WorldWideScience

Sample records for cell growth inhibits

  1. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  2. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  3. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  4. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  5. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro

    Institute of Scientific and Technical Information of China (English)

    You-Ying TU; An-Bin TANG; Naoharu WATANABE

    2004-01-01

    The inhibition effects of tea theaflavins complex (TFs), theaflavin-3-3 '-digallate (TFDG),theaflavin-3'-gallate (TF2B), and an unidentified compound (UC) on the growth of human liver cancer BEL-7402 cells, gastric cancer MKN-28 cells and acute promyelocytic leukemia LH-60 cells were investigated.TFs was obtained through the catalysis of catechins with immobilized polyphenols oxidase. TFDG, TF2B and UC were isolated from TFs with high speed countercurrent chromatography (HSCCC). The results showed that TF2B significantly inhibited the growth of all three kinds of cancer cells, TFs, TFDG and UC had some effect on BEL-7402 and MKN-28, but little activity on LH-60. The inhibition effects of TF2B, TFDG, and UC on BEL-7402 and MKN-28 were stronger than TFs. The relationship coefficients between monomer concentration and its inhibition rate against MKN-28 and BEL-7402 were 0.87 and 0.98 for TF2B, 0.96 and 0.98 for UC, respectively. The IC50 values ofTFs, TF2B, and TFDG were 0.18, 0.11, and 0.16 mM on BEL-7402 cells, and 1.11, 0.22, and 0.25 mM on MKN-28 cells respectively.

  6. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition.

  7. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  8. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  9. Activation of phospholipase D activity in transforming growth factor—beta—induced cell growth inhibition

    Institute of Scientific and Technical Information of China (English)

    ZHOUBINGHONG; JUNSONGCHEN; 等

    2000-01-01

    Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.

  10. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  11. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  12. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  13. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  14. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  15. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  16. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  17. MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases

    Institute of Scientific and Technical Information of China (English)

    Toshie Okada; Tokihiko Sawada; Tatsushi Osawa; Masakazu Adachi; Keiichi Kubota

    2008-01-01

    AIM:To investigate the anti-neoplastic effect of MK615,an anti-neoplastic compound isolated from Japanese apricot,against human pancreatic cancer cells in vitro.METHODS:Three human pancreatic cancer cell lines PANC-1,PK-1,and PK45H were cultured with MK615 at concentrations of 600,300,150,and O μg/mL.Growth inhibition was evaluated by cell proliferation assay,and killing activity was determined by lactate dehydrogenase (LDH) assay.Expression of Aurora A and B kinases was detected by real-time polymerase chain reaction (PCR) and Western blotting.Cell cycle stages were evaluated by flow cytometry.RESULTS:The growth inhibitory rates of MK615 at 150,300,and 600 μg/mL were 2.3% ± 0.9%,8.9% ±3.2% and 67.1% ± 8.1% on PANC1 cells,1.3% ± 0.3%,8.7% ± 4.1% and 45.7 ± 7.6% on PK1 cells,and 1.2 ±0.8%,9.1% ± 2.1% and 52.1% ± 5.5% on PK45H cells,respectively (P<0.05).The percentage cytotoxicities of MK615 at 0,150,300,and 600 μg/mL were 19.6% ±1.3%,26.7% ± 1.8%,25.5% ± 0.9% and 26.4% ± 0.9%in PANC1 cells,19.7% ± 1.3%,24.7% ± 0.8%,25.9% ±0.9% and 29.9% ± 1.1% in PK1 cells,and 28.0% ± 0.9%,31.2% ± 0.9%,30.4% ± 1.1% and 35.3 ± 1.0% in PK45H cells,respectively (P<0.05).Real-time PCR and Western blotting showed that MK615 dually inhibited the expression of Aurora A and B kinases.Cell cycle analysis revealed that MK615 increased the population of cells in G2/M phase.CONCLUSION:MK615 exerts an anti-neoplastic effect on human pancreatic cancer cells in vitro by dual inhibition of Aurora A and B kinases.

  18. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  19. Lidamycin Induces Apoptosis of B-Cell Lymphoma Cells and Inhibits Xenograft Growth in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    Hong Fang; Shenghua Zhang; Qingfang Miao; Dongsheng Xiong; Yongsu Zhen

    2009-01-01

    OBJECTIVE To study the cytotoxicity of Lidamycin (LDM) and its induction of apoptosis in Raji and Daudi cells of B-cell lymphoma, and the inhibition of growth of the lymphoma Raji xenograft in nude mice.METHODS MTT assay was used to observe the inhibition by LDM on the proliferation of the Raji and Daudi cells. Annexin V-FITC/PI double-stain, in combination with flow cytometry (FCM), was used to determine the induction of apoptosis by LDM in Raji cells. The B-cell lymphoma Raji xenograft model in nude mice was set up to detect the in vivo antitumor activity of LDM.RESULTS LDM markedly inhibited the proliferation of the Raji and Daudi cells in vitro, with IC50 values of 7.13×10-11 mol/L and 2.91×10-10 mol/L, respectively. The apoptotic rates of Raji cells were respectively 77.98% and 67.63% at 0.5 nmol/L and 0.25 nmol/L of LDM, indicating an obvious induction of apoptosis in Raji cells. LDM inhibited the formation and growth of human B-cell lymphoma Raji xenograft in nude mice. The inhibition rates of tumor growth were respectively 74.9% and 65.2% in LDM at dosage group of 0.05 mg/kg and 0.025 mg/kg, suggesting an apparent prolongation of survival time in the nude mouse bearing lymphoma.CONCLUSION LDM can effectively induce apoptosis of the B-cell lymphoma cells and inhibit the xenograft growth in nude mice.

  20. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth

    Institute of Scientific and Technical Information of China (English)

    Guido Schumacher; Marijke Oidtmann; Anne Rueggeberg; Dietmar Jacob; Sven Jonas; Jan M. Langrehr; Ruth Neuhaus; Marcus Bahra; Peter Neuhaus

    2005-01-01

    AIM: Standard immunosuppression after organ transplantation stimulates tumor growth. Sirolimus has a strong antiproliferative and a tumor inhibiting effect. The purpose is to assess the effect on tumor growth of the immunosuppressive compounds sirolimus and tacrolimus alone and in combination on cells of human hepatocellular carcinoma.METHODS: We used the human cell lines SK-Hep 1 and Hep 3B derived from hepatocellular carcinoma. Proliferation analyses after treatment with sirolimus, tacrolimus, or the combination of both were performed. FACS analyses were done to reveal cell cycle changes and apoptotic cell death. The expression of apoptosis-related proteins was estimated by Western blots.RESULTS: Sirolimus alone or combined with tacrolimus inhibited the growth of both cell lines after 5 d by up to 35% in SK-Hep 1 cells, and by up to 68% in Hep 3B cells at 25 ng/mL. Tacrolimus alone stimulated the growth by 12% after 5 ng/mL and by 25% after 25 ng/mL in Hep 3B cells. We found an increase of apoptotic Hep 3B cells from 6 to 16%, and a G1-arrest in SK-Hep 1 cells with an increase of cells from 61 to 82%, when sirolimus and tacrolimus were combined. Bcl-2 was down-regulated in Hep 3B, but not in SK-Hep 1 cells after combined treatment.CONCLUSION: Sirolimus appears to inhibit the growth of hepatocellular carcinoma cells alone and in combination with tacrolimus. Sirolimus seems to inhibit the growth stimulation of tacrolimus.

  1. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Wei Tang; Xian-Jun Qu; Wen-Fang Xu; Shu-Xiang Cui; Yong Zhou; Yun-Xia Yuan; Ming-Hui Chen; Ruo-Han Wang; Ruo-Yan Gai; Masatoshi Makuuchi

    2006-01-01

    AIM:To evaluate the growth inhibition efficacy of atofluding derivative N3-o-toluyl-fluorouracil (TFU)on human gastric carcinoma cell lines SGC-7901 and MKN-45.METHODS:Cell growth inhibition by TFU was measured by MTT and clonogenic assays without or with liver microsomal enzymes. Xenografts of cancer cells in nude mice were employed to study the anti-proliferative effects of TFU in vivo,RESULTS:TFU inhibited the growth of SGC-7901 and MKN-45 cells. However, the inhibitory effects of TFU on cell growth were not significant. The inhibition rates were enhanced in the presence of liver microsomal enzymes, ranging 4.73%-48.57% in SGC-7901 cells and 9.0%-62.02% in MKN-45 cells. In vivo, TFU delayed the growth of SGC-7901 and MKN-45 cells in nude mice. The inhibition rates were 40.49%, 63.24%, and 75.98% in SGC-7901 cells and 40.76%, 61.41%, and 82.07% in MKN-45 cells when the oral doses were 25, 50, and 100 mg/kg, respectively. TFU treatment was generally well tolerated by mice with less than 20% reduction in body weight.CONCLUSION:TFU inhibits the growth of human gastric carcinoma cells. The inhibition rates are increased in the presence of liver microsomal enzymes. The efficacy of TFU may be associated with the sustaining release of 5-fluorouracil (5-FU) mediated by the enzymes.

  2. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    Science.gov (United States)

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (Psalinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (PSalinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (Psalinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  3. Growth Inhibition Effect of DL-Lysine Acetylalicylate on sw480 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; TIAN Xiao-feng; WANG Li-ming

    2007-01-01

    Objective: To investigate the effect of DL-lysine acetylsalicylate on proliferation of colon carcinoma cells line sw480. Methods: After treatment of DL-lysine acetylsalicylate, the study was performed by observing sw480 colorectal cancer cells with phase contrast microscope, making growth curve, and examining the inhibition rate of sw480 cells with MTT assay. Results: The morphology of sw480 cells showed characteristics of apoptosis, the cell growth curve showed inhibited proliferation of sw480 cells when treated with DL-lysine acetylsalicylate (P<0.05). The rate of inhibition was upward when the drug concentration increased. Conclusion: DL-lysine acetylsalicylate for injection can inhibit the growth of sw480 colorectal cancer cells obviously in a dose dependent manner.

  4. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  5. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  6. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  7. Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Gu; Yi-Hui Ma; Wu-Gan Zhao; Jie Chen

    2011-01-01

    AIM: To elucidate the role of dickkopf3 (Dkk3) in human pancreatic cancer cell growth.METHODS: Dkk3 mRNA and protein expression in human pancreatic cancer cell lines were detected by real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blotting and immunofluorescence. Methylation of the Dkk3 promoter sequence was examined by methylation-specific polymerase chain reaction (MSP) and Dkk3 mRNA expression was determined by real-time RT-PCR after 5-aza-2'-deoxycytidine (5-aza-dC) treatment. The effects of Dkk3 on cancer cell proliferation and in vitro sensitivity to gemcitabine were investigated by CellTiter 96. AQueous One Solution Cell Proliferation Assay (MTS) after transfecting the Dkk3 expression plasmid into human pancreatic cancer cells. The expression of β-catenin, phosphorylated extracellular signal-regulated protein kinases (pERK) and extracellular signal-regulated protein kinases (ERK) was also examined by real-time RT-PCR and Western blotting after upregulating Dkk3 expression in human pancreatic cancer cells.RESULTS: The results show that the expression levels of both Dkk3 mRNA and protein were low in all pancreatic cancer cell lines tested. The Dkk3 promoter sequence was methylated in the MIA PaCa-2 and AsPC-1 cell lines, which showed reduced Dkk3 expression. These two cell lines, which initially had a methylated Dkk3 promoter, showed increased Dkk3 mRNA expression that was dependent upon the dosage and timing of the DNA demethylating agent, 5-aza-dC, treatment (P < 0.05 or P < 0.01). When Dkk3 expression was upregulated following the transfection of a Dkk3 expression plasmid into MIA PaCa-2 cells, the ability of cells to proliferate decreased (P < 0.01), and the expression of β-catenin and pERK was downregulated (P < 0.01). Sensitivity to gemcitabine was enhanced in Dkk3 expression plasmid-transfected cells.CONCLUSION: Our findings, for the first time, implicate Dkk3 as a tumor suppressor in human pancreatic cancer

  8. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  9. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  10. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    Science.gov (United States)

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  11. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor...

  12. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer.

  13. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition.

    Science.gov (United States)

    Zaharevitz, Daniel W; Holbeck, Susan L; Bowerman, Christopher; Svetlik, Penny A

    2002-01-01

    For more than 10 years the National Cancer Institute (NCI) has tested compounds for their ability to inhibit the growth of human tumor cell lines in culture (NCI screen). Work of Ken Paull [J. Natl. Cancer Inst. 81 (1989) 1088] demonstrated that compounds with similar mechanism of cell growth inhibition show similar patterns of activity in the NCI screen. This observation was developed into an algorithm called COMPARE and has been successfully used to predict mechanisms for a wide variety of compounds. More recently, this method has been extended to associate patterns of cell growth inhibition by compounds with measurements of molecular entities (such as gene expression) in the cell lines in the NCI screen. The COMPARE method and associated data are freely available on the Developmental Therapeutics Program (DTP) web site (http://dtp.nci.nih.gov/). Examples of the use of COMPARE on these web pages will be explained and demonstrated. Published by Elsevier Science Inc.

  14. Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores.

    Science.gov (United States)

    Patel, Vimal A; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S

    2015-09-11

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses.

  15. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  16. Growth inhibition and apoptosis induction of Sulindac on Human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun-Lin Wu; Bo Sun; Xue-Jun Zhang; Sheng-Nian Wang; Heng-Yi He; Min-Min Qiao; Jie Zhong; Jia-Yu Xu

    2001-01-01

    AIM: To evaluate the effects of sulindac in inducing growth inhibition and apoptosis of human gastric cancer cells in comparison with human hepatocellular carcinoma (HCC)cells. METHODS: The human gastric cancer cell lines MKN45 and MKN28 and human hepatocellular carcinoma cell lines HepG2and SMMC7721 were used for the study. Anti-proliferative effect was measured by MTT assay, and apoptosis was determined by Hoechst-33258 staining, electronography and DNA fragmentation. The protein of cyclooxygenase-2 (COX(2) and Bcl-2 were detected by Westem dot blotting. RESULTS: Sulindac could initiate growth inhibition and apoptosis of MKN45, MKN28, HepG2 and SMMC7721 cells in a dose-and time-dependent manner. Growth inhibitory activity and apoptosis were more sensitive in HepG2 cells than in SMMC7721 cells, MKN45 and MKN28 cells. After 24hours incubation with sulindac at 2mmol. L-1 and 4mmol.L-1, the level of COX-2 and Bcl-2 protein were lowered in MKN45, SMMC7721 and HepG2 cells but not in MKN28 cells. CONCLUSION: Sulindac could inhibit the growth of gastric cancer cells and HCC cells effectively in vitro by apoptosis induction, which was associated with regression of COX-2and Bcl-2 expression. The growth inhibition and apoptosis of HCC cells were greater then that of human gastric cancer cells. The different effects of apoptosis in gastric cancer cells may be related to the differentiation of the cells.

  17. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  18. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Science.gov (United States)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  19. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  20. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  1. Piperine inhibits the growth and motility of triple-negative breast cancer cells.

    Science.gov (United States)

    Greenshields, Anna L; Doucette, Carolyn D; Sutton, Kimberly M; Madera, Laurence; Annan, Henry; Yaffe, Paul B; Knickle, Allison F; Dong, Zhongmin; Hoskin, David W

    2015-02-01

    Piperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth. Exposure to piperine decreased the percentage of TNBC cells in the G2 phase of the cell cycle. In addition, G1- and G2-associated protein expression was decreased and p21(Waf1/Cip1) expression was increased in piperine-treated TNBC cells. Piperine also inhibited survival-promoting Akt activation in TNBC cells and caused caspase-dependent apoptosis via the mitochondrial pathway. Interestingly, combined treatment with piperine and γ radiation was more cytotoxic for TNBC cells than γ radiation alone. The in vitro migration of piperine-treated TNBC cells was impaired and expression of matrix metalloproteinase-2 and -9 mRNA was decreased, suggesting an antimetastatic effect by piperine. Finally, intratumoral administration of piperine inhibited the growth of TNBC xenografts in immune-deficient mice. Taken together, these findings suggest that piperine may be useful in the treatment of TNBC.

  2. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; LiyunZhong

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  3. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Mahban Irandoust

    Full Text Available BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.

  4. In vitro inhibition of Helicobacter pylori growth and adherence to gastric mucosal cells by Pycnogenol.

    Science.gov (United States)

    Rohdewald, Peter; Beil, Winfried

    2008-05-01

    The emergence of antibiotic resistant H. pylori strains has necessitated the identification of alternative additive therapies for the treatment of this infection. The study tested whether a specific pine bark extract (Pycnogenol is effective in inhibiting the growth and adherence of H. pylori in vitro. Inhibition of H. pylori growth by Pycnogenol was tested in liquid medium as well as in an in vitro model by using sessile bacteria attached to AGS cells. Adherence was determined by co-incubation of gastric cells with Pycnogenol and H. pylori in vitro. Pycnogenol inhibited H. pylori growth in suspension with an MIC(50) of 12.5 microg/mL. Growth of H. pylori in infected cells was reduced to 10% of the control value by 125 microg/mL Pycnogenol. Adherence of H. pylori to gastric cells was reduced by 70% after 3 h incubation with 125 microg/mL Pycnogenol. The results show a significant, yet limited inhibition of growth and adherence of H. pylori to gastric cells by Pycnogenol. In vivo studies have to demonstrate the clinical relevance of these findings.

  5. Dual effect of metformin on growth inhibition and oestradiol production in breast cancer cells.

    Science.gov (United States)

    Rice, S; Pellat, L; Ahmetaga, A; Bano, G; Mason, H D; Whitehead, S A

    2015-04-01

    Evidence has been accumulating for a role for metformin in reducing breast cancer risk in post-menopausal women. It inhibits growth of breast cancer cells via several mechanisms, primarily the AMPK/mTOR signalling pathway. Another possible protective mechanism may be the ability of metformin to inhibit aromatase activity. In the present study, we investigated the effects of metformin on the basal growth of MCF-7 cells, after oestradiol (E2) stimulation and after the inhibition of mTOR by rapamycin. Secondly, we investigated the effects of metformin on the activity of a number of steroidogenic enzymes and the mRNA expression of aromatase and steroid sulphatase (STS). High doses of metformin significantly inhibited both basal and oestrogen-stimulated cell division. Low-dose rapamycin (10-10 M) did not inhibit growth, but the addition of metformin induced a significant reduction in growth. High-dose rapamycin (10-8 M) inhibited growth, and this was further attenuated by the addition of metformin. Exposure to low (10-7 M) and high (10-4 M) doses of metformin for 7-10 days significantly reduced the conversion of androstenedione (ANDRO) and testosterone (TESTO) (both requiring aromatase), but not the conversion of oestrone or oestrone sulphate (ES) via 17β-hydroxysteroid dehydrogenase/sulphatase to E2. This attenuation was via a downregulation in the expression of total aromatase mRNA and promoter II, whilst the expression of sulphatase was unaffected by metformin. In conclusion, plasma levels of metformin have a dual therapeutic action, first by directly inhibiting cell proliferation which can be augmented by rapamycin analogues, and secondly, by inhibiting aromatase activity and reducing the local conversion of androgens to E2.

  6. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Directory of Open Access Journals (Sweden)

    Liu Xichun

    2010-08-01

    Full Text Available Abstract Background Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Methods Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl- 2,5-Diphenyltetrazolium Bromide (MTT assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. Results We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen

  7. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  8. Heat stable cell growth inhibiting factor isolated from rat liver microsomes.

    Directory of Open Access Journals (Sweden)

    Inaba,Kozo

    1979-08-01

    Full Text Available A heat stable cell growth inhibiting factor was isolated from rat liver microsomes by hot salt extraction, ethanol fractionation and the hot phenol method. The factor was contained in the RNA fraction (designated as mhRNA. mhRNA inhibited the growth of mouse fibroblast (L-929 cells at a relatively low concentration (55 microgram/ml of culture medium. The molecular weight of mhRNA was about 27,000 and the base composition was guanine and cytosine rich.

  9. Inhibition of Tumor Growth in Mice by Endostatin Derived from Abdominal Transplanted Encapsulated Cells

    Institute of Scientific and Technical Information of China (English)

    Huaining TENG; Ying ZHANG; Wei WANG; Xiaojun MA; Jian FEI

    2007-01-01

    Endostatin, a C-terminal fragment of collagen 18a, inhibits the growth of established tumors and metastases in vivo by inhibiting angiogenesis. However, the purification procedures required for largescale production and the attendant cost of these processes, together with the low effectiveness in clinical tests, suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study, we transfected Chinese hamster ovary (CHO) cells with a human endostatin gene expression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules. The release of biologically active endostatin was confirmed using the chicken chorioallantoic membrane assay. The encapsulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B16 tumor model when injected into the abdominal cavity of mouse. These results widen the clinical application of the microencapsulated cell endostatin delivery system in cancer treatment.

  10. Neural progenitor and hemopoietic stem cells inhibit the growth of low-differentiated glioma.

    Science.gov (United States)

    Baklaushev, V P; Grinenko, N F; Savchenko, E A; Bykovskaya, S N; Yusubalieva, G M; Viktorov, I V; Bryukhovetskii, A S; Bryukhovetskii, I S; Chekhonin, V P

    2012-02-01

    The effects of neural progenitor and hemopoietic stem cells on C6 glioma cells were studied in in vivo and in vitro experiments. Considerable inhibition of proliferation during co-culturing of glioma cells with neural progenitor cells was revealed by quantitative MTT test and bromodeoxyuridine incorporation test. Labeled neural progenitor and hemopoietic stem cells implanted into the focus of experimental cerebral glioma C6 survive in the brain of experimental animals for at least 7 days, migrate with glioma cells, and accumulate in the peritumoral space. Under these conditions, neural progenitor cells differentiate with the formation of long processes. Morphometric analysis of glioma cells showed that implantation of neural progenitor and hemopoietic stem cells is accompanied by considerable inhibition of the growth of experimental glioma C6 in comparison with the control. The mechanisms of tumor-suppressive effects of neural and hemopoietic stem cells require further investigation.

