervical cancer. Materials and Methods: Eighty-one consecutive cervical smears were subjected to routine Papanicolaou (Pap) staining as well as CAP-PAP, which combined cytochemical staining for acid phosphatase with modified Pap stain. Statistical evaluation ...

  10. High-resolution X-ray imaging based on pixel-structured CsI:Tl scintillating screens for indirect X-ray image sensors

    International Nuclear Information System (INIS)

    We introduce the development of pixel-structured screens with a thallium-doped CsI (CsI:Tl) scintillator for indirect digital X-ray imaging sensors. The indirect-conversion detection method based on the pixel-structured CsI:Tl scintillator provides high spatial resolution X-ray imaging without sacrificing the light spread in thick scintillation layers. The scintillation screens were fabricated by using a vacuum deposition process and filling the CsI:Tl scintillating powders into a two-dimensional pixel-structured silicon array. Pixel structures with 100 μm and 50 μm pixel sizes with wall widths of 20 μm and 200 μm thickness were prepared and the fabricated CsI:Tl scintillating powders were filled into the trench of the pixel structure through a vacuum process. The final scintillation screens with 2.5 cm x 2.5 cm size were prepared and directly coupled to a CCD image sensor with an optical lens for performance evaluation of X-ray imaging. The imaging performance of the samples was investigated in terms of the relative light intensity, the X-ray linearity and the spatial resolution under practical X-ray exposure conditions. These preliminary results imply that pixel-structured CsI:Tl scintillating screens show high spatial resolution by less lateral spread of the emitted visible photons within pixel-structured silicon arrays. However, these X-ray detectors still require improved X-ray sensitivity by coating the reflective layer onto an inner silicon wall surface and filling the scintillating power into pixel structures completely.

  11. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    International Nuclear Information System (INIS)

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  12. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    International Nuclear Information System (INIS)

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  13. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Hongming Ma

    2015-07-01

    Full Text Available West Nile virus (WNV causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s. In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD pathway suggests that this might be the primary driver of WNV-induced cell death.

  14. Induction of iodide uptake in transformed thyrocytes: a compound screening in cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Eleonore [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Brossart, Peter [University of Tuebingen, Department of Haematology, Oncology, Immunology and Rheumatology, Internal Medicine, Tuebingen (Germany); Wahl, Richard [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Department IV, Internal Medicine, Tuebingen (Germany)

    2009-05-15

    Retinoic acid presently is the most advanced agent able to improve the efficacy of radioiodine therapy in differentiated thyroid carcinoma. In order to identify compounds with higher efficacy a panel of pharmacologically well-characterized compounds with antitumour action in solid cancer cell lines was screened. The effects of the compounds on iodide uptake, cell number, proliferation and apoptosis were evaluated. In general, compounds were more effective in cell lines derived from more aggressive tumours. The effectiveness in terms of number of responsive cell lines and maximal increase in iodide uptake achieved decreased in the order: APHA > valproic acid {approx} sirolimus {approx} arsenic trioxide > retinoic acid {approx} lovastatin > apicidine {approx} azacytidine {approx} retinol {approx} rosiglitazone {approx} bortezomib. We hypothesize that testing of cells from primary tumours or metastases in patients may be a way to identify compounds with optimum therapeutic efficacy for individualized treatment. (orig.)

  15. Screen printed silver top electrode for efficient inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Duraisamy, Navaneethan [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Lee, Taik-Min [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Kim, Inyoung, E-mail: ikim@kimm.re.kr [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  16. Active screen plasma surface modification of polycaprolactone to improve cell attachment.

    Science.gov (United States)

    Fu, Xin; Sammons, Rachel L; Bertóti, Imre; Jenkins, Mike J; Dong, Hanshan

    2012-02-01

    To tailor polycaprolactone (PCL) surface properties for biomedical applications, film samples of PCL were surface modified by the active screen plasma nitriding (ASPN) technique. The chemical composition and structure were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wettability of the surface modified polymers was investigated by contact angle and surface energy methods. Biocompatibility of the prepared PCL samples was evaluated in vitro using MC3T3-E1 osteoblast-like cells. The degradability was assessed by determining the self-degradation rate (catalyzed by lipase). The results show that ASPN surface modification can effectively improve osteoblast cell adhesion and spreading on the surface of PCL. The main change in chemical composition is the exchange of some carboxyl groups on the surface for hydroxyl groups. The active-screen plasma nitriding technique has been found to be an effective and practical method to effectively improve osteoblast cell adhesion and spreading on the PCL surface. Such changes have been attributed to the increase in wettablity and generation of new hydroxyl groups by plasma treatment. After active-screen plasma treatment, the PCL film is still degradable, but the enzymatic degradation rate is slower compared with untreated PCL film. PMID:22179939

  17. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  18. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor

    International Nuclear Information System (INIS)

    The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.

  19. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-02-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  20. Screen printed silver top electrode for efficient inverted organic solar cells

    International Nuclear Information System (INIS)

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells

  1. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  2. High-speed synthetic aperture microscopy for live cell imaging

    OpenAIRE

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Dasari, Ramachandra R.; Michael S. Feld; Choi, Wonshik

    2011-01-01

    We present a high-speed synthetic aperture microscopy for quantitative phase imaging of live biological cells. We measure 361 complex amplitude images of an object with various directions of illumination covering an NA of 0.8 in less than one-thirteenth of a second and then combine the images with a phase-referencing method to create a synthesized phase image. Because of the increased depth selectivity, artifacts from diffraction that are typically present in coherent imaging are significantl...

  3. A systematic High-Content Screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells

    Science.gov (United States)

    Panarella, Angela; Bexiga, Mariana G.; Galea, George; O’ Neill, Elaine D.; Salvati, Anna; Dawson, Kenneth A.; Simpson, Jeremy C.

    2016-01-01

    Synthetic nanoparticles are promising tools for imaging and drug delivery; however the molecular details of cellular internalization and trafficking await full characterization. Current knowledge suggests that following endocytosis most nanoparticles pass from endosomes to lysosomes. In order to design effective drug delivery strategies that can use the endocytic pathway, or by-pass lysosomal accumulation, a comprehensive understanding of nanoparticle uptake and trafficking mechanisms is therefore fundamental. Here we describe and apply an RNA interference-based high-content screening microscopy strategy to assess the intracellular trafficking of fluorescently-labeled polystyrene nanoparticles in HeLa cells. We screened a total of 408 genes involved in cytoskeleton and membrane function, revealing roles for myosin VI, Rab33b and OATL1 in this process. This work provides the first systematic large-scale quantitative assessment of the proteins responsible for nanoparticle trafficking in cells, paving the way for subsequent genome-wide studies. PMID:27374232

  4. Photostimulated process in CsBrCl:Eu2+: a promising image screen phosphor

    International Nuclear Information System (INIS)

    CsBrCl and CsBrCl:Eu2+ have been grown by 'Double Run Bridgman technique'. Optical investigations have been carried out on the samples. The formation of F(Br-) and F(Cl-) centers have been confirmed by optical absorption bands at 640 and 615 nm, respectively. The photoluminescence (PL) spectra for europium (100 ppm) doped CsBrCl samples give emission of europium at 442 nm. This 442 nm emission is due to the transition from T2g component of 4f65d configuration to the ground state 8S of europium. The emission due to the presence of impurities in the host lattice is detected by PL technique. The OH- impurity in the host lattice due to decomposition of the salt in open air gives out emission at 395 and 365 nm. The O2- emission is observed at 465 and 468 nm. Photostimulated luminescence (PSL) process is studied in the samples by exciting them at F-absorption wavelength after irradiation. No PSL is observed for the undoped CsBrCl samples grown in vacuum. The PSL of vacuum grown CsBrCl:Eu2+ samples for excitations at 640 nm [F(Br-)] and 615 nm [F(Cl-)] is observed at 420 nm. It is deciphered that both F(Cl-) and F(Br-) centers contribute to PSL. The two F-centers noticed in absorption are stimulated separately; the resulting PSL signal confirms the participation of F-centers in photostimulated process. The lifetime of the PSL emission for CsBrCl:Eu2+ is determined to be 0.69 μs. Application of the material as a prospective image screen phosphor is elaborated based on PSL results

  5. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob;

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updated...... their amplitudes and their unwrapped phases. In this paper, simplifications of the log-phase formulation are proposed, namely the log formulation, in which only the logarithm of the amplitudes are used, and the phase formulation, in which only the unwrapped phases are used. These formulations allow for...

  6. Nonlinear Microwave Imaging for Breast-Cancer Screening Using Gauss–Newton's Method and the CGLS Inversion Algorithm

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meaney, P. M.; Meincke, Peter;

    2007-01-01

    Breast-cancer screening using microwave imaging is emerging as a new promising technique as a supplement to X-ray mammography. To create tomographic images from microwave measurements, it is necessary to solve a nonlinear inversion problem, for which an algorithm based on the iterative Gauss......-Newton method has been developed at Dartmouth College. This algorithm determines the update values at each iteration by solving the set of normal equations of the problem using the Tikhonov algorithm. In this paper, a new algorithm for determining the iteration update values in the Gauss-Newton algorithm is...

  7. Discovery of T cell antigens by high-throughput screening of synthetic minigene libraries.

    Directory of Open Access Journals (Sweden)

    Brian D Hondowicz

    Full Text Available The identification of novel T cell antigens is central to basic and translational research in autoimmunity, tumor immunology, transplant immunology, and vaccine design for infectious disease. However, current methods for T cell antigen discovery are low throughput, and fail to explore a wide range of potential antigen-receptor interactions. To overcome these limitations, we developed a method in which programmable microarrays are used to cost-effectively synthesize complex libraries of thousands of minigenes that collectively encode the content of hundreds of candidate protein targets. Minigene-derived mRNA are transfected into autologous antigen presenting cells and used to challenge complex populations of purified peripheral blood CD8+ T cells in multiplex, parallel ELISPOT assays. In this proof-of-concept study, we apply synthetic minigene screening to identify two novel pancreatic islet autoantigens targeted in a patient with Type I Diabetes. To our knowledge, this is the first successful screen of a highly complex, synthetic minigene library for identification of a T cell antigen. In principle, responses against the full protein complement of any tissue or pathogen can be assayed by this approach, suggesting that further optimization of synthetic libraries holds promise for high throughput antigen discovery.

  8. Comparison of computerized digital and film-screen radiography: response to variation in imaging kVp

    International Nuclear Information System (INIS)

    A controlled prospective study, in an animal model chosen to simulate portable neonatal radiography, was performed to compare the response of the Philips Computed Radiography (CR) system and conventional 200 speed film-screen (FS) to variation in imaging kVp. Acceptable images were obtained on the CR system over a very wide kVp range. In contrast the FS system produced acceptable images over a narrow kVp range. This ability suggests that the CR system should eliminate the need for repeat examinations in cases where a suboptimal kVp setting would have resulted in an unacceptable FS image. CR technology should therefore be ideally suited to portable radiography especially in situations where selection of correct exposure factors is difficult as in the neonatal nursery. (orig.)

  9. Sickle cell anemia: a review of the imaging findings

    OpenAIRE

    Rosado, E.; Paixão, P; Schmitt, W; Penha, D; Carvalho, F; Tavares, A.

    2014-01-01

    Sickle cell anemia - a review of the imaging findings LEARNING OBJECTIVES: To review and describe the manifestations of sickle cell anemia, focusing on the typical imaging findings in the most frequent affected organs. BACKGROUND: Sickle cell anemia is an autosomal recessive genetic condition characterized by a defective form of hemoglobin (hemoglobin S), which promotes the aggregation and distortion of red blood cells. Anemia results from the rapid removal of the abnormal red ...

  10. Image analysis of normal exfoliated gingival cells

    Directory of Open Access Journals (Sweden)

    Anuradha A

    2007-01-01

    Full Text Available Objective: The present study was undertaken to evaluate the nuclear diameter (ND, cell diameter (CD and nuclear-cytoplasmic ratio (N:C and their variation with age and sex in normal gingival smears. Study Design: Gingival smears were collected from 320 apparently healthy individuals. After fixation in 95% alcohol, the smears were stained using standard papanicolaou laboratory procedure. The cell and nuclear diameters were measured using image analysis software (KS lite 2.0. Statistical analysis of the data was done using one-way ANOVA, Students ′t′ test and Tukey-HSD procedure. Results: The results showed an increase in ND from the 1-20 group to 21-40 age group in males. Above 40 years, there was a decrease in ND. In females, the ND was high in 21-40 age group; and then from 41 years, ND gradually decreased but the difference was not significant. The CD in males and females was low in the 1-20 age group and then it gradually increased. However, the difference was not significant between the ages 20 and 60 years. After 60, there was a decrease in CD. Similar changes are also seen in the ratio N:C in both males and females. The ND, CD and N:C irrespective of the age were high in females. The difference in CD was insignificant, except in the 0-20 age group, where females had significantly more cell diameters. Irrespective of the gender, the ND, CD and N:C increased from 0-20 age group to 20-40 age group. After 40, there is a steady decrease in ND, CD and N:C. Conclusion: Age-related and sex-related alterations are observed in gingival smears.

  11. Screening for intermediate and severe forms of thalassaemia in discarded red blood cells: optimization and feasibility.

    Science.gov (United States)

    George, Elizabeth; Lai, Mei I; Teh, Lai Kuan; Ramasamy, Rajesh; Goh, Ern Huei; Asokan, Kamalan; Tan, J A M A; Vasudevan, Maithili; Low, Sharon

    2011-12-01

    Detection and quantification of Hb subtypes of human blood is integral to presumptive identification of thalassaemias. It has been used in neonatal screening of thalassaemia and Hb variants. The use of discarded red blood cells following processing of the cord blood for stem cells provides readily available diagnostic material for thalassaemia screening. In this study, we determined the range of Hb subtypes in 195 consecutive cord blood samples collected for cord blood banking. The 'cord blood samples' analysed were those of the remaining red blood cells after the cord blood was processed for stem cell storage. Quantification of Hb subtypes by high performance liquid chromatography (HPLC) was done on BioRad Variant II Hb testing system. Only 73 (36.5%) of the samples could be analyzed neat without dilution. With a 1:300 dilution with wash solution the acceptable area as recommended by the manufacturer for reading of a C-gram within the 1 to 3 million ranges were achieved in all. Eighteen (9%) 12 showed classical Hb Barts (y4) prerun peaks were confirmed by Sebia Hydrasys automated Hb gel electrophoresis and quantified by Sebia Capillarys 2 capillary electrophoresis. Only 1 (0.5%) was presumptively identified with HbH disease. Due to the limited number of samples no beta-thalassaemia major, Hb E beta-thalassaemia and Hb Barts hydrops fetalis were found. The HPLC assay was possible at a cost US$ 5 per sample and a turnover time of 10 samples per hour without technical difficulties. This study reports an effective and valuable protocol for thalassaemia screening in red blood cells which would otherwise be discarded during cord blood processing. Cord blood with severe and intermediate forms of thalassaemia can be preselected and not stored. PMID:22390095

  12. Fabrication and characterization of pixelated Gd2O2S:Tb scintillator screens for digital X-ray imaging applications

    International Nuclear Information System (INIS)

    X-ray imaging detectors in combination with scintillator screens have been widely used in digital X-ray imaging applications. Gd2O2S:Tb was used as scintillation material for pixelated scintillator screens based on silicon substrates (wafer) with a micropore array of various dimensions fabricated using the photolithography and deep reactive ion etching (DRIE) process. The relative light output and the modulation transfer function (MTF) of each fabricated scintillator screen were measured by a cooled CCD and compared with those of Lanex screens. The spatial resolution of our scintillator screens was higher but their light outputs were lower than those of Lanex screen probably due to the loss of light at the wall surfaces. Therefore further treatment of the wall surface, such as reflective coating, seems necessary to compensate the light loss.

  13. Whole-cell phase contrast imaging at the nanoscale using Fresnel Coherent Diffractive Imaging Tomography

    OpenAIRE

    Michael W. M. Jones; Grant A. van Riessen; Brian Abbey; Putkunz, Corey T.; Junker, Mark D.; Eugeniu Balaur; Vine, David J.; Ian McNulty; Bo Chen; Benedicta D. Arhatari; Sarah Frankland; Nugent, Keith A.; Leann Tilley; Peele, Andrew G.

    2013-01-01

    X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present th...

  14. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Nilsson, Claes Nymand; Lund, Anne Mathilde;

    2015-01-01

    Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely...... consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric...... to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform...

  15. INFECTED HALLER CELL. RADIOLOGY IMAGE OF THE ISSUE

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2012-08-01

    Full Text Available Haller cells are also known as infraorbital ethmoidal cells / maxilla ethmoidal cells. These cellsextend into the inferomedial portion of orbital floor. They are seen in 40% of patients. 1 This article discusses the imaging features of haller cell as seen in coronal CT scan.

  16. INFECTED HALLER CELL. RADIOLOGY IMAGE OF THE ISSUE

    OpenAIRE

    Balasubramanian Thiagarajan

    2012-01-01

    Haller cells are also known as infraorbital ethmoidal cells / maxilla ethmoidal cells. These cellsextend into the inferomedial portion of orbital floor. They are seen in 40% of patients. 1 This article discusses the imaging features of haller cell as seen in coronal CT scan.

  17. Monte Carlo simulation of image properties of an X-ray intensifying screen

    CERN Document Server

    Wang Yi; Wang Kui Lu; Liu Guo Zhi; Liu Ya Qian

    2000-01-01

    A Monte Carlo simulation program named MCPEP has been developed. Based on the existing simulation program that simulates the transfer of X-ray photons and the secondary electrons, MCPEP also simulates the light photons in the screen. The performances of an intensifying screen (Gd sub 2 O sub 2 S : Tb) with different thickness and different X-ray energies have been analyzed by MCPEP. The calculated light photon probability distribution, average light photon number per absorbed X-ray photon, statistical factor for light emission, X-ray detection efficiency, detective quantum efficiency (DQE) and point spread function (PSF) of the screen are presented.

  18. A cell-based screening system for anti-influenza A virus agents

    Science.gov (United States)

    Wong, Wan Ying; Loh, Sheng Wei; Ng, Wei Lun; Tan, Ming Cheang; Yeo, Kok Siong; Looi, Chung Yeng; Maah, Mohd Jamil; Ea, Chee-Kwee

    2015-01-01

    Emerging of drug resistant influenza A virus (IAV) has been a big challenge for anti-IAV therapy. In this study, we describe a relatively easy and safe cell-based screening system for anti-IAV replication inhibitors using a non-replicative strain of IAV. A nickel (II) complex of polyhydroxybenzaldehyde N4-thiosemicarbazone (NiPT5) was recently found to exhibit anti-inflammatory activity in vivo and in vitro. NiPT5 impedes the signaling cascades that lead to the activation of NF-κB in response to different stimuli, such as LPS and TNFα. Using our cell-based screening system, we report that pretreating cells with NiPT5 protects cells from influenza A virus (IAV) and vesicular stomatitis virus (VSV) infection. Furthermore, NiPT5 inhibits replication of IAV by inhibiting transcription and translation of vRNAs of IAV. Additionally, NiPT5 reduces IAV-induced type I interferon response and cytokines production. Moreover, NiPT5 prevents activation of NF-κB, and IRF3 in response to IAV infection. These results demonstrate that NiPT5 is a potent antiviral agent that inhibits the early phase of IAV replication. PMID:25728279

  19. Screening of Differently Expressed Genes in Human Prostate Cancer Cell Lines with Different Metastasis Potentials

    Institute of Scientific and Technical Information of China (English)

    SONG Anping; LIAO Guoning; WU Mingfu; LU Yunping; MA Ding

    2007-01-01

    In order to screen the genes differentially expressed in two human prostate cancer cells with different metastasis potentials, suppression subtractive hybridization (SSH) was done twice on human prostate cancer cell line with high potential of metastasis PC3M-1E8 and its synogenetic cell line PC3M-2B4 with low metastasis potential. In the first subtraction PC3M-2B4 was used as tester and PC3M-1E8 as driver and the forward subtractive library was constructed. In the second one the tester and driver were interchanged and the reverse subtractive library was constructed. The screened clones of both libraries were sequenced and Gene Bank homology search was performed. Some clones were confirmed by quantitative real-time PCR. The results showed that two subtrac-tive libraries containing 238 positive clones were constructed. Analysis of 16 sequenced clones ran-domly picked from two libraries showed that 4 differentially expressed gene fragments were identi-fied as new EST with unknown functions. It was concluded that two subtractive libraries of human prostate cancer cell lines with different metastasis potentials were constructed successfully.

  20. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.; Riley, Brian J.; Addleman, Raymond S.; Harrer, Bruce J.; Peterman, John W.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited to provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.

  1. Anti-obesity phenotypic screening looking to increase OBR cell surface expression.

    Science.gov (United States)

    Kim, Tae-Hee; Choi, Dong-Hwa; Vauthier, Virginie; Dam, Julie; Li, Xiaolan; Nam, Yeon-Ju; Ko, YoonAe; Kwon, Ho Jeong; Shin, Sang Hoon; Cechetto, Jonathan; Soloveva, Veronica; Jockers, Ralf

    2014-01-01

    The leptin receptor, OBR, is involved in the regulation of whole-body energy homeostasis. Most obese people are resistant to leptin and do not respond to the hormone. The prevention and reversal of leptin resistance is one of the major current goals of obesity research. We showed previously that increased OBR cell surface expression concomitantly increases cellular leptin signaling and prevents obesity development in mice. Improvement of OBR cell surface expression can thus be considered as an interesting anti-obesity therapeutic strategy. To identify compounds that increase the surface expression of OBR, we developed a cell-based, phenotypic assay to perform a high-content screen (HCS) against a library of 50,000 chemical compounds. We identified 67 compounds that increased OBR cell surface expression with AC50 values in the low micromolar range and no effect on total OBR expression and cellular toxicity. Compounds were classified into 16 chemical clusters, of which 4 potentiated leptin-promoted signaling through the JAK2/STAT3 pathway. In conclusion, development of a robust phenotypic screening approach resulted in the discovery of four new scaffolds that demonstrate the desired biological activity and could constitute an original therapeutic solution against obesity and associated disorders. PMID:23958651

  2. MR imaging features of spindle cell lipoma

    Energy Technology Data Exchange (ETDEWEB)

    Kirwadi, Anand; Abdul-Halim, Rehan; Highland, Adrian; Kotnis, Nikhil [Sheffield Teaching Hospitals NHS Trust, Radiology Department, Sheffield (United Kingdom); Fernando, Malee [Sheffield Teaching Hospitals NHS Trust, Histopathology Department, Sheffield (United Kingdom)

    2014-02-15

    To assess the MR imaging features of spindle cell lipomas (SCL) and to compare these appearances directly with the histopathological findings. A retrospective review of our soft tissue tumor database was performed. This yielded 1,327 histologically proven lipomas, of which 25 were confirmed as being SCLs. Fourteen of the 25 patients had MR examinations available for review and only these patients were included in our study. Lesions were assessed at MR examination for the degree of internal fat signal content with grade 0 representing 0 % fat signal and grade 4 100 % fat signal. The degree of fat suppression and contrast-enhancement pattern were also recorded. The excision specimens were independently reviewed by a consultant histopathologist. The histology specimens were assessed for the amount of internal fat and non-adipose tissue and graded using the same scale applied for the imaging. Where core needle biopsy (CNB) was performed, the CNB specimens were also examined for positive features of SCL. In our study, 93 % (13/14) of our patients were male and the average age was 58 years. 65 % (9/14) of the lesions presented in the upper back, shoulder, or neck. All lesions were subcutaneous. 35 % (5/14) of the SCLs demonstrated grade 3 (>75 %) or grade 4 (100 %) fat signal on MR examination. 35 % (5/14) of the lesions had grade 2 (25-75 %) fat signal and 29 % (4/14) of the lesions demonstrated grade 0 (0 %) or grade 1 (<25 %) fat signal. 43 % (6/14) of lesions demonstrated homogenous fat suppression, 28 % (4/14) showed focal areas of high internal signal, and 28 % (4/14) had diffuse internal high signal on fluid-sensitive fat-saturated sequences. 86 % (6/7) of the cases demonstrated septal/nodular enhancement. The diagnosis was evident on the CNB specimen in 100 % (9/9) cases. The histopathology fat content grade was in agreement with the imaging grade in 86 % (12/14) cases. The internal signal pattern of SCL can range broadly, with low fat content lesions seen almost

  3. The performance of silicon solar cells prepared by screen-printing technique

    International Nuclear Information System (INIS)

    Screen-printing technique is known to produce low cost solar cells. A study has been done to prepare silicon solar cells of n+-p and n+-p-p+ structures. The p-type silicon wafers were used as substrates. The phosphorous layer was deposited on top of the substrate using the screen-printing technique. The wafer was then annealed at temperature 1000 degree C for 10 minutes, so that phosphorous atoms are thermally diffused into the wafer to form an n+-p junction. Meanwhile the boron film was deposited at the back surface of the substrate and annealed at temperature 900 degree C for 10 minutes to form a p+ layer in the n+-p-p+ device. The back and front metal contacts were made using screen-printing technique. The performance of the devices was evaluated from I-V curves measured in the dark and under illumination. It was found that the n+-p-p+ device with short circuit current, ISC = 32 mA, open circuit voltage, VOC = 0.46 volt, fill factor, FF=0.63 and efficiency, η = 2.3%, was better than that of the n+-p device. The performance of the n+-p-p+ device was successfully improved by depositing titanium dioxide on top of the device as anti-reflection coating using the screen-printing technique. The improved performance was ISC = 38 mA, VOC = 0.48 volt, FF = 0.67 and η = 3. 1%. (Author)

  4. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response.

    Directory of Open Access Journals (Sweden)

    Mustafa Mir

    Full Text Available The detection and treatment of cancer has advanced significantly in the past several decades, with important improvements in our understanding of the fundamental molecular and genetic basis of the disease. Despite these advancements, drug-screening methodologies have remained essentially unchanged since the introduction of the in vitro human cell line screen in 1990. Although the existing methods provide information on the overall effects of compounds on cell viability, they are restricted by bulk measurements, large sample sizes, and lack capability to measure proliferation kinetics at the individual cell level. To truly understand the nature of cancer cell proliferation and to develop personalized adjuvant therapies, there is a need for new methodologies that provide quantitative information to monitor the effect of drugs on cell growth as well as morphological and phenotypic changes at the single cell level. Here we show that a quantitative phase imaging modality known as spatial light interference microscopy (SLIM addresses these needs and provides additional advantages over existing proliferation assays. We demonstrate these capabilities through measurements on the effects of the hormone estradiol and the antiestrogen ICI182,780 (Faslodex on the growth of MCF-7 breast cancer cells. Along with providing information on changes in the overall growth, SLIM provides additional biologically relevant information. For example, we find that exposure to estradiol results in rapidly growing cells with lower dry mass than the control population. Subsequently blocking the estrogen receptor with ICI results in slower growing cells, with lower dry masses than the control. This ability to measure changes in growth kinetics in response to environmental conditions provides new insight on growth regulation mechanisms. Our results establish the capabilities of SLIM as an advanced drug screening technology that provides information on changes in proliferation

  5. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  6. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  7. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  8. XRIndex: a brief screening tool for individual differences in security threat detection in x-ray images.

    Science.gov (United States)

    Rusconi, Elena; Ferri, Francesca; Viding, Essi; Mitchener-Nissen, Timothy

    2015-01-01

    X-ray imaging is a cost-effective technique at security checkpoints that typically require the presence of human operators. We have previously shown that self-reported attention to detail can predict threat detection performance with small-vehicle x-ray images (Rusconi et al., 2012). Here, we provide evidence for the generality of such a link by having a large sample of naïve participants screen more typical dual-energy x-ray images of hand luggage. The results show that the Attention to Detail score from the autism-spectrum quotient (AQ) questionnaire (Baron-Cohen et al., 2001) is a linear predictor of threat detection accuracy. We then develop and fine-tune a novel self-report scale for security screening: the XRIndex, which improves on the Attention to Detail scale for predictive power and opacity to interpretation. The XRIndex is not redundant with any of the Big Five personality traits. We validate the XRIndex against security x-ray images with an independent sample of untrained participants and suggest that the XRIndex may be a useful aid for the identification of suitable candidates for professional security training with a focus on x-ray threat detection. Further studies are needed to determine whether this can also apply to trained professionals. PMID:26321935

  9. XRIndex: A brief screening tool for individual differences in security threat detection in x-ray images

    Directory of Open Access Journals (Sweden)

    Elena eRusconi

    2015-08-01

    Full Text Available X-ray imaging is a cost-effective technique at security checkpoints that typically require the presence of human operators. We have previously shown that self-reported Attention to Detail can predict threat detection performance with small-vehicle x-ray images (Rusconi et al., 2012. Here we provide evidence for the generality of such a link by having a large sample of naïve participants screen more typical dual-energy x-ray images of hand luggage. The results show that the Attention to Detail score is a linear predictor of threat detection accuracy. We then develop and fine-tune a novel self-report scale for security screening: the XRIndex, which improves on the Attention to Detail scale for predictive power and opacity to interpretation. The XRIndex is not redundant with any of the Big Five personality traits. We validate the XRIndex against security x-ray images with an independent sample of untrained participants and suggest that the XRIndex may be a useful aid for the identification of suitable candidates for professional security training with a focus on x-ray threat detection. Further studies are needed to determine whether this can also apply to trained professionals.

  10. High Content Imaging (HCI on Miniaturized Three-Dimensional (3D Cell Cultures

    Directory of Open Access Journals (Sweden)

    Pranav Joshi

    2015-12-01

    Full Text Available High content imaging (HCI is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS. One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.

  11. Screening of a virtual mirror-image library of natural products.

    Science.gov (United States)

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-01

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds. PMID:27198617

  12. NeuronCyto II: An automatic and quantitative solution for crossover neural cells in high throughput screening.

    Science.gov (United States)

    Ong, Kok Haur; De, Jaydeep; Cheng, Li; Ahmed, Sohail; Yu, Weimiao

    2016-08-01

    Microscopy is a fundamental technology driving new biological discoveries. Today microscopy allows a large number of images to be acquired using, for example, High Throughput Screening (HTS) and 4D imaging. It is essential to be able to interrogate these images and extract quantitative information in an automated fashion. In the context of neurobiology, it is important to automatically quantify the morphology of neurons in terms of neurite number, length, branching and complexity, etc. One major issue in quantification of neuronal morphology is the "crossover" problem where neurites cross and it is difficult to assign which neurite belongs to which cell body. In the present study, we provide a solution to the "crossover" problem, the software package NeuronCyto II. NeuronCyto II is an interactive and user-friendly software package for automatic neurite quantification. It has a well-designed graphical user interface (GUI) with only a few free parameters allowing users to optimize the software by themselves and extract relevant quantitative information routinely. Users are able to interact with the images and the numerical features through the Result Inspector. The processing of neurites without crossover was presented in our previous work. Our solution for the "crossover" problem is developed based on our recently published work with directed graph theory. Both methods are implemented in NeuronCyto II. The results show that our solution is able to significantly improve the reliability and accuracy of the neurons displaying "crossover." NeuronCyto II is freely available at the website: https://sites.google.com/site/neuroncyto/, which includes user support and where software upgrades will also be placed in the future. © 2016 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC. PMID:27233092

  13. Low-dose CT scan screening for lung cancer: comparison of images and radiation doses between low-dose CT and follow-up standard diagnostic CT

    OpenAIRE

    ONO, KOJI; Hiraoka, Toru; Ono, Asami; Komatsu, Eiji; Shigenaga, Takehiko; Takaki, Hajime; Maeda, Toru; Ogusu, Hiroyuki; Yoshida, Shintaro; Fukushima, Kiyoyasu; Kai, Michiaki

    2013-01-01

    Objectives This study aim to compare image quality and radiation doses between low-dose CT and follow-up standard diagnostic CT for lung cancer screening. Methods In a single medical institution, 19 subjects who had been screened for lung cancer by low-dose CT before going through follow-up standard diagnostic CT were randomly selected. Both CT image sets for all subjects were independently evaluated by five specialized physicians. Results There were no significant differences between low-dos...

  14. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera

    Science.gov (United States)

    Lihachev, Alexey; Derjabo, Alexander; Ferulova, Inesa; Lange, Marta; Lihacova, Ilze; Spigulis, Janis

    2015-12-01

    The feasibility of smartphones for in vivo skin autofluorescence imaging has been investigated. Filtered autofluorescence images from the same tissue area were periodically captured by a smartphone RGB camera with subsequent detection of fluorescence intensity decreasing at each image pixel for further imaging the planar distribution of those values. The proposed methodology was tested clinically with 13 basal cell carcinoma and 1 atypical nevus. Several clinical cases and potential future applications of the smartphone-based technique are discussed.

  15. Cell-based therapies and imaging in cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, Frank M. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Munich (Germany); Schachinger, Volker; Dimmeler, Stefanie [University of Frankfurt, Department of Molecular Cardiology, Frankfurt (Germany)

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application. (orig.)

  16. Development of cell death-based method for the selectivity screening of caspase-1 inhibitors

    DEFF Research Database (Denmark)

    Chopra, Puneet; Gupta, Shashank; Dastidar, Sunanda G; Ray, Abhijit

    2009-01-01

    used for the selectivity screening of multiple caspases in a biologically relevant context in a single assay. In this study, we have developed an assay in which DNA fragmentation, a hallmark of apoptosis, of Jurkat cell line was examined post induction with etoposide in the presence or absence of...... belonging to caspase-1 family (1, 4 and 5) are not present in the Jurkat cells or might not be involved in the etoposide-induced DNA fragmentation. Since the inhibition of caspases 3, 8 and 9 is accompanied by the down regulation of the activity of a cascade of caspases (caspases 2, 6, 7, 9 and 10......Caspase-1 selective inhibitors are novel therapeutic agents for inflammatory diseases. Selectivity assays for caspases can be initiated with purified enzyme, making these assays very costly and time consuming. Therefore, there is a need to develop a fast and reliable cell-based assay, which can be...

  17. All Screen-Printed CdS/CuInSe2 Solar Cells

    Science.gov (United States)

    Kuhaimi, S. A. AL; Bahammam, S.

    1990-08-01

    Thick film technology offers advantages of low cost, product amenability and automation. This technology has been successful in the manufacture of solar cells using CdS/CdTe heterojunctions. It enables the use of the same equipment in various processes involved in manufacturing solar cells. In the present work, n-CdS/p-CuInSe2 solar cells are prepared by screen printing and sintering pastes which contain the semiconductors. An efficiency of 8.75% is achieved. Electron affinity difference, saturation current and diode quality factor are measured. They are 0.49 eV, (0.9--1.8)× 10-7 A, 1.5 respectively. Microstructure and electrical properties of sintered CdS films containing 10, 20, 30 and 40 wt% CdCl2 are investigated. Optimum results are obtained for the CdS films containing 10 wt% CdCl2.

  18. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features

    Science.gov (United States)

    Jusman, Yessi; Mat Isa, Nor Ashidi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Abu Osman, Noor Azuan

    2016-07-01

    Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.

  19. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry.

    Science.gov (United States)

    Silva-Ayala, Daniela; López, Tomás; Gutiérrez, Michelle; Perrimon, Norbert; López, Susana; Arias, Carlos F

    2013-06-18

    Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells. PMID:23733942

  20. Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells.