  11. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  12. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Hong-geng; XUE Wan-jiang; QIAN Hai-xin; ZHOU Xiao-jun; QIN Lei; LAN Jing

    2009-01-01

    Background The antitumor role of Ras association domain family 1A (RASSFIA) gene and its potential molecular mechanisms are not well understood. The objective of this study was to observe the antitumor ability of RASSFIA in hepatoceliular carcinoma, and study the mechanisms of cell apoptosis induced by RASSFIA.Methods After stably transfecting a RASSF1A (wild-type or mutant) expression vector into the BEL-7402 hepatocellular carcinoma cell line, RT-PCR and Westem blotting was used to detect the RASSF1A expression levels in recombinant cells. The effects of wild-type RASSF1A on cell growth were observed in vitro by analyzing cell proliferation rate, cell colony formation, and in vivo by analyzing tumorigenesis in nude mice. In addition, the effect of RASSF1A gene expression on the chemosensitivity of human hepatocellular carcinoma cells to antitumor drugs was examined by inhibition of cell proliferation and the percentage of apoptotic cells.Results Wild-type RASSF1A, not the mutant, suppressed cell growth in vitro and in vivo. Re-expression of wild-type RASSF1A could enhance the inhibition of cell proliferation and the percentage of apoptotic cells following cell treatment with mitomycin, but had no significant effect when combined with adriamycin, etoposide, 5-fluorouracil and cisplatJn treatment.Conclusion Wild-type RASSF1A inhibits cell growth and enhances cell chemosensitivity to mitomycin in hepatocellular carcinoma, suggesting that RASSF1A may serve as a new target for gene therapy in hepatocellular carcinoma patients.

  13. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha

    DEFF Research Database (Denmark)

    Brender, C; Lovato, P; Sommer, V H;

    2005-01-01

    Signal transducer and activator of transcription (Stat)3 is constitutively activated in cutaneous T-cell lymphoma (CTCL), where it protects tumour cells against apoptosis. The constitutive activation of Stat3 leads to a constitutive expression of suppressor of cytokine signalling (SOCS)-3....... In healthy cells, SOCS-3 is transiently expressed following cytokine stimulation and functions as a negative feedback inhibitor of the Stat3-activating kinases. Here, we attempt to resolve the apparent paradox of a simultaneous SOCS-3 expression and Stat3 activation in the same cells. We show that (i) SOCS-3...... expression in tumour cells is equal to or higher than in cytokine-stimulated nonmalignant T cells, (ii) SOCS-3 is not mutated in CTCL, (iii) overexpression of SOCS-3 blocks IFNalpha-mediated growth inhibition without affecting Stat3 activation, growth, and apoptosis, and (iv) inhibition of SOCS-3...

  14. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  15. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Science.gov (United States)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  16. Growth Inhibition and Apoptosis Inducing Mechanisms of Curcumin on Human Ovarian Cancer Cell Line A2780

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; TONG Qiang-song; WU Cui-huan

    2006-01-01

    Objective: To explore the growth inhibition effects and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Methods: After treatment with 10-50 μmol/L curcumin for 6-24 h, the growth activity of A2780 cancer cells were studied by [ 4, 5-dimethylthiazol-2-yl]-2, 5-diphenyItetrazolium bromide (MTT) colorimetry. Cellular apoptosis was inspected by flow cytometery and acridine orange-ethidium bromide fluorescent staining methods. The fragmentation of cellular chromosome DNA was detected by DNA ladder, the ultrastructural change was observed under a transmission electron microscope,and the protein levels of nuclear factor-kappa B (NF-κB, P65) and cysteinyl aspartate specific protease-3 (Caspase-3) in ovarian cancer cells were measured by immunohistochemistry. Results: After treatment with various concentrations of curcumin, the growth inhibition rates of cancer cells reached 62.05%- 89.24%,with sub-G1 peaks appearing on histogram. Part of the cancer cells showed characteristic morphological changes of apoptosis under fluorescence and electron microscopes, and the rate of apoptosis was 21.5 % -33.5%. The protein expression of NF-κB was decreased, while that of Caspase-3 was increased in a timedependent manner. Conclusion: Curcumin could significantly inhibit the growth of human ovarian cancer cells;inducing apoptosis through up-regulating Caspase-3 and down-regulating gene expression of NF-κB is probably one of its molecular mechanisms.

  17. Docetaxel inhibits SMMC-7721 human hepatocellular carcinoma cells growth and induces apoptosis

    Institute of Scientific and Technical Information of China (English)

    Chang-Xin Geng; Zhao-Chong Zeng; Ji-Yao Wang

    2003-01-01

    AIM: To investigate the in vitro anti-hepatocellular carcinoma (HCC) activity of docetaxel against SMMC-7721 HCC cells and its possible mechanism.METHODS: The HCC cells were given different concentrations of docetaxel and their growth was measured by colony forming assay. Cell cycle and apoptosis were analyzed by flow cytometry and fluorescence microscopy (acridine orange/ethidium bromide double staining, AO/EB), as well as electronic microscopy. The SMMC-7721 HCC cell reactive oxygen species (ROS) and glutathione (GSH) were measured after given docetaxel.RESULTS: Docetaxel inhibited the hepatocellular carcinoma cells growth in a concentration dependent manner with IC505×10-10 M. Marked cell apoptosis and G2/M phase arrest were observed after treatment with docetaxel ≥10-8M.Docetaxel promoted SMMC-7721 HCC cells ROS generation and GSH deletion.CONCLUSION: Docetaxel suppressed the growth of SMMC7721 HCC cells in vitro by causing apoptosis and G2/M phase arrest of the human hepatoma cells, and ROS and GSH may play a key role in the inhibition of growth and induction of apoptosis.

  18. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells.

    Science.gov (United States)

    Klubo-Gwiezdzinska, Joanna; Jensen, Kirk; Costello, John; Patel, Aneeta; Hoperia, Victoria; Bauer, Andrew; Burman, Kenneth D; Wartofsky, Leonard; Vasko, Vasyl

    2012-06-01

    Medullary thyroid cancer (MTC) is associated with activation of mammalian target of rapamycin (mTOR) signaling pathways. Recent studies showed that the antidiabetic agent metformin decreases proliferation of cancer cells through 5'-AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR. In the current study, we assessed the effect of metformin on MTC cells. For this purpose, we determined growth, viability, migration, and resistance to anoikis assays using two MTC-derived cell lines (TT and MZ-CRC-1). Expressions of molecular targets of metformin were examined in MTC cell lines and in 14 human MTC tissue samples. We found that metformin inhibited growth and decreased expression of cyclin D1 in MTC cells. Treatment with metformin was associated with inhibition of mTOR/p70S6K/pS6 signaling and downregulation of pERK in both TT and MZ-CRC-1 cells. Metformin had no significant effects on pAKT in the cell lines examined. Metformin-inducible AMPK activation was noted only in TT cells. Treatment with AMPK inhibitor (compound C) or AMPK silencing did not prevent growth inhibitory effects of metformin in TT cells. Metformin had no effect on MTC cell migration but reduced the ability of cells to form multicellular spheroids in nonadherent conditions. Immunostaining of human MTC showed over-expression of cyclin D1 in all tumors compared with corresponding normal tissue. Activation of mTOR/p70S6K was detected in 8/14 (57.1%) examined tumors. Together, these findings indicate that growth inhibitory effects in MTC cells are associated with downregulation of both mTOR/6SK and pERK signaling pathways. Expression of metformin's molecular targets in human MTC cells suggests its potential utility for the treatment of MTC in patients.

  19. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells

    Science.gov (United States)

    Liu, Xing-An

    2012-01-01

    AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest. PMID:22773971

  20. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Shu-Yan Huang; Jing-Xin Feng; Yan-Yan Gao; Li Zhao; Jun Lu; Bai-Qu Huang; Yu Zhang

    2011-01-01

    AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay.SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.

  1. Methylthioadenosine (MTA inhibits melanoma cell proliferation and in vivo tumor growth

    Directory of Open Access Journals (Sweden)

    Cortés Javier

    2010-06-01

    Full Text Available Abstract Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment.

  2. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables.

    Science.gov (United States)

    Zhang, Yanjun; Vareed, Shaiju K; Nair, Muraleedharan G

    2005-02-11

    Anthocyanidins, the aglycones of anthocyanins, impart brilliant colors in many fruits and vegetables. The widespread consumption of diets rich in anthocyanin and anthocyanidins prompted us to determine their inhibitory effects on human cancer cell proliferation. Five anthocyanidins, cyanidin (1), delphinidin (2), pelargonidin (3), petunidin (4) and malvidin (5), and four anthocyanins, cyanidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-galactoside and pelargonidin-3-galactoside were tested for cell proliferation inhibitory activity against human cancer cell lines, AGS (stomach), HCT-116 (colon), MCF-7 (breast), NCI H460 (lung), and SF-268 (Central Nervous System, CNS) at 12.5-200 microg/mL concentrations. The viability of cells after exposure to anthocyanins and anthocyanidins was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric methods. The anthocyanins assayed did not inhibit cell proliferation of cell lines tested at 200 microg/mL. However, anthocyanidins showed cell proliferation inhibitory activity. Malvidin inhibited AGS, HCT-116, NCI-H460, MCF-7 and SF-268 cell growth by 69, 75.7, 67.7, 74.7 and 40.5%, respectively, at 200 microg/mL. Similarly, pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth by 64, 63, 62, 63 and 34%, respectively, at 200 microg/mL. At 200 microg/mL, cyanidin, delphinidin and petunidin inhibited the breast cancer cell growth by 47, 66 and 53%, respectively. This is the first report of tumor cell proliferation inhibitory activity by anthocyanidins.

  3. Methoxychlor inhibits growth of antral follicles by altering cell cycle regulators.

    Science.gov (United States)

    Gupta, Rupesh K; Meachum, Sharon; Hernández-Ochoa, Isabel; Peretz, Jackye; Yao, Humphrey H; Flaws, Jodi A

    2009-10-01

    Methoxychlor (MXC) reduces fertility in female rodents, decreases antral follicle numbers, and increases atresia through oxidative stress pathways. MXC also inhibits antral follicle growth in vitro. The mechanism by which MXC inhibits growth of follicles is unknown. The growth of follicles is controlled, in part, by cell cycle regulators. Thus, we tested the hypothesis that MXC inhibits follicle growth by reducing the levels of selected cell cycle regulators. Further, we tested whether co-treatment with an antioxidant, N-acetyl cysteine (NAC), prevents the MXC-induced reduction in cell cycle regulators. For in vivo studies, adult cycling CD-1 mice were dosed with MXC or vehicle for 20 days. Treated ovaries were subjected to immunohistochemistry for proliferating cell nuclear antigen (PCNA) staining. For in vitro studies, antral follicles isolated from adult cycling CD-1 mouse ovaries were cultured with vehicle, MXC, and/or NAC for 48, 72 and 96 h. Levels of cyclin D2 (Ccnd2) and cyclin dependent kinase 4 (Cdk4) were measured using in vivo and in vitro samples. The results indicate that MXC decreased PCNA staining, and Ccnd2 and Cdk4 levels compared to controls. NAC co-treatment restored follicle growth and expression of Ccnd2 and Cdk4. Collectively, these data indicate that MXC exposure reduces the levels of Ccnd2 and Cdk4 in follicles, and that protection from oxidative stress restores Ccnd2 and Cdk4 levels. Therefore, MXC-induced oxidative stress may decrease the levels of cell cycle regulators, which in turn, results in inhibition of the growth of antral follicles.

  4. Disulfiram Is a DNA Demethylating Agent and Inhibits Prostate Cancer Cell Growth

    Science.gov (United States)

    Lin, Jianqing; Haffner, Michael C.; Zhang, Yonggang; Lee, Byron H.; Brennen, W. Nathaniel; Britton, Justin; Kachhap, Sushant K.; Shim, Joong Sup; Liu, Jun O.; Nelson, William G.; Yegnasubramanian, Srinivasan; Carducci, Michael A.

    2011-01-01

    BACKGROUND The clinical success of the nucleoside analogs 5-aza-cytidine (5-azaC) and 5-aza-2′deoxycytidine (5-aza-dC) as DNA methyltransferase (DNMT) inhibitors has spurred interest in the development of non-nucleoside inhibitors with improved pharmacologic and safety profiles. Because DNMT catalysis features attack of cytosine bases by an enzyme thiol group, we tested whether disulfiram (DSF), a thiol-reactive compound with known clinical safety, demonstrated DNMT inhibitory activity. METHODS Inhibition of DNMT1 activity by DSF was assessed using methyltransferase activity assays with recombinant DNMT1. Next, prostate cancer cell lines were exposed to DSF and assessed for: i) reduction of global 5-methyl cytosine (5meC) content using liquid chromatography/tandem mass spectrometry (LC-MS/MS); ii) gene-specific promoter demethylation by methylation-specific PCR (MSP); and iii) gene-reactivation by real-time RT-PCR. DSF was also tested for growth inhibition using prostate cancer cell lines propagated in vitro in cell culture and in vivo as xenografts in nude mice. RESULTS Disulfiram showed a dose-dependent inhibition of DNMT1 activity on a hemimethylated DNA substrate. In prostate cancer cells in culture, DSF exposure led to reduction of global genomic 5meC content, increase in unmethylated APC and RARB gene promoters, and associated re-expression of these genes, but did not significantly alter prostate-specific antigen (PSA) expression. DSF significantly inhibited growth and clonogenic survival of prostate cancer cell lines in culture and showed a trend for reduced growth of prostate cancer xenografts. CONCLUSIONS Disulfiram is a non-nucleoside DNMT1 inhibitor that can reduce global 5meC content, reactivate epigenetically silenced genes, and significantly inhibit growth in prostate cancer cell lines. PMID:20809552

  5. CH5137291, an androgen receptor nuclear translocation-inhibiting compound, inhibits the growth of castration-resistant prostate cancer cells.

    Science.gov (United States)

    Ishikura, Nobuyuki; Kawata, Hiromitsu; Nishimoto, Ayako; Nakamura, Ryo; Tsunenari, Toshiaki; Watanabe, Miho; Tachibana, Kazutaka; Shiraishi, Takuya; Yoshino, Hitoshi; Honma, Akie; Emura, Takashi; Ohta, Masateru; Nakagawa, Toshito; Houjo, Takao; Corey, Eva; Vessella, Robert L; Aoki, Yuko; Sato, Haruhiko

    2015-04-01

    Resistance of prostate cancer to castration is currently an unavoidable problem. The major mechanisms underlying such resistance are androgen receptor (AR) overexpression, androgen-independent activation of AR, and AR mutation. To address this problem, we developed an AR pure antagonist, CH5137291, with AR nuclear translocation-inhibiting activity, and compared its activity and characteristics with that of bicalutamide. Cell lines corresponding to the mechanisms of castration resistance were used: LNCaP-BC2 having AR overexpression and LNCaP-CS10 having androgen-independent AR activation. VCaP and LNCaP were used as hormone-sensitive prostate cancer cells. In vitro functional assay clearly showed that CH5137291 inhibited the nuclear translocation of wild-type ARs as well as W741C- and T877A-mutant ARs. In addition, it acted as a pure antagonist on the transcriptional activity of these types of ARs. In contrast, bicalutamide did not inhibit the nuclear translocation of these ARs, and showed a partial/full agonistic effect on the transcriptional activity. CH5137291 inhibited cell growth more strongly than bicalutamide in VCaP and LNCaP cells as well as in LNCaP-BC2 and LNCaP-CS10 cells in vitro. In xenograft models, CH5137291 strongly inhibited the tumor growth of LNCaP, LNCaP-BC2, and LNCaP-CS10, whereas bicalutamide showed a weaker effect in LNCaP and almost no effect in LNCaP-BC2 and LNCaP-CS10 xenografts. Levels of prostate-specific antigen (PSA) in plasma correlated well with the antitumor effect of both agents. CH5137291 inhibited the growth of LNCaP tumors that had become resistant to bicalutamide treatment. A docking model suggested that CH5137291 intensively collided with the M895 residue of helix 12, and therefore strongly inhibited the folding of helix 12, a cause of AR agonist activity, in wild-type and W741C-mutant ARs. In cynomolgus monkeys, the serum concentration of CH5137291 increased dose-dependently and PSA level decreased 80% at 100 mg/kg. CH

  6. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  7. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  8. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    Science.gov (United States)

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-09

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined.

  9. Experimental studies on ultralow frequency pulsed gradient magnetic field inducing apoptosis of cancer cell and inhibiting growth of cancer cell

    Institute of Scientific and Technical Information of China (English)

    曾繁清; 郑从义; 张新晨; 李宗山; 李朝阳; 王川婴; 张新松; 黄晓玲; 张沪生

    2002-01-01

    The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums(ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling(TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency(ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indicating that magnetic field can block DNA replication and inhibit mitosis of cancer cells. It was suggested that magnetic field could inhibit the metabolism of cancer cell, lower its malignancy, and restrain its rapid and heteromorphic growth. Since ULF pulsed gradient magnetic field can induce apoptosis of cancer cells and inhibit the growth of malignant tumour, it could be used as a new method to treat cancer.

  10. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    Science.gov (United States)

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  11. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth.

    Science.gov (United States)

    Waaler, Jo; Machon, Ondrej; von Kries, Jens Peter; Wilson, Steven Ray; Lundenes, Elsa; Wedlich, Doris; Gradl, Dietmar; Paulsen, Jan Erik; Machonova, Olga; Dembinski, Jennifer L; Dinh, Huyen; Krauss, Stefan

    2011-01-01

    Canonical Wnt signaling is deregulated in several types of human cancer where it plays a central role in tumor cell growth and progression. Here we report the identification of 2 new small molecules that specifically inhibit canonical Wnt pathway at the level of the destruction complex. Specificity was verified in various cellular reporter systems, a Xenopus double-axis formation assay and a gene expression profile analysis. In human colorectal cancer (CRC) cells, the new compounds JW67 and JW74 rapidly reduced active β-catenin with a subsequent downregulation of Wnt target genes, including AXIN2, SP5, and NKD1. Notably, AXIN2 protein levels were strongly increased after compound exposure. Long-term treatment with JW74 inhibited the growth of tumor cells in both a mouse xenograft model of CRC and in Apc(Min) mice (multiple intestinal neoplasia, Min). Our findings rationalize further preclinical and clinical evaluation of these new compounds as novel modalities for cancer treatment.

  12. Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Wang, Lixia; Yin, Xuyuan; Wang, Zhiwei

    2016-01-01

    Natural polyphenol compound curcumin has been found to exhibit its anticancer activity in a variety of human malignancies including pancreatic cancer (PC). However, the underlying mechanism has not been fully understood. Accumulating evidence has demonstrated that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in the development and progression of human cancers. In this study, we aim to explore the molecular basis of curcumin-induced cell growth inhibition in PC cells.Multiple methods such as CTG assay, Flow cytometry, clonogenic assay, wound healing assay, Transwell invasion assay, Western blotting, and transfection were performed to validate the oncogenic role of curcumin in PC cells. We found that curcumin suppressed cell growth, clonogenic potential, migration and invasion, and induced cell apoptosis and cell cycle arrest. Moreover, we observed thatover-expression of Skp2 significantly promoted cell growth, whereas down-regulation of Skp2 with siRNAs inhibited cell growth. The molecular basis of curcumin-mediated cell growth inhibition we identified is that curcumin significantly suppressed Skp2 expression and subsequently induced p21 expression. These findings suggested thattargeting Skp2 by curcumin could be a promising therapeutic strategy for the treatment of PC patients.

  13. Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells.

    Science.gov (United States)

    Zhang, Chen; Tian, Yaping; Song, Feiyu; Fu, Changhao; Han, Bo; Wang, Yi

    2015-11-01

    Salinomycin is a monocarboxylic polyether antibiotic that has been reported to induce apoptosis in various types of cancer cells with specificity for cancer stem cells. However, its anticancer effect in colorectal cancer stem cells has never been reported. In the present study, we examined the ability of salinomycin to induce cell death in the colorectal cancer stem cell line CD44+EpCAM+ HCT-116, and we measured its in vivo tumor inhibition capacity. Salinomycin dose-dependently induced cytotoxicity in the CD44+EpCAM+ HCT-116 cells and inhibited colony formation. Salinomycin treatment was shown to induce apoptosis, as evidenced by nuclear fragmentation, an increase in the proportion of acridine orange/ethidium bromide-positive cells and an increase in the percentage of Annexin V-positive cells. Apoptosis was induced in colorectal cancer stem cells in a caspase-dependent manner, as shown by an increase in the levels of cleaved caspase-3, -8 and -9. JC-1 staining further revealed that salinomycin induced colorectal cancer cell apoptosis via the mitochondrial pathway. In addition, salinomycin treatment of xenograft mice inhibited the growth of tumors derived from the CD44+EpCAM+ HCT-116 cells. The present study demonstrated that the antibiotic salinomycin exerts an anti-colorectal cancer effect in vitro and in vivo, suggesting salinomycin as a potential drug for colorectal cancer therapy.

  14. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Science.gov (United States)

    Keravis, Thérèse; Favot, Laure; Abusnina, Abdurrazag A; Anton, Anita; Justiniano, Hélène; Soleti, Raffaella; Alabed Alibrahim, Eid; Simard, Gilles; Andriantsitohaina, Ramaroson; Lugnier, Claire

    2015-01-01

    The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs), PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  15. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Thérèse Keravis

    Full Text Available The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs, PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  16. The RARgamma selective agonist CD437 inhibits gastric cell growth through the mechanism of apoptosis.

    Science.gov (United States)

    Jiang, S Y; Lin, D Y; Shyu, R Y; Reichert, U; Yeh, M Y

    1999-04-01

    Retinoids are differentiation-inducing agents that exhibit multiple functions. Their activities are mediated through interaction with nuclear retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the activities of synthetic retinoids on the growth of five gastric cancer cell lines. The effects of agonists selective for RARalpha, RARbeta and RARgamma (AM580, CD2019 and CD437, respectively) on cell growth were determined, in comparison to all-trans retinoic acid, by measuring total cellular DNA. AM580 and CD2019 had little or no effect on the growth of all five cell lines. In contrast, the RARgamma agonist CD437 inhibited cell growth up to 90-99% in both retinoic acid sensitive and resistant gastric cancer cells at a concentration of 1 microM. The growth suppression caused by CD437 was accompanied by the induction of apoptosis as judged by morphological criteria and DNA ladder formation. However, the extent of CD437-induced growth suppression was not correlated with RARgamma mRNA levels, which indicates that CD437 induces apoptosis in gastric cancer cells via an RARgamma independent pathway.

  17. Maximum Inhibition of Breast Cancer/Stem Cell Growth by Concomitant Blockage of Key Receptors

    Directory of Open Access Journals (Sweden)

    Mossa Gardaneh

    2012-01-01

    Full Text Available The blockage of cancer cell growth and division is the prime objective in clinical cancer therapy both at early stages and for inhibition of minimal residual disease and relapse. The failure of conventional therapies in treating breast cancer (BC has prompted dissection of signalling pathways involved in BC cell growth and characterisation of cellular receptors. Specific sets of membrane-bound receptors promote disarrayed self-renewal of BC stem cells and deregulated BC cell proliferation. Individual blockage of each receptor promotes only incomplete inhibition of BC cell growth and partial regression of metastasis. Such monotherapies are based on either chemotherapy or monoclonal antibodies. However, they do not provide long-lasting benefits and are further compromised by increasing resistance the cancer cells acquire against therapeutic agents, by their evasion of receptor blockage and by adoption of alternative growth routes that are induced by cross-talks between key receptors. On the other hand, dual targeting approaches, including receptor blockage combined with chemotherapy, produce prolonged overall survival but, nevertheless, complicate treatment by inducing side effects. Based on the complex nature of BC, combined targeted strategies that potentially confer maximum coverage for treatment cannot be effective without overcoming drug resistance initiated and further induced by inter-receptor communications. This implies that a comprehensive strategy based on concomitant inhibition of key receptors could provide an ultimate solution for effective treatment of aggressive types of BC. Such a strategy would likely be capable of targeting breast tumour cells and BC stem cells alike eventually forcing the cancer to regress.

  18. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hassanhi M

    2006-01-01

    Full Text Available Abstract Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05 between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300. CytoregR-induced caspase protease-3 (CPP32 activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the

  19. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    Science.gov (United States)

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.

  20. A rho GDP dissociation inhibitor produced by apoptotic T-cells inhibits growth of Mycobacterium tuberculosis.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Dhiman, Rohan; Paidipally, Padmaja; Cheekatla, Satyanarayana S; Tripathi, Deepak; Welch, Elwyn; Tvinnereim, Amy R; Jones, Brenda; Theodorescu, Dan; Barnes, Peter F; Vankayalapati, Ramakrishna

    2015-02-01

    In this study, we found that a subpopulation of CD4(+)CD25(+) (85% Foxp3(+)) cells from persons with latent tuberculosis infection (LTBI) inhibits growth of M. tuberculosis (M. tb) in human monocyte-derived macrophages (MDMs). A soluble factor, Rho GDP dissociation inhibitor (D4GDI), produced by apoptotic CD4(+)CD25(+) (85% Foxp3(+)) cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+C)D25(+)Foxp3(+)D4GDI(+) cells do not produce IL-10, TGF-β and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1β, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+)) cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+)CD25(+) (85% Foxp3+) cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.

  1. A rho GDP dissociation inhibitor produced by apoptotic T-cells inhibits growth of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sambasivan Venkatasubramanian

    2015-02-01

    Full Text Available In this study, we found that a subpopulation of CD4(+CD25(+ (85% Foxp3(+ cells from persons with latent tuberculosis infection (LTBI inhibits growth of M. tuberculosis (M. tb in human monocyte-derived macrophages (MDMs. A soluble factor, Rho GDP dissociation inhibitor (D4GDI, produced by apoptotic CD4(+CD25(+ (85% Foxp3(+ cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+CD25(+Foxp3(+D4GDI(+ cells do not produce IL-10, TGF-β and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1β, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+ cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+CD25(+ (85% Foxp3+ cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.

  2. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation.

    Science.gov (United States)

    Tanaka, M; Setoguchi, T; Hirotsu, M; Gao, H; Sasaki, H; Matsunoshita, Y; Komiya, S

    2009-06-16

    The study shows constitutive activation of the Notch pathway in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of osteosarcoma. We investigated the expression of the Notch pathway molecules in osteosarcoma biopsy specimens and examined the effect of Notch pathway inhibition. Real-time PCR revealed overexpression of Notch2, Jagged1, HEY1, and HEY2. On the other hand, Notch1 and DLL1 were downregulated in biopsy specimens. Notch pathway inhibition using gamma-secretase inhibitor and CBF1 siRNA slowed the growth of osteosarcomas in vitro. In addition, gamma-secretase inhibitor-treated xenograft models exhibited significantly slower osteosarcoma growth. Cell cycle analysis revealed that gamma-secretase inhibitor promoted G1 arrest. Real-time PCR and western blot revealed that gamma-secretase inhibitor reduced the expression of accelerators of the cell cycle, including cyclin D1, cyclin E1, E2, and SKP2. On the other hand, p21(cip1) protein, a cell cycle suppressor, was upregulated by gamma-secretase inhibitor treatment. These findings suggest that inhibition of Notch pathway suppresses osteosarcoma growth by regulation of cell cycle regulator expression and that the inactivation of the Notch pathway may be a useful approach to the treatment of patients with osteosarcoma.

  3. Inhibition of beta cell growth and function by bone morphogenetic proteins

    DEFF Research Database (Denmark)

    Bruun, Christine; Christensen, Gitte Lund; Jacobsen, Marie L B;

    2014-01-01

    : BMP2 and -4 were found to inhibit basal as well as growth factor-stimulated proliferation of primary beta cells from rats and mice. Bmp2 and Bmp4 mRNA and protein were expressed in islets and regulated by inflammatory cytokines. Neutralisation of endogenous BMP activity resulted in enhanced....../INTERPRETATION: These data show that BMP2 and -4 exert inhibitory actions on beta cells in vitro and suggest that BMPs exert regulatory roles of beta cell growth and function.......AIMS/HYPOTHESIS: Impairment of beta cell mass and function is evident in both type 1 and type 2 diabetes. In healthy physiological conditions pancreatic beta cells adapt to the body's increasing insulin requirements by proliferation and improved function. We hypothesised that during the development...

  4. In vitro screening assay for teratogens using growth inhibition of human embryonic cells.

    Science.gov (United States)

    Pratt, R M; Willis, W D

    1985-01-01

    We have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. We suggest that this assay, along with the complementary tumor cell-attachment assay of Braun et al. [Braun, A. G., Emerson, D. J. & Nichinson, B. B. (1979) Nature (London) 282, 507-509] may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo. Images PMID:3862095

  5. In vitro screening assay for teratogens using growth inhibition of human embryonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.M.; Willis, W.D.

    1985-09-01

    The authors have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. The authors suggest that this assay, along with the complementary tumor cell-attachment assay of Braun may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo.

  6. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David;

    2008-01-01

    pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor...

  7. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-qin; CHENG Hai-qing; LI Hong; ZHU Yan; LI Yu-hua; FENG Zhen-qing; ZHANG Jian-ping

    2011-01-01

    Background We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer.Here,we examined expression of CTGFin human hepatocellular carcinoma (HCC) cells and its effect on cell growth.Methods Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2,SMMC-7721,MHCC-97H and LO2.siRNA for the CTGFgene was designed,synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF.CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect,and a colony formation assay was used for observing clonogenic growth.In vivo,tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation.Statistical significance was determined by t test for comparison between two groups,or analysis of variance (ANOVA) for multiple groups.Results Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%).CTGF was overexpressed 5-fold in 20 HCC tissues,compared with surrounding non-tumor liver tissue.CTGF mRNA level was 5-8-fold higher in HepG2,SMMC-7721 and MHCC-97H than in LO2 cells.This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P <0.05).Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P <0.05).The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P <0.05).Conclusions CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo.Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  8. Cloning of WWOX Gene and Its Growth-inhibiting Effects on Ovarian Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    熊宙芳; 胡沙; 王泽华

    2010-01-01

    The growth-inhibiting and apoptosis-inducing effects of WW domain-containing oxidoreductase(WWOX) gene on ovarian cancer cell line A2780 were investigated.The full length cDNA of human WWOX gene was amplified from normal human ovary tissues.The correct cDNA of full length WWOX was subcloned into eukaryocytic expression vector pCMV.After introduction of WWOX gene into cancer cells with liposome,the WWOX mRNA and protein level in the cancer cells were detected by reverse transcription polymerase chain reactio...

  9. Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

    Science.gov (United States)

    Borowicki, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Brenner-Weiss, Gerald; Obst, Ursula; Hollmann, Jürgen; Lindhauer, Meinolf; Wachter, Norbert; Glei, Michael

    2010-02-01

    Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.

  10. Anthocyanin Induces Apoptosis of DU-145 Cells In Vitro and Inhibits Xenograft Growth of Prostate Cancer

    Science.gov (United States)

    Ha, U-Syn; Bae, Woong Jin; Kim, Su Jin; Yoon, Byung Il; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Hwang, Sung Yeoun; Wang, Zhiping

    2015-01-01

    Purpose To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). Materials and Methods The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. Results Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. Conclusion This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model. PMID:25510742

  11. Plant-made trastuzumab (herceptin inhibits HER2/Neu+ cell proliferation and retards tumor growth.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available BACKGROUND: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb, trastuzumab (Herceptin. A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE: We conclude that PMT is active in suppression of cell proliferation and tumor growth.

  12. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells

    Institute of Scientific and Technical Information of China (English)

    MinZHANG; XinZHANG; Chun-xueBAI; JieCHEN; MinQWEI

    2004-01-01

    AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

  13. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  14. miR-134 inhibits non-small cell lung cancer growth by targeting the epidermal growth factor receptor.

    Science.gov (United States)

    Qin, Qin; Wei, Furong; Zhang, Jianbo; Wang, Xingwu; Li, Baosheng

    2016-10-01

    The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti-EGFR therapies. However, more EGFR-targeting miRNAs need to be explored. In this study, we identified a novel EGFR-targeting miRNA, miRNA-134 (miR-134), in non-small-cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR-134. In addition, the overexpression of miR-134 inhibited EGFR-related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR-134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down-regulation of EGFR by miR-134 partially contributes to the antiproliferative role of miR-134. Last, in vivo experiments demonstrated that miR-134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR-134 inhibits non-small cell lung cancer growth by targeting the EGFR.

  15. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available BACKGROUND: Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported. METHODOLOGY AND PRINCIPAL FINDINGS: To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures. CONCLUSION AND SIGNIFICANCE: Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  16. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  17. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    Science.gov (United States)

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death.

  18. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  19. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids.

    Science.gov (United States)

    Awad, A B; Chen, Y C; Fink, C S; Hennessey, T

    1996-01-01

    The purpose of the present study was to examine the effect of beta-sitosterol, the main dietary phytosterol on the growth of HT-29 cells, a human colon cancer cell line. In addition, the incorporation of this phytosterol into cellular membranes and how this might influence the lipid composition of the membranes were investigated. Tumor cells were grown in DMEM containing 10% FBS and supplemented with sterols (cholesterol or beta-sitosterol) at final concentrations up to 16 microM. The sterols were supplied to the media in the form of sterol cyclodextrin complexes. The cyclodextrin used was 2-hydroxypropyl-beta-cyclodextrin. The sterol to cyclodextrin molar ratio was maintained at 1:300. The study indicated that 8 and 16 microM beta-sitosterol were effective at cel growth inhibition as compared to cholesterol or to the control (no sterol supplementation). After supplementation with 16 microM beta-sitosterol for 9 days, cell growth was only one-third that of cells supplemented with equimolar concentration of cholesterol. No effect was observed on total membrane phospholipid concentration. At 16 microM beta-sitosterol supplementation, membrane cholesterol was reduced by 26%. Cholesterol supplementation resulted in a significant increase in the cholesterol/phospholipid ratio compared to either beta-sitosterol supplemented cells or controls. There was a 50% reduction in membrane sphingomyelin (SM) of cells grown in 16 microM beta-sitosterol. Additional changes were observed in the fatty acid composition of minor phospholipids of beta-sitosterol supplemented cells, such as SM, phosphatidylserine (PS), and phosphatidylinositol (PI). Only in the case of PI, was there an effect of these fatty acid changes on the unsaturation index, beta-sitosterol incorporation resulted in an increase in the U.I. It is possible that the observed growth inhibition by beta-sitosterol may be mediated through the influence of signal transduction pathways that involve membrane phospholipids.

  20. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  1. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  2. Retroviral endostatin gene transfer inhibits human colon cancer cell growth in vivo

    Institute of Scientific and Technical Information of China (English)

    陈卫昌; 傅建新; 刘强; 阮长耿; 萧树东

    2003-01-01

    Objective To investigate the therapeutic effect of retroviral endostatin gene transfer on the human colon cancer cell line, LoVo.Methods A retroviral vector pLESSN expressing secretable endostatin was constructed and packaged with a titer of 8.2×105 CFU/ml. A LoVo cell line was subjected to retrovirus-mediated endostatin gene transfer. The proviral integration of endostatin was analyzed with PCR. The function of endostatin was tested by MTT assay in vitro and a mouse xenograft model in vivo.Results After transfection and superinfection, amphotropic retrovirus was collected, and transduction with amphotropic retroviruses resulted in endostatin proviral integration. The endostatin secreted by transduced LoVo cells markedly inhibited endothelial cell growth up to 67% (P<0.001), compared with the control cells. The gene expression of endostatin in LoVo colon tumor cells significantly inhibited tumor growth in vivo. There was an 86% reduction in tumor size in the endostatin-transduced group, accompanied by a reduction in vessels, compared with the control group (P<0.01). Conclusion Retroviruses can allow functional expression of the endostatin gene in human colon tumors, showing promise for an antitumor strategy using antiangiogenesis.

  3. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  4. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  5. Slit2 Inhibits Growth and Metastasis of Fibrosarcoma and Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Hee Kyung Kim

    2008-12-01

    Full Text Available Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  6. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma.

    Science.gov (United States)

    Kim, Hee Kyung; Zhang, Hong; Li, Hui; Wu, Tsung-Teh; Swisher, Stephen; He, Donggou; Wu, Lizhi; Xu, Jianmin; Elmets, Craig A; Athar, Mohammad; Xu, Xìao-chun; Xu, Hui

    2008-12-01

    Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs) compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  7. Nexrutine Inhibits Cancer Cell Growth as a Consequence of Mitochondrial Damage and Mitophagy

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2015-05-01

    Full Text Available Background/Aims: Nexrutine is an herbal extract of Phellodendron amurense and has been used as nutrient supplement in China as well as America. Potential protection effect of Nexrutine has been reported. Methods: To investigate the mechanism of Nexrutine, we used the HeLa, U2OS and HCT116 as a model. Based on the acidification of cell culture media, we examined the lactate, mitochondria damage as well as mitophagy status by corresponding assay. Results: Our data suggest that Nexrutine alters the cellular glucose metabolism to promote lactate production. This effect is caused by mitochondrial damage, not an alteration to lactate dehydrogenase activity. As a result of the mitochondrial damage, cell proliferation was inhibited and was associated with an elevation in p21/p27 proteins, which are both important cell cycle inhibitors. As another consequence of the mitochondrial damage, mitophagy was highly activated in Nexrutine-treated cells in a dose-dependent manner. When the autophagy pathway was blocked by siRNAs against BECN1 or ATG7, the growth inhibition caused by Nexrutine was reversed. Conclusion: Our study revealed that autophagy plays an important role in the inhibition of cancer cell proliferation by Nexrutine.

  8. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling.

    Science.gov (United States)

    Sliva, D; Jedinak, A; Kawasaki, J; Harvey, K; Slivova, V

    2008-04-22

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27(Kip1) expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr(308) and Ser(473) in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer.

  9. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    Science.gov (United States)

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8 days. The data indicate that milk fat triglyceride-bound CLA, consisting primarily of the c9, t11 isomer, was cytotoxic towards MCF-7 cells.

  10. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  11. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  12. Solanum tuberosum lectin inhibits Ehrlich ascites carcinoma cells growth by inducing apoptosis and G2/M cell cycle arrest.

    Science.gov (United States)

    Kabir, Syed Rashel; Rahman, Md Musfikur; Amin, Ruhul; Karim, Md Rezaul; Mahmud, Zahid Hayat; Hossain, M Tofazzal

    2016-06-01

    Recently, a lectin was purified from the potato cultivated in Bangladesh locally known as Sheel. In the present study cytotoxicity of the lectin against Ehrlich ascites carcinoma (EAC) cells was studied by MTT assay in vitro in RPMI-1640 medium and 8.0-36.0 % cell growth inhibition was observed at the range of 2.5-160 μg/ml protein concentration when incubated for 24 h. The lectin-induced apoptosis in EAC cells was confirmed by fluorescence and optical microscope. The apoptotic cell death was also confirmed by using caspase inhibitors. Cells growth inhibition caused by the lectin (36 %) was remarkably decreased to 7.6 and 22.3 % respectively in the presence of caspase-3 and -8 inhibitors. RT-PCR was used to evaluate the expression of apoptosis-related genes Bcl-X, p53, and Bax. An intensive expression of Bcl-X gene was observed in untreated control EAC cells with the disappeared of the gene in Sheel-treated EAC cells. At the same time, Bax gene expression appeared only in Sheel-treated EAC cells and the expression level of the p53 gene was increased remarkable after the treatment of EAC cells with the lectin. The lectin showed strong agglutination activity against EAC cells. Flow cytometry was used to study the cell cycle phases of EAC cells and it was observed that the lectin arrested the G2/M phase. In conclusion, Sheel lectin inhibited EAC cells growth by inducing apoptosis.

  13. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  14. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells.

    Science.gov (United States)

    Cantarella, Giuseppina; Scollo, Mimmo; Lempereur, Laurence; Saccani-Jotti, Gloria; Basile, Francesco; Bernardini, Renato

    2011-08-15

    Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic cells HMC-1, challenged with PMA to yield release of NGF, were preincubated with the endocannabinoid PEA. Then, conditioned media were added to HUVEC cultures. PMA-activated HMC-1 cells released substantial amounts of NGF, whereas PEA inhibited PMA-induced NGF release. HUVEC proliferation increased after treatment with media from activated HMC-1 cells, while was reduced with media from HMC-1 cells treated with PEA. To characterize receptors mediating such effects of PEA, RT-PCR and western blot analysis were performed on HMC-1 cells. None of the two cannabinoid CB1 and CB2 receptors was expressed by HMC-1 cells, which on the other hand expressed the orphan receptor GPR55. PEA was ineffective in inhibiting NGF release from HMC-1 cells treated with PMA and transfected with positive GPR55 RNAi, whereas it induced significant reduction of NGF in cells transfected with the corresponding negative control RNAi. Results indicate that NGF released from inflammatory mast cells induces angiogenesis. Cannabinoids attenuate such pro-angiogenic effects of NGF. Finally, cannabinoids could be considered for antiangiogenic treatment in disorders characterized by prominent inflammation.

  15. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Rui BAI; Zhong SHI; Jia-wei ZHANG; Dan LI; Yong-liang ZHU; Shu ZHENG

    2012-01-01

    Background and objective:ST13,is the gene encoding the HSP70 interacting protein (HIP).Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues.This study aims at the role of ST13 in the proliferation and migration of CRC cells.Methods:The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction,followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay,plate colony formation,cell-cycle analysis,and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro.Moreover,a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells.Results:Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation,colony formation,and cell migration in vitro.In contrast,down-regulation of ST13 by lentiviralbased short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro.In addition,down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo.Conclusions:ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.

  16. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  17. Growth inhibition and differentiation of promyelocytic cells (HL-60) induced by BC-4, an active principle from Boswellia carterii Birdw.

    Science.gov (United States)

    Jing, Y; Xia, L; Han, R

    1992-03-01

    The induction of cell differentiation and growth inhibition of HL-60 cells by Bc-4, an active principle from Boswellia carterii, was studied in vitro and in vivo. The proliferation of HL-60 cells was found to be inhibited by Bc-4 at a concentration of 5-10 micrograms/ml. Under the action of Bc-4, the acid phosphatase and NBT reduction activities in HL-60 cells were increased, and phagocytosis of cells was also induced. All these activities were concentration dependent. The HL-60 cells were induced by Bc-4 to differentiate into more mature cells morphologically. The in vivo growth of HL-60 cells in mouse subrenal capsules (SRC) and in diffusion chambers inoculated into mice was inhibited by Bc-4 at a dose of 50 mg/kg. The morphology of HL-60 cells treated by Bc-4 in diffusion chambers exhibited characteristics of mature granulocytic cells.

  18. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S;

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways...

  19. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    Science.gov (United States)

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  20. High iron sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Pamela Vazquez-Gutierrez

    2016-09-01

    Full Text Available The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2 and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2, isolated from anemic infant gut microbiota and selected for their high iron sequestration properties was investigated against Salmonella Typhimurium (S. Typhi and Escherichia coli O157:H45 (EHEC by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 µM Fe medium (CSDLIM without and with added ferrous iron (30 µM Fe. Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropatogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P<0.05 inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 +/- 6.0 % to HT29-MTX cell layer compared to Bp PV8-2 (1.4 +/- 0.4 %. In competition, inhibition and displacement tests, Bp PV8-2 significantly (P<0.05 reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  1. Mechanisms of Neuroblastoma Cell Growth Inhibition by CARP-1 Functional Mimetics

    Science.gov (United States)

    Muthu, Magesh; Cheriyan, Vino T.; Munie, Sara; Levi, Edi; Frank, John; Ashour, Abdelkader E.; Singh, Mandip; Rishi, Arun K.

    2014-01-01

    Neuroblastomas (NBs) are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs) are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs) p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB) α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents. PMID:25033461

  2. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Christoph Mueller; Joerg Emmrich; Robert Jaster; Dagmar Braun; Stefan Liebe; Gisela Sparmann

    2006-01-01

    AIM: To investigate the biological effects of cishydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence.Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.RESULTS: In addition to inhibition of proliferation,incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions,followed by a loss of cell adherence. Simultaneously,we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspaseindependent FAK degradation, resulting in damaging pancreatic carcinoma cells.