    Science.gov (United States)

    Zhou, Wenjie; Chen, Xiaoxun; He, Ke; Xiao, Jinfeng; Duan, Xiaopeng; Huang, Rui; Xia, Zhenglin; He, Jingliang; Zhang, Jinqian; Xiang, Guoan

    2016-05-01

    Histone deacetylases (HDACs) are highly expressed in intrahepatic cholangiocarcinoma (ICC) and are associated with poor prognosis of these patients. The aim of the present study was to explore the inhibitory effects of HDAC inhibitors on ICC cells and identify effective and sensitive drugs for ICC. Effects of 34 HDAC inhibitors were screened through two rounds of cell viability assays, and HC toxin, a cyclic tetrapeptide first isolated from the secondary metabolite of Helminthosporium carbonum, exhibited an antitumor activity superior to that of the other HDAC inhibitors and gemcitabine. The mechanisms involved in the inhibitory effects of HC toxin on CCLP-1 cells were investigated by cell counting, colony formation assay, cell morphological observation, real-time PCR, western blotting and flow cytometry. It was demonstrated that HC toxin inhibited the cell proliferation and clone formation ability of the CCLP-1 cells. HC toxin increased the acetyl-histone H4 level and this was associated with the inhibitory effect of HC toxin on the CCLP-1 cells. We also found that HC toxin reduced the level of HDAC1 protein in a post-transcriptional manner. Morphological observation showed multiple morphological changes and indicated the possibility of cell differentiation owing to HC toxin. With increasing concentration of HC toxin, the cell cycle was gradually arrested at the G0/G1 stage and the percentage of apoptotic cells increased which was not mainly through the caspase-3-dependent ways. These results indicated that HC toxin was the most effective among the various HDAC inhibitors with multiple functions in the suppression of ICC in vitro. Thus, HC may be a potential chemotherapeutic for ICC. PMID:26935789

  1. Unsupervised classification of cell images using pyramid node linking.

    Science.gov (United States)

    Arman, F; Pearce, J A

    1990-06-01

    In this communication we describe a segmentation technique which combines two properties in an iterative and hierarchial matter to correctly segment and classify the given cell images. The technique is applied to digital images taken from microscope slides of cultured rat liver cells, and the goal is to classify these cells into one of three possible classes. The first class cells (I) are morphologically normal and stain the darkest. The second class cells (II) are slightly damaged showing both nuclear and cytoplasmic swelling with resultant lessening of staining affinity. The third class cells (III) are markedly damaged as demonstrated by the presence of cytoplasmic vacuolization, or are completely disintegrated. First class cells are classified by taking advantage of their staining affinity; the original gray level image is segmented into four gray levels. The darkest is then classified as type I. Type III cells are classified by using high business as a characteristic; the standard deviation of the original image is segmented into four business levels. The highest level is classified as type III cell. Assuming only the three cell types are present in any given image, the remaining non-background unclassified pixels are determined to belong to type II cells. PMID:2191915

  2. A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds.

    Science.gov (United States)

    Kubben, Nard; Brimacombe, Kyle R; Donegan, Megan; Li, Zhuyin; Misteli, Tom

    2016-03-01

    Hutchinson-Gilford Progeria Syndrome (HGPS) is an early onset lethal premature aging disorder caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A. The presence of progerin causes extensive morphological, epigenetic and DNA damage related nuclear defects that ultimately disrupt tissue and organismal functions. Hypothesis-driven approaches focused on HGPS affected pathways have been used in attempts to identify druggable targets with anti-progeroid effects. Here, we report an unbiased discovery approach to HGPS by implementation of a high-throughput, high-content imaging based screening method that enables systematic identification of small molecules that prevent the formation of multiple progerin-induced aging defects. Screening a library of 2816 FDA approved drugs, we identified retinoids as a novel class of compounds that reverses aging defects in HGPS patient skin fibroblasts. These findings establish a novel approach to anti-progeroid drug discovery. PMID:26341717

  3. A cell-free microtiter plate screen for improved [FeFe] hydrogenases.

    Directory of Open Access Journals (Sweden)

    James A Stapleton

    Full Text Available BACKGROUND: [FeFe] hydrogenase enzymes catalyze the production and dissociation of H(2, a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an in vitro screening technology for oxygen-tolerant and highly active [FeFe] hydrogenases. Despite the complexity of the protocol, we demonstrate a level of reproducibility that allows moderately improved mutants to be isolated. We have used the platform to identify a mutant of the Chlamydomonas reinhardtii [FeFe] hydrogenase HydA1 with a specific activity approximately 4 times that of the wild-type enzyme. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the feasibility of using the screen presented here for large-scale efforts to identify improved biocatalysts for energy applications. The system is based on our ability to activate these complex enzymes in E. coli cell extracts, which allows unhindered access to the protein maturation and assay environment.

  4. A Cell-based High-throughput Screening Assay for Farnesoid X Recepter Agonist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To develop a high-throughput screening assay for Farnesoid X receptor (FXR) agonists based on mammalian one-hybrid system (a chimera receptor gene system) for the purpose of identifying new lead compounds for dyslipidaemia drug from the chemical library. Methods cDNA encoding the human FXR ligand binding domain (LBD) was amplified by RT-PCR from a human liver total mRNA and fused to the DNA binding domain (DBD) of yeast GAL4 of pBIND to construct a GAL4-FXR (LBD) chimera expression plasmid. Five copies of the GAL4 DNA binding site were synthesized and inserted into upstream of the SV40 promoter of pGL3-promoter vector to construct a reporter plasmid pG5-SV40 Luc. The assay was developed by transient co-transfection with pG5-SV40 Luc reporter plasmid and pBIND-FXR-LBD (189-472) chimera expression plasmid. Results After optimization, CDCA, a FXR natural agonist, could induce expression of the luciferase gene in a dose-dependent manner, and had a signal/noise ratio of 10 and Z'factor value of 0.65. Conclusion A stable and sensitive cell-based high-throughput screening model can be used in high-throughput screening for FXR agonists from the synthetic and natural compound library.

  5. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    Energy Technology Data Exchange (ETDEWEB)

    Bicalho, Beatriz; Chen, Lu S.; Marsaioli, Anita J. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: anita@iqm.unicamp.br; Grognux, Johann; Reymond, Jean-Louis [University of Berne (Switzerland). Dept. of Chemistry and Biochemistry

    2004-12-01

    Biocatalysis reactions were performed on microtiter plates (200 {mu}L) aiming at the utilization of fluorogenic substrates (100 {mu}mol L{sup -1}) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  6. Studies on whole cell fluorescence-based screening for epoxide hydrolases and Baeyer-Villiger monooxygenases

    International Nuclear Information System (INIS)

    Biocatalysis reactions were performed on microtiter plates (200 μL) aiming at the utilization of fluorogenic substrates (100 μmol L-1) for rapid whole cell screening for epoxide hydrolases (EHs) and Baeyer-Villiger monooxygenases (BVMOs). A final protocol was achieved for EHs, with 3 new enzymatic sources being detected (Agrobacterium tumefaciens, Pichia stipitis, Trichosporom cutaneum). The fluorogenic assay for BVMO did not work as expected. However, an approach to possible variables involved (aeration; pH) provided the first detection of a BVMO activity in T. cutaneum. (author)

  7. Development and validation of a high-throughput anti-Wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis.

    Science.gov (United States)

    Clare, Rachel H; Cook, Darren A N; Johnston, Kelly L; Ford, Louise; Ward, Stephen A; Taylor, Mark J

    2015-01-01

    There is an urgent need to develop new, safe, and affordable macrofilaricidal drugs for onchocerciasis and lymphatic filariasis treatment and control. The Anti-Wolbachia Consortium (A·WOL) aims to provide a novel treatment with macrofilaricidal activity by targeting the essential bacterial symbiont Wolbachia. The consortium is currently screening a diverse range of compounds to find new chemical space to drive this drug discovery initiative and address this unmet demand. To increase the throughput and capacity of the A·WOL cell-based screen, we have developed a 384-well format assay using a high-content imaging system (Operetta) in conjunction with optimized Wolbachia growth dynamics in the C6/36 Aedes albopictus mosquito cell line. This assay uses texture analysis of cells stained with SYTO 11 as a direct measure of bacterial load. This validated assay has dramatically increased the capacity and throughput of the A·WOL compound library screening program 25-fold, enriching the number of new anti-Wolbachia hits identified for further development as potential macrofilaricides for onchocerciasis and lymphatic filariasis. PMID:25278497

  8. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD*

    Institute of Scientific and Technical Information of China (English)

    Bao-bing YIN; Shuang-jie WU; Hua-jie ZONG; Bao-jin MA; Duan CAI

    2011-01-01

    This paper aims to screen and identify sphere clone cells with characteristics similar to cancer stem cellsin human gallbladder cancer cell line GBC-SD. GBC-SD cells were cultured in a serum-free culture medium with different concentrations of the chemotherapeutic drug cisplatin for generating sphere clones. The mRNA expressions of stem cell-related genes CD133, OCT-4, Nanog, and drug resistance genes ABCG2 and MDR-1 in sphere clones were detected by quantitative real-time polymerase chain reaction (PCR). Stem cell markers were also analyzed by flow cytometry and immunofluorescent staining. Different amounts of sphere clones were injected into nude mice to test their abilities to form tumors. Sphere clones were formed in serum-free culture medium containing cisplatin (30 pmol/L).Flow cytometry results demonstrated that the sphere clones expressed high levels of stem cell markers CD133+ (97.6%) and CD44+ (77.9%) and low levels of CD24+ (2.3%). These clones also overexpressed the drug resistance genes ABCG2 and MDR-1. Quantitative real-time PCR showed that sphere clones expressed stem cell genes Nanog and OCT-4 284 and 266 times, respectively, more than those in the original GBC-SD cells. Immunofluorescent staining showed that sphere clones overexpressed OCT-4, Nanog, and SOX-2, and Iow expressed MUG1 and vimentin. Tumor formation experiments showed that 1 x 103 sphere clone cells could induce much larger tumors in nude mice than 1 x 105 GBC-SD cells. In conclusion, sphere clones of gallbladder cancer with stem cell-like characteristics can be obtained using suspension cultures of GBC-SD cells in serum-free culture medium containing cisplatin.

  9. Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    Full Text Available Multiple Sclerosis (MS is an autoimmune, neurodegenerative disease of the central nervous system (CNS characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i modulation of the host immune system; and/or (ii transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches. Cell penetrating peptides (CPP are short amino acid sequences with an intrinsic ability to translocate across plasma membranes, and theoretically represent an attractive vector for delivery of therapeutic peptides or nanoparticles to glia to promote cell survival or remyelination. The CPPs described to date are commonly non-selective in the cell types they transduce, limiting their therapeutic application in vivo. Here, we describe a theoretical framework for design of a novel CPP sequence that selectively transduces human glial cells (excluding non-glial cell types, and conduct preliminary screens of purified, recombinant CPPs with immature and matured human oligodendrocytes and astrocytes, and two non-glial cell types. A candidate peptide, termed TD2.2, consistently transduced glial cells, was significantly more effective at transducing immature oligodendrocytes than matured progeny, and was virtually incapable of transducing two non-glial cell types: (i human neural cells and (ii human dermal fibroblasts. Time-lapse confocal microscopy confirms trafficking of TD2.2 (fused to EGFP to mature oligodendrocytes 3-6 hours after protein application in vitro. We propose selectivity of TD2.2 for glial cells represents a new therapeutic strategy for the treatment of glial-related disease, such as MS.

  10. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  11. A new method of detecting interferogram in differential phase-contrast imaging system based on special structured x-ray scintillator screen

    International Nuclear Information System (INIS)

    An x-ray scintillator screen with a special structure, functioning as detector and analyser grating, was proposed for collecting the interferogram of differential phase contrast imaging without absorption grating and difficulty of fabrication by a state of the art technique. On the basis of phase grating diffraction, a detecting model of the scintillator screen was built for analysing the phase and absorption information of objects. According to the analysis, a new method of phase retrievals based on two-images and the optimal structure of screen were presented. (general)

  12. web cellHTS2: A web-application for the analysis of high-throughput screening data

    Directory of Open Access Journals (Sweden)

    Boutros Michael

    2010-04-01

    Full Text Available Abstract Background The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. Results The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. Conclusions The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  13. Bioorthogonal SERS Nanoprobes for Mulitplex Spectroscopic Detection, Tumor Cell Targeting, and Tissue Imaging.

    Science.gov (United States)

    Wu, Junzhou; Liang, Duanwei; Jin, Qingqing; Liu, Jie; Zheng, Meiling; Duan, Xuanming; Tang, Xinjing

    2015-09-01

    A surface-enhanced Raman scattering (SERS) technique shows extraordinary features for a range of biological and biomedical applications. Herein, a series of novel bioorthogonal SERS nanoprobes were constructed with Gold nanoflower (AuNF) and Raman reporters, the signals of which were located in a Raman-silent region of biological samples. AS1411 aptamer was also co-conjugated with AuNF through a self-assembled monolayer coverage strategy. Multiplex SERS imaging using these nanoprobes with three different bioorthogonal small-molecule Raman reporters is successfully achieved with high multiplexing capacity in a biologically Raman-silent region. These Raman nanoprobes co-conjugated with AS1411 showed high affinity for tumor cells with overexpressed nucleolin and can be used for selective tumor cell screening and tissue imaging. PMID:26222682

  14. Effect of the phosphor screen optics on the Swank noise performance in indirect-conversion x-ray imaging detectors

    International Nuclear Information System (INIS)

    The optics between the scintillators and photodiode arrays of indirect-conversion x-ray imaging systems requires careful design because it can be a cause of secondary quantum sink, which reduces the detective quantum efficiency at high spatial frequencies. The aim of this study was the investigation of the effect of the optical properties of granular phosphor screens — including optical coupling materials and passivation layers in photodiode arrays — on the imaging performance of indirect-conversion x-ray imaging detectors using the Monte Carlo technique. In the Monte Carlo simulations, various design parameters were considered, such as the refractive index of the optical coupler and the passivation layer, the reflection coefficient at the screen backing, and the thickness of the optical coupler. We developed a model that describes the optical pulse-height distributions based on the depth-dependent collection efficiency obtained from the simulations. We used the model to calculate the optical Swank noise. A loss in the number of collected optical photons was inevitable owing to the introduction of intermediate optics and mismatches in the optical design parameters. However, the collection efficiency marginally affected the optical Swank factor performance. The results and methodology of this study will facilitate better designs and optimization of indirect-conversion x-ray detectors

  15. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  16. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  17. Fluorescent Cell Imaging in Regenerative Medicine

    OpenAIRE

    Etai Sapoznik; Guoguang Niu; Yu Zhou; Murphy, Sean V.; Shay Soker

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as i...

  18. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  19. Full Field Supercritical Angle Fluorescence Microscopy for live cell imaging

    CERN Document Server

    Barroca, Thomas; Delahaye, Julie; Lévêque-Fort, Sandrine; Fort, Emmanuel

    2013-01-01

    We introduce a full field fluorescence imaging technique with axial confinement of about 100 nm at the sample/substrate interface. Contrary to standard surface imaging techniques, this confinement is obtained through emission filtering. This technique is based on supercritical emission selectivity. It can be implemented on any epifluorescence microscope with a commercial high numerical aperture objective and offers a real time surface imaging capability. This technique is of particular interest for live cell membrane and adhesion studies. Using HEK cells, we show that one can observe simultaneously the surface and in-depth cell phenomena.

  20. Improvement of Contrast in Digital X-ray Images Considering Exposure Dose for Stout Patients Undergoing Fluorography Chest Screening

    International Nuclear Information System (INIS)

    Due to high level of tuberculosis in Ukraine, the fluorography chest screening is the most frequent diagnostic procedure which is performed annually for adult population and contributes to collective effective dose. During the diagnostic examination, the people with high body mass index obtain higher exposure dose, compared to average patients. The higher exposure dose is required for receiving diagnostic X-ray images with sufficient visual quality parameters. In present study, the approach in reduce of exposure dose for patients with high body mass index was explored in close to clinical fluorography examination conditions with application of contrast improvement methods

  1. [The development of the skin-optical perception of color and images in blind schoolchildren on an "internal visual screen"].

    Science.gov (United States)

    Mizrakhi, V M; Protsiuk, R G

    2000-03-01

    In profound impairement of vision the function of colour and seen objects perception is absent, with the person being unable to orient himself in space. The uncovered sensory sensations of colour allowed their use in training the blind in recognizing the colour of paper, fabric, etc. Further study in those having become blind will, we believe, help in finding eligible people and relevant approaches toward educating the blind, which will make for development of the trainee's ability to recognize images on the "inner visual screen". PMID:10862485

  2. [Embryonic stem cell test in screening of medicine and other chemicals].

    Science.gov (United States)

    Zhao, Qing; Xu, Jinsen

    2005-02-01

    The technique of embryonic stem cell test (EST) has been developed and used in vitro to screen new medicines and other chemicals. According to toxicity, such medicines and chemicals can be classified as: non-toxic, weak toxic and/or strong toxic. EST shows merits such as no requirement of the sacrifice of pregnant animals, no side-effects on human or animals for candidate medicines and chemicals, higher sensitivity of embryonic stem cells when compared with the sensitivity of ordinary tissues of adult samples in toxicologic researches, higher accuracy when combined with computing techniques, and possible quantitation based on techniques of molecular biology. Advances in utility of EST technique were reviewed and the prospect of technique was also discussed in this paper. PMID:15762145

  3. Quantitative assessment of image motion blur in diffraction images of moving biological cells

    Science.gov (United States)

    Wang, He; Jin, Changrong; Feng, Yuanming; Qi, Dandan; Sa, Yu; Hu, Xin-Hua

    2016-02-01

    Motion blur (MB) presents a significant challenge for obtaining high-contrast image data from biological cells with a polarization diffraction imaging flow cytometry (p-DIFC) method. A new p-DIFC experimental system has been developed to evaluate the MB and its effect on image analysis using a time-delay-integration (TDI) CCD camera. Diffraction images of MCF-7 and K562 cells have been acquired with different speed-mismatch ratios and compared to characterize MB quantitatively. Frequency analysis of the diffraction images shows that the degree of MB can be quantified by bandwidth variations of the diffraction images along the motion direction. The analytical results were confirmed by the p-DIFC image data acquired at different speed-mismatch ratios and used to validate a method of numerical simulation of MB on blur-free diffraction images, which provides a useful tool to examine the blurring effect on diffraction images acquired from the same cell. These results provide insights on the dependence of diffraction image on MB and allow significant improvement on rapid biological cell assay with the p-DIFC method.