  3. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Lv; Pei-Lin Cui; Shi-Wei Yao; You-Qing Xu; Zhao-Xu Yang

    2012-01-01

    Objective:To investigate the effects of melatonin on cellular proliferation and endogenous vascular endothelial growth factor (VEGF) expression in pancreatic carcinoma cells (PANC-1).Methods:PANC-1 cells were cultured for this study.The secreted VEGF concentration in the culture medium was determined using ELISA method,VEGF production in the tumor cells was detected by immunocytochemistry,and VEGF mRNA expression was determined by RT-PCR.Results:Higher melatonin concentrations significantly inhibited cellular proliferation,with 1 mmol/L concentration exhibiting the highest inhibitory effect (P<0.01).VEGF concentrations in the cell culture supernatants and intra-cellules were all significantly reduced after melatonin (1 mmol/L) incubation (P<0.05).VEGF mRNA expression decreased markedly in a time-dependent manner during the observation period (P<0.05).Conclusions:High melatonin concentrations markedly inhibited the proliferation of pancreatic carcinoma cells.The endogenous VEGF expression was also suppressed by melatonin incubation.

  4. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells.

    Science.gov (United States)

    Wang, Ling; Wei, Dandan; Han, Xiaojuan; Zhang, Wei; Fan, Chengzhong; Zhang, Jie; Mo, Chunfen; Yang, Ming; Li, Junhong; Wang, Zhe; Zhou, Qin; Xiao, Hengyi

    2014-04-01

    The use of vincristine, a known antitumor agent, in hepatoma therapy is limited particularly because of its toxic effect. Meanwhile, berberine has drawn increasing attention to its antineoplastic effect in recent years. In view of the advantages of combinational drug treatment reported in anti-cancer chemotherapy, we evaluated the effects of co-treatment of vincristine and berberine on hepatic carcinoma cell lines in this study. We find that combinational usage of these two drugs can significantly induce cell growth inhibition and apoptosis even under a concentration of vincristine barely showing cytotoxicity in the same cells when used alone. The underlying mechanism about this combinational effect was addressed in this study by monitoring the signals related to mitochondrial function, apoptotic pathway and endoplasmic reticulum stress. Our results suggest a new value of berberine as a potential adjuvant agent in cancer chemotherapy and provide a hopeful approach for developing hepatoma therapy by utilizing the combinational effect of vincristine and berberine.

  5. Growth Inhibition Occurs Independently of Cell Mortality in Tomato (Solanum lycopersicum) Exposed to High Cadmium Concentrations

    Institute of Scientific and Technical Information of China (English)

    Christine Delpérée; Stanley Lutts

    2008-01-01

    In order to analyze the adaptation potential of tomato shoots to a sudden increase in Cd concentration, tomato plants (Solanum lycopersicum L. var. Ailsa Craig) were exposed under controlled environmental conditions to a high dose of this heavy metal (250 μM CdCl2>) in nutrient solution for 7 and 14 d. Both root and shoot growth was completely inhibited but all plants remained alive until the end of the treatment. Cell viability remained unaffected but the activity of the mitochondrial alternative pathway was stimulated by Cd stress at the expense of the cytochrome pathway. Cadmium concentration was higher in roots than in shoots and a decrease In the rate of net Cd translocation was noticed during the second week of stress. Cadmium decreased both leaf conductance (g1>) and chlorophyll concentration. However, the effect on net CO2 assimilation remained limited and soluble sugars accumulated in leaves. Photochemical efficiency of PSll (FvlFm) was not affected despite a decrease in the number of reaction centers and an inhibition of electron transfer to acceptors of PSII. It is concluded that tomato shoot may sustain short term exposure to high doses of cadmium despite growth inhibition. This property implies several physiological strategies linked to both avoidance and tolerance mechanisms.

  6. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth.

    Science.gov (United States)

    Strock, Christopher J; Park, Jong-In; Rosen, Mark; Dionne, Craig; Ruggeri, Bruce; Jones-Bolin, Susan; Denmeade, Samuel R; Ball, Douglas W; Nelkin, Barry D

    2003-09-01

    All of the cases of medullary thyroid carcinoma (MTC) express the RET receptor tyrosine kinase. In essentially all of the hereditary cases and approximately 40% of the sporadic cases of MTC, the RET kinase is constitutively activated by mutation. This suggests that RET may be an effective therapeutic target for treatment of MTC. We show that the indolocarbazole derivatives, CEP-701 and CEP-751, inhibit RET in MTC cells. These compounds effectively inhibit RET phosphorylation in a dose-dependent manner at concentrations <100 nM in 0.5% serum and at somewhat higher concentrations in the presence of 16% serum. They also blocked the growth of these MTC cells in culture. CEP-751 and its prodrug, CEP-2563, also inhibited tumor growth in MTC cell xenografts. These results show that inhibiting RET can block the growth of MTC cells and may have a therapeutic benefit in MTC.

  7. Shikonin inhibits TNF-α-induced growth and invasion of rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Xuemin; Hu, Wenyu; Wu, Fang; Yuan, Xue; Hu, Jian

    2015-08-01

    Shikonin is a naphthoquinone compound extracted from the Chinese herb purple gromwell. Shikonin has broad antibacterial, anti-inflammatory, and antitumor activities. The tumor necrosis factor-α (TNF-α)-induced proliferation and invasion of vascular smooth muscle cells (VSMCs) is an important factor that contributes to atherosclerosis. The effects of shikonin on the proliferation and apoptosis of VSMCs have been reported; however, the function of shikonin on TNF-α-mediated growth and invasion of VSMCs during atherosclerosis remains unclear. In this study, we used Western blot, flow cytometry, real-time quantitative PCR, and enzyme-linked immunosorbent assay to investigate the effect of shikonin on the TNF-α-induced growth and invasion of VSMCs and to determine the underlying mechanism. Our results showed that shikonin inhibits the TNF-α-mediated growth and invasion. Further study revealed that shikonin regulates the activation of nuclear factor kappa B and phosphatidyl inositol 3-kinase signaling pathways; modulates the expression of cyclin D1, cyclin E, B-cell lymphoma 2, and Bax; activates caspase-3 and caspase-9; induces cell cycle arrest; and promotes the apoptosis of VSMCs. Together, our results indicate that shikonin may become a promising agent for the treatment of atherosclerosis and they also establish foundation for the development of anti-atherosclerosis drugs.

  8. AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells.

    Science.gov (United States)

    Cho, Tae-Min; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-02-01

    We identified a novel mechanism of AKT signaling in the fucoidan-induced proliferation and migration of human urinary 5637 cancer cells. Fucoidan treatment showed a significant growth inhibition followed by G1-phase-associated up-regulation of p21WAF1 expression and suppression of cyclins and CDK expression in 5637 cells. Also, fucoidan treatment induced the activation of AKT signaling, which was inhibited by treatment with wortmannin, a PI3K-specific inhibitor. Blockade of the AKT function reversed the fucoidan-mediated inhibition of cell proliferation, the increased G1-phase-associated p21WAF1 expression, and the reduction of cell-cycle proteins. Moreover, treatment with fucoidan blocked migration and invasion of 5637 cells. This inhibition was attributed to decreased expression of MMP-9, which was mediated by down-regulation of AP-1 and NF-κB binding activity. Furthermore, wortmannin treatment abolished the decreased cell migration and invasion and the inhibition of MMP-9 expression via the suppression of NF-κB and AP-1 in fucoidan-treated cells. Similar results were observed in another bladder cancer T-24 cells treated with fucoidan. Finally, overexpression of the AKT gene inhibited the proliferation, migration and invasion of bladder cancer cells. These data suggest that the activation of AKT signaling is involved in growth inhibition and suppression of the migration and invasion of bladder cancer cells treated with fucoidan.

  9. PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Khonkarn, Ruttiros; Mankhetkorn, Samlee; Hennink, Wim E; Okonogi, Siriporn

    2011-10-01

    In this study, quercetin (QCT), a flavonoid with high anticancer potential, was loaded into polymeric micelles of PEG-OCL (poly(ethylene glycol)-b-oligo(ε-caprolactone)) with naphthyl or benzyl end groups in order to increase its aqueous solubility. The cytostatic activity of the QCT-loaded micelles toward different human cancer cell lines and normal cells was investigated. The results showed that the solubility of QCT entrapped in mPEG750-b-OCL micelles was substantially increased up to 1 mg/ml, which is approximately 110 times higher than that of its solubility in water (9 μg/ml). The average particle size of QCT-loaded micelles ranged from 14 to 19 nm. The QCT loading capacity of the polymeric micelles with naphthyl groups was higher than that with benzyl groups (10% and 6%, respectively). QCT-loaded, benzyl- and naphthyl-modified micelles effectively inhibited the growth of both sensitive and resistance cancer cells (human erythromyelogenous leukemia cells (K562) and small lung carcinoma cells (GLC4)). However, the benzyl-modified micelles have a good cytocompatibility (in the concentration range investigated (up to 100 μg/ml), they are well tolerated by living cells), whereas their naphthyl counterparts showed some cytotoxicity at higher concentrations (60-100 μg/ml). Flow cytometry demonstrated that the mechanism underlying the growth inhibitory effect of QCT in its free form was inducing cell cycle arrest at the G2/M phase. Benzyl-modified micelles loaded with QCT also exhibited this cycle arresting the effect of cancer cells. In conclusion, this paper shows the enhancement of solubility and cell cycle arrest of QCT loaded into micelles composed of mPEG750-b-OCL modified with benzyl end groups. These micelles are therefore considered to be an attractive vehicle for the (targeted) delivery of QCT to tumors.

  10. Metformin Induces Growth Inhibition and Cell Cycle Arrest by Upregulating MicroRNA34a in Renal Cancer Cells

    Science.gov (United States)

    Xie, Wei; Wang, Lei; Sheng, Halei; Qiu, Jing; Zhang, Di; Zhang, Le; Yang, Fan; Tang, Dahai; Zhang, Kebin

    2017-01-01

    Background Metformin is a widely used biguanide drug for the treatment of type 2 diabetes. It has been revaluated as a potential anti-cancer drug with promising activity in various tumors. However, the precise mechanisms underlying the suppression of cancer cells by metformin remain not well understood. Material/Methods In this study, human renal cell carcinoma cell line ACHN was used to investigate the anti-proliferation effect of metformin. A cell counting kit-8 assay was used to detect the cell viability. The cell cycle distribution and apoptosis were analyzed by flow cytometry. The expression of cyclin D1 and p27KIP1 was detected by Western blot. The underlying mechanism involving miRNA34a was further investigated by quantitative RT-PCR and transfection with miRNA inhibitor specific for miRNA34a in ACHN, 769-P, and A498 cells. Results Metformin could significantly inhibit the proliferation of ACHN cells in a dose- and time-dependent manner. In addition, the results showed that metformin induced G0/G1 phase arrest and delayed entry into S phase in ACHN cells. It was shown that metformin downregulates the expression of cyclin D1 and increases the p27KIP1 level. Furthermore, metformin increased ACHN cell death. Lastly, miRNA34a was found to be upregulated by metformin in ACHN, 769-P, and A498 cells. Subsequently, it was demonstrated that inhibition of miRNA34a could partially attenuate the suppressive effect of metformin on renal cancer cell proliferation. Conclusions The study data revealed that metformin induced cell growth inhibition and cell cycle arrest partially by upregulating miRNA34a in renal cancer cells. PMID:28045889

  11. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  12. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To explore the effect of six bile salts, including glycocholate (GC), glycochenodeoxycholate (GCDC), glycodeoxycholate (GDC), taurocholate (TC), taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and two bile acids including cholic acid (CA) and deoxycholic acid (DCA) on esophageal cancer Eca109 cell line.METHODS: Eca109 cells were exposed to six bile salts, two bile acids and the mixed bile salts at different concentrations for 24-72 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)assay. Sub-G1 DNA fragmentations and early apoptosis cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining. Apoptosis DNA ladders on agarose were observed. Activation of caspase-3 was assayed by FCM with FITC-conjugated monoclonal rabbit anti-active caspase3 antibody and expressions of Bcl-2 and Bax proteins were examined immunocytochemically in 500 μmol/L-TC-induced apoptosis cells.RESULTS: Five bile salts except for GC, and two bile acids and the mixed bile salts could initiate growth inhibition of Eca109 cells in a dose- and time-dependent manner.TUNEL, FCM, and DNA ladder assays all demonstrated apoptosis induced by bile salts and bile acids at 500 μmol/L,except for GC. Early apoptosis cell percentages in Eca109 cells treated with GCDC, GDC, TC, TCDC, TDC,CA at 500 μmol/L for 12 h, DCA at 500 μmol/L for 6 h,and mixed bile salts at 1 000 μmol/L for 12 h were 7.5%,8.7%, 14.8%, 8.9%, 7.8%, 9.3%, 22.6% and 12.5%,respectively, all were significantly higher than that in control (1.9%). About 22% of the cell population treated with TC at 500 μmol/L for 24 h had detectable active caspase-3, and were higher than that in the control (1%). Immunocytochemical assay suggested that TC down-regulated Bcl

  13. Retracted: Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    2016-03-01

    The above article, published online on 13 October 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10388/abstract), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered after publication that one of the cell lines described in the article had been unintentionally misidentified. The experiments described in the article as being conducted on Human Oral Squamous Cell Carcinoma cell line KB were in fact conducted on a Human Oral Epidermal-like Cancer cell line. The authors and publisher apologise for any inconvenience. References He Y, Chen F, Cai Y and Chen S (2015) Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International 39: 264-271. doi: 10.1002/cbin.10388.

  14. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol

    Science.gov (United States)

    SONER, BURAK CEM; AKTUG, HUSEYIN; ACIKGOZ, EDA; DUZAGAC, FAHRIYE; GUVEN, UMMU; AYLA, SULE; CAL, CAG; OKTEM, GULPERI

    2014-01-01

    Flavopiridol is a flavone that inhibits several cyclin-dependent kinases and exhibits potent growth-inhibitory activity, apoptosis and G1-phase arrest in a number of human tumor cell lines. Flavopiridol is currently undergoing investigation in human clinical trials. The present study focused on the effect of flavopiridol in cell proliferation, cell cycle progression and apoptosis in prostate cancer stem cells (CSCs). Therefore, cluster of differentiation 133 (CD133)+high/CD44+high prostate CSCs were isolated from the DU145 human prostate cancer cell line. The cells were treated with flavopiridol in a dose- and time-dependent manner to determine the inhibitory effect. Cell viability and proliferation were analyzed and the efficiency of flavopiridol was assessed using the sphere-forming assay. Flavopiridol was applied to monolayer cultures of CD133high/CD44high human prostate CSCs at the following final concentrations: 100, 300, 500 and 1000 nM. The cultures were incubated for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) value of the drug was determined as 500 nM for monolayer cells. Dead cells were analyzed prior and subsequent to exposure to increasing flavopiridol doses. Annexin-V and immunofluorescence analyses were performed for the evaluation of apoptotic pathways. According to the results, flavopiridol treatment caused significant growth inhibition at 500 and 1000 nM when compared to the control at 24 h. G0/G1 analysis showed a statistically significant difference between 100 and 500 nM (P<0.005), 100 and 1000 nM (P<0.001), 300 and 1000 nM (P<0.001), and 500 and 1000 nM (P<0.001). Flavopiridol also significantly influenced the cells in the G2/M phase, particularly at high-dose treatments. Flavopiridol induced growth inhibition and apoptosis at the IC50 dose (500 nM), resulting in a significant increase in immunofluorescence staining of caspase-3, caspase-8 and p53. In conclusion, the present results indicated that flavopiridol could be a

  15. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    Science.gov (United States)

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  16. Telomerase antagonist imetelstat inhibits esophageal cancer cell growth and increases radiation-induced DNA breaks.

    Science.gov (United States)

    Wu, Xuping; Smavadati, Shirin; Nordfjäll, Katarina; Karlsson, Krister; Qvarnström, Fredrik; Simonsson, Martin; Bergqvist, Michael; Gryaznov, Sergei; Ekman, Simon; Paulsson-Karlsson, Ylva

    2012-12-01

    Telomerase is mainly active in human tumor cells, which provides an opportunity for a therapeutic window on telomerase targeting. We sought to evaluate the potential of the thio-phosphoramidate oligonucleotide inhibitor of telomerase, imetelstat, as a drug candidate for treatment of esophageal cancer. Our results showed that imetelstat inhibited telomerase activity in a dose-dependent manner in esophageal cancer cells. After only 1 week of imetelstat treatment, a reduction of colony formation ability of esophageal cancer cells was observed. Furthermore, long-term treatment with imetelstat decreased cell growth of esophageal cancer cells with different kinetics regarding telomere lengths. Short-term imetelstat treatment also increased γ-H2AX and 53BP1 foci staining in the esophageal cancer cell lines indicating a possible induction of DNA double strand breaks (DSBs). We also found that pre-treatment with imetelstat led to increased number and size of 53BP1 foci after ionizing radiation. The increase of 53BP1 foci number was especially pronounced during the first 1h of repair whereas the increase of foci size was prominent later on. This study supports the potential of imetelstat as a therapeutic agent for the treatment of esophageal cancer.

  17. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    Science.gov (United States)

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future. PMID:28134290

  18. Silencing of ghrelin receptor expression inhibits endometrial cancer cell growth in vitro and in vivo.

    Science.gov (United States)

    Fung, Jenny N T; Jeffery, Penny L; Lee, John D; Seim, Inge; Roche, Deborah; Obermair, Andreas; Chopin, Lisa K; Chen, Chen

    2013-07-15

    Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.

  19. Growth inhibition and apoptosis induced by lupeol, a dietary triterpene, in human hepatocellular carcinoma cells.

    Science.gov (United States)

    He, Yan; Liu, Fen; Zhang, Lurong; Wu, Yan; Hu, Bo; Zhang, Yinsheng; Li, Yunsen; Liu, Haiyan

    2011-01-01

    Hepatocellular carcinoma (HCC) is the fifth most malignant tumor worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Lup-20(29)-en-3H-ol (Lupeol), a novel dietary triterpene, is found in fruits, vegetables, and medicinal plants and possesses multiple bio-activities with very low toxicity. In the current study, we investigated its growth-inhibitory effects in HCC cell lines SMMC7721 and HepG2. In the in vitro studies, lupeol treatment alone caused decrease of cell viability in two HCC cell lines in a dose-dependent manner. It also induced apoptosis and caused cell accumulation in S phase. Further analysis revealed the induction of active caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage by lupeol treatment. In the in vivo studies, nude mice implanted with SMMC7721 cells subcutaneously were treated with lupeol three times a week and tumor development was significantly inhibited. We further investigated the combination anti-tumor effect of lupeol and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HCC, considering TRAIL treatment alone could not achieve high level of anti-tumor effect. The results demonstrated that lupeol could exert a combinational effect with TRAIL, resulting in chemosensitization of HCC. Our results suggested that lupeol alone or as an adjuvant to therapeutic agents could be developed as a potential agent for treating HCC.

  20. Pharmacological activity in growth inhibition and apoptosis of cultured human leiomyomal cells of tropical plant Scutellaria barbata D. Don (Lamiaceae).

    Science.gov (United States)

    Lee, Tae-Kyun; Lee, Yun-Jeong; Kim, Dong-Il; Kim, Hyung-Min; Chang, Young-Chae; Kim, Cheorl-Ho

    2006-01-01

    Scutellaria barbata D. Don (Lamiaceae) (SB), which is known in traditional Korean medicine, has been used as an anti-inflammatory and antitumor agent. Since uterine leiomyoma is the most common benign smooth muscle cell tumor of the myometrium, we aimed to determine the growth inhibition and the induction of apoptotic cell death brought about by the herb SB in two different leiomyomal cells, named LM-1 and LM-2, and to clarify the mechanism of this apoptosis. Water-soluble ingredients of SB, and the leiomyomal cell lines of LM-1 and LM-2, were used in vitro. Growth inhibition, induction of cell death, morphological features, the presence of DNA ladders, increases in Caspase 3-like activity, the effects of a Caspase 3 inhibitor on apoptotic cell death, and the release of Cytochrome C by SB were analyzed. SB inhibited the growth and decreased the viability of the leiomyomal cells. The viability of normal myomatrial smooth muscle cells (SMC) in the presence of low concentrations of SB was higher than those of leiomyomal cells. Apoptotic bodies and DNA ladders were observed to be induced in leiomyomal cells of LM-1 and LM-2 by SB. The synthetic tetrapeptide Caspase 3 inhibitor, N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited the apoptotic cell death of leiomyomal cells induced by SB. The Caspase 3-like activity in leiomyomal cells LM-1 and LM-2 increased after the addition of SB. Cytochrome C was released from mitochondria into the cytosol 8h after the addition of SB, and reached a peak at 16h. The peak of Cytochrome C release was earlier than that of Caspase 3-like activity. We concluded that SB inhibited the growth of the leiomyomal cells and induced apoptosis. The apoptosis of leiomyomal cells induced by SB was associated with the release of Cytochrome C from the mitochondria, followed by an increase in Caspase 3-like activity.

  1. A selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits gastric cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yin Xiao-Fei

    2012-05-01

    Full Text Available Abstract Background Aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor associated with gastric carcinogenesis. 3,3'-Diindolylmethane (DIM is a relatively non-toxic selective AhR modulator. This study was to detect the effects of DIM on gastric cancer cell growth. Methods Gastric cancer cell SGC7901 was treated with DIM at different concentrations (0,10,20,30,40,50 μmol/L with or without an AhR antagonist, resveratrol. The expression of AhR and Cytochrome P4501A1 (CYP1A1, a classic target gene of AhR pathway, were detected by RT-PCR and Western blot; cell viability was measured by MTT assay, and the changes in cell cycle and apoptosis were analyzed by flow cytometry. Results RT-PCR and western-blot showed that with the increase of the concentration of DIM, AhR protein gradually decreased and CYP1A1 expression increased, suggesting that DIM activated the AhR pathway and caused the translocation of AhR from cytoplasm to nucleus. MTT assay indicated that the viability of SGC7901 cells was significantly decreased in a concentration- and time-dependent manner after DIM treatment and this could be partially reversed by resveratrol. Flow cytometry analysis showed that DIM arrested cell cycle in G1 phase and induced cell apoptosis. Conclusion Selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. AhR may be a potential therapeutic target for gastric cancer treatment.

  2. MicroRNA-370 directly targets FOXM1 to inhibit cell growth and metastasis in osteosarcoma cells.

    Science.gov (United States)

    Duan, Ning; Hu, Xiaojing; Yang, Xiaowei; Cheng, Huiguang; Zhang, Wentao

    2015-01-01

    MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. Several reports have indicated that miR-370 acts as a tumor suppressor in varieties of tumors. However, the roles of miR-370 in osteosarcoma have not been reported. In this study, our objective was to explore the biological functions and its molecular mechanism of miR-370 in osteosarcoma cell lines, finding a therapeutic target of osteosarcoma. Our data demonstrated that miR-370 was evidently reduced in osteosarcoma cell lines, whereas FOXM1 expression was markedly increased. Up-regulation of miR-370 suppressed proliferation, arrested cell cycle and induced apoptosis in osteosarcoma cells. Besides, invasion and EMT of osteosarcoma cells was also inhibited by introduction of miR-370. Next, we found that FOXM1 expression was significantly reduced by up-regulation of miR-370. Bioinformatics analysis predicted that the FOXM1 was a potential target gene of miR-370. Luciferase reporter assay further confirmed that miR-370 could directly target the 3' UTR of FOXM1. Overexpression of FOXM1 in osteosarcoma cells transfected with miR-370 mimic partially reversed the effects of miR-370. In conclusion, miR-370 inhibited cell growth and metastasis in osteosarcoma cells by down-regulation of FOXM1.

  3. Transfection of promyelocytic leukemia in retrovirus vector inhibits growth of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lei LI; Da-lin HE

    2005-01-01

    Aim: To construct a recombinant retrovirus vector carrying human promyelocytic leukemia (PML) cDNA and identify its expression and biology role in bladder cancer UM-UC-2 cells for future gene therapy. Methods: PML full-length cDNA was inserted into the EcoR I and BamHI site of pLXSN vector containing the long terminal repeat (LTR) promoter. The vector was identified by restriction enzyme digestion and then transfected into PA317 packaging cell line by calcium phosphate coprecipitation. PML cDNA was detected by polymerase chain reaction (PCR) and the protein was identified by laser confocal microscopy and Western blot in bladder cancer cells, respectively. The morphology was observed by inverted phase contrast microscope, and MTT assay determined growth curve of the bladder cancer cells. Results: Restriction enzyme digestion proved that a 2.1kb PML cDNA was inserted into the pLXSN vector. PCR assay demonstrated that 304 bp fragments were found in UM-UC-2/pLPMLSN transfects. Laser confocal microscopy showed speck dots fluorescence in the UM-UC-2/pLPMLSN nucleus.A 90 kD specific brand was found by Western blot. MTT assay demonstrated the UM-UC-2/pLPMLSN bladder cancer growth inhibition. Conclusion: The retrovirus pLPMLSN vector was successfully constructed and could generate high effective expression of human PML in bladder cancer cell UM-UC-2, suggesting that PML recombinant retrovirus have potential utility in the gene therapy for bladder cancer.

  4. The tumor suppressor gene RBM5 inhibits lung adenocarcinoma cell growth and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Shao Chen

    2012-08-01

    Full Text Available Abstract Background The loss of tumor suppressor gene (TSG function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15 gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. Method Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB

  5. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Sitti Rahma Abdul Hafid

    Full Text Available Tocotrienol-rich fraction (TRF from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL from 4T1 cells (DC+TL once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF inhibited (p<0.05 tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC-treated 4T1 cells produced higher (p<0.05 levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL assay also showed enhanced tumor-specific killing (p<0.05 by CD8(+ T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

  6. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  7. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  8. 15d-PGJ2 inhibits cell growth and induces apoptosis of MCG-803 human gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Yun-Xian Chen; Xue-Yun Zhong; Yan-Fang Qin; Wang Bing; Li-Zhen He

    2003-01-01

    AIM: To investigate the influence of peroxisome proliferator activated receptor γ (PPARγ) ligand, 15-deoxy-△12, 14-prostaglandin J2 (15dPGJ2) on the proliferation and apoptosis of MCG-803 human gastric cancer cell lines.METHODS: Cell proliferation was measured by 3H-TdR assay. Apoptosis was determined by ELISA and TUNEL staining. Protein and mRNA level of bcl-2 family and COXs were measured by Western blotting and Northern blotting respectively. PGE2 production was examined by RIA.RESULTS: 15dPGJ2 inhibited cell growth and induced apoptosis of MlCG-803 cells. The COX-2 and bcl-2/bax ratios were decreased following 15dPGJ2 treatment. The PGE2production in supernatants was also decreased. These changes were in a dose-dependent manner.CONCLUSION: 15dPGJ2 may be a useful therapeutic agent for the treatment of gastric cancer.

  9. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression.

    Science.gov (United States)

    Saitoh, Yasukazu; Okayasu, Hajime; Xiao, Li; Harata, Yoshikazu; Miwa, Nobuhiko

    2008-01-01

    The properties and effects of neutral pH hydrogen-enriched electrolyzed water (NHE water) on tumor cells were examined. NHE water diminished hydroxyl radicals as demonstrated by ESR in a cell-free system. Human tongue carcinoma cells HSC-4 were inhibited for either colony formation efficiencies or colony sizes by NHE water without significant inhibition to normal human tongue epithelial-like cells DOK. Furthermore, NHE water caused growth inhibition, cell degeneration, and inhibition of invasion through the reconstituted basement membrane to human fibrosarcoma cells HT-1080. Intracellular oxidants such as hydroperoxides and hydrogen peroxides were scavenged in HSC-4 or HT-1080 cells by NHE water. In the human oral cavity, a dissolved hydrogen concentrations (DH) of NHE water was drastically declined from 1.1 to 0.5 ppm, but settled to 0.3-0.4 ppm until 180 s, upon static holding without gargling. Thus, NHE water was shown to achieve tumor-preferential growth inhibition and tumor invasion together with scavenging of intracellular oxidants, and is expected as a preventive material against tumor progression and invasion.

  10. Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhao; Wen-Lu Shen

    2005-01-01

    AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers

  11. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  12. Growth Inhibition and Apoptosis Induced by Retinoic Acid Combined with Interferon Alpha-2a on Transitional Cell Carcinoma of Bladder

    Institute of Scientific and Technical Information of China (English)

    QIANLi-xin; LIUXun-liang; ZHOUJian-wei; MonicaLiebert; ZOUChang-chun; ZOUChang-ping

    2004-01-01

    To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and invesligate the effects of combination of relinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods: Four bladder cancer cell lines, grade 1 to 3,and two retinoids, all-trans-retinoic acid(ATRA) ,9.cis retinoic acid(9cRA) ,combined with inteferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth, induce apoptosis, affect the exptession of nuclear retinoid receptors, and modulate STAT1 protein. Resu/ts: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction, even at higher concentration (10-5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α-2a.Combination of ATRA and IFNa-2a induced ~ and Slat 1 expression in three bladder cancer cell lines, ~: The results demonstrated that INFw2a synergize with the inhibitory effect of ATRA and 9c RA on the growth intn'bition and apoptosis of bladder cancer cells in vitro, which suggested that it has a potenlJal intexest for the trealment of transitimml cell carcinmna of bladder.

  13. IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Leo Lap-Yan Wong

    Full Text Available Hepatocellular carcinoma (HCC is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1 is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy.

  14. Growth inhibition of human gynecologic and colon cancer cells by Phyllanthus watsonii through apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Sujatha Ramasamy

    Full Text Available Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski and colon (HT-29 cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC(50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10. PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8. PPWH-7 possessed greatest cytotoxicity (IC(50 values ranged from 0.66-0.83 µg/mL and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs.

  15. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  16. Indole-3-carbinol inhibits nasopharyngeal carcinoma growth through cell cycle arrest in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    Full Text Available Nasopharyngeal carcinoma is a common malignant tumor in the head and neck. Because of frequent recurrence and distant metastasis which are the main causes of death, better treatment is needed. Indole-3-carbinol (I3C, a natural phytochemical found in the vegetables of the cruciferous family, shows anticancer effect through various signal pathways. I3C induces G1 arrest in NPC cell line with downregulation of cell cycle-related proteins, such as CDK4, CDK6, cyclin D1 and pRb. In vivo, nude mice receiving I3C protectively or therapeutically exhibited smaller tumors than control group after they were inoculated with nasopharyngeal carcinoma cells. The expression of CDK4, CDK6, cyclin D1 and pRb in preventive treatment group and drug treatment group both decreased compared with the control group. We conclude that I3C can inhibit the growth of NPC in vitro and in vivo by suppressing the expression of CDK and cyclin families. The drug was safe and had no toxic effects on normal tissues and organs.

  17. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity.

    Science.gov (United States)

    Jorvig, Jessica E; Chakraborty, Arup

    2015-02-01

    Zerumbone, a phytochemical isolated from Zingiber zerumbet has been shown previously to exhibit antineoplastic activity. But, the effect of zerumbone in prostate cancer has not been evaluated. Prostate cancer is frequently associated with elevated levels of interleukin-6 (IL-6), which exerts its oncogenic effects through activation of Janus kinase 2 (JAK2) followed by activation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Here, we investigated whether the anticancer effects of zerumbone are mediated through inhibition of the JAK2/STAT3 signaling pathway and whether zerumbone can increase the paclitaxel (PTX) sensitivity of prostate cancer cells. Zerumbone exerted significant cytotoxicity of DU145 versus PC3 prostate cancer cells through cell cycle arrest at G0/G1 phase followed by apoptosis. Zerumbone selectively inhibited JAK2 in both DU145 and PC3 cells. However, the biological axis of IL-6/JAK2/STAT3 was inhibited only in DU145 cells as no STAT3 phosphorylation was detected in PC3 cells even after IL-6 stimulation. Other signaling pathways in DU145 cells remained unaffected. The expression of prostate cancer-associated genes, including cyclin D1, IL-6, COX2, and ETV1, was blocked. Zerumbone also synergistically increased the sensitivity to PTX. Further preclinical study might reveal the potential use of zerumbone as a chemotherapeutic agent for hormone refractory prostate cancer where IL-6/JAK2/STAT3 signaling is aberrantly active and may be combined with PTX.

  18. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Directory of Open Access Journals (Sweden)

    Nan Hua

    Full Text Available Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs. In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC.

  19. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  20. Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells.

    Science.gov (United States)

    Lai, Kuo-Chu; Liu, Chung-Ji; Lin, Tsung-Jen; Mar, Ai-Chung; Wang, Hsiu-Hua; Chen, Chi-Wei; Hong, Zi-Xuan; Lee, Te-Chang

    2016-01-28

    Our previous study demonstrated that the depletion of interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) promoted metastasis and was associated with a poor prognosis in patients with oral squamous cell carcinoma (OSCC). Our current study explores the major downstream signaling involved in IFIT2 depletion-induced OSCC metastasis. To this end, we used two cell lines (designated sh-control-xeno and sh-IFIT2-xeno) derived from human OSCC xenografts expressing sh-control and sh-IFIT2, respectively, and one metastatic OSCC subline (sh-IFIT2-meta) from an IFIT2-depleted metastatic tumor. We found that the sh-IFIT2-meta cells proliferated more slowly than the sh-control-xeno cells but exhibited higher migration and chemoresistance. Using microarray technology and Ingenuity Pathway Analysis, we found that TNF-α was one of the major downstream targets in IFIT2-depleted OSCC cells. Quantitative real-time PCR, western blotting, and ELISA results confirmed that TNF-α was upregulated in the sh-IFIT2-meta cells. Blocking TNF-α abolished the angiogenic activity induced by the sh-IFIT2-meta cells. Furthermore, the human-specific TNF-α antibody golimumab significantly inhibited in vivo angiogenesis, tumor growth and metastasis of sh-IFIT2-meta cells. These results demonstrate that IFIT2 depletion results in TNF-α upregulation, leading to angiogenesis and metastasis of OSCC cells.

  1. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro

    Science.gov (United States)

    Wang, Shan; Willenberg, Ina; Krohn, Michael; Hecker, Tanja; Meckelmann, Sven; Li, Chang; Pan, Yuanjiang; Schebb, Nils Helge; Steinberg, Pablo; Empl, Michael Telamon

    2017-01-01

    Although resveratrol exerts manifold antitumorigenic effects in vitro, its efficacy against malignancies in vivo seems limited. This has been increasingly recognized in recent years and has prompted scientists to search for structurally related compounds with more promising anticarcinogenic and/or pharmacokinetic properties. A class of structurally modified resveratrol derivatives, so-called resveratrol imine analogs (IRA’s), might meet these requirements. Therefore, the biological activity of five of these compounds was examined and compared to that of resveratrol. Firstly, the antiproliferative potency of all five IRA’s was investigated using the p53 wildtype-carrying colorectal carcinoma cell line HCT-116wt. Then, using the former and a panel of various other tumor cell lines (including the p53 knockout variant HCT-116p53-/-), the growth-inhibiting and cell cycle-disturbing effects of the most potent IRA (IRA 5, 2-[[(2-hydroxyphenyl)methylene]amino]-phenol) were studied as was its influence on cyclooxygenase-2 expression and activity. Finally, rat liver microsomes were used to determine the metabolic stability of that compound. IRA 5 was clearly the most potent compound in HCT-116wt cells, with an unusually high IC50-value of 0.6 μM. However, in the other five cell lines used, the antiproliferative activity was mostly similar to resveratrol and the effects on the cell cycle were heterogeneous. Although all cell lines were affected by treatment with IRA 5, cells expressing functional p53 seemed to react more sensitively, suggesting that this protein plays a modulating role in the induction of IRA 5-mediated biological effects. Lastly, IRA 5 led to contradictory effects on cyclooxygenase-2 expression and activity and was less glucuronidated than resveratrol. As IRA 5 is approximately 50 times more toxic towards HCT-116wt cells, exerts different effects on the cyclooxygenase-2 and is metabolized to a lesser extent, it shows certain advantages over resveratrol

  2. Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Yasumiba, Kiyomi; Bell, Sara; Alford, Ross

    2016-01-01

    Bacterial symbionts on frog skin can reduce the growth of the chytrid fungus Batrachochytrium dendrobatidis (Bd) through production of inhibitory metabolites. Bacteria can be effective at increasing the resistance of amphibians to chytridiomycosis when added to amphibian skin, and isolates can be screened for production of metabolites that inhibit Bd growth in vitro. However, some bacteria use density-dependent mechanism such as quorum sensing to regulate metabolite production. It is therefore important to consider cell density effects when evaluating bacteria as possible candidates for bioaugmentation. The aim of our study was to evaluate how the density of cutaneous bacteria affects their inhibition of Bd growth in vitro. We sampled cutaneous bacteria isolated from three frog species in the tropical rainforests of northern Queensland, Australia, and selected ten isolates that were inhibitory to Bd in standardised pilot trials. We grew each isolate in liquid culture at a range of initial dilutions, sub-sampled each dilution at a series of times during the first 48 h of growth and measured spectrophotometric absorbance values, cell counts and Bd-inhibitory activity of cell-free supernatants at each time point. The challenge assay results clearly demonstrated that the inhibitory effects of most isolates were density dependent, with relatively low variation among isolates in the minimum cell density needed to inhibit Bd growth. We suggest the use of minimum cell densities and fast-growing candidate isolates to maximise bioaugmentation efforts.

  3. Silencing of CCR7 inhibits the growth, invasion and migration of prostate cancer cells induced by VEGFC.

    Science.gov (United States)

    Chi, Bao-Jin; Du, Cong-Lin; Fu, Yun-Feng; Zhang, Ya-Nan; Wang, Ru Wen

    2015-01-01

    Early in prostate cancer development, tumor cells express vascular endothelial growth factor C (VEGF-C), a secreted molecule that is important in angiogenesis progression. CC-chemokine receptor 7 (CCR7), another protein involved in angiogenesis, is strongly expressed in most human cancers, where it activated promotes tumor growth as well as favoring tumor cell invasion and migration. The present study aimed to investigate the effect of down-regulating CCR7 expression on the growth of human prostate cancer cells stimulated by VEGFC. The CCR7-specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into prostate cancer cells. The expression of CCR7 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of CCR7 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle-associated proteins in cells with silenced CCR7. The expression levels of CCR7 in prostate cancer cells transfected with siRNA were decreased, leading to a significant inhibition of prostate cancer cell proliferation, migration and invasion induced by VEGFC. Western blot analysis revealed that silencing of CCR7 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence CCR7 gene expression and inhibit the growth of prostate cancer cells, which indicates that there is a potential of targeting CCR7 as a novel gene therapy approach for the treatment of prostate cancer.

  4. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation.

    Science.gov (United States)

    Khan, Naim A; Nishimura, Kazuhiro; Aires, Virginie; Yamashita, Tomoko; Oaxaca-Castillo, David; Kashiwagi, Keiko; Igarashi, Kazuei

    2006-10-01

    Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.

  5. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  6. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth and cancer xenografts in C57BL/6 mice

    Science.gov (United States)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo but its role in colon cancer prevention remains to be characterized. This study tested the hypothesis that methylselenol inhibits the growth of colon cancer cells and tumors. We found that submicr...

  7. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells

    Directory of Open Access Journals (Sweden)

    Elgjo Kjell

    2009-07-01

    Full Text Available Abstract Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.

  8. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  9. Overexpression of coxsackie and adenovirus receptor inhibit growth of human bladder cancer cell in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Lin-lin ZHANG; Da-lin HE; Xiang LI; Lei LI; Guo-dong ZHU; Dong ZHANG; Xin-yang WANG

    2007-01-01

    Aim: To study the effect of the overexpression of coxsackie and the adenovirus receptor (CAR) on the growth of the human bladder cancer cell in vitro and in vivo.Methods: A retroviral vector pLXSN-CAR expressing CAR was constructed and confirmed by restriction enzyme mapping. The pLXSN-CAR vector and con-trol vector pLXSN were transfected into the PT67 packaging cell line to generate retrovirus with high titer. The CAR-negative T24 cell was infected with the pLXSN-CAR and the pLXSN retrovirns, respectively. The positive clone cells were selected with G418 for 2 weeks. The expression level of the CAR protein was detected by Western blot assay. T24 cell growth in vitro was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTI') assay. Anchor-age-independent growth was measured by soft-agar colony formation assay. In vivo cell growth was determined by a nude mice xenograft model.Results: The pLXSN-CAR vector containing full-length CAR cDNA was successfully constructed. Western blot analysis showed that a 46 kDa specific band was found in pLXSN-CA-transfected T24 cells. MTr assay identified the growth inhibition of T24/pLXSN-CAR cells. The cell colony forming ability of T24/pLXSN-CAR cells was significantly lower than that of T24/pLXSN and parental T24 cells.There was a reduction in the tumor size in the T24/pLXSN-CAR group as com-pared with that of the T24/pLXSN group and parental T24 group.Conclusion: The overexpression of CAR in T24 bladder cancer cells can inhibit cell growth both in vitro and in vivo.

  10. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  11. Xanthohumol Induces Growth Inhibition and Apoptosis in Ca Ski Human Cervical Cancer Cells

    OpenAIRE

    Wai Kuan Yong; Sri Nurestri Abd Malek

    2015-01-01

    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase cont...

  12. Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells.

    Science.gov (United States)

    Carnésecchi, Stéphanie; Schneider, Yann; Lazarus, Sheryl A; Coehlo, David; Gossé, Francine; Raul, Francis

    2002-01-25

    The effects of cocoa powder and extracts with different amounts of flavanols and related procyanidin oligomers were investigated on the growth of Caco-2 cells. Treatment of the cells with 50 microg/ml of procyanidin-enriched (PE) extracts caused a 70% growth inhibition with a blockade of the cell cycle at the G2/M phase. PE extracts caused a significant decrease of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities, two key enzymes of polyamine biosynthesis. This led to a decrease in the intracellular pool of the polyamines. These observations indicate that polyamine metabolism might be an important target in the anti-proliferative effects of cocoa polyphenols.

  13. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells

    Institute of Scientific and Technical Information of China (English)

    L(U) Yun; ZHANG Ying-chuan; LIU Jing-hua; ZHANG Li-ke; DU Jie; ZENG Xiang-jun; HAO Gang; HUANG Ji; ZHAO Dong-hui; WANG Guo-zhong

    2010-01-01

    Background Fibroblast growth factor 21 (FGF21) is a new member of FGF super family that is an important endogenous regulator for systemic glucose and lipid metabolism. This study aimed to explore whether FGF21 reduces atherosclerotic injury and prevents endothelial dysfunction as an independent protection factor.Methods The present study was designed to investigate the changes of FGF21 levels induced by oxidized-low density lipoprotein (ox-LDL), and the changes of apoptosis affected by regulating FGF21 expression. The FGF21 mRNA levels of cultured cardiac microvascular endothelial cells (CMECs) were determined by real time-PCR and the protein concentration in culture media was detected by enzyme-linked immunosorbent assay. We analyzed the different expression levels of untreated controls and CMFCs incubated with ox-LDL, and the changes of CMECs apoptosis initiated by the enhancement or suppression of FGF21 levels.Results The secretion levels of FGF21 mRNA and protein were significantly upregulated in CMECs incubated with ox-LDL. Furthermore, FGF21 levels increased by 200 μmol/L bezafibrate could reduce CMECs apoptosis, and inhibit FGF21 expression by shRNA induced apoptosis (P <0.05).Conclusions FGF21 may be a signal of injured target tissue, and may play physiological roles in improving the endothelial function at an early stage of atherosclerosis and in stopping the development of coronary heart disease.

  14. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    Science.gov (United States)

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  15. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo

    DEFF Research Database (Denmark)

    Xu, Ruodan; Povlsen, Gro Klitgaard; Soroka, Vladislav

    2010-01-01

    B1 phosphorylation, cell growth, and migration in two human tumor cell lines, A549 and HN5, expressing moderate and high ErbB1 levels, respectively. Furthermore, we show that Inherbin3 inhibits tumor growth in vivo and induces apoptosis in a tumor xenograft model employing the human non-small cell...... lung cancer cell line A549. The Inherbin3 peptide may be a useful tool for investigating the mechanisms of ErbB receptor homo- and heterodimerization. Moreover, the here described biological effects of Inherbin3 suggest that peptide-based targeting of ErbB receptor dimerization is a promising anti...