  4. Quantitative Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and Support Vector Machine

    Science.gov (United States)

    Huang, Po-Chi; Chan, Yung-Kuan; Chan, Po-Chou; Chen, Yung-Fu; Chen, Rung-Ching; Huang, Yu-Ruei

    Cytologic screening has been widely used for controlling the prevalence of cervical cancer. Errors from sampling, screening and interpretation, still concealed some unpleasant results. This study aims at designing a cellular image analysis system based on feasible and available software and hardware for a routine cytologic laboratory. Totally 1814 cellular images from the liquid-based cervical smears with Papanicolaou stain in 100x, 200x, and 400x magnification were captured by a digital camera. Cell images were reviewed by pathologic experts with peer agreement and only 503 images were selected for further study. The images were divided into 4 diagnostic categories. A PC-based cellular image analysis system (PCCIA) was developed for computing morphometric parameters. Then support vector machine (SVM) was used to classify signature patterns. The results show that the selected 13 morphometric parameters can be used to correctly differentiate the dysplastic cells from the normal cells (p<0.001). Additionally, SVM classifier has been demonstrated to be able to achieve a high accuracy for cellular classification. In conclusion, the proposed system provides a feasible and effective tool for the evaluation of gynecologic cytologic specimens.

  5. Imaging Ferroelectric Domains and Domain Walls Using Charge Gradient Microscopy: Role of Screening Charges.

    Science.gov (United States)

    Tong, Sheng; Jung, Il Woong; Choi, Yoon-Young; Hong, Seungbum; Roelofs, Andreas

    2016-02-23

    Advanced scanning probe microscopies (SPMs) open up the possibilities of the next-generation ferroic devices that utilize both domains and domain walls as active elements. However, current SPMs lack the capability of dynamically monitoring the motion of domains and domain walls in conjunction with the transport of the screening charges that lower the total electrostatic energy of both domains and domain walls. Charge gradient microscopy (CGM) is a strong candidate to overcome these shortcomings because it can map domains and domain walls at high speed and mechanically remove the screening charges. Yet the underlying mechanism of the CGM signals is not fully understood due to the complexity of the electrostatic interactions. Here, we designed a semiconductor-metal CGM tip, which can separate and quantify the ferroelectric domain and domain wall signals by simply changing its scanning direction. Our investigation reveals that the domain wall signals are due to the spatial change of polarization charges, while the domain signals are due to continuous removal and supply of screening charges at the CGM tip. In addition, we observed asymmetric CGM domain currents from the up and down domains, which are originated from the different debonding energies and the amount of the screening charges on positive and negative bound charges. We believe that our findings can help design CGM with high spatial resolution and lead to breakthroughs in information storage and energy-harvesting devices. PMID:26751281

  6. Hepatocellular Carcinoma: Review of Epidemiology, Screening, Imaging Diagnosis, Response Assessment, and Treatment.

    Science.gov (United States)

    Clark, Toshimasa; Maximin, Suresh; Meier, Jeffrey; Pokharel, Sajal; Bhargava, Puneet

    2015-01-01

    Hepatocellular carcinoma is a common malignancy for which prevention, screening, diagnosis, treatment, and surveillance demand a multidisciplinary approach. Knowledge of the underlying pathophysiology as well as advances in clinical management should be employed by radiologists to effectively communicate with hepatologists, surgeons, and oncologists. In this review article, we present recent developments in the clinical management of hepatocellular carcinoma. PMID:25979220

  7. Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images

    Science.gov (United States)

    Haponen, Markus; Rasku, Jyrki

    2016-01-01

    The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies. PMID:27493680

  8. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    Science.gov (United States)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  9. Identifying GSK-3β kinase inhibitors of Alzheimer's disease: Virtual screening, enzyme, and cell assays.

    Science.gov (United States)

    Lin, Chih-Hsin; Hsieh, Yu-Shao; Wu, Yih-Ru; Hsu, Chia-Jen; Chen, Hsuan-Chiang; Huang, Wun-Han; Chang, Kuo-Hsuan; Hsieh-Li, Hsiu Mei; Su, Ming-Tsan; Sun, Ying-Chieh; Lee, Guan-Chiun; Lee-Chen, Guey-Jen

    2016-06-30

    Glycogen synthase kinase 3β (GSK-3β) is widely known as a critical target protein for treating Alzheimer's disease (AD). We utilized virtual screening to search databases for compounds with the potential to be used in drugs targeting GSK-3β kinase, and kinase as well as cell assays to investigate top-scored, selected compounds. Virtual screening of >1.1 million compounds in the ZINC and in-house databases was conducted using an optimized computational protocol in the docking program GOLD. Of the top-ranked compounds, 16 underwent a luminescent kinase assay and a cell assay using HEK293 cells expressing DsRed-tagged ΔK280 in the repeat domain of tau (tauRD). The compounds VB-003 (a potent GSK-3β inhibitor) and VB-008 (AM404, an anandamide transport inhibitor), with determined IC50 values of 0.25 and 5.4μM, respectively, were identified as reducing tau aggregation. Both compounds increased expression of phospho-GSK-3β (Ser9) and reduced endogenous tau phosphorylation at the sites of Ser202, Thr231, and Ser396. In the ∆K280 tauRD-DsRed SH-SY5Y cells, VB-008, but not VB-003, enhanced HSPB1 and GRP78 expression, increased ∆K280 tauRD-DsRed solubility, and promoted neurite outgrowth. Thus VB-008 performed best to the end of the present study. The identified compound VB-008 may guide the identification and synthesis of potential inhibitors analogous to this compound. PMID:27094783

  10. Screening Metastasis-associated Genes from Anoikis Resistant A549 Lung Cancer Cells by Human Genome Array

    Directory of Open Access Journals (Sweden)

    Xiaoping WANG

    2010-01-01

    Full Text Available Background and objective As a barrier to metastases, cells normally undergo apoptosis after they lose contact with their extra cellular matrix (ECM. This process has been termed “anoikis”. Tumour cells that acquire malignant potential have developed mechanisms to resist anoikis and thereby survive after detachment from their primary site while traveling through the lymphatic and circulatory systems. This “anoikis resistance” is considered the first step to tumor metastases. The aim of this study was to screen metastasis-associated genes from anoikis resistant and adherent growth A549 lung cancer cell by Human Genome Array. Methods Establish anoikis resistant A549 lung cancer cell lines by using poly-hydroxyethyl methacrylate resin processed petri dishes, which causes cell free from adherent. The different expressed gene between anoikis resistant A549 cell and adherent growth A549 cell was tested using human V2.0 whole-genome oligonucleotide microarray, a product of Capitalbio Corporation, Beijing. Screen metastasis-associated genes. Results 745 different expressed genes were screened, including 63 highly metastasis-associated genes. Conclusion The successfully established anoikis resistant A549 cell lines and screened different expressed genes provide us basis for further research on metastasis of lung cancer.

  11. Vanished Twins and Misdiagnosed Sex: A Case Report with Implications in Prenatal Counseling Using Noninvasive Cell-Free DNA Screening.

    Science.gov (United States)

    Kelley, James F; Henning, George; Ambrose, Anthony; Adelman, Alan

    2016-01-01

    Cell-free DNA testing is a recently introduced method for screening pregnant women for fetal trisomy, which is associated with some common significant genetic diseases, as well as the sex of the fetus. The case described here demonstrates the connection between the ultrasound "vanishing twin" phenomenon and the misdiagnosis of prenatal sex using cell-free DNA testing. PMID:27170800

  12. Tissue matrix arrays for high-throughput screening and systems analysis of cell function.

    Science.gov (United States)

    Beachley, Vince Z; Wolf, Matthew T; Sadtler, Kaitlyn; Manda, Srikanth S; Jacobs, Heather; Blatchley, Michael R; Bader, Joel S; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H

    2015-12-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here we spotted tissue extracellular matrix (ECM) particles as two-dimensional (2D) arrays or incorporated them with cells to generate three-dimensional (3D) cell-matrix microtissue arrays. We then investigated the responses of human stem, cancer and immune cells to tissue ECM arrays originating from 11 different tissues. We validated the 2D and 3D arrays as representative of the in vivo microenvironment by means of quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes after culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and further understanding of regeneration and disease mechanisms. PMID:26480475

  13. Cytotoxicity screening of Melastoma malabathricum extracts on human breast cancer cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    Nurfariza; Ahmad; Roslen; Nur; Aizura; Mat; Alewi; Hadji; Ahamada; Mohammad; Syaiful; Bahari; Abdull; Rasad

    2014-01-01

    Objective:To screen the cytotoxic activity of Melasloma malabathricum(M,malubathricum)against human breast carreer cell line(MCF-7)in vitro.Methods:A three steps extraction protocol using n-hexane,chloroform and methanol as the solvents systems was carried out on leaves,stems and flowers of M.nalabathricum.Dimethyl sulfoxide was used in extracts dilution and serial dilutions were conducted to obtain five different extract concentrations(100μg/mL,50μg/mL,25μg/mL,123μg/rnL and 6.25μg/mL).The evaluation of cell growth was determined using methylene blue assay.Results:Methanol extract from the leaves showed significant anticancer activity against MCF-7cell lines with the TC50value of 7.14μg/ml while methanol and chloroform extract from the flowers exhibited a moderate activity towards MCF-7 cell line,with the IC50value of 33.63μg/mL and 45.76μg/mL respectively after 72 h of treatment.Conclusions:The extracts from leaves and flowers of M.nulabatkricum showed promising anticancer activity toward human breast cancer cell lines with the lowest IC50at 7.14μg/mL while the extracts from stems showed less growth inhibition activity.

  14. Cytotoxicity screening of Melastoma malabathricum extracts on human breast cancer cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    Nurfariza Ahmad Roslen; Nur Aizura Mat Alewi; Hadji Ahamada

    2014-01-01

    Objective: To screen the cytotoxic activity of Melastoma malabathricum (M. malabathricum) against human breast cancer cell line (MCF-7) in vitro. Methods: A three steps extraction protocol using n-hexane, chloroform and methanol as the solvents systems was carried out on leaves, stems and flowers of M. malabathricum. Dimethyl sulfoxide was used in extracts dilution and serial dilutions were conducted to obtain five different extract concentrations (100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL and 6.25 µg/mL). The evaluation of cell growth was determined using methylene blue assay.Results:Methanol extract from the leaves showed significant anticancer activity against MCF-7 cell lines with the IC50 value of 7.14 µg/ml while methanol and chloroform extract from the flowers exhibited a moderate activity towards MCF-7 cell line with the IC50 value of 33.63 µg/mL and 45.76 µg/mL respectively after 72 h of treatment.Conclusions:The extracts from leaves and flowers of M. malabathricum showed promising anticancer activity toward human breast cancer cell lines with the lowest IC50 at 7.14 µg/mL while the extracts from stems showed less growth inhibition activity.

  15. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  16. Chemical Library Screens Targeting an HIV-1 Accessory Factor/Host Cell Kinase Complex Identify Novel Anti-retroviral Compounds

    OpenAIRE

    Emert-Sedlak, Lori; Kodama, Toshiaki; Lerner, Edwina C.; Dai, Weixiang; Foster, Caleb; Day, Billy W.; Lazo, John S.; Smithgall, Thomas E

    2009-01-01

    Nef is an HIV-1 accessory protein essential for AIDS progression and an attractive target for drug discovery. Lack of a catalytic function makes Nef difficult to assay in chemical library screens. We developed a high-throughput screening assay for inhibitors of Nef function by coupling it to one of its host cell binding partners, the Src-family kinase Hck. Hck activation is dependent upon Nef in this assay, providing a direct readout of Nef activity in vitro. Using this screen, a unique diphe...

  17. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei;

    2014-01-01

    investment, and a logarithmic increase to screen large combinatorial libraries over the decades also makes it gradually out of depth. Here, we are trying to develop a feasible high‐throughput system that uses microfluidics to compartmentalize a single cell for propagation and analysis in monodisperse...... picoliter aqueous droplets surround by an immiscible fluorinated oil phase. Our aim is to use this system to facilitate the screening process for both the biotechnology and food industry....

  18. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    Science.gov (United States)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  19. Cloud screening and quality control algorithm for star photometer data: assessment with lidar measurements and with all-sky images

    Directory of Open Access Journals (Sweden)

    D. Pérez-Ramírez

    2012-07-01

    Full Text Available This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, δAe(λ, and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of δAe(λ and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable δAe(λ and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  20. Cloud screening and quality control algorithm for star photometer data: assessment with lidar measurements and with all-sky-images

    Directory of Open Access Journals (Sweden)

    D. Pérez-Ramírez

    2012-02-01

    Full Text Available This paper present the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. This kind of algorithms is necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, δAe(λ, and precipitable water vapor content, W, at night-time. This cloud screening procedure consists of calculating moving averages of δAe(λ and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable δAe(λ and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16° N, 3.60° W, 680 m a.s.l.; South-East of Spain for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  1. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Ansari, Nariman [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Esner, Milan; Bickle, Marc [Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden (Germany); Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H. [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Parczyk, Karsten; Prechtl, Stefan [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Steigemann, Patrick, E-mail: Patrick.Steigemann@bayer.com [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany)

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  2. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    International Nuclear Information System (INIS)

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  3. High-Resolution Longitudinal Screening with Magnetic Resonance Imaging in a Murine Brain Cancer Model

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bock

    2003-11-01

    Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.

  4. Design of microdevices for long-term live cell imaging

    International Nuclear Information System (INIS)

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  5. F-pili dynamics by live-cell imaging

    OpenAIRE

    Clarke, Margaret; Maddera, Lucinda; Harris, Robin L.; Silverman, Philip M.

    2008-01-01

    Bacteria have evolved numerous mechanisms for cell–cell communication, many of which have important consequences for human health. Among these is conjugation, the direct transfer of DNA from one cell to another. For Gram-negative bacteria, conjugation requires thin, flexible filaments (conjugative pili) that are elaborated by DNA donor cells. The structure, function, and especially the dynamics of conjugative pili are poorly understood. Here, we have applied live-cell imaging to characterize ...

  6. Single Molecule Imaging in Living Cell with Optical Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Significance, difficult, international developing actuality and our completed works for single molecules imaging in living cell with optical method are described respectively. Additionally we give out some suggestions for the technology development further.

  7. Cellular transfer and AFM imaging of cancer cells using Bioimprint

    Directory of Open Access Journals (Sweden)

    Melville DOS

    2006-01-01

    Full Text Available Abstract A technique for permanently capturing a replica impression of biological cells has been developed to facilitate analysis using nanometer resolution imaging tools, namely the atomic force microscope (AFM. The method, termed Bioimprint™, creates a permanent cell 'footprint' in a non-biohazardous Poly (dimethylsiloxane (PDMS polymer composite. The transfer of nanometer scale biological information is presented as an alternative imaging technique at a resolution beyond that of optical microscopy. By transferring cell topology into a rigid medium more suited for AFM imaging, many of the limitations associated with scanning of biological specimens can be overcome. Potential for this technique is demonstrated by analyzing Bioimprint™ replicas created from human endometrial cancer cells. The high resolution transfer of this process is further detailed by imaging membrane morphological structures consistent with exocytosis. The integration of soft lithography to replicate biological materials presents an enhanced method for the study of biological systems at the nanoscale.

  8. An electrochemical surface plasmon resonance imaging system targeting cell analysis

    Science.gov (United States)

    Zhang, L. L.; Chen, X.; Wei, H. T.; Li, H.; Sun, J. H.; Cai, H. Y.; Chen, J. L.; Cui, D. F.

    2013-08-01

    This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.

  9. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  10. Imaging the Beta-cell mass: why and how

    DEFF Research Database (Denmark)

    Saudek, Frantisek; Brogren, Carl-Henrik; Manohar, Srirang

    2008-01-01

    of the fate of beta-cells under disease and therapy conditions. This could pave the way for a new era of intervention by islet replacement and regeneration regimens. Monitoring the beta-cell mass requires a reliable method for noninvasive in vivo imaging. Such a method is not available at present due......-cells. This effect was demonstrated in many previous investigations, and has been further substantiated more recently. Thus, at present, IC2 seems to be the only useful marker for noninvasive functional imaging of native beta-cells. Experiments with a radioisotope-chelated IC2 structure on pancreas ex vivo showed...

  11. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  12. Label-free classification of cultured cells through diffraction imaging

    OpenAIRE

    Dong, Ke; Feng, Yuanming; Jacobs, Kenneth M.; Lu, Jun Q.; Brock, R. Scott; Yang, Li V.; Bertrand, Fred E.; Farwell, Mary A.; Hu, Xin-Hua

    2011-01-01

    Automated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for ...

  13. Single-Molecule and Superresolution Imaging in Live Bacteria Cells

    OpenAIRE

    Biteen, Julie S; Moerner, W. E.

    2010-01-01

    Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the diffraction limit, and permits superresolution reconstructions. Here, single-molecule and superresolution imaging are applied to the study of proteins in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the locali...