  16. The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta.

    OpenAIRE

    Colletta, A. A.; Wakefield, L M; Howell, F. V.; Danielpour, D; Baum, M.; Sporn, M B

    1991-01-01

    Recent experimental work has identified a novel intracellular binding site for the synthetic progestin, Gestodene, that appears to be uniquely expressed in human breast cancer cells. Gestodene is shown here to inhibit the growth of human breast cancer cells in a dose-dependent fashion, but has no effect on endocrine-responsive human endometrial cancer cells. Gestodene induced a 90-fold increase in the secretion of transforming growth factor-beta (TGF-beta) by T47D human breast cancer cells. O...

  17. Matrine Activates PTEN to Induce Growth Inhibition and Apoptosis in V600EBRAF Harboring Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Shuiying Wang

    2013-07-01

    Full Text Available Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN, leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.

  18. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo.

    Science.gov (United States)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent.

  19. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells.

    Science.gov (United States)

    Chen, Gang; Umelo, Ijeoma Adaku; Lv, Shasha; Teugels, Erik; Fostier, Karel; Kronenberger, Peter; Dewaele, Alex; Sadones, Jan; Geers, Caroline; De Grève, Jacques

    2013-01-01

    Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (Pstrategy for NSCLC.

  20. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice

    Institute of Scientific and Technical Information of China (English)

    Qing-long GUO; Qi-dong YOU; Zhao-qiu WU; Sheng-tao YUAN; Li ZHAO

    2004-01-01

    AIM: To study the inhibitory effect of general gambogic acids (GGA) on transplantation tumor SMMC-7721 in experimental animal model and SMMC-7721 cells in vitro. METHODS: Anti-tumor activity of GGA in the experimental transplantation tumor SMMC-7721 was evaluated by relative tumor growth ratio. Cell morphology was observed with inverted microscope and electron microscope. Cell proliferation was measured by MTT assay and the telomerase activity was determined by PCR. RESULTS: In vivo study indicated that GGA (2, 4, and 8 mg/kg,iv, 3 times per week for 3 weeks) displayed an inhibitory effect on the growth of transplantation tumor SMMC7721 in nude mice compared with the normal saline group (P<0.01). At the concentrations of 0.625-5.0 mg/L,GGA remarkably inhibited the proliferation of SMMC-7721 cells in vitro. GGA 2 mg/L dramatically changed morphology of SMMC-7721 cells and inhibited the telomerase activity in SMMC-7721 cells. CONCLUSION:GGA had inhibitory effect on the growth of SMMC-7721, which might be related to its inhibition of telomerase activity.

  1. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line

    Science.gov (United States)

    Dai, Lu; Li, Ji-Lin; Liang, Xin-Qiang; Li, Lin; Feng, Yan; Liu, Hai-Zhou; Wei, Wen-Er; Ning, Shu-Fang; Zhang, Li-Tu

    2016-01-01

    The present study aimed to investigate the chemo-preventive effect of Camellia nitidissima flowers water extract (CNFE) on the Eca109 human esophageal squamous cell carcinoma (ESCC) cell line. The antiproliferative effect on Eca109 cells was determined using the trypan blue exclusion assay. The effects of CNFE on apoptosis and cell cycle arrest were investigated by flow cytometry. CNFE inhibited cell growth in both a dose- and time-dependent manner in Eca109 cells. CNFE also caused dose- and time-dependent apoptosis of these cells. Treatment of cells with CNFE resulted in dose-dependent G0/G1 phase arrest of the cell cycle. The data demonstrated that CNFE serves antiproliferative effects against human ESCC Eca109 cells by inducing apoptosis and interrupting the cell cycle. These results suggested that CNFE has the potential to be a chemoprotective agent for ESCC. PMID:27314447

  2. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth.

    Science.gov (United States)

    Han, ShouWei; Roman, Jesse

    2004-02-20

    Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.

  3. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  4. Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2012-03-01

    Full Text Available Mammalian target of rapamycin (mTOR controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1- or fetal bovine serum (FBS-stimulated lymphatic endothelial cell (LEC tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T, but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE, conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3 by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.

  5. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  6. Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Li-fang GAO; De-qi XU; Lian-ji WEN; Xing-yi ZHANG; Yue-ting SHAO; Xue-jian ZHAO

    2005-01-01

    Aim: To determine the inhibitory effect of the synthetic STAT3 siRNA on the expression of STAT3 gene in human laryngeal cancer cell lines Hep2 and to investigate the effect of STAT3 siRNA on growth and apoptosis in Hep2 cells. Methods:A pair of DNA templates coding siRNA against STAT3-mRNA was synthesized to reconstruct plasmid of pSilencerl.0-U6 siRNA-STAT3. Hep2 cells were transfected with RPMI-1640 media (untreated), plasmid (empty), and STAT3 siRNA,respectively. Northern blot and Western blot analysis of STAT3 and pTyr-STAT3 expression in Hep2 cells and Western blot analysis of Bcl-2 expression in the Hep2 cell was performed 72 h after transfection. MTT, flow cytometry, and AO/EB assay were used for determination of cells proliferation and apoptosis in Hep2 cells. Results: pTyr-STAT3 was markedly expressed in untreated Hep2 cells and the vector-treated Hep2 cells, whereas pTyr-STAT3 expression was significantly reduced in STAT3 siRNA-transfected Hep2 cells, indicating that STAT3 siRNA inhibited the activity of STAT3. Transfection of Hep2 cells with STAT3 siRNA significantly inhibited STAT3 expression at both mRNA and protein level in Hep2 cells and the inhibition was characterized by time-dependent transfection. Treatment of Hep2 cells with STAT3 siRNA resulted in dose-dependent growth inhibition of Hep2, this significantly increased apoptotic cell rate, and decreased Bcl-2 expression level in Hep2 cells. STAT3 siRNA had an effect on induction of either early or late stage apoptosis. Conclusion: This study demonstrates that STAT3 siRNA effectively inhibits STAT3 gene expression in Hep2 cells leading to growth suppression and induction of apoptosis in Hep2 cells. The use of siRNA technique may provide a novel therapeutic approach to treat laryngeal cancer and other malignant tumors expressing constitutively activated STAT3.

  7. Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis.

    Science.gov (United States)

    Aviezer, D; Cotton, S; David, M; Segev, A; Khaselev, N; Galili, N; Gross, Z; Yayon, A

    2000-06-01

    Fibroblast growth factors (FGFs) and vascular endothelial growth factor (VEGF) play a pivotal role in the multistep pathway of tumor progression, metastasis, and angiogenesis. We have identified a porphyrin analogue, 5,10,15,20-tetrakis(methyl-4-pyridyl)-21H,23H-porphine-tetra -p-tosylate salt (TMPP), as a potent inhibitor of FGF2 and VEGF receptor binding and activation. TMPP demonstrated potent inhibition of binding of soluble FGF receptor 1 (FGFR1) to FGF2 immobilized on heparin at submicromolar concentrations. TMPP inhibits binding of radiolabeled FGF2 to FGFR in a cell-free system as well as to cells genetically engineered to express FGFR1. Furthermore, TMPP also inhibits the binding of VEGF to its tyrosine kinase receptor in a dose-dependent manner. In an in vitro angiogenic assay measuring the extent of endothelial cell growth, tube formation, and sprouting, TMPP dramatically reduced the extent of the FGF2-induced endothelial cell outgrowth and differentiation. In a Lewis lung carcinoma model, mice receiving TMPP showed a marked inhibition of both primary tumor progression and lung metastases development, with nearly total inhibition of the metastatic phenotype upon alternate daily injections of TMPP at 25 microg/g of body mass. Finally, novel meso-pyridylium-substituted, nonsymmetric porphyrins, as well as a novel corrole-based derivative, with >50-fold increase in activity in vitro, had a significantly improved efficacy in blocking tumor progression and metastasis in vivo.

  8. Inhibition of planar cell polarity extends neural growth during regeneration, homeostasis, and development.

    Science.gov (United States)

    Beane, Wendy S; Tseng, Ai-Sun; Morokuma, Junji; Lemire, Joan M; Levin, Michael

    2012-08-10

    The ability to stop producing or replacing cells at the appropriate time is essential, as uncontrolled growth can lead to loss of function and even cancer. Tightly regulated mechanisms coordinate the growth of stem cell progeny with the patterning needs of the host organism. Despite the importance of proper termination during regeneration, cell turnover, and embryonic development, very little is known about how tissues determine when patterning is complete during these processes. Using planarian flatworms, we show that the planar cell polarity (PCP) pathway is required to stop the growth of neural tissue. Although traditionally studied as regulators of tissue polarity, we found that loss of the PCP genes Vangl2, DAAM1, and ROCK by RNA interference (individually or together) resulted in supernumerary eyes and excess optical neurons in intact planarians, while regenerating planarians had continued hyperplasia throughout the nervous system long after controls ceased new growth. This failure to terminate growth suggests that neural tissues use PCP as a readout of patterning, highlighting a potential role for intact PCP as a signal to stem and progenitor cells to halt neuronal growth when patterning is finished. Moreover, we found this mechanism to be conserved in vertebrates. Loss of Vangl2 during normal development, as well as during Xenopus tadpole tail regeneration, also leads to the production of excess neural tissue. This evolutionarily conserved function of PCP represents a tractable new approach for controlling the growth of nerves.

  9. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  10. Glycyrrhetinic Acid Inhibits Cell Growth and Induces Apoptosis in Ovarian Cancer A2780 Cells

    Directory of Open Access Journals (Sweden)

    Venus Haghshenas

    2014-10-01

    Full Text Available Purpose: Accumulating evidence indicates that glycyrrhizin (GZ and its hydrolyzed metabolite 18-β glycyrrhetinic acid (GA exhibit anti-inflammatory and anticancer activities. The objective of this study was to examine the in vitro cytotoxic activity of GA on human ovarian cancer A2780 cells. Methods: A2780 cells were cultured in RPMI1640 containing 10% fetal bovine serum. Cells were treated with different doses of GA and cell viability and proliferation were detected by dye exclusion and 3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT assays. Apoptosis induction and expression of Fas and Fas ligand (FasL were analyzed by flow cytometry. Results: We observed that GA decreases cell viability and suppressed cells proliferation in a dose-dependent manner as detected by dye-exclusion and XTT assayes. In addition, our flow cytometry data show that GA not only induces apoptosis in A2780 cells but also upregulates both Fas and FasL on these cells in a dose-dependent manner. Conclusion: we demonstrate that GA causes cell death in A2780 cells by inducing apoptosis.

  11. Resveratrol Inhibits the Secretion of Vascular Endothelial Growth Factor and Subsequent Proliferation in Human Leukemia U937 Cells

    Institute of Scientific and Technical Information of China (English)

    TANG Zehai; LIU Xinyue; ZOU Ping

    2007-01-01

    This study examined the effect of resveratrol on the secretion of vascular endothelial growth factor (VEGF) and subsequent proliferation of human leukemia U937 cells, and explored the mechanisms involved. Human leukemia U937 cells were treated with resveratrol of different concen- trations (12.5-200 μmol/L) for different time lengths (12-48 h). The proliferation of the U937 leu- kemic cells was determined by MTT assay. Apoptosis was observed by Annexin-Ⅴ-FIFC/PI double staining and flow cytometry (FCM). Cells cycle was analyzed by PI staining and FCM. The content of VEGF was determined by ELISA. Human umbibical vein endothelial cells were examined for vasoformation in vitro after exposures to resveratrol of various concetrations. The results showed that resveratrol inhibited the proliferation of U937 leukemia cells in a dose- and time-dependent manner. Resveratrol induced apoptosis and S-phase cell cycle arrest in human leukemic U937 cells. Resvera-trol inhibited the secretion of VEGF in U937 cells. Resveratrol inhibited the vasoformation of human vein endothelial cells in a dose-dependent manner. It was concluded that resveratrol could down-regulate the secretion of VEGE induce apoptosis and suppress the proliferation of U937 cells.

  12. A PCNA-derived cell permeable peptide selectively inhibits neuroblastoma cell growth.

    Directory of Open Access Journals (Sweden)

    Long Gu

    Full Text Available Proliferating cell nuclear antigen (PCNA, through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA, which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA's interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors.

  13. Down-regulation of β-catenin Nuclear Localization by Aspirin Correlates with Growth Inhibition of Jurkat Cell Line

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, we examined the effects of aspirin on the growth rates, subcellar distribution of β-catenin protein, the expression of β-catenin/TCF signaling pathway target gene cyclinD1 mRNA,and cell cycle of Jurkat cell line (Human T-acute lymphoblastic leukemia). Our results showed that the treatment with aspirin inhibited the growth of Jurkat cell line. Jurkat cells treated with 3 mmol/L of aspirin could significantly decrease nuclear localization of β-catenin, and at 5 mmol/L of aspirin,the nuclear localization of β-catenin was undetectable. QRT-PCR showed that the target gene cyclinD1 mRNA expression was gradually decreased with the dosage of aspirin. Aspirin induced G0/G1cell cycle arrest in Jurkat cells. We are led to conclude that aspirin acts through β-catenin-independent mechanisms. The effects of aspirin include down-regulation of β-catenin nuclear localization and G0/G1 cell cycle arrest, which might serve as a means of growth inhibition in aspirin-treated human Jurkat cell line.

  14. Lupeol, a dietary triterpene, inhibited growth, and induced apoptosis through down-regulation of DR3 in SMMC7721 cells.

    Science.gov (United States)

    Zhang, Lin; Zhang, Youcheng; Zhang, Lingyi; Yang, Xiaojun; Lv, Zhicheng

    2009-02-01

    Lupeol (Lup-20(29)-en-3H-ol), a novel dietary triterpene, was found in fruits, vegetables, and several medicinal plants. Here, we investigated its growth-inhibitory effect and associated mechanisms in hepatocellular carcinoma SMMC7721 cells. Lupeol treatment resulted in significant inhibition of cell viability in a dose-dependent manner and caused apoptotic death of this cell line with activation of caspase3 expression. Caspase8 inhibitor pretreatment was found to partially block the apoptosis induced by Lupeol. Moreover, Lupeol specifically caused a significant decrease in the expression of Death receptor 3 (DR3) mRNA and protein and a significant elevated expression of FADD mRNA whereas Fas mRNA and protein expression was not detectable. Further more, knockdown of DR3 by small interfering RNA inhibited the growth and induced apoptosis of hepatocellular carcinoma cell. These results suggested that Lupeol treatment induced growth inhibition and apoptosis in SMMC7721 cells, the mechanism is due to down-regulation of DR3 expression. We demonstrated that Lupeol appears to be a promising chemopreventive agent for treating hepatocellular carcinoma, and DR3 may be an important target for liver cancer therapy.

  15. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells.

    Science.gov (United States)

    Li, Puyu; Zhao, Ming; Parris, Amanda B; Feng, Xiaoshan; Yang, Xiaohe

    2015-09-04

    The p53 tumor repressor gene is commonly mutated in human cancers. The tumor inhibitory effect of metformin on p53-mutated breast cancer cells remains unclear. Data from the present study demonstrated that p53 knockdown or mutation has a negative effect on metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. We also found that p53 reactivating agent nutlin-3α and CP/31398 promoted metformin-induced growth inhibition, senescence and apoptosis in MCF-7 (wt p53) and MDA-MB-231 (mt p53) cells, respectively. Treatment of MCF-7 cells with metformin or phenformin induced increase in p53 protein levels and the transcription of its downstream target genes, Bax and p21, in a dose-dependent manner. Moreover, we demonstrated that AMPK-mTOR signaling played a role in metformin-induced p53 up-regulation. The present study showed that p53 is required for metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. The combination of metformin with p53 reactivating agents, like nutlin-3α and CP/31398, is a promising strategy for improving metformin-mediated anti-cancer therapy, especially for tumors with p53 mutations.

  16. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    Science.gov (United States)

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  17. Inhibition of Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Inducing Apoptosis by Different RGD-containing Peptides

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; YANG Shao-juan; GAO Shuo-hui; HUANG Yi-bing; LI Jing; CAI Ming-jun; XU Li; ZHANG Xue-zhong

    2008-01-01

    Human ileocecal adenocarcinoma cells HCT-8 were treated with RGD-containing cellular adhesion peptides including RGD,RGD(NH2)2(i.e.,RGE-NH2),RGDS,and RGDS-NH2,MTT assay was prepared to examine their inhibiting effects on HCT-8 cells after treatment,The methods including Haematoxylin and Eosin(HE) staining,transmission electron microscopy(TEM),immunohistochemistry,flow cytometry,and Reverse Transcription Polymerase Chain Reaction(RT-PCR) were used to observe the morphology of the apoptotic cells and analyze the mechanism of apoptosis,The experimental results indicate that RGD-containing cellular adhesion peptides can inhibit the growth and proliferation of tumor HCT-8 cells in a dose-dependent manner and induce the apoptosis of HCT-8 cells.At the same time,the high conservative property of RGD was confirmed again.

  18. Perichondrium mesenchymal stem cells inhibit the growth of breast cancer cells via the DKK-1/Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Li, Min; Cai, Hui; Yang, Ya; Zhang, Jia; Sun, Kai; Yan, Yan; Qu, Hangying; Wang, Weiwei; Wang, Jiansheng; Duan, Xiaoyi

    2016-08-01

    In recent years, mesenchymal stem cells (MSCs), which possess the ability to specifically home to tumor sites, with the potential of multi-directional differentiation and low immunogenicity, have been reported to inhibit the growth of various types of tumors. In the present study, we isolated MSCs from the rib perichondrium (PMSCs). By comparing PMSCs with bone marrow‑derived mesenchymal stem cells (BMSCs), we demonstrated that PMSCs present biological characteristics similar to those of BMSCs. Furthermore, we explored the effect and antitumor mechanism of PMSCs in rat SHZ-88 breast cancer cells. The growth, migration and invasion of the SHZ-88 cells were significantly inhibited, and the Wnt/β-catenin pathway and its target genes were downregulated in the SHZ-88 cells by PMSC-conditioned medium. The expression level of dickkopf-1 (DKK-1) was higher in the PMSCs than that noted in the SHZ-88 cells. Neutralization of DKK-1 in the PMSC‑conditioned medium attenuated the inhibitory effects of PMSCs on SHZ-88 cells. Therefore, PMSC-secreted DKK-1 is involved in the inhibition of SHZ-88 cell growth, migration and invasion, via the Wnt/β‑catenin signaling pathway. In addition, we demonstrated that PMSCs inhibited the growth of breast cancer in vivo and prolonged the survival time of tumor‑bearing rats. PMSCs inhibited the growth of transplanted breast tumors through the Wnt/β-catenin signaling pathway. In conclusion, our data confirmed that MSCs derived from the perichondrium present biological characteristics similar to those of BMSCs and inhibit the growth of breast cancer cells through the Wnt/β-catenin signaling pathway in vitro and in vivo. DKK-1 secreted by PMSCs played a vital role in controlling the Wnt/β-catenin signaling pathway in breast cancer.

  19. ShRNA-mediated gene silencing of β-catenin inhibits growth of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To observe the gene silencing mediated by the specific shRNA targeted against β-catenin and its effect on cell proliferation and cycle distribution in the human colon cancer cell line Colo205.METHODS: Two shRNA plasmid vectors against β-catenin were constructed and transfected into Colo205 cells with LipofectamineTM2000. The down-regulations of β-catenin, c-myc and cyclinD1 expressions were detected by RT-PCR and western blot analysis. The cell proliferation inhibitions were determined by MTT assay and soft agar colony formation assay. The effect of these two β-catenin shRNAs on cell cycle distribution and apoptosis was examined by flow cytometry.RESULTS: These two shRNA vectors targeted against β-catenin efficiently suppressed the expression of β-catenin and its down stream genes, c-myc and cyclinD1. The expression inhibition rates were around 40%-50% either at the mRNA or at the protein level.The shRNA-mediated gene silencing of β-catenin resulted in significant inhibition of cell growth both on the culture plates and in the soft agar. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis at 72 h post transfection due to gene silencing.CONCLUSION: These specific shRNAs targeted against β-catenin could have a gene silencing effect and block the WNT signaling pathway. They could inhibit cell growth, increase apoptosis, and induce cell cycle arrest in Colo205 cells. ShRNA interference against β-catenin is of potential value in gene therapy of colon cancer.

  20. Endothelins Inhibit Osmotic Swelling of Rat Retinal Glial and Bipolar Cells by Activation of Growth Factor Signaling.

    Science.gov (United States)

    Vogler, Stefanie; Grosche, Antje; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-10-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.

  1. Garcinia benzophenones inhibit the growth of human colon cancer cells and synergize with sulindac sulfide and turmeric.

    Science.gov (United States)

    Einbond, Linda Saxe; Mighty, Jason; Kashiwazaki, Ryota; Figueroa, Mario; Jalees, Filza; Acuna, Ulyana Munoz; Le Gendre, Onica; Foster, David A; Kennelly, Edward J

    2013-12-01

    Previous studies indicate that extracts and purified components from Garcinia species inhibit the growth of human colon cancer cells. Garcinia benzophenones activate the expression of genes in the endoplasmic reticulum and cellular energy stress (mTOR) pathways. This study examines the growth inhibitory and synergistic effects of Garcinia benzophenones, alone or combined with chemopreventive agents, on human colon cancer cells. To find optimal combination treatments, HT29 colon cancer cells were treated with benzophenones alone, or combined with chemopreventive agents, and cell growth measured using the MTT assay. To reveal effects on signaling pathways, we assessed effects of the MEK inhibitor U0126 and the ER IP3 receptor antagonist heparin, as well as effects on the phosphorylation of 4E-BP-1 (mTOR pathway), using Western blot analysis. New and known benzophenones from Garcinia intermedia inhibited the growth of human colon cancer cells; an alcohol extract of Garcinia xanthochymus, as well as purified guttiferones (guttiferone E and xanthochymol), preferentially inhibited the growth of colon cancer versus nonmalignant intestinal epithelial cells. Guttiferone E exhibited synergy with the NSAID sulindac sulfide and xanthochymol, with the spice turmeric. Guttiferone A did not alter phosphorylation of 4E-BP-1, indicating that the mTORC1 pathway is not involved in its action. The effects of xanthochymol were enhanced by U0126, at low doses, and were blocked by heparin, indicating that the MEK pathway is involved, while the ER IP3 receptor is critical for its action. These studies indicate the potential of benzophenones, alone or combined with sulindac sulfide or turmeric, to prevent and treat colon cancer.