  14. High resolution field imaging with atomic vapor cells

    OpenAIRE

    Horsley, Andrew

    2015-01-01

    In this thesis, I report on the development of imaging techniques in atomic vapor cells. This is a relatively unexplored area, despite the ubiquitous use of imaging in experiments with ultracold atoms. Our main focus is in high resolution imaging of microwave near fields, for which there is currently no satisfactory established technique. We detect microwave fields through Rabi oscillations driven by the microwave on atomic hyperfine transitions. The technique can be easily modified to also i...

  15. Quantitative phase imaging of Breast cancer cell based on SLIM

    Science.gov (United States)

    Wu, Huaqin; Li, Zhifang; Li, Hui; Wu, Shulian

    2016-02-01

    We illustrated a novel optical microscopy technique to observe cell dynamics via spatial light interference microscopy (SLIM). SLIM combines Zemike's phase contrast microscopy and Gabor's holography. When the light passes through the transparent specimens, it could render high contrast intensity and record the phase information from the object. We reconstructed the Breast cancer cell phase image by SLIM and the reconstruction algorithm. Our investigation showed that SLIM has the ability to achieve the quantitative phase imaging (QPI).

  16. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Volkan Beylergil

    2014-04-01

    Full Text Available Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC, a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  17. Fluorescence lifetime imaging of oxygen in living cells

    NARCIS (Netherlands)

    Gerritsen, H.C.; Sanders, R.; Draaijer, A.; Ince, C.; Levine, Y.K.

    1997-01-01

    The usefulness of the fluorescent probe ruthenium tris(2,2′-dipyridyl) dichloride hydrate (RTDP) for the quantitative imaging of oxygen in single cells was investigated utilizing fluorescence life-time imaging. The results indicate that the fluorescence behavior of RTDP in the presence of oxygen can

  18. Photoacoustic imaging of single circulating melanoma cells in vivo

    Science.gov (United States)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  19. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    Science.gov (United States)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  20. Structure and electrical properties of screen printed contacts on silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-04-01

    Full Text Available Purpose: The aim of the paper was to apply a conventional method - “screen printing” using micrometric pastes to improve the quality of forming front side metallization of monocrystalline solar cells.Design/methodology/approach: The topography of co-fired in the infrared belt furnace front contacts were investigated using confocal laser scanning microscope and scanning electron microscope with an energy dispersive X-ray (EDS spectrometer for microchemical analysis. There were researched both surface topography and cross section of front contacts using SEM microscope. Phase composition analyses of chosen front contacts were done using the XRD method. Front contacts were formed on the surface with different morphology of the solar cells: textured with coated antireflection layer, textured without coated antireflection layer, non-textured with coated antireflection layer, non-textured without coated antireflection layer. The medium size of the pyramids was measured using the atomic force microscope (AFM. Resistance of front electrodes was investigated using Transmission Line Model (TLM.Findings: The high of deposited front metallization has an influence on value obtained from the contact resistance. This high of silver contact depends on: a paste composition, obtained structure after fired into a infrared belt furnace, the quantity and type of creating connections material molecules between themselves and with a silicon substrate.Research limitations/implications: The contact resistance of the screen-printed front metallization depends not only on the paste composition and firing conditions, but is also strongly influenced by the surface morphology of the silicon substrate.Originality/value: This paper investigates the front contact formation using silver pastes about different composition on silicon solar cells in order to decrease contact resistance and increase efficiency in this way

  1. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    Science.gov (United States)

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity. PMID:16169172

  2. Phantom experiments with a microwave imaging system for breast-cancer screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging is emerging as a promising technique for breast-cancer detection. In this paper, the microwave imaging system currently being developed at the Technical University of Denmark is introduced. This system consists of 32 antennas positioned in a cylindrical setup, each equipped with...

  3. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  4. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  5. Cell-free DNA concentration and integrity as a screening tool for cancer

    Directory of Open Access Journals (Sweden)

    Ebtsam R Zaher

    2013-01-01

    Full Text Available Aim of the Study: This study aims to evaluate cell-free DNA (CFDNA concentration and integrity in patients with malignant and nonmalignant diseases and in controls to investigate their value as a screening test for cancer, and to correlate them with clinicopathological parameters of cancer patients. Materials and Methods: The study included three groups; group I: 120 cancer patients, group II: 120 patients with benign diseases and group III: 120 normal healthy volunteers as control. One plasma sample was collected from each subject. CFDNA was purified from the plasma then its concentration was measured and integrity was assessed by PCR amplification of 100, 200, 400, and 800 bp bands. Results: There was a highly significant difference in CFDNA levels between cancer group and each of benign and control groups. AUC of ROC curve for cancer group versus normal and benign groups were 0.962 and 0.895, which indicated the efficiency of CFDNA as a marker of cancer. As for integrity, normal and benign subjects showed only two bands at 100 and 200 bp, while all cancer patients demonstrated the 400 bp band and 78% of them had the 800 bp whose presence correlated with vascular invasion. Conclusion: The combined use of CFDNA concentration and integrity is a candidate for a universal screening test of cancer. Upon setting suitable boundaries for the test it might be applied to identify cancer patients, particularly among subjects with predisposing factors. Being less expensive, CFDNA concentration could be applied for mass screening and for patients with values overlapping those of normal and benign subjects, the use of the more expensive, yet more specific, integrity test is suggested.

  6. Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System.

    Science.gov (United States)

    Han, Xin; Liu, Zongbin; Zhao, Li; Wang, Feng; Yu, Yang; Yang, Jianhua; Chen, Rui; Qin, Lidong

    2016-07-18

    Herein we report a CRISPR-Cas9-mediated loss-of-function kinase screen for cancer cell deformability and invasive potential in a high-throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted in cells becoming more deformable and invasive. High-ranking candidates identified included well-reported tumor suppressor kinases, such as chk2, IKK-α, p38 MAPKs, and DAPK2. A high-ranking candidate STK4 was chosen for functional validation and identified to play an important role in the regulation of cell deformability and tumor suppression. Collectively, we have demonstrated that CRISPR-based on-chip mechanical screening is a potentially powerful strategy to facilitate systematic genetic analyses. PMID:27258939

  7. Biomechanical cell analysis using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Wax, Adam; Park, Han Sang; Eldridge, William J.

    2016-03-01

    Quantitative phase imaging provides nanometer scale sensitivity and has been previously used to study spectral and temporal characteristics of individual cells in vitro, especially red blood cells. Here we extend this work to study the mechanical responses of individual cells due to the influence of external stimuli. Cell stiffness may be characterized by analyzing the inherent thermal fluctuations of cells but by applying external stimuli, additional information can be obtained. The time dependent response of cells due to external shear stress is examined with high speed quantitative phase imaging and found to exhibit characteristics that relate to their stiffness. However, analysis beyond the cellular scale also reveals internal organization of the cell and its modulation due to pathologic processes such as carcinogenesis. Further studies with microfluidic platforms point the way for using this approach in high throughput assays.

  8. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Alstrup, J.; Spanggaard, H.;

    2004-01-01

    pattern of conducting silver epoxy allowing for electrical contacts to the device was silk screen printed and hardened. Subsequently a pattern of MEH-PPV was silk screen printed in registry with the ITO electrode pattern on top of the substrate. Final evaporation of an aluminum electrode or sublimation of...... 20 muA cm(-2). The half-life based on I-sc in air for the devices were 63 h. The cells were laminated in a 125 mum PET encasement. Lamination had a negative effect on the lifetime. We demonstrate the feasibility of industrial production of large area solar cells (1 m(2)) by silk screen printing and......The possibility of making large area (100 cm(2)) polymer solar cells based on the conjugated polymer poly 1,4-(2-methoxy-5-ethylhexyloxy)phenylenevinylene (MEH-PPV) was demonstrated. Devices were prepared by etching an electrode pattern on ITO covered polyethyleneterephthalate (PET) substrates. A...

  9. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  10. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2012-03-15

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  11. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  12. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  13. Immunomagnetic cell separation, imaging, and analysis using Captivate ferrofluids

    Science.gov (United States)

    Jones, Laurie; Beechem, Joseph M.

    2002-05-01

    We have developed applications of CaptivateTM ferrofluids, paramagnetic particles (approximately 200 nm diameter), for isolating and analyzing cell populations in combination with fluorescence-based techniques. Using a microscope-mounted magnetic yoke and sample insertion chamber, fluorescent images of magnetically captured cells were obtained in culture media, buffer, or whole blood, while non-magnetically labeled cells sedimented to the bottom of the chamber. We combined this immunomagnetic cell separation and imaging technique with fluorescent staining, spectroscopy, and analysis to evaluate cell surface receptor-containing subpopulations, live/dead cell ratios, apoptotic/dead cell ratios, etc. The acquired images were analyzed using multi-color parameters, as produced by nucleic acid staining, esterase activity, or antibody labeling. In addition, the immunomagnetically separated cell fractions were assessed through microplate analysis using the CyQUANT Cell Proliferation Assay. These methods should provide an inexpensive alternative to some flow cytometric measurements. The binding capacities of the streptavidin- labled Captivate ferrofluid (SA-FF) particles were determined to be 8.8 nmol biotin/mg SA-FF, using biotin-4- fluorescein, and > 106 cells/mg SA-FF, using several cell types labeled with biotinylated probes. For goat anti- mouse IgG-labeled ferrofluids (GAM-FF), binding capacities were established to be approximately 0.2 - 7.5 nmol protein/mg GAM-FF using fluorescent conjugates of antibodies, protein G, and protein A.

  14. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  15. Diagnostic and therapeutic imaging of the renal circulation: Film-screen arteriography, digital subtraction angiography, and percutaneous angioplasty and embolization

    International Nuclear Information System (INIS)

    Renal dysfunction is often engendered by disorders of the major renal arteries or their arborizations. Alternatively, primary renal parenchymal disease may manifest vascular alterations, which are indicative of the pathogenetic condition. Thus for these groups of diseases, imaging of the renal circulation frequently provides information that will lead to a generic or specific diagnosis. Traditionally, renal vascular imaging has been accomplished by conventional film-screen angiography. More recently, however, digital subtraction angiography has become established as an advantageous method of diagnosing renal vascular diseases. In addition the role of angiography is becoming increasingly extended to include therapeutic applications, such as percutaneous transluminal angioplasty for renal artery stenosis and transcatheter embolization of parenchymal abnormalities. The contents of this chapter are twofold: In the first section (The Procedures and Their Attributes) the authors describe the techniques, their applications, and their virtues and disadvantages. The second section (Vascular Imaging and Renal Disease) places these vascular imaging methods within the context of evaluating and treating renal disease

  16. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells.

    Directory of Open Access Journals (Sweden)

    Scott D Findlay

    Full Text Available The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs "mismatch nucleases" T7E1 or "Surveyor" that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an "all-in-one" CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation.

  17. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells

    Science.gov (United States)

    Berman, Jennifer R.; Postovit, Lynne-Marie

    2016-01-01

    The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539

  18. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells.

    Science.gov (United States)

    Findlay, Scott D; Vincent, Krista M; Berman, Jennifer R; Postovit, Lynne-Marie

    2016-01-01

    The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs "mismatch nucleases" T7E1 or "Surveyor" that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an "all-in-one" CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539

  19. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    International Nuclear Information System (INIS)

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  20. Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells.

    Science.gov (United States)

    Shen, Hua; McHale, Cliona M; Haider, Syed I; Jung, Cham; Zhang, Susie; Smith, Martyn T; Zhang, Luoping

    2016-05-01

    Though current functional genomic screening systems are useful for investigating human susceptibility to chemical toxicity, they have limitations. Well-established, high-throughput yeast mutant screens identify only evolutionarily conserved processes. RNA interference can be applied in human cells but is limited by incomplete gene knockout and off-target effects. Human haploid cell screening is advantageous as it requires knockdown of only a single copy of each gene. A human haploid cell mutant library (KBM7-Mu), derived from a chronic myeloid leukemia (CML) patient, was recently developed and has been used to identify genes that modulate sensitivity to infectious agents and pharmaceutical drugs. Here, we sought to improve the KBM7-Mu screening process to enable efficient screening of environmental chemicals. We developed a semi-solid medium based screening approach that cultures individual mutant colonies from chemically resistant cells, faster (by 2-3 weeks) and with less labor than the original liquid medium-based approach. As proof of principle, we identified genetic mutants that confer resistance to the carcinogen formaldehyde (FA, 12 genes, 18 hits) and the CML chemotherapeutic agent imatinib (6 genes, 13 hits). Validation experiments conducted on KBM7 mutants lacking each of the 18 genes confirmed resistance of 6 FA mutants (CTC1, FCRLA, GOT1, LPR5, M1AP, and MAP2K5) and 1 imatinib-resistant mutant (LYRM9). Despite the improvements to the method, it remains technically challenging to limit false positive findings. Nonetheless, our findings demonstrate the broad applicability of this optimized haploid approach to screen toxic chemicals to identify novel susceptibility genes and gain insight into potential mechanisms of toxicity. PMID:27008852

  1. Collection of sequential imaging events for research in breast cancer screening

    Science.gov (United States)

    Patel, M. N.; Young, K.; Halling-Brown, M. D.

    2016-03-01

    Due to the huge amount of research involving medical images, there is a widely accepted need for comprehensive collections of medical images to be made available for research. This demand led to the design and implementation of a flexible image repository, which retrospectively collects images and data from multiple sites throughout the UK. The OPTIMAM Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, annotations and expert-determined ground truths. Collection has been ongoing for over three years, providing the opportunity to collect sequential imaging events. Extensive alterations to the identification, collection, processing and storage arms of the system have been undertaken to support the introduction of sequential events, including interval cancers. These updates to the collection systems allow the acquisition of many more images, but more importantly, allow one to build on the existing high-dimensional data stored in the OMI-DB. A research dataset of this scale, which includes original normal and subsequent malignant cases along with expert derived and clinical annotations, is currently unique. These data provide a powerful resource for future research and has initiated new research projects, amongst which, is the quantification of normal cases by applying a large number of quantitative imaging features, with a priori knowledge that eventually these cases develop a malignancy. This paper describes, extensions to the OMI-DB collection systems and tools and discusses the prospective applications of having such a rich dataset for future research applications.

  2. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  3. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  4. A new multicolor bioluminescence imaging platform to investigate NF-κB activity and apoptosis in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Mezzanotte

    Full Text Available BACKGROUND: Evaluation of novel drugs for clinical development depends on screening technologies and informative preclinical models. Here we developed a multicolor bioluminescent imaging platform to simultaneously investigate transcription factor NF-κB signaling and apoptosis. METHODS: The human breast cancer cell line (MDA-MB-231 was genetically modified to express green, red and blue light emitting luciferases to monitor cell number and viability, NF-κB promoter activity and to perform specific cell sorting and detection, respectively. The pro-luciferin substrate Z-DEVD-animoluciferin was employed to determine apoptotic caspase 3/7 activity. We used the cell line for the in vitro evaluation of natural compounds and in vivo optical imaging of tumor necrosis factor TNFα-induced NF-κB activation. RESULTS: Celastrol, resveratrol, sulphoraphane and curcumin inhibited the NF-κB promoter activity significantly and in a dose dependent manner. All compounds except resveratrol induced caspase 3/7 dependent apoptosis. Multicolor bioluminescence in vivo imaging allowed the investigation of tumor growth and NF-κB induction in a mouse model of breast cancer. CONCLUSION: Our new method provides an imaging platform for the identification, validation, screening and optimization of compounds acting on NF-κB signaling and apoptosis both in vitro and in vivo.

  5. A New Multicolor Bioluminescence Imaging Platform to Investigate NF-κB Activity and Apoptosis in Human Breast Cancer Cells

    Science.gov (United States)

    Mezzanotte, Laura; An, Na; Mol, Isabel M.; Löwik, Clemens W. G. M.; Kaijzel, Eric L.

    2014-01-01

    Background Evaluation of novel drugs for clinical development depends on screening technologies and informative preclinical models. Here we developed a multicolor bioluminescent imaging platform to simultaneously investigate transcription factor NF-κB signaling and apoptosis. Methods The human breast cancer cell line (MDA-MB-231) was genetically modified to express green, red and blue light emitting luciferases to monitor cell number and viability, NF-κB promoter activity and to perform specific cell sorting and detection, respectively. The pro-luciferin substrate Z-DEVD-animoluciferin was employed to determine apoptotic caspase 3/7 activity. We used the cell line for the in vitro evaluation of natural compounds and in vivo optical imaging of tumor necrosis factor TNFα-induced NF-κB activation. Results Celastrol, resveratrol, sulphoraphane and curcumin inhibited the NF-κB promoter activity significantly and in a dose dependent manner. All compounds except resveratrol induced caspase 3/7 dependent apoptosis. Multicolor bioluminescence in vivo imaging allowed the investigation of tumor growth and NF-κB induction in a mouse model of breast cancer. Conclusion Our new method provides an imaging platform for the identification, validation, screening and optimization of compounds acting on NF-κB signaling and apoptosis both in vitro and in vivo. PMID:24465597

  6. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Science.gov (United States)

    Cervantes, Serena; Prudhomme, Jacques; Carter, David; Gopi, Krishna G; Li, Qian; Chang, Young-Tae; Le Roch, Karine G

    2009-01-01

    Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS) to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency. PMID:19515257

  7. Screening-detected calcified and non-calcified ductal carcinoma in situ: Differences in the imaging and histopathological features

    International Nuclear Information System (INIS)

    Aim: To compare the imaging and histopathological features of screening-detected calcified and non-calcified ductal carcinoma in situ (DCIS). Materials and methods: The study involved 217 DCIS cases in 212 asymptomatic patients admitted between May 2007 and December 2010. All lesions were divided into calcified and non-calcified DCIS according to the presence of calcifications on mammography. Two radiologists reviewed the findings from mammography, ultrasound, and magnetic resonance imaging (MRI) in consensus according to the Breast Imaging Reporting and Data System. The histopathological features of the lesions were obtained from medical records. Statistical comparisons were performed using the chi-square, Fisher's exact test, and intraclass correlation coefficient (ICC) analyses. Results: On mammography, most non-calcified DCIS presented as either a false-negative finding (49%) or mass lesion (30%), whereas most calcified DCIS (68.5%) presented as calcification alone (p < 0.001). At ultrasound, all of the non-calcified DCIS appeared as a mass, whereas 62% of the calcified DCIS appeared as a mass (p < 0.001). At histopathology, high nuclear grade (p = 0.017), necrosis (p < 0.001), positive progesterone receptor (p = 0.027), and presence of the HER-2/neu oncogene (p < 0.001) were more common in the calcified DCIS than in the non-calcified DCIS. There were no significant differences in the MRI features between the two groups. The ICC values of the non-calcified and calcified DCIS between predicted tumour size and pathologic size were 0.625 versus 0.705 for mammography, 0.801 versus 0.552 for ultrasound, and 0.760 versus 0.767 for MRI. Conclusions: Screening-detected calcified and non-calcified DCIS have different mammographic and sonographic features. Ultrasound could be helpful to predict the pathological size of the non-calcified DCIS.