  2. Inhibition of growth and development of root border cells in wheat by Al.

    Science.gov (United States)

    Zhu, Mu-Yuan; Ahn, Sung-Ju; Matsumoto, Hideaki

    2003-03-01

    The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 micro m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.

  3. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    Science.gov (United States)

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  4. MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells.

    Science.gov (United States)

    Lee, J-J; Drakaki, A; Iliopoulos, D; Struhl, K

    2012-08-16

    The peroxisome proliferators-activated receptor (PPAR)γ pathway is involved in cancer, but it appears to have both tumor suppressor and oncogenic functions. In neuroblastoma cells, miR-27b targets the 3' untranslated region of PPARγ and inhibits its mRNA and protein expression. miR-27b overexpression or PPARγ inhibition blocks cell growth in vitro and tumor growth in mouse xenografts. PPARγ activates expression of the pH regulator NHE1, which is associated with tumor progression. Lastly, miR-27b through PPARγ regulates nuclear factor-κB activity and transcription of inflammatory target genes. Thus, in neuroblastoma, miR-27b functions as a tumor suppressor by inhibiting the tumor-promoting function of PPARγ, which triggers an increased inflammatory response. In contrast, in breast cancer cells, PPARγ inhibits NHE1 expression and the inflammatory response, and it functions as a tumor suppressor. We suggest that the ability of PPARγ to promote or suppress tumor formation is linked to cell type-specific differences in regulation of NHE1 and other target genes.

  5. ENDOCANNABINOIDS INHIBIT RELEASE OF NERVE GROWTH FACTOR BY INFLAMMATION-ACTIVATED MAST CELLS

    OpenAIRE

    2011-01-01

    Abstract Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic ce...

  6. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    Science.gov (United States)

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future.

  7. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  8. Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of Aurora A expression and function.

    Directory of Open Access Journals (Sweden)

    Yi Gong

    Full Text Available The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1 the most potent agent. T1 was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand, tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe agent for the therapy and prevention of breast cancer.

  9. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway

    OpenAIRE

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-01-01

    Abstract Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine‐suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xen...

  10. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    Science.gov (United States)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  11. PM-3, a benzo-gamma-pyran derivative isolated from propolis, inhibits growth of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Luo, J; Soh, J W; Xing, W Q; Mao, Y; Matsuno, T; Weinstein, I B

    2001-01-01

    Propolis has numerous biologic activities including antibiotic, antifungal, antiviral and anti-inflammatory properties. Several components isolated from propolis have been shown to have anticancer activity. This study demonstrates that the compound PM-3 (3-[2-dimethyl-8-(3-methyl-2-butenyl)benzopyran]-6-propenoic acid) isolated from Brazilian propolis markedly inhibits the growth of MCF-7 human breast cancer cells. This effect was associated with inhibition of cell cycle progression and induction of apoptosis. Treatment of MCF-7 cells with PM-3 arrested cells in the G1 phase and resulted in a decrease in the protein levels of cyclin D1 and cyclin E. PM-3 also inhibited the expression of cyclin D1 at the transcriptional level when examined in cyclin D1 promoter luciferase assays. Induction of apoptosis by PM-3 occurred within 48 hours after treatment of MCF-7 cells. The MCF-7 treated cells also displayed a decrease in the level of the estrogen receptor (ER) protein and inhibition of estrogen response element (ERE) promoter activity. Therefore, PM-3 merits further investigation with respect to breast cancer chemoprevention or therapy.

  12. α-TEA inhibits the growth and motility of human colon cancer cells via targeting RhoA/ROCK signaling.

    Science.gov (United States)

    Yao, Jialin; Gao, Peng; Xu, Yang; Li, Zhaozhu

    2016-09-01

    Colon or colorectal cancer is a common type of human cancer, which originates in the intestine crassum or the rectum. In the United States, colorectal cancer has one of the highest rates of cancer‑related mortality. Investigating novel chemotherapeutic approaches is significant in the treatment of cancers, such as colorectal cancer. α-tocopherol ether-linked acetic acid (α-TEA) is a potent anticancer agent in multiple types of human cancer. However, its effect remains to be determined in colon cancer. In this study, HCT116 and SW480 human colon cancer cells were used to investigate the anticancer role of α-TEA. It was demonstrated that α-TEA inhibited cell proliferation, migration and invasion in colon cancer cells. Furthermore, it was shown that α-TEA downregulated the activity of RhoA and phosphorylated Rho-associated protein kinase (ROCK) substrate myosin light chain (MLC) using a pull-down assay and western blotting, respectively, implying that the RhoA/ROCK pathway is involved in α-TEA-mediated cell growth and motility inhibition. In order to confirm this hypothesis a RhoA inhibitor (clostridium botulinum C3 exoenzyme), a ROCK inhibitor (Y27632) and RhoA small interfering (si)RNA were applied to block RhoA/ROCK signaling. This resulted in the attenuation of MLC phosphorylation, and augmentation of α-TEA-mediated growth and motility inhibition in colon cancer cells. In conclusion, these results indicate that α-TEA inhibits growth and motility in colon cancer cells possibly by targeting RhoA/ROCK signaling. Moreover, combined with RhoA or ROCK inhibitors, α-TEA may exhibit a more effective inhibitory role in colon cancer.

  13. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    Science.gov (United States)

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  14. microRNA-141 inhibits thyroid cancer cell growth and metastasis by targeting insulin receptor substrate 2.

    Science.gov (United States)

    Dong, Su; Meng, Xianying; Xue, Shuai; Yan, Zewen; Ren, Peiyou; Liu, Jia

    2016-01-01

    microRNA-141 (miR-141), a member of the miR-200 family, and has been reported to involve in tumor initiation and development in many types of cancers. However, the function and underlying molecular mechanism of miR-141 in thyroid cancer remains unclear. Therefore, the aim of this study is to identify its expression, function, and molecular mechanism in thyroid cancer. In this study, we found that miR-141 expression levels were downregulated in human thyroid cancer specimens compared to the adjacent normal tissues, and its expression were strongly correlated with clinical stages and lymph node metastases. Function assays showed that overexpression of miR-141 inhibited cell proliferation, induced cell apoptosis, and decreased migration, invasion in thyroid cancer cells, as well as tumor growth in nude mice. Moreover, insulin receptor substrate 2 (IRS2), a known oncogene, was confirmed as a direct target of miR-141, and IRS2 expression levels were upregulated in thyroid cancer, and its expression were inversely correlated with miR-141 expression levels in human thyroid cancer specimens. Forced expression of IRS2 reversed the inhibition effect induced by miR-141 overexpression in thyroid cancer cells. Taken together, our study provides the first evidence that miR-141 suppressed thyroid cancer cell growth and metastasis through inhibition of IRS2. Thus, miR-141 might serve as a promising therapeutic strategy for thyroid cancer treatment.

  15. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis

    OpenAIRE

    2015-01-01

    The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metfor...

  16. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    Science.gov (United States)

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  17. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells.

    Science.gov (United States)

    Dokduang, Hasaya; Yongvanit, Puangrat; Namwat, Nisana; Pairojkul, Chawalit; Sangkhamanon, Sakkarn; Yageta, Mika Sakurai; Murakami, Yoshinori; Loilome, Watcharin

    2016-04-01

    STAT3 plays a significant role in the development of cholangiocarcinoma (CCA) associated with the liver fluke (Opisthorchis viverrini; Ov). Xanthohumol (XN), a prenylated flavonoid extracted from hops, has known anticancer activity and could potentially target STAT3. The present study determined the effect of XN on STAT3, as well as ascertained its usefulness against CCA. The CCA cell proliferation at 20 µM and 50 µM of XN was shown to inhibited, while 20 µM partially inhibited IL-6-induced STAT3 activation. At 50 µM, the inhibition was complete. The reduction in STAT3 activity at 20 and 50 µM was associated with a significant reduction of CCA cell growth and apoptosis. We also found that the administration of 50 µM XN orally in drinking water to nude mice inoculated with CCA led to a reduction in tumor growth in comparison with controls. In addition, apoptosis of cancer cells increased although there was no visible toxicity. The present study shows that XN can inhibit STAT3 activation both in vivo and in vitro due to suppression of the Akt-NFκB signaling pathway. XN should be considered as a possible therapeutic agent against CCA.

  18. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  19. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  20. Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2015-12-01

    Full Text Available Fucose-containing sulfated polysaccharides, also termed “fucoidans”, which are known to possess antioxidant, anticoagulant, anticancer, antiviral, and immunomodulating properties, are normally isolated from brown algae via various extraction techniques. In the present study, two methods (SC1 and SC2 for isolation of fucoidan from Sargassum cristaefolium were compared, with regard to the extraction yields, antioxidant activity, and inhibition of growth of human colon cancer cells exhibited by the respective extracts. SC1 and SC2 differ in the number of extraction steps and concentration of ethanol used, as well as the obtained sulfated polysaccharide extracts, namely, crude fucoidan preparation (CFP and purified fucoidan preparation (PFP, respectively. Thin layer chromatography, Fourier transform infrared analysis, and measurements of fucose and sulfate contents revealed that the extracts were fucoidan. There was a higher extraction yield for CFP, which contained less fucose and sulfate but more uronic acid, and had weaker antioxidant activity and inhibition of growth in human colon cancer cells. In contrast, there was a lower extraction yield for PFP, which contained more fucose and sulfate but less uronic acid, and had stronger antioxidant activity and inhibition of growth in human colon cancer cells. Thus, since the difference in bioactive activities between CFP and PFP was not remarkable, the high extraction yield of SC1 might be favored as a method in industrial usage for extracting fucoidan.

  1. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yan

    2011-09-01

    Full Text Available Abstract Background Connective tissue growth factor (CTGF has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P 1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.

  2. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  3. Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe

    2011-09-01

    Full Text Available Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins. Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15 may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.

  4. Salinomycin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity.

    Science.gov (United States)

    Schenk, Miriam; Aykut, Berk; Teske, Christian; Giese, Nathalia A; Weitz, Juergen; Welsch, Thilo

    2015-03-28

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth, early metastasis and high resistance to chemotherapy. Salinomycin is a promising compound eliminating cancer stem cells and retarding cancer cell migration. The present study investigated the effectiveness of salinomycin against PDAC in vivo and elucidated the mechanism of PDAC growth inhibition. Salinomycin treatment was well tolerated by the mice and significantly reduced tumor growth after 19 days compared to the control group (each n = 16). There was a trend that salinomycin also impeded metastatic spread to the liver and peritoneum. Whereas salinomycin moderately induced apoptosis and retarded proliferation at 5-10 µM, it strongly inhibited cancer cell migration that was accompanied by a marked loss of actin stress fibers after 6-9 h. Salinomycin silenced RhoA activity, and loss of stress fibers could be reversed by Rho activation. Moreover, salinomycin dislocated fascin from filopodia and stimulated Rac-associated circular dorsal ruffle formation. In conclusion, salinomycin is an effective and promising compound against PDAC. Besides its known stem cell-specific cytotoxic effects, salinomycin blocks cancer cell migration by disrupting stress fiber integrity and affecting the mutual Rho-GTPase balance.

  5. Mechanism of Hepatocyte Growth Factor Inhibition of Angiotensin II-induced Apoptosis in Primary Lung Cells

    Science.gov (United States)

    2010-02-19

    joints. In addition, they may experience enlargement and bulb-like development of the fingertips and nails , a condition called clubbing [41]. Clinical...2 family, which act to regulate the permeability of the mitochondrial membrane and its release of cytochrome . Initiator caspase 9 is activated in...either a Bax channel blocker (BCB) or a Bax inhibiting peptide (V-5), while a control peptide had no effect (Fig 3B). We found that cell permeable

  6. RRR-α-tocopheryl succinate inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest

    Institute of Scientific and Technical Information of China (English)

    Kun Wu; Yan Zhao; Bai-He Liu; Yao Li; Fang Liu; Jian Guo; Wei-Ping Yu

    2002-01-01

    AIM: To investigate the effects of growth inhibition ofhuman gastric cancer SGC-7901 cell with RRR-α-tocopherylsuccinate (VES), a derivative of natural Vitamin E, viainducing apoptosis and DNA synthesis arrest.METHODS: Human gastric cancer SGC-7901 cells wereregularly incubated in the presence of VES at 5, 10 and20mg@ L 1(VES was dissolved in absolute ethanol anddiluted in RPMI 1640 complete condition mediacorrespondingly to a final concentration of VES and 1mL@L-1 ethanol), succinic acid and ethanol equivalents asvehicle (VEH) control andcondition media only asuntreated (UT) control. Trypan blue dye exclusionanalysis and MTT assay were applied to detect the cellproliferation. 37kBq of tritiated thymidine was added tocells and [3H] TdR uptake was measured to observe DNAsynthesis. Apoptotic morphology was observed byelectron microscopy and DAPI staining. Flow cytometryand terminal deoxynucleotidyl transferase-mediated dUTPnick end labeling (TUNEL) assay were performed to detectVES-triggered apoptosis.RESULTS: VES inhibited SGC-7901 cell growth in a dose-dependent manner. The growth curve showed suppressionby 24.7%, 49.2% and 68.7% following 24h of VEStreatment at 5, 10 and 20 mg@L 1, respectively, similar tothe findings from MTT assay. DNA synthesis wasevidently reduced by 35%, 45% and 98% after 24h VEStreatment at 20 mg@ L-1 and 48h at 10 and 20 mg@ L 1,respectively. VES induced SGC-7901 cells to undergoapoptosis with typically apoptotic characteristics,including morphological changes of chromatincondensation, chromatin crescent formation/margination,nucleus fragmentation and apoptotic body formation,typical apoptotic sub-G1 peak by flow cytometry andincrease of apoptotic cells by TUNEL assay in which 90%of cells underwent apoptosis after 48h of VES treatment at20 mcg@L-1.CONCLUSION: VES can inhibit human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesisarrest. Inhibition of SGC-7901 cell growth by VES is dose-and time

  7. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Aberrant expression of microRNA-146a (miR-146a has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292. miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib and a monoclonal antibody (cetuximab. These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation, but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05. The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05. miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.

  8. Effect of cisplatin exposure on platinum accumulation and growth inhibition in human neoplastic and normal squamous epithelial cells of the mucosa of the upper-aerodigestive tract

    NARCIS (Netherlands)

    Braakhuis, B.J.M.; Welters, M.J.P.; Cloos, J.; Pankras, J.E.; Smeets, S.J.; Fichtinger-Schepman, A.-M.J.

    1999-01-01

    The aim of the present study was to investigate how normal head and neck epithelial cells (NHNEC) respond to cisplatin compared to their neoplastic counterparts with respect to intracellular platinum (Pt) levels and growth inhibition. A colorimetric assay was used to assess growth inhibition after e

  9. Matrine inhibits the growth and induces apoptosis of osteosarcoma cells in vitro by inactivating the Akt pathway.

    Science.gov (United States)

    Xu, Gong-Ping; Zhao, Wei; Zhuang, Jin-Peng; Zu, Jia-Ning; Wang, Duan-Yang; Han, Fei; Zhang, Zhi-Peng; Yan, Jing-Long

    2015-03-01

    Matrine, a natural product, has been demonstrated to be a promising chemotherapeutic drug for some cancers. Using flow cytometric analysis of the cell cycle and apoptosis, we found that matrine inhibited the proliferation and induced apoptosis in the human osteosarcoma (OS) cell lines MG63, HOS, U2OS, and SAOS2 in vitro in a dose-dependent manner. We therefore assessed the role of the serine/threonine kinase Akt in the regulation of matrine-mediated cell growth inhibition and apoptosis induction in human OS cell lines. After treatment for 48 h, matrine induced G0/G1-stage cell cycle arrest in MG63, U2OS, and SAOS2 cells associated with an increase in the expression of p27(Kip1) and a decrease in the expression of Akt, glycogen synthase kinase 3 (GSK3)-β (Ser9), and cyclin D1. Furthermore, the pro-apoptotic factor Bax was upregulated. Overall, our findings suggest that matrine may be an effective anti-osteosarcoma drug due to its ability to inhibit proliferation and induce apoptosis in OS cells, possibly through the involvement of Akt signaling.

  10. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells.

    Science.gov (United States)

    Li, Hui; Hui, Hui; Xu, Jingyan; Yang, Hao; Zhang, Xiaoxiao; Liu, Xiao; Zhou, Yuxin; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2016-06-01

    GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.

  11. Inhibition of chemomigration of a human prostatic carcinoma cell (TSU-pr1) line by inhibition of epidermal growth factor receptor function.

    Science.gov (United States)

    Zolfaghari, A; Djakiew, D

    1996-04-01

    Chemoattractants expressed at bony sites and pelvic lymph nodes are thought to promote the preferential metastasis of human prostate tumor cells to these organs. Epidermal growth factor (EGF) is a potent chemoattractant for several human metastatic prostate tumor cell lines, including the TSU-pr1 cell line, and EGF has been localized to the stroma of both bony sites and pelvic lymph nodes in humans. Hence, we investigated whether the TSU-pr1 cell line expresses a functional EGF receptor (EGFR), which when antagonized reduces EGF-mediated chemomigration of this cell line. In this context, the EGFR immunoprecipitated from cell lysates of TSU-pr1 cells comigrated with the EGFR from A431 cells at a molecular weight of 170 kD. Addition of human EGF (hEGF) to the TSU-pr1 cells for 5 min stimulated the dose-dependent biphasic phosphorylation of the EGFR, with maximal stimulation of EGFR phosphorylation occurring at 2 ng/ml hEGF. In addition, treatment of hEGF-stimulated (2 ng/ml) TSU-pr1 cells with 0.5 microgram/ml anti-hEGF monoclonal antibody or 100 nM staurosporine inhibited EGFR phosphorylation. Conversely, as negative controls, treatment of hEGF-stimulated (2 ng/ml) TSU-pr1 cells with K252a or dimethyl sulfoxide (DMSO) vehicle did not inhibit EGFR phosphorylation. TSU-pr1 cells were stimulated to migration in 4 hr across Boyden chambers in response to 10 ng/ml hEGF. Treatment of the TSU-pr1 cells with anti-hEGFR monoclonal antibody inhibited in a dose-dependent manner the chemomigration of the TSU-pr1 cells across Boyden chambers. Similarly, treatment of the TSU-pr1 cells with staurosporine inhibited in a dose-dependent manner the chemomigration of the TSU-pr1 cells across Boyden chambers. These results demonstrate that antagonists of hEGF-mediated hEGFR phosphorylation also antagonize chemomigration of the TSU-pr1 cells across Boyden chambers, suggesting that antagonists of the EGFR in prostate cancer may be useful in the treatment of metastatic disease.

  12. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  13. Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells.

    Science.gov (United States)

    Yong, Wai Kuan; Abd Malek, Sri Nurestri

    2015-01-01

    We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.

  14. Xanthohumol Induces Growth Inhibition and Apoptosis in Ca Ski Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wai Kuan Yong

    2015-01-01

    Full Text Available We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.

  15. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets β-catenin

    Science.gov (United States)

    Nath, Niharika; Liu, Xiaoping; Jacobs, Lloydine; Kashfi, Khosrow

    2013-01-01

    Background The Wnt/β-catenin/T cell factor (TCF) signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs). Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. Methods We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242), and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/β-catenin, cyclin D1, and caspase-3. Results NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50) for growth inhibition being 60 ± 4 μM, 320 ± 20 μM, and 880 ± 65 μM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved β-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of β-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels in a concentration dependent manner. Conclusion These findings establish a strong inhibitory effect of NBS-242 in A-431 human epidermoid carcinoma cells. NBS-242 modulates parameters that are important in determining cellular mass. PMID:23690679

  16. The inhibition of lung cancer cell growth by intracellular immunization with LC-1 ScFv

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A monoclonal antibody, LC-l, recognizing lung cancer associated common antigens was obtained in authors' laboratory. Its single chain Fv fragment (ScFv) named LC-1 ScFv was constructed based on recombinant phage displayed techniques. For expression on cell membrane, LC-1 ScFv was cloned into pDisplay vector, which directed the cloned gene to express as cell membrane bound protein. The resulting plasmid was sequenced and then introduced by the lipofectin method into a lung adenocarcinoma cell line SPC-A-1. G418 resistant cells were obtained by G418 selection. After transfection, LC-1 ScFv expression was observed by Western blot analysis and the expression of cognate antigens was down-regulated as shown in ELISA assay. SPC-A-1-pDisplay-ScFv cells grew in vitro at lower speed than the control intact cells and the cells transfected with vacant vector. Flow cytometry analysis detected a substantial increase in G1 phase and decrease in S phase in population of SPC-A-1-pDisplay-ScFv cells compared to SPC-A-1 and SPC-A1-pDisplay cells. Semi-quantitative RT-PCR analysis showed that c-myc expression was down-regulated in SPC-A-1-pDisplay-ScFv cells. It seems that the antigens recognized by LC-1 may be in some way involved in a growth stimulating pathway and the antibody blocking of the function of the antigens shut down the pathway and thus down-regulate the expression of c-myc and growth of the cells.

  17. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    Science.gov (United States)

    Mammoto, Tadanori; Higashiyama, Shigeki; Mukai, Mutsuko; Mammoto, Akiko; Ayaki, Masako; Mashimo, Takashi; Hayashi, Yukio; Kishi, Yoshihiko; Nakamura, Hiroyuki; Akedo, Hitoshi

    2002-09-01

    Although the mechanism is unknown, infiltration anesthetics are believed to have membrane-stabilizing action. We report here that such a most commonly used anesthetic, lidocaine, effectively inhibited the invasive ability of human cancer (HT1080, HOS, and RPMI-7951) cells at concentrations used in surgical operations (5-20 mM). Ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF) from the cell surface plays an important role in invasion by HT1080 cells. Lidocaine reduced the invasion ability of these cells by partly inhibiting the shedding of HB-EGF from the cell surface and modulation of intracellular Ca2+ concentration contributed to this action. The anesthetic action of lidocaine (sodium channel blocking ability) did not contribute to this anti-invasive action. In addition, lidocaine (5-30 mM), infiltrated around the inoculation site, inhibited pulmonary metastases of murine osteosarcoma (LM 8) cells in vivo. These data point to previously unrecognized beneficial actions of lidocaine and suggest that lidocaine might be an ideal infiltration anesthetic for surgical cancer operations.