  8. Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells.

    Science.gov (United States)

    Mayshar, Yoav; Yanuka, Ofra; Benvenisty, Nissim

    2011-06-01

    Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs--ethanol, lithium, retinoic acid (RA), caffeine and thalidomide, which is known to be highly species specific. Our results point to the potency of specific teratogens and their affected tissues and pathways. Specifically, we could show that ethanol caused dramatic increase in endodermal differentiation, RA caused misregulation of neural development and thalidomide affected both these processes. We thus propose this method as a valuable addition to currently available animal screening approaches. PMID:20561110

  9. Unfair discrimination in prenatal aneuploidy screening using cell-free DNA?

    Science.gov (United States)

    Rolfes, Vasilija; Schmitz, Dagmar

    2016-03-01

    Non-invasive prenatal testing on the basis of cell-free DNA of placental origin (NIPT) changed the landscape of prenatal care and is seen as superior to all other up to now implemented prenatal screening procedures - at least in the high-risk population. NIPT has spread almost worldwide commercially, but only in a few countries the costs of NIPT are covered by insurance companies. Such financial barriers in prenatal testing can lead to significant restrictions to the average range of opportunities of pregnant women and couples, which on an intersubjective level can be defined as unfair discrimination and on an individual level weakens reproductive autonomy. Given that enabling reproductive autonomy is the main ethical justification for offering prenatal (genetic) testing, these barriers are not only an issue of justice in health care, but are potentially counteracting the primary purpose of these testing procedures. PMID:26773245

  10. Cell-based land use screening procedure for regional siting analysis

    International Nuclear Information System (INIS)

    An energy facility site-screening methodology which permits the land resource planner to identify candidate siting areas was developed. Through the use of spatial analysis procedures and computer graphics, a selection of candidate areas is obtained. Specific sites then may be selected from among candidate areas for environmental impact analysis. The computerized methodology utilizes a cell-based geographic information system for specifying the suitability of candidate areas for an energy facility. The criteria to be considered may be specified by the user and weighted in terms of importance. Three primary computer programs have been developed. These programs produce thematic maps, proximity calculations, and suitability calculations. Programs are written so as to be transferrable to regional planning or regulatory agencies to assist in rational and comprehensive power plant site identification and analysis

  11. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    Science.gov (United States)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  12. Content-based image retrieval applied to BI-RADS tissue classification in screening mammography

    OpenAIRE

    2011-01-01

    AIM: To present a content-based image retrieval (CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.

  13. Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Kim, Oleksiy S.; Meincke, Peter

    2009-01-01

    signals improves its performance when compared to the more commonly used complex phasor formulation. This improvement is illustrated by imaging a simulated hemispherical breast model using both formulations. In addition to this, the importance of using the correct position and orientation of the antennas...... in the measurement system is shown by imaging the same breast model using a measurement setup in which the antennas are vertically oriented....

  14. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro

    International Nuclear Information System (INIS)

    In vitro tests are needed to replace animal tests to screen for the skin sensitization potential of chemicals. Skin sensitizers are electrophilic molecules and the Nrf2-electrophile-sensing pathway comprising the repressor protein Keap1, the transcription factor Nrf2 and the antioxidant response element (ARE) is emerging as a toxicity pathway induced by skin sensitizers. Previously, we screened a large set of chemicals in the reporter cell line AREc32, which contains an eight-fold repeat of the rat GSTA2 ARE-sequence upstream of a luciferase reporter gene in the human breast cancer cell line MCF7. This approach was now further developed to bring it closer to the conditions in the human skin and to propose a fully standardized assay. To this end, a luciferase reporter gene under control of a single copy of the ARE-element of the human AKR1C2 gene was stably inserted into HaCaT keratinocytes. A standard operating procedure was developed whereby chemicals are routinely tested at 12 concentrations in triplicate for significant induction of gene activity. We report results from this novel assay on (i) a list of reference chemicals published by ECVAM, (ii) the ICCVAM list of chemicals for validation of alternative endpoints in the LLNA and (iii) on a more general list of 67 chemicals derived from the ICCVAM database. For comparison, peptide reactivity data are presented for the same chemicals. The results indicate a good predictive value of this approach for hazard identification. Its technical simplicity, the high-throughput format and the good predictivity may make this assay a candidate for rapid validation to meet the tight deadline to replace animal tests for skin sensitization by 2013 set by the European authorities.

  15. Screening of adulterants in powdered foods and ingredients using line-scan Raman chemical imaging

    Science.gov (United States)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2015-05-01

    A newly developed line-scan Raman imaging system using a 785 nm line laser was used to authenticate powdered foods and ingredients. The system was used to collect hyperspectral Raman images in a wavenumber range of 102-2865 cm-1 from three representative food powders mixed with selected adulterants with a concentration of 0.5%, including milk and melamine, flour and benzoyl peroxide, and starch and maleic anhydride. An acoustic mixer was used to create food adulterant mixtures. All the mixed samples were placed in sample holders with a surface area of 50 mm×50 mm. Spectral and image processing algorithms were developed based on single-band images at unique Raman peaks of the individual adulterants. Chemical images were created to show identification, spatial distribution, and morphological features of the adulterant particles mixed in the food powders. The potential of estimating mass concentrations of the adulterants using the percentages of the adulterant pixels in the chemical images was also demonstrated.

  16. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  17. Cell-Based Assay Design for High-Content Screening of Drug Candidates.

    Science.gov (United States)

    Nierode, Gregory; Kwon, Paul S; Dordick, Jonathan S; Kwon, Seok-Joon

    2016-02-01

    To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner. PMID:26428732

  18. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  19. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells.

    Science.gov (United States)

    Csöbönyeiová, Mária; Polák, Štefan; Danišovič, L'uboš

    2016-07-01

    Unexpected toxicity in areas such as cardiotoxicity, hepatotoxicity, and neurotoxicity is a serious complication of clinical therapy and one of the key causes for failure of promising drug candidates in development. Animal studies have been widely used for toxicology research to provide preclinical security evaluation of various therapeutic agents under development. Species differences in drug penetration of the blood-brain barrier, drug metabolism, and related toxicity contribute to failure of drug trials from animal models to human. The existing system for drug discovery has relied on immortalized cell lines, animal models of human disease, and clinical trials in humans. Moreover, drug candidates that are passed as being safe in the preclinical stage often show toxic effects during the clinical stage. Only around 16% drugs are approved for human use. Research on induced pluripotent stem cells (iPSCs) promises to enhance drug discovery and development by providing simple, reproducible, and economically effective tools for drug toxicity screening under development and, on the other hand, for studying the disease mechanism and pathways. In this review, we provide an overview of basic information about iPSCs, and discuss efforts aimed at the use of iPSC-derived hepatocytes, cardiomyocytes, and neural cells in drug discovery and toxicity testing. PMID:27128322

  20. Recognition of Marrow Cell Images Based on Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Xitao Zheng

    2012-02-01

    Full Text Available In order to explore the leukocyte distribution of human being to predict the recurrent leukemia, the mouse marrow cells are investigated to get the possible indication of the recurrence. This paper uses the C-mean fuzzy clustering recognition method to identify cells from sliced mouse marrow image. In our image processing, red cells, leukocytes, megakaryocyte, and cytoplasm can not be separated by their staining color, RGB combinations are used to classify the image into 8 sectors so that the searching area can be matched with these sectors. The gray value distribution and the texture patterns are used to construct membership function. Previous work on this project involves the recognition using pixel distribution and probability lays the background of data processing and preprocessing. Constraints based on size, pixel distribution, and grayscale pattern are used for the successful counting of individual cells. Tests show that this shape, pattern and color based method can reach satisfied counting under similar illumination condition.

  1. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Duan

    Full Text Available BACKGROUND: Multidrug resistance (MDR is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically. METHODOLOGY/PRINCIPAL FINDINGS: To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1 but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors. CONCLUSIONS/SIGNIFICANCE: The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.

  2. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  3. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Sean P Sherman

    Full Text Available Differentiated cells from human embryonic stem cells (hESCs provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  4. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  5. Screening for Carotid Injury in Trauma Patients: Image Quality of 16-Detector-Row Computed Tomography Angiography

    International Nuclear Information System (INIS)

    Background: The introduction of multidetector-row computed tomography (MDCT) has revolutionized the initial management of multiply injured patients. This technology has the potential to improve the imaging of traumatic vascular injuries. Purpose: To evaluate the quality of multidetector-row computed tomography angiography (MDCTA) of the carotid arteries in the setting of a routine whole-body trauma scan. Material and Methods: 87 trauma patients underwent a routine whole-body CT scan in a 16-detector-row scanner including an MDCTA with a reconstructed axial slice thickness of 3 mm. Images were reviewed by three experienced radiologists with emphasis on image quality. Contrast density, severity, and origin of artifacts and the occurrence of vessel lesions were assessed for different vessel segments. Results: 3642 separate vessel segments were evaluated. Contrast density was rated good or sufficient for diagnosis in 99.8%. A total of 67.3% of vessel segments were free of artifacts, while 27.9% of vessel segments showed minor artifacts not impairing diagnostic evaluation. Clinically relevant artifacts obscuring a vessel segment occurred in 4.7% and were mostly caused by dental hardware. Four dissections of the internal carotid artery were diagnosed by all three radiologists. Conclusion: As a rapid screening test for blunt carotid artery injury, integration of MDCTA in the routine imaging workup of trauma patients utilizing a whole-body CT trauma scan is possible and practicable. Image quality is mostly sufficient for diagnosis, but impaired in a few cases by artifacts deriving primarily from dental hardware

  6. Screening for Carotid Injury in Trauma Patients: Image Quality of 16-Detector-Row Computed Tomography Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Borisch, I.; Boehme, T.; Butz, B.; Hamer, O.W.; Feuerbach, S.; Zorger, N. [Dept. of Diagnostic Radiology, Univ. Hospital Regensburg, Regensburg (Germany)

    2007-09-15

    Background: The introduction of multidetector-row computed tomography (MDCT) has revolutionized the initial management of multiply injured patients. This technology has the potential to improve the imaging of traumatic vascular injuries. Purpose: To evaluate the quality of multidetector-row computed tomography angiography (MDCTA) of the carotid arteries in the setting of a routine whole-body trauma scan. Material and Methods: 87 trauma patients underwent a routine whole-body CT scan in a 16-detector-row scanner including an MDCTA with a reconstructed axial slice thickness of 3 mm. Images were reviewed by three experienced radiologists with emphasis on image quality. Contrast density, severity, and origin of artifacts and the occurrence of vessel lesions were assessed for different vessel segments. Results: 3642 separate vessel segments were evaluated. Contrast density was rated good or sufficient for diagnosis in 99.8%. A total of 67.3% of vessel segments were free of artifacts, while 27.9% of vessel segments showed minor artifacts not impairing diagnostic evaluation. Clinically relevant artifacts obscuring a vessel segment occurred in 4.7% and were mostly caused by dental hardware. Four dissections of the internal carotid artery were diagnosed by all three radiologists. Conclusion: As a rapid screening test for blunt carotid artery injury, integration of MDCTA in the routine imaging workup of trauma patients utilizing a whole-body CT trauma scan is possible and practicable. Image quality is mostly sufficient for diagnosis, but impaired in a few cases by artifacts deriving primarily from dental hardware.

  7. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    Science.gov (United States)

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  8. Red blood cell cluster separation from digital images for use in sickle cell disease.

    Science.gov (United States)

    González-Hidalgo, Manuel; Guerrero-Peña, F A; Herold-García, S; Jaume-I-Capó, Antoni; Marrero-Fernández, P D

    2015-07-01

    The study of cell morphology is an important aspect of the diagnosis of some diseases, such as sickle cell disease, because red blood cell deformation is caused by these diseases. Due to the elongated shape of the erythrocyte, ellipse adjustment and concave point detection are applied widely to images of peripheral blood samples, including during the detection of cells that are partially occluded in the clusters generated by the sample preparation process. In the present study, we propose a method for the analysis of the shape of erythrocytes in peripheral blood smear samples of sickle cell disease, which uses ellipse adjustments and a new algorithm for detecting notable points. Furthermore, we apply a set of constraints that allow the elimination of significant image preprocessing steps proposed in previous studies. We used three types of images to validate our method: artificial images, which were automatically generated in a random manner using a computer code; real images from peripheral blood smear sample images that contained normal and elongated erythrocytes; and synthetic images generated from real isolated cells. Using the proposed method, the efficiency of detecting the two types of objects in the three image types exceeded 99.00%, 98.00%, and 99.35%, respectively. These efficiency levels were superior to the results obtained with previously proposed methods using the same database, which is available at http://erythrocytesidb.uib.es/. This method can be extended to clusters of several cells and it requires no user inputs. PMID:25216490

  9. The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage

    International Nuclear Information System (INIS)

    This paper describes a study investigating the potential of tomosynthesis as a post check-in baggage scanning system. A laboratory system has been constructed consisting of a moveable source and detector, arranged around a mini 90o bend conveyor system, from which multiple projection images can be collected. Simulation code has been developed to allow the optimum source and detector positions to be determined. Reconstruction methods are being developed to modify the Shift-And-Add (SAA) algorithm to accommodate the non-typical imaging geometry.

  10. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity.

    Science.gov (United States)

    Astashkina, Anna; Mann, Brenda; Grainger, David W

    2012-04-01

    Drug candidate and toxicity screening processes currently rely on results from early-stage in vitro cell-based assays expected to faithfully represent essential aspects of in vivo pharmacology and toxicology. Several in vitro designs are optimized for high throughput to benefit screening efficiencies, allowing the entire libraries of potential pharmacologically relevant or possible toxin molecules to be screened for different types of cell signals relevant to tissue damage or to therapeutic goals. Creative approaches to multiplexed cell-based assay designs that select specific cell types, signaling pathways and reporters are routine. However, substantial percentages of new chemical and biological entities (NCEs/NBEs) that fail late-stage human drug testing, or receive regulatory "black box" warnings, or that are removed from the market for safety reasons after regulatory approvals all provide strong evidence that in vitro cell-based assays and subsequent preclinical in vivo studies do not yet provide sufficient pharmacological and toxicity data or reliable predictive capacity for understanding drug candidate performance in vivo. Without a reliable translational assay tool kit for pharmacology and toxicology, the drug development process is costly and inefficient in taking initial in vitro cell-based screens to in vivo testing and subsequent clinical approvals. Commonly employed methods of in vitro testing, including dissociated, organotypic, organ/explant, and 3-D cultures, are reviewed here with specific focus on retaining cell and molecular interactions and physiological parameters that determine cell phenotypes and their corresponding responses to bioactive agents. Distinct advantages and performance challenges for these models pertinent to cell-based assay and their predictive capabilities required for accurate correlations to in vivo mechanisms of drug toxicity are compared. PMID:22252140

  11. Squamous Cell Cancer of Unknown Primary and Primary Breast Cancer in an HIV-Infected Woman: The Importance of Cancer Screening for People Living with HIV/AIDS.

    Science.gov (United States)

    Gulvin, Joshua; Aboulafia, David M

    2016-05-01

    People living with HIV/AIDS (PLWHA) are surviving longer, with an increased risk of cancer. Cancer screening strategies in PLWHA are lacking. We describe the case of a woman with a history of AIDS, who had a nondetectable viral load on treatment. She is an activist, promoting HIV care, but had not undergone routine screening for breast, cervical, or colonic neoplasia. She presented with a left groin mass, which on biopsy proved to be a p16 immuno-histochemical positive squamous cell carcinoma. Anal and cervicovaginal examinations did not show invasive cancer, although high-resolution anoscopy identified high-grade anal dysplasia. A mammogram followed by magnetic resonance imaging showed invasive ductal carcinoma. Her breast cancer was treated with lumpectomy, adjuvant brachytherapy and chemotherapy. The left groin tumor was treated with chemo-radiation. Herein, we also review medical literature concerning anal, cervical, breast, colorectal, and lung cancer screening for PLWHA, which is important for our aging population of PLWHA. PMID:26864079

  12. Use of an asymmetric film-screen combination for imaging pulmonary nodules

    International Nuclear Information System (INIS)

    The diagnostic advantages of an asymmetric film-screen system (a-FSS) were compared to a conventional 200-speed FSS with and without anatomical lung filter. Standard radiographs were obtained from an anthropomorphic chest phantom with simulated pulmonary nodules. The existence or non-existence of nodules was assessed in 7344 individual observations. The results were evaluated using ROC analysis. In an overall evaluation the a-FSS with an ROC area of 0.873 ± 0.018 was not significantly superior to the lung filter but significantly superior to the 200-speed FSS. In the mediastinum the a-FSS and the lung filter were significantly superior to the 200-speed FSS. In the lung areas the 200-speed FSS and the a-FSS attained equivalent results, whereas the lung filter was rated significantly lower. (orig./MG)

  13. Three-dimensional imaging of biological cells with picosecond ultrasonics

    Science.gov (United States)

    Danworaphong, Sorasak; Tomoda, Motonobu; Matsumoto, Yuki; Matsuda, Osamu; Ohashi, Toshiro; Watanabe, Hiromu; Nagayama, Masafumi; Gohara, Kazutoshi; Otsuka, Paul H.; Wright, Oliver B.

    2015-04-01

    We use picosecond ultrasonics to image animal cells in vitro—a bovine aortic endothelial cell and a mouse adipose cell—fixed to Ti-coated sapphire. Tightly focused ultrashort laser pulses generate and detect GHz acoustic pulses, allowing three-dimensional imaging (x, y, and t) of the ultrasonic propagation in the cells with ˜1 μm lateral and ˜150 nm depth resolutions. Time-frequency representations of the continuous-wavelet-transform amplitude of the optical reflectivity variations inside and outside the cells show GHz Brillouin oscillations, allowing the average sound velocities of the cells and their ultrasonic attenuation to be obtained as well as the average bulk moduli.

  14. Progress in molecular nuclear medicine imaging of pancreatic beta cells

    International Nuclear Information System (INIS)

    Diabetes mellitus is a common and frequently occurring disease which seriously threaten the health of human beings. Type 1 and type 2 diabetes respectively results from being destroyed and insufficient beta-cell mass. The associated symptoms appear until 50%-60% decrease of beta-cell mass. Because pancreas is deeply located in the body, with few beta-cell mass, the current methods of clinical diagnosis are invasive and late. So diagnosis of metabolism disease of beta-cell early non-invasively becomes more and more popular, imaging diagnosis of diabetes mellitus becomes the focus of researches, but how to estimate the mass of beta-cell still an important subject in imaging technology. (authors)

  15. Application of PET and PET/CT imaging for cancer screening

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the potential application of 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) and PET/CT for cancer screening in asymptomatic individuals. Methods: The subjects consisted of 3631 physical check up examinees (1947 men, 1684 women; mean age ±SD, 52.1±8.2 y) with non-specific medical histories. Whole-body FDG PET (or PET/CT), ultrasound and tumor markers were performed on all patients. Focal hypermetabolic areas with intensities equal to or exceeding the level of FDG uptake in the brain and bladder were considered abnormal and interpreted as neoplasia. Follow-up periods were longer than one year. Results: Among the 3631 FDG PET (including 1687 PET/CT), ultrasound and tumor markers examinations, malignant tumors were discovered in 47 examinees (1.29%). PET findings were true-positive in 38 of the 47 cancers (80.9%). In addition, 32 of the 47 cancers were performed with the PET-CT scan. PET detected cancer lesions in 28 of the 32 examinees. However, the CT detected cancer lesions in only 15 of 32 examinees. Conclusion: The sensitivity of FDG PET in the detection of a wide variety of cancers is high. Most cancer can be detected with FDG PET in a resectable stage. CT of the PET/CT for localization and characteristics of the lesion shows an increased specificity of the PET scan. Using ultrasound and tumor markers may complement the PET scan in cancer screening for hepatic and urologic neoplasms. (authors)

  16. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells

    Directory of Open Access Journals (Sweden)

    Walter Acosta

    2016-03-01

    Full Text Available GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal. The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1 in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1−/− cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB, which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes.

  17. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells.

    Science.gov (United States)

    Acosta, Walter; Martin, Reid; Radin, David N; Cramer, Carole L

    2016-03-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1(-/-) cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  18. A novel imaging platform for non-invasive screening of abnormal glucose tolerance.

    Science.gov (United States)

    Jeong, Bosu; Jung, Chang Hee; Lee, Yong-Ho; Shin, Il-Hyung; Kim, Hansuk; Bae, Soo-Jin; Lee, Dae-Sic; Kang, Eun Seok; Kang, Uk; Kim, Jong Jin; Park, Joong-Yeol

    2016-06-01

    Optical measurement of skin auto-fluorescence (SAF), most likely emanating from accumulated advanced glycation end-products (AGEs), has been proposed for the noninvasive diagnosis of glucose intolerance in clinical settings. Here, we developed a novel imaging system with transmission geometry for SAF measurement and compared its diagnostic performance in a Korean population. PMID:27321320

  19. Screening of adulterants in milk powder using a high-throughput Raman chemical imaging method

    Science.gov (United States)

    Milk is one of the most common targets for economically motivated adulteration. Adulterants in milk can cause illness and death when consumed, thus rapid and accurate detection method is needed for authenticating milk products. Our previous studies based on a point-scan Raman imaging system have dem...

  20. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    Science.gov (United States)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  1. Quality assessment of images displayed on LCD screen with local backlight dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Burini, Nino; Korhonen, Jari;

    2013-01-01

    This paper presents a subjective experiment collecting quality assessment of images displayed on a LCD with local backlight dimming using two methodologies: absolute category ratings and paired-comparison. Some well-known objective quality metrics are then applied to the stimuli and their...

  2. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    Science.gov (United States)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  3. Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Frick A

    2015-02-01

    Full Text Available Amber Frick,1 Yuri Fedoriw,2 Kristy Richards,3,4 Blossom Damania,3,5 Bethany Parks,6 Oscar Suzuki,1 Cristina S Benton,1 Emmanuel Chan,1 Russell S Thomas,7 Tim Wiltshire1,3 1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, 2Department of Pathology and Laboratory Medicine, School of Medicine, 3Lineberger Comprehensive Cancer Center, School of Medicine, 4Department of Genetics, School of Medicine, 5Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; 6The Hamner Institutes for Health Sciences, 7Environmental Protection Agency, Research Triangle Park, NC, USA Background: Interpatient variability in immune and chemotherapeutic cytotoxic responses is likely due to complex genetic differences and is difficult to ascertain in humans. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at examining interstrain differences in viability on normal, noncancerous immune cells following chemotherapeutic cytotoxic insult. Drug effects were investigated by comparing selective chemotherapeutic agents, such as BEZ-235 and selumetinib, against conventional cytotoxic agents targeting multiple pathways, including doxorubicin and idarubicin. Methods: Splenocytes were isolated from 36 isogenic strains of mice using standard procedures. Of note, the splenocytes were not stimulated to avoid attributing responses to pathways involved with cellular stimulation rather than toxicity. Cells were incubated with compounds on a nine-point logarithmic dosing scale ranging from 15 nM to 100 µM (37°C, 5% CO2. At 4 hours posttreatment, cells were labeled with antibodies and physiological indicator dyes and fixed with 4% paraformaldehyde. Cellular phenotypes (eg, viability were collected and analyzed using flow cytometry. Dose-response curves with response normalized to the zero dose as a function of log concentration

  4. High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shakti A Goel

    Full Text Available Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis. Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection. We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.

  5. High Throughput Screening of Natural Phenolic Compounds Against Migration of Metastatic Triple-Negative Breast Cancer (TNBC) Cells

    OpenAIRE

    Nasrollahi, Samila

    2013-01-01

    In this report, we hypothesize that natural phenolic compounds may present a new class of chemotherapeutics against migration of metastatic triple-negative breast cancers (TNBC). In this project we will screen a small library of phenolic compounds to test this hypothesis, identify compounds that show efficacy against TNBC cell migration, and elucidate underlying molecular mechanisms.

  6. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Screening

    Science.gov (United States)

    Development of high-throughput assays for chemical screening and hazard identification is a pressing priority worldwide. One approach uses in vitro, cell-based assays which recapitulate biological events observed in vivo. Neurite outgrowth is one such critical cellular process un...

  7. Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging.

    Directory of Open Access Journals (Sweden)

    Wei Xing

    Full Text Available BACKGROUND: Intratumoral hemorrhage is a frequent occurrence in renal cell carcinoma and is an indicator of tumor subtype. We hypothesize that susceptibility weighted imaging (SWI is sensitive to hemorrhage in renal cell carcinoma and can give a more diagnostic image when compared to conventional imaging techniques. MATERIALS AND METHODS: A retrospective review of 32 patients with clear cell renal cell carcinoma was evaluated. All patients underwent magnetic resonance imaging (MRI and 22 out of 32 patients also underwent a computed tomography (CT scan. Hemorrhage was classified into 3 different categories according to shape and distribution. Histopathology was obtained from all masses by radical nephrectomy. The ability to detect the presence of hemorrhage using CT, non-contrast conventional MRI and SWI was evaluated, and the patterns of hemorrhage were compared. RESULTS: Using pathologic results as the gold standard, the sensitivities of non-contrast conventional MRI, SWI and CT in detecting hemorrhage in clear cell renal cell carcinoma were 65.6%, 100% and 22.7%, respectively. Accuracy of non-contrast conventional MRI and SWI in evaluating hemorrhagic patterns were 31.3% and 100%, respectively. CONCLUSION: These results demonstrate that SWI can better reveal hemorrhage and characterize the pattern more accurately than either non-contrast conventional MRI or CT. This suggests that SWI is the technique of choice for detecting hemorrhagic lesions in patients with renal cancer.

  8. The Prevalence of Sickle Cell Disease and Its Implication for Newborn Screening in Germany (Hamburg Metropolitan Area).

    Science.gov (United States)

    Grosse, Regine; Lukacs, Zoltan; Cobos, Paulina Nieves; Oyen, Florian; Ehmen, Christa; Muntau, Birgit; Timmann, Christian; Noack, Bernd

    2016-01-01

    Sickle cell disease is among hereditary diseases with evidence that early diagnoses and treatment improves the clinical outcome. So far sickle cell disease has not been included in the German newborn screening program despite immigration from countries with populations at risk. To determine the birth prevalence we tested 17,018 newborns. High pressure liquid chromatography and subsequent molecular-genetic testing were used for the detection and confirmation of hemoglobin variants. The frequency of sickle cell disease-consistent genotypes was one in 2,385 newborns. Duffy-blood group typing showed evidence that affected children were likely of Sub-Saharan ancestry. An inclusion of sickle cell disease into the German newborn screening seems reasonable. PMID:26275168

  9. Progress in the robust automated segmentation of real cell images

    Science.gov (United States)

    Bamford, P.; Jackway, P.; Lovell, Brian

    1999-07-01

    We propose a collection of robust algorithms for the segmentation of cell images from Papanicolaou stained cervical smears (`Pap' smears). This problem is deceptively difficult and often results on laboratory datasets do not carry over to real world data. Our approach is in 3 parts. First, we segment the cytoplasm from the background using a novel method based on the Wilson and Spann multi-resolution framework. Second, we segment the nucleus from the cytoplasm using an active contour method, where the best contour is found by a global minimization method. Third, we implement a method to determine a confidence measure for the segmentation of each object. This uses a stability criterion over the regularization parameter (lambda) in the active contour. We present the results of thorough testing of the algorithms on large numbers of cell images. A database of 20,120 images is used for the segmentation tests and 18,718 images for the robustness tests.

  10. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells.

    Science.gov (United States)

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C; Brauer, Patrick M; Zúñiga-Pflücker, Juan C; Leber, Brian; Spaner, David E; Andrews, David W

    2016-08-18

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  11. Imaging characteristics of papillary renal cell carcinoma by computed tomography scan and magnetic resonance imaging

    International Nuclear Information System (INIS)

    The aim of this study was to analyse the differences in the patterns between clear and papillary renal cell carcinomas using magnetic resonance imaging (MRI) and dual-phase helical computed tomography (CT). We examined seven patients with papillary renal cell carcinoma, and six with clear cell carcinoma. The highest attenuation value of tumors in the corticomedullary phase (CMP) and the excretory phase (EP) was measured using the observer-defined region of interest (ROI). MRI consisted of T1-weighted and T2-weighted spin-echo imaging. All five tumors except for one with papillary renal cell carcinoma showed homogenous hypointensity, but all six tumors with clear cell carcinoma showed heterogeneous hyperintensity on their T2-weighted images. In the CMP, the mean CT numbers of the papillary renal cell carcinomas were significantly lower than those of the clear cell carcinomas. The mean enhancement of the papillary renal cell carcinomas in the CMP and the EP was significantly lower than that of the clear renal cell carcinomas. The mean CT numbers of the clear cell carcinomas in the CMP were markedly increased from those on the unenhanced CT; those in the EP were decreased gradually. But the mean CT numbers of the papillary renal cell carcinomas in the EP were still slightly more increased than those in the CMP. The enhancement patterns of the papillary renal cell carcinomas in the CMP and the EP were homogenous, but those of the clear cell carcinomas were heterogeneous. We can speculate the differential diagnosis from clear to papillary renal cell carcinoma using MRI and dual-phase helical CT. (author)

  12. Analysis of the Optical Properties of Screen-Printed and Aerosol-Printed and Plated Fingers of Silicon Solar Cells

    OpenAIRE

    2008-01-01

    One main efficiency loss in industrial solar cells is the shading of the cell caused by the metal front side contacts. With the aerosol-printing technique plus an additional light-induced plating (LIP) step, not only is the geometrical contact width narrowed compared to screen-printed contacts but also the shape of the finger changes. In this work, the effective shading of different finger types is analysed with two different measurement methods. The essential parameter for characterising the...

  13. Staphylococcus aureus Cell Wall Stress Stimulon Gene-lacZ Fusion Strains: Potential for Use in Screening for Cell Wall-Active Antimicrobials▿

    OpenAIRE

    Steidl, Rebecca; Pearson, Stacy; Stephenson, Robert E.; Ledala, Nagender; Sitthisak, Sutthirat; Wilkinson, Brian J; Jayaswal, Radheshyam K.

    2008-01-01

    lacZ fusion strains were constructed using the promoters of five cell wall stress stimulon genes: pbp2, tcaA, vraSR, sgtB, and lytR. All fusion strains were induced only in the presence of cell wall-active antibiotics, suggesting the potential of these strains for use in high-throughput screening for new cell wall-active agents.

  14. Human IL-12 p40 as a reporter gene for high-throughput screening of engineered mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shaffer Benjamin

    2008-06-01

    Full Text Available Abstract Background Establishing a suitable level of exogenous gene expression in mammalian cells in general, and embryonic stem (ES cells in particular, is an important aspect of understanding pathways of cell differentiation, signal transduction and cell physiology. Despite its importance, this process remains challenging because of the poor correlation between the presence of introduced exogenous DNA and its transcription. Consequently, many transfected cells must be screened to identify those with an appropriate level of expression. To improve the screening process, we investigated the utility of the human interleukin 12 (IL-12 p40 cDNA as a reporter gene for studies of mammalian gene expression and for high-throughput screening of engineered mouse embryonic stem cells. Results A series of expression plasmids were used to study the utility of IL-12 p40 as an accurate reporter of gene activity. These studies included a characterization of the IL-12 p40 expression system in terms of: (i a time course of IL-12 p40 accumulation in the medium of transfected cells; (ii the dose-response relationship between the input DNA and IL-12 p40 mRNA levels and IL-12 p40 protein secretion; (iii the utility of IL-12 p40 as a reporter gene for analyzing the activity of cis-acting genetic elements; (iv expression of the IL-12 p40 reporter protein driven by an IRES element in a bicistronic mRNA; (v utility of IL-12 p40 as a reporter gene in a high-throughput screening strategy to identify successful transformed mouse embryonic stem cells; (vi demonstration of pluripotency of IL-12 p40 expressing ES cells in vitro and in vivo; and (vii germline transmission of the IL-12 p40 reporter gene. Conclusion IL-12 p40 showed several advantages as a reporter gene in terms of sensitivity and ease of the detection procedure. The IL-12 p40 assay was rapid and simple, in as much as the reporter protein secreted from the transfected cells was accurately measured by ELISA using

  15. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method.

    Science.gov (United States)

    Lin, Jia-Ren; Fallahi-Sichani, Mohammad; Sorger, Peter K

    2015-01-01

    Single-cell analysis reveals aspects of cellular physiology not evident from population-based studies, particularly in the case of highly multiplexed methods such as mass cytometry (CyTOF) able to correlate the levels of multiple signalling, differentiation and cell fate markers. Immunofluorescence (IF) microscopy adds information on cell morphology and the microenvironment that are not obtained using flow-based techniques, but the multiplicity of conventional IF is limited. This has motivated development of imaging methods that require specialized instrumentation, exotic reagents or proprietary protocols that are difficult to reproduce in most laboratories. Here we report a public-domain method for achieving high multiplicity single-cell IF using cyclic immunofluorescence (CycIF), a simple and versatile procedure in which four-colour staining alternates with chemical inactivation of fluorophores to progressively build a multichannel image. Because CycIF uses standard reagents and instrumentation and is no more expensive than conventional IF, it is suitable for high-throughput assays and screening applications. PMID:26399630

  16. Unraveling cell processes: interference imaging interwoven with data analysis

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Pavlov, A N;

    2006-01-01

    The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of...... properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1-0.6 Hz) result from plasma membrane processes and that higher frequency variations (20-26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we...

  17. Picosecond fluorescence lifetime imaging microscope for imaging of living glioma cells

    Science.gov (United States)

    Fang, Qiyin; Wang, Jingjing; Sun, Yinghua; Vernier, Thomas; Papaioannou, Thanassis; Jo, Javier; Thu, Mya M.; Gundersen, Martin A.; Marcu, Laura

    2005-03-01

    In this communication, we report the imaging of living glioma cells using fluorescence lifetime imaging (FLIM) technique. The growing interests in developing novel techniques for diagnosis and minimally invasive therapy of brain tumor have led to microscopic studies of subcellular structures and intracellular processes in glioma cells. Fluorescence microscopy has been used with a number of exogenous molecular probes specific for certain intracellular structures such as mitochondria, peripheral benzodiazepine receptor (PBR), and calcium concentration. When probes with overlapping emission spectra being used, separate samples are required to image each probe individually under conventional fluorescence microscopy. We have developed a wide-field FLIM microscope that uses fluorescence lifetime as an additional contrast for resolving multiple markers in the same essay. The FLIM microscope consists of a violet diode laser and a nitrogen-pumped dye laser to provide tunable sub-nanosecond excitation from UV to NIR. The detection system is based on a time-gated ICCD camera with minimum 80 ps gate width. The performance of the system was evaluated using fluorescence dyes with reported lifetime values. Living rat glioma C6 cells were stained with JC-1 and Rhodamine 123. FLIM images were acquired and their lifetimes in living cells were found in good agreements with values measured in solutions by a time-domain fluorescence spectrometer. These results indicate that imaging of glioma cells using FLIM can resolve multiple spectrally-overlapping probes and provide quantitative functional information about the intracellular environment.