  18. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue

    Indian Academy of Sciences (India)

    Lílian S Peloi; Rafael R S Soares; Carlos E G Biondo; Vagner R Souza; Noboru Hioka; Elza Kimura

    2008-06-01

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC 90028) and Artemia salina. The maximum absorption of the LED lamps was at a wavelength of 663 nm, at intensities of 2, 4, 6 and 12 J.cm–2 for 10, 20, 30 and 60 min of exposure, respectively. Assays with and without LED exposure were carried out in plates containing MB at concentrations of 7 to 140.8 M for microorganisms and 13.35 to 668.5 M for microorganisms or microcrustaceans. The LED exposure induced more than 93.05%, 93.7% and 93.33% of growth inhibition for concentrations of 42.2 M for S. aureus (D-value=12.05 min) and 35.2 M for E. coli (D-value=11.51 min) and C. albicans (D-value=12.18 min), respectively after 20 min of exposure. LED exposure for 1 h increased the cytotoxic effect of MB against A. salina from 27% to 75%. Red LED is a promising light device for PDT that can effectively inhibit bacteria, yeast and microcrustacean growth.

  19. Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Shaoyan

    2011-05-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is one of the most aggressive carcinomas of the gastrointestinal tract. We assessed the relevance of Slug in measuring the invasive potential of ESCC cells in vitro and in vivo in immunodeficient mice. Methods We utilized RNA interference to knockdown Slug gene expression, and effects on survival and invasive carcinoma were evaluated using a Boyden chamber transwell assay in vitro. We evaluated the effect of Slug siRNA-transfection and Slug cDNA-transfection on E-cadherin and Bcl-2 expression in ESCC cells. A pseudometastatic model of ESCC in immunodeficient mice was used to assess the effects of Slug siRNA transfection on tumor metastasis development. Results The EC109 cell line was transfected with Slug-siRNA to knockdown Slug expression. The TE13 cell line was transfected with Slug-cDNA to increase Slug expression. EC109 and TE13 cell lines were tested for the expression of apoptosis-related genes bcl-2 and metastasis-related gene E-cadherin identified previously as Slug targets. Bcl-2 expression was increased and E-cadherin was decreased in Slug siRNA-transfected EC109 cells. Bcl-2 expression was increased and E-cadherin was decreased in Slug cDNA-transfected TE13 cells. Invasion of Slug siRNA-transfected EC109 cells was reduced and apoptosis was increased whereas invasion was greater in Slug cDNA-transfected cells. Animals injected with Slug siRNA-transfected EC109 cells exhihited fewer seeded nodes and demonstrated more apoptosis. Conclusions Slug down-regulation promotes cell apoptosis and decreases invasion capability in vitro and in vivo. Slug inhibition may represent a novel strategy for treatment of metastatic ESCC.

  20. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression.

    Science.gov (United States)

    Robb, Ellen L; Stuart, Jeffrey A

    2014-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. As data on phytoestrogens continues to accumulate, it is clear that there is significant overlap in the cellular effects elicited by these various compounds. Here, we show that one mechanism by which a number of phytoestrogens achieve their growth inhibitory and cytoprotective effects is via induction of the mitochondrial manganese superoxide dismutase (MnSOD). Eight phytoestrogens, including resveratrol, coumestrol, kaempferol, genistein, daidzein, apigenin, isoliquirtigenin and glycitin, were tested for their ability to induce MnSOD expression in mouse C2C12 and primary myoblasts. Five of these, resveratrol, coumestrol, kaempferol, genistein and daidzein, significantly increased MnSOD expression, slowed proliferative growth and enhanced stress resistance (hydrogen peroxide LD50) . When siRNA was used to prevent the MnSOD induction by genistein, coumestrol or daidzein, none of these compounds exerted any effect on proliferative growth, and only the effect of coumestrol on stress resistance persisted. The estrogen antagonist ICI182780 prevented the increased MnSOD expression and also the changes in cell growth and stress resistance, indicating that these effects are mediated by estrogen receptors (ER). The absence of effects of resveratrol or coumestrol, but not genistein, in ERβ-null cells further indicated that this ER in particular is important in mediating these effects. Thus, an ER-mediated induction of MnSOD expression appears to underlie the growth inhibitory and cytoprotective activities of multiple phytoestrogens.

  1. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  2. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    Directory of Open Access Journals (Sweden)

    Iman K Yazdi

    2016-01-01

    Full Text Available The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability.

  3. Sulindac Induces Apoptosis and Inhibits Tumor Growth In Vivo in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Mark A. Scheper

    2007-03-01

    Full Text Available Sulindac has antineoplastic effects on various cancer cell lines; consequently, we assessed sulindac's effects on laryngeal squamous cell carcinoma (SCC cells in vitro and in vivo. In vitro, SCC (HEP-2 cells treated with various cyclooxygenase inhibitors or transfected with constitutively active signal transducer and activator of transcription 3 (Stat3 or survivin vectors were analyzed using Western blot analysis, annexin V assay, and cell proliferation assay. In parallel, nude mice injected subcutaneously with HEP-2 cells were either treated intraperitoneally with sulindac or left untreated, and analyzed for tumor weight, survivin expression, and tyrosine-phosphorylated Stat3 expression. In vitro studies confirmed the selective antiproliferative and proapoptotic effects of sulindac, which also downregulated Stat3 and survivin protein expression. Stat3 or survivin forced expression partially rescued the antiproliferative effects of sulindac. In vivo studies showed significant repression of HEP-2 xenograft growth in sulindactreated mice versus controls, with near-complete resolution at 10 days. Additionally, tumor specimens treated with sulindac showed downregulation of phosphorylated tyrosine-705 Stat3 and survivin expression. Taken together, our data suggest, for the first time, a specific inhibitory effect of sulindac on tumor growth and survivin expression in laryngeal cancer, both in vitro and in vivo, in a Stat3-dependent manner, suggesting a novel therapeutic approach to head and neck cancer.

  4. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  5. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy.

    Science.gov (United States)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133- cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133- cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133- cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.

  6. Selective inhibition of pancreatic ductal adenocarcinoma cell growth by the mitotic MPS1 kinase inhibitor NMS-P715.

    Science.gov (United States)

    Slee, Roger B; Grimes, Brenda R; Bansal, Ruchi; Gore, Jesse; Blackburn, Corinne; Brown, Lyndsey; Gasaway, Rachel; Jeong, Jaesik; Victorino, Jose; March, Keith L; Colombo, Riccardo; Herbert, Brittney-Shea; Korc, Murray

    2014-02-01

    Most solid tumors, including pancreatic ductal adenocarcinoma (PDAC), exhibit structural and numerical chromosome instability (CIN). Although often implicated as a driver of tumor progression and drug resistance, CIN also reduces cell fitness and poses a vulnerability that can be exploited therapeutically. The spindle assembly checkpoint (SAC) ensures correct chromosome-microtubule attachment, thereby minimizing chromosome segregation errors. Many tumors exhibit upregulation of SAC components such as MPS1, which may help contain CIN within survivable limits. Prior studies showed that MPS1 inhibition with the small molecule NMS-P715 limits tumor growth in xenograft models. In cancer cell lines, NMS-P715 causes cell death associated with impaired SAC function and increased chromosome missegregation. Although normal cells appeared more resistant, effects on stem cells, which are the dose-limiting toxicity of most chemotherapeutics, were not examined. Elevated expression of 70 genes (CIN70), including MPS1, provides a surrogate measure of CIN and predicts poor patient survival in multiple tumor types. Our new findings show that the degree of CIN70 upregulation varies considerably among PDAC tumors, with higher CIN70 gene expression predictive of poor outcome. We identified a 25 gene subset (PDAC CIN25) whose overexpression was most strongly correlated with poor survival and included MPS1. In vitro, growth of human and murine PDAC cells is inhibited by NMS-P715 treatment, whereas adipose-derived human mesenchymal stem cells are relatively resistant and maintain chromosome stability upon exposure to NMS-P715. These studies suggest that NMS-P715 could have a favorable therapeutic index and warrant further investigation of MPS1 inhibition as a new PDAC treatment strategy.

  7. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  8. Colchicine inhibits epidermal growth factor degradation in 3T3 cells.

    OpenAIRE

    Brown, K. D.; Friedkin, M; Rozengurt, E

    1980-01-01

    Colchicine (2 microM) did not affect the initial rate of association of 125I-labeled epidermal growth factor (125I-EGF) to Swiss 3T3 cells but continued incubation (up to 24 hr) led to an increase in cell-associated radioactivity. The effect is also produced by Colcemid, vinblastine, and podophyllotoxin but not by lumicolchicine. Disruption of microtubules with colchicine does not alter the rate of "down regulation" of EGF receptors, suggesting the binding and internalization of the factor pr...

  9. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  10. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    Science.gov (United States)

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  11. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Directory of Open Access Journals (Sweden)

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  12. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size.

    Science.gov (United States)

    Gray, Jennifer A; Shalit-Kaneh, Akiva; Chu, Dalena Nhu; Hsu, Polly Yingshan; Harmer, Stacey

    2017-03-02

    The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis thaliana, the clock is comprised of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in modulation of light input to the clock and control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a day-length and sucrose dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild type, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results shows that even small changes in PIF gene expression caused by perturbation of clock gene function can have large effects on the growth of adult plants.

  13. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1.

    Directory of Open Access Journals (Sweden)

    Weiying Zhang

    Full Text Available Growing evidence indicates that the deregulation of microRNAs (miRNAs contributes to the tumorigenesis. We previously revealed that microRNA-520b (miR-520b was involved in the complement attack and migration of breast cancer cells. In this report, we show that miR-520b is an important miRNA in the development of hepatocellular carcinoma (HCC. Our data showed that the expression levels of miR-520b were significantly reduced in clinical HCC tissues and hepatoma cell lines. We observed that the introduction of miR-520b dramatically suppressed the growth of hepatoma cells by colony formation assays, 5-ethynyl-2-deoxyuridine (EdU incorporation assays and 3-(4,5- dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Moreover, ectopic expression of miR-520b was able to inhibit the growth of hepatoma cells in nude mice. Further studies revealed that the mitogen-activated protein kinase kinase kinase 2 (MEKK2 and cyclin D1 were two of direct target genes of miR-520b. Silencing of MEKK2 or cyclin D1 was able to inhibit the growth of hepatoma cells in vitro and in vivo, which is consistent with the effect of miR-520b overexpression on the growth of hepatoma cells. In addition, miR-520b significantly decreased the phosphorylation levels of c-Jun N-terminal kinase (p-JNK, a downstream effector of MEKK2 or retinoblastoma (p-Rb, a downstream effector of cyclin D1. In conclusion, miR-520b is able to inhibit the growth of hepatoma cells by targeting MEKK2 or cyclin D1 in vitro and in vivo. Our findings provide new insights into the role of miR-520b in the development of HCC, and implicate the potential application of miR-520b in cancer therapy.

  14. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Directory of Open Access Journals (Sweden)

    Tomkins Jeffrey P

    2008-05-01

    Full Text Available Abstract Background Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. Results There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr and 3.8 (μm3/hr, respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7. Conclusion Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK. Tubular transformation is a programmed cell survival process that diverges from apoptosis

  15. NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo.

    Science.gov (United States)

    Duncan, Kristal; Uwimpuhwe, Henriette; Czibere, Akos; Sarkar, Devanand; Libermann, Towia A; Fisher, Paul B; Zerbini, Luiz F

    2012-07-01

    Ovarian cancer (OC) is one of the most lethal gynaecological cancers, which usually has a poor prognosis due to late diagnosis. A large percentage of the OC cell population is in a nonproliferating and quiescent stage, which poses a barrier to success when using most chemotherapeutic agents. Recent studies have shown that several nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in the treatment of OC. Furthermore, we have previously described the molecular mechanisms of NSAIDs' induction of cancer apoptosis. In this report, we evaluated various structurally distinct NSAIDs for their efficacies in inducing apoptosis in nonproliferating OC cells. Although several NSAIDs-induced apoptosis, Flufenamic Acid, Flurbiprofen, Finasteride, Celocoxib, and Ibuprofen were the most potent NSAIDs inducing apoptosis. A combination of these agents resulted in an enhanced effect. Furthermore, we demonstrate that the combination of Flurbiprofen, which targets nonproliferative cells, and Sulindac Sulfide, that affects proliferative cells, strongly reduced tumor growth when compared with a single agent treatment. Our data strongly support the hypothesis that drug treatment regimens that target nonproliferating and proliferating cells may have significant efficacy against OC. These results also provide a rationale for employing compounds or even chemically modified NSAIDs, which selectively and efficiently induce apoptosis in cells during different stages of the cell cycle, to design more potent anticancer drugs.

  16. ISG15 Inhibits IFN-α-Resistant Liver Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Xin-xing Wan

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most prevalent tumors worldwide. Interferon-α (IFN-α has been widely used in the treatment of HCC, but patients eventually develop resistance. ISG15 ubiquitin-like modifier (ISG15 is a ubiquitin-like protein transcriptionally regulated by IFN-α which shows antivirus and antitumor activities. However, the exact role of ISG15 is unknown. In the present study, we showed that IFN-α significantly induced ISG15 expression but failed to induce HepG2 cell apoptosis, whereas transient overexpression of ISG15 dramatically increased HepG2 cell apoptosis. ISG15 overexpression increased overall protein ubiquitination, which was not observed in cells with IFN-α-induced ISG15 expression, suggesting that IFN-α treatment not only induced the expression of ISG15 but also inhibited ISG15-mediated ubiquitination. The tumor suppressor p53 and p21 proteins are the key regulators of cell survival and death in response to stress signals such as DNA damage. We showed that p53 or p21 is only up regulated in HepG2 cells ectopically expressing ISG15, but not in the presence of IFN-α-induced ISG15. Our results suggest that ISG15 overexpression could be developed into a powerful gene-therapeutic tool for treating IFN-α-resistant HCC.

  17. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth

    DEFF Research Database (Denmark)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus

    2011-01-01

    Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines...... mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase...... proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis...

  18. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases.

    Science.gov (United States)

    Gianni, M; Ponzanelli, I; Mologni, L; Reichert, U; Rambaldi, A; Terao, M; Garattini, E

    2000-05-01

    In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.

  19. Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect.

    Science.gov (United States)

    Huang, Liqun; Zhu, Caihua; Sun, Yu; Xie, Gang; Mackenzie, Gerardo G; Qiao, George; Komninou, Despina; Rigas, Basil

    2010-11-01

    Non-steroidal anti-inflammatory drugs such as sulindac are promising chemoprevention agents against colon cancer, but their weak potency and side effects limit their use for both chemoprevention and chemotherapy. Here, we evaluated the effect of a new sulindac derivative, phospho-sulindac or OXT-922, on the growth of human cancer cell lines and its mechanism of action. OXT-922 inhibited the growth of human cancer cell lines originating from colon, pancreas and breast ~11- to 30-fold more potently than sulindac. This effect was mediated by a strong cytokinetic effect. Compared with control, OXT-922 inhibited cell proliferation by up to 67%, induced apoptosis 4.1-fold over control and blocked the G(1) to S cell cycle phase transition. OXT-922 suppressed the levels of cell cycle regulating proteins, including cyclins D(1) and D(3) and Cyclin-dependent kinases (CDK) 4 and 6. The levels of intracellular reactive oxygen species (ROS), especially those of mitochondrial O₂ⁱ⁻, were markedly elevated (5.5-fold) in response to OXT-922. ROS collapsed the mitochondrial membrane potential and triggered apoptosis, which was largely abrogated by antioxidants. OXT-922 suppressed nuclear factor-kappaB activation and downregulated thioredoxin-1 expression. It also suppressed the production of prostaglandin E(2) and decreased cyclooxygenase-1 expression. Similar to sulindac, OXT-922 enhanced spermidine/spermine N(1)-acetyltransferase activity, reduced the cellular polyamine content and synergized with difluoromethylornithine to inhibit cancer cell proliferation and induce apoptosis. Our results suggest that OXT-922 possesses promising anticancer properties and deserves further evaluation.

  20. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  1. INHIBITING GERANYLGERANYLATION INCREASES NEURITE BRANCHING AND DIFFERENTIALLY ACTIVATES COFILIN IN CELL BODIES AND GROWTH CONES

    Science.gov (United States)

    Samuel, Filsy; Reddy, Jairus; Kaimal, Radhika; Segovia, Vianey; Mo, Huanbiao; Hynds, DiAnna L.

    2014-01-01

    Inhibitors of the mevalonate pathway, including the highly prescribed statins, reduce the production of cholesterol and isoprenoids such as geranylgeranyl pyrophosphates. The Rho family of small guanine triphosphatases (GTPases) requires isoprenylation, specifically geranylgeranylation, for activation. Because Rho GTPases are primary regulators of actin filament rearrangements required for process extension, neurite arborization and synaptic plasticity, statins may affect cognition or recovery from nervous system injury. Here, we assessed how manipulating geranylgeranylation affects neurite initiation, elongation and branching in neuroblastoma growth cones. Treatment with the statin, lovastatin (20 μM) decreased measures of neurite initiation by 17.0% to 19.0% when a source of cholesterol was present and increased neurite branching by 4.03 to 9.54 fold (regardless of exogenous cholesterol). Neurite elongation was increased by treatment with lovastatin only in cholesterol-free culture conditions. Treatment with lovastatin decreased growth cone actin filament content by up to 24.3%. In all cases, co-treatment with the prenylation precursor, geranylgeraniol (10 μM), reversed the effect of lovastatin. In prior work, statin effects on outgrowth were linked to modulating the actin depolymerizing factor, cofilin. In our assays, treatment with lovastatin or geranylgeraniol decreased cofilin phosphorylation in whole cell lysates. However, lovastatin increased cofilin phosphorylation in cell bodies and decreased it in growth cones, indicating differential regulation in specific cell regions. Together, we interpret these data to suggest that protein geranylgeranylation likely regulates growth cone actin filament content and subsequent neurite outgrowth through mechanisms that also affect actin nucleation and polymerization. PMID:24515839

  2. GRP78 and Cripto Form a Complex at the Cell Surface and Collaborate To Inhibit Transforming Growth Factor β Signaling and Enhance Cell Growth▿

    Science.gov (United States)

    Shani, Gidi; Fischer, Wolfgang H.; Justice, Nicholas J.; Kelber, Jonathan A.; Vale, Wylie; Gray, Peter C.

    2008-01-01

    Cripto is a multifunctional cell surface protein with important roles in vertebrate embryogenesis and the progression of human tumors. While Cripto has been shown to modulate multiple signaling pathways, its binding partners do not appear to fully explain its molecular actions. Therefore, we conducted a screen aimed at identifying novel Cripto-interacting proteins. This screen led to our identification of glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone that is also expressed at the surfaces of tumor cells. Here we demonstrate that Cripto and GRP78 interact at the cell surfaces of multiple cell lines and that their interaction is independent of prior association within the ER. Interestingly, short hairpin RNA knockdown of endogenous GRP78 resulted in enhanced transforming growth factor β (TGF-β) signaling, indicating that like Cripto, GRP78 inhibits this pathway. We further show that when coexpressed, GRP78 and Cripto collaborate to antagonize TGF-β responses, including Smad phosphorylation and growth inhibition of prostate cancer cells grown under anchorage-dependent or -independent conditions. Finally, we provide evidence that cells coexpressing GRP78 and Cripto grow much more rapidly in soft agar than do cells expressing either protein individually. Together, our results indicate that these proteins bind at the cell surface to enhance tumor growth via the inhibition of TGF-β signaling. PMID:17991893

  3. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth.

    Science.gov (United States)

    Jing, Pu; Bomser, Joshua A; Schwartz, Steven J; He, Jian; Magnuson, Bernadene A; Giusti, M Mónica

    2008-10-22

    Anthocyanins are potent antioxidants and may be chemoprotective. However, the structure-function relationships are not well understood. The objectives of this study were to compare the chemoprotective properties of anthocyanin-rich extracts (AREs) with variable anthocyanin profiles to understand the relationship between anthocyanin chemical structure and chemoprotective activity, measured as inhibition of colon cancer cell proliferation. Additionally, the chemoprotective interaction of anthocyanins and other phenolics was investigated. AREs with different anthocyanin profiles from purple corn, chokeberry, bilberry, purple carrot, grape, radish, and elderberry were tested for growth inhibition (GI 50) using a human colorectal adenocarcinoma (HT29) cell line. All AREs suppressed HT29 cell growth to various degrees as follows: purple corn (GI 50 approximately 14 microg of cy-3-glu equiv/mL) > chokeberry and bilberry > purple carrot and grape > radish and elderberry (GI 50 > 100 microg of cy-3-glu equiv/mL). Anthocyanins played a major role in AREs' chemoprotection and exerted an additive interaction with the other phenolics present. Statistical analyses suggested that anthocyanin chemical structure affected chemoprotection, with nonacylated monoglycosylated anthocyanins having greater inhibitory effect on HT-29 cell proliferation, whereas anthocyanins with pelargonidin, triglycoside, and/or acylation with cinnamic acid exerted the least effect. These findings should be considered for crop selection and the development of anthocyanin-rich functional foods.

  4. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells.

    Science.gov (United States)

    Chen, Yan; Hui, Hui; Li, Zheng; Wang, Hong-Mei; You, Qi-Dong; Lu, Na

    2014-10-01

    Gambogic acid (GA) is the major active ingredient of gamboges, a brownish to orange resin product from Garcinia hanburyi tree in Southeast Asia. This compound exhibits anti-cancer effect on solid tumors. In this study, we investigated the effects of GA on the growth and differentiation of acute myeloid leukemia cells by growth-inhibition detection, morphological changes observation, nitroblue tetrazolium reduction, and the expression of the relative cell-surface differentiation markers. The results showed that GA could inhibit