  18. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

    Science.gov (United States)

    Mathews Griner, Lesley A; Guha, Rajarshi; Shinn, Paul; Young, Ryan M; Keller, Jonathan M; Liu, Dongbo; Goldlust, Ian S; Yasgar, Adam; McKnight, Crystal; Boxer, Matthew B; Duveau, Damien Y; Jiang, Jian-Kang; Michael, Sam; Mierzwa, Tim; Huang, Wenwei; Walsh, Martin J; Mott, Bryan T; Patel, Paresma; Leister, William; Maloney, David J; Leclair, Christopher A; Rai, Ganesha; Jadhav, Ajit; Peyser, Brian D; Austin, Christopher P; Martin, Scott E; Simeonov, Anton; Ferrer, Marc; Staudt, Louis M; Thomas, Craig J

    2014-02-11

    The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug-drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell-like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton's tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL. PMID:24469833

  19. Imaging characteristics of spindle cell lipoma and its variants

    Energy Technology Data Exchange (ETDEWEB)

    Khashper, Alla; Zheng, Jiamin [McGill University Health Centre, Department of Radiology, Montreal, QC (Canada); Nahal, Ayoub [McGill University Health Centre, Department of Pathology, Montreal, QC (Canada); Discepola, Federico [Jewish General Hospital, Department of Radiology, Montreal, QC (Canada)

    2014-05-15

    A spindle cell lipoma (SCL) is a relatively common tumor that can be challenging to the radiologist, pathologist, or surgeon to diagnose, particularly when internal fat content is scant or absent. Although these lesions may be found at various locations, the typical presentation for this lesion is a well-circumscribed and non-aggressive subcutaneous mass in the posterior neck presenting in a middle-aged to elderly man. In this article, the typical and atypical imaging characteristics of a spindle cell lipoma (SCL) will be reviewed. Knowledge of the common imaging and pathologic features of SCLs can help suggest the diagnosis and guide patient management. (orig.)

  20. Screening of prognostic factors using multiplex RT-PCR technique on different leukemic cell lines

    Directory of Open Access Journals (Sweden)

    Ahani R

    2009-04-01

    Full Text Available "nBackground: Leukemia is one of the most common pediatric malignancies. T-cell Acute Lymphoblastic Leukemia (T-ALL accounts for 15% of hematopoetic cancers. It has been well understood that identification of genetic alterations associated with leukemias is very critical. The molecular genetic techniques have promoted the identification of leukemia-associated genetic changes that may characterize the most accurate predictors of clinical outcome. These considerations reinforce the requirement for rapid identification of the abnormalities. "nMethods: Multiplex RT-PCR, a highly sensitive and specific method applied to screen simultaneously three most frequent transcription factors, TLX1/HOX11, TLX3/HOX11L2 and TAL1/SCL which are associated with T-cell Acute Lymphoblastic Leukemia (T-ALL. "nResults: We describe here our efforts to establish a multiplex RT-PCR analysis system that facilitates the detection of HPB-ALL and K562 cell lines, respectively. "nConclusion: The multiplex RT-PCR technique is a sensitive, valuable and cost-effective diagnostic tool which could improve our ability to accurately and rapidly risk-stratification of patients with childhood T-ALL. In order to perform multiplex RT-PCR technique researchers do not need bone marrow samples and they can employ this method using peripheral blood samples. Therefore, the status of treatment could be followed by assessment of the level of mRNA expression of oncogenic transcriptional factor using peripheral blood sample. Use of this procedure not only provides the best results in short term for specialist, but also clinicians could have opportunities to choose suitable treatment strategies with decrement of drug side effects.

  1. Conspicuity of breast cancer according to histopathological type and breast density when imaged by full-field digital mammography compared with screen-film mammography

    International Nuclear Information System (INIS)

    To compare the conspicuity of different histopathological types of breast cancer according to breast density and mammographic imaging in patients with screen-detected breast cancers undergoing both full-field digital mammography (FFDM) and screen-film mammography (SFM) in the United Kingdom National Health Service Breast Screening Programme (NHSBSP). 185 patients underwent routine screening with SFM followed by further imaging using FFDM with consequent diagnosis of breast cancer. All SFM and soft-copy FFDM images were evaluated by two readers in an independent, retrospective review. The visualisation and conspicuity of the mammographic abnormality were recorded and graded using a four-level scale. Conspicuity of breast cancer was qualitatively evaluated. Breast density and conspicuity were correlated with histopathological diagnosis and inter-observer correlation was calculated. Mixed Model ANOVA demonstrated significant differences between FFDM and SFM (p < 0.001) and breast densities (p = 0.009): conspicuity of the mammographic abnormality (p < 0.001) and visualisation of the dominant mammographic feature (p < 0.001) were significantly greater with FFDM than SFM. This held true for both readers and for all histopathological tumour types with no significant differences between each tumour type. FFDM is significantly superior to SFM for conspicuity of screen-detected breast cancers for all histopathological types and breast densities. (orig.)

  2. Conspicuity of breast cancer according to histopathological type and breast density when imaged by full-field digital mammography compared with screen-film mammography

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, Katja [Medical University Vienna, Department of Radiology, Divison of Molecular and Gender Imaging, Vienna (Austria); Medical University Vienna, Department of Radiology, MR Centre of Excellence, Vienna (Austria); Perry, Nicholas [St Bartholomew' s Hospital, Breast Unit, Barts and The London Cancer Centre, London (United Kingdom); The Princess Grace Hospital, The London Breast Institute, London (United Kingdom); Vinnicombe, S.; Shiel, S. [St Bartholomew' s Hospital, Breast Unit, Barts and The London Cancer Centre, London (United Kingdom); Weber, M. [Medical University Vienna, Department of Radiology, Vienna (Austria)

    2011-01-15

    To compare the conspicuity of different histopathological types of breast cancer according to breast density and mammographic imaging in patients with screen-detected breast cancers undergoing both full-field digital mammography (FFDM) and screen-film mammography (SFM) in the United Kingdom National Health Service Breast Screening Programme (NHSBSP). 185 patients underwent routine screening with SFM followed by further imaging using FFDM with consequent diagnosis of breast cancer. All SFM and soft-copy FFDM images were evaluated by two readers in an independent, retrospective review. The visualisation and conspicuity of the mammographic abnormality were recorded and graded using a four-level scale. Conspicuity of breast cancer was qualitatively evaluated. Breast density and conspicuity were correlated with histopathological diagnosis and inter-observer correlation was calculated. Mixed Model ANOVA demonstrated significant differences between FFDM and SFM (p < 0.001) and breast densities (p = 0.009): conspicuity of the mammographic abnormality (p < 0.001) and visualisation of the dominant mammographic feature (p < 0.001) were significantly greater with FFDM than SFM. This held true for both readers and for all histopathological tumour types with no significant differences between each tumour type. FFDM is significantly superior to SFM for conspicuity of screen-detected breast cancers for all histopathological types and breast densities. (orig.)

  3. Magnetic induction imaging with optical atomic magnetometers: towards applications to screening and surveillance

    Science.gov (United States)

    Marmugi, Luca; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio

    2015-10-01

    We propose a new approach, based on optical atomic magnetometers and magnetic induction tomography (MIT), for remote and non-invasive detection of conductive targets. Atomic magnetometers overcome the main limitations of conventional MIT instrumentation, in particular their poor low-frequency sensitivity, their large size and their limited scalability. Moreover, atomic magnetometers have been proven to reach extremely high sensitivities, with an improvement of up to 7 orders of magnitude in the 50 MHz to DC band, with respect to a standard pick-up coil of the same size. In the present scheme, an oscillating magnetic field induces eddy currents in a conductive target and laser-pumped atomic magnetometers, either stand-alone or in an array, detect the response of the objects. A phase-sensitive detection scheme rejects the background, allowing remote detection of the secondary field and, thus, mapping of objects, hidden in cargos, underwater or underground. The potential for extreme sensitivity, miniaturization, dynamic range and array operation paves the way to a new generation of non-invasive, active detectors for surveillance, as well as for real-time cargo screening.

  4. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells

    OpenAIRE

    Mazzio, E; Badisa, R; Mack, N; Deiab, S.; Soliman, KFA

    2013-01-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust NCI botanical screenings. In this study, a high-through microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015–0.5 mg/ml) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % tested showed inhi...

  5. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso;

    2015-01-01

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module’s electrolumin......This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module......’s electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can...

  6. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis.

    Science.gov (United States)

    Tolosa, Laia; Gómez-Lechón, M José; Jiménez, Nuria; Hervás, David; Jover, Ramiro; Donato, M Teresa

    2016-07-01

    Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrial membrane potential were also found in the cells exposed to steatotic drugs, which indicates that all these cellular events contributed to drug-induced hepatotoxicity. These findings are of clinical relevance as most effects were observed at drug concentrations under 100-fold of the therapeutic peak plasmatic concentration. HepaRG cells showed increased lipid overaccumulation vs. HepG2 cells, which suggests greater sensitivity to drug-induced steatosis. An altered expression profile of transcription factors and the genes that code key proteins in lipid metabolism was also found in the cells exposed to drugs capable of inducing liver steatosis. Our results generally indicate the value of HepaRG cells for assessing the risk of liver damage associated with steatogenic compounds and for investigating the molecular mechanisms involved in drug-induced steatosis. PMID:27089845

  7. Molecular imaging to target transplanted muscle progenitor cells.

    Science.gov (United States)

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  8. Screening radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip

    International Nuclear Information System (INIS)

    Objective: To screen radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip. Methods: MTT test was used to calculate the IC50 of elemene. (1) The effect of radiosensitivity was detected by colony forming assay. A549 cells were divided into 2 groups: radiation group and radiation + elemene group. Oligonucleotide chip was used to screen the gene expression changes of A549 cells from these 2 groups. The up-regulated gene Egr-1 and the down-regulated gene CyclinD1 were selected to undergo RT-PCR so as to confirm the reliability of the result. Results: MTT test showed the elemene inhibited the proliferation of the A549 cells dose-dependently. The IC50 value of elemene on the A549 cells was 120 mg/L. (2) 10 mg/L elemene had radiosensitising effect on A549 cells.The values of SERD0 and SERDq obtained from the survival curve were (1.54±0. 20) and (1.43±0.15) respectively. Gene chip screened 122 differentially-expressed genes, including 89 up-regulated genes and 33 down-regulated genes. (3) These altered genes could be related to cell structure, substance metabolism,cell proliferation, cell differentiation, signal transduction, material transport, DNA repair, apoptosis, immune response and so forth. The RT-PCR results of Egr-1 and Cyclin D1 were consistent with the gene chip analysis. Conclusions: The mechanism of elemene enhancing the radiosensitivity of lung adenocarcinoma A549 cells is the result of participation and collaboration of multiple genes. Further study of the newly-discovered differentially-expressed gene helps find out new radiosensitizational targets of elemene. (authors)

  9. Evaluation of Doses and Image Quality in Mammography with Screen-Film, CR, and DR Detectors – Application of the ACR Phantom

    Science.gov (United States)

    Ślusarczyk-Kacprzyk, Wioletta; Skrzyński, Witold; Fabiszewska, Ewa

    2016-01-01

    Summary Background Different methods of image quality evaluation are routinely used for analogue and digital mammography systems in Poland. In the present study, image quality for several screen-film (SF), computed radiography (CR), and fully digital (DR) mammography systems was compared directly with the use of the ACR mammography accreditation phantom. Material/Methods Image quality and mean glandular doses were measured and compared for 47 mammography systems in the Mazovia Voivodeship in Poland, including 26 SF systems, 12 CR systems, and 9 DR systems. The mean glandular dose for the breast simulated by 4.5 cm of PMMA was calculated with methods described in the “European guidelines for quality assurance in breast cancer screening and diagnosis”. Visibility of the structures in the image (fibers, microcalcifications, and masses) was evaluated with the mammographic accreditation ACR phantom. Results Image quality for DR systems was significantly higher than for SF and CR systems. Several SF systems failed to pass the image quality tests because of artifacts. The doses were within acceptable limits for all of the systems, but the doses for the CR systems were significantly higher than for the SF and DR systems. Conclusions The best image quality, at a reasonably low dose, was observed for the DR systems. The CR systems are capable of obtaining the same image quality as the SF systems, but only at a significantly higher dose. The ACR phantom can be routinely used to evaluate image quality for all types of mammographic systems.

  10. Pancreas++: Automated Quantification of Pancreatic Islet Cells in Microscopy Images

    OpenAIRE

    StuartMaudsley; BronwenMartin; JenniferLFiori

    2013-01-01

    The microscopic image analysis of pancreatic Islet of Langerhans morphology is crucial for the investigation of diabetes and metabolic diseases. Besides the general size of the islet, the percentage and relative position of glucagon-containing alpha-, and insulin-containing beta-cells is also important for pathophysiological analyses, especially in rodents. Hence, the ability to identify, quantify and spatially locate peripheral, and “involuted” alpha-cells in the islet core is an important a...

  11. Imaging cell biology in live animals: Ready for prime time

    OpenAIRE

    Weigert, Roberto; Porat-Shliom, Natalie; Amornphimoltham, Panomwat

    2013-01-01

    Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobi...

  12. Fast and high resolution single-cell BRET imaging

    OpenAIRE

    Elise Goyet; Nathalie Bouquier; Vincent Ollendorff; Julie Perroy

    2016-01-01

    Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferas...

  13. The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation

    Directory of Open Access Journals (Sweden)

    Eichberger Paul

    2007-03-01

    Full Text Available Abstract Background Flatworms are characterized by an outstanding stem cell system. These stem cells (neoblasts can give rise to all cell types including germ cells and power the exceptional regenerative capacity of many flatworm species. Macrostomum lignano is an emerging model system to study stem cell biology of flatworms. It is complementary to the well-studied planarians because of its small size, transparency, simple culture maintenance, the basal taxonomic position and its less derived embryogenesis that is more closely related to spiralians. The development of cell-, tissue- and organ specific markers is necessary to further characterize the differentiation potential of flatworm stem cells. Large scale in situ hybridization is a suitable tool to identify possible markers. Distinguished genes identified in a large scale screen in combination with manipulation of neoblasts by hydroxyurea or irradiation will advance our understanding of differentiation and regulation of the flatworm stem cell system. Results We have set up a protocol for high throughput large scale whole mount in situ hybridization for the flatworm Macrostomum lignano. In the pilot screen, a number of cell-, tissue- or organ specific expression patterns were identified. We have selected two stem cell- and germ cell related genes – macvasa and macpiwi – and studied effects of hydroxyurea (HU treatment or irradiation on gene expression. In addition, we have followed cell proliferation using a mitosis marker and bromodeoxyuridine labeling of S-phase cells after various periods of HU exposure or different irradiation levels. HU mediated depletion of cell proliferation and HU induced reduction of gene expression was used to generate a cDNA library by suppressive subtractive hybridization. 147 differentially expressed genes were sequenced and assigned to different categories. Conclusion We show that Macrostomum lignano is a suitable organism to perform high throughput large

  14. Rescuing compound bioactivity in a secondary cell-based screening by using γ-cyclodextrin as a molecular carrier

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Grazu, Valeria; de la Fuente, Jesús M; Lanas, Angel; Velazquez-Campoy, Adrian; Abian, Olga

    2015-01-01

    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead compounds that must be tested in cell-based efficacy secondary screenings. Very often lead compounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly according to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that problem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with γ-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while γ-cyclodextrin did not show antiviral activity by itself). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solution, but its γ-cyclodextrin complex exhibited a 50% effective concentration of 5 μM. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using γ-cyclodextrin as carrier molecule. PMID:25834436

  15. Segmentation of Time-Lapse Images with Focus on Microscopic Images of Cells

    Czech Academy of Sciences Publication Activity Database

    Soukup, Jindřich; Císař, P.; Šroubek, Filip

    Berlin: Springer-Verlag, 2013 - (Petrosino, A.), s. 71-80. (Lecture Notes in Computer Science. Image Processing , Computer Vision, Pattern Recognition, and Graphics. 8157). ISBN 978-3-642-41183-0. [International Conference on Image Analysis and Processing . Naples (IT), 11.09.2013-13.09.2013] R&D Projects: GA ČR GA13-29225S Grant ostatní: Grantová agentura UK(CZ) GAUK 914813/2013; GA MŠk(CZ) ED2.1.00/01.0024 Institutional support: RVO:67985556 Keywords : segmentation * time-lapse * microscopy imaging * phase constrast Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2013/ZOI/soukup-segmentation of time-lapse image s with focus on microscopic image s of cells.pdf

  16. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  17. Neuroblastoma Screening

    Science.gov (United States)

    ... Health Professional Neuroblastoma Treatment Neuroblastoma Screening Research Neuroblastoma Screening (PDQ®)–Patient Version What is screening? Go to Health Professional Version Screening is looking ...

  18. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  19. Imaging of complications from hematopoietic stem cell transplant

    Directory of Open Access Journals (Sweden)

    Tarun Pandey

    2014-01-01

    Full Text Available Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT.

  20. Imaging of complications from hematopoietic stem cell transplant.

    Science.gov (United States)

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-10-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT. PMID:25489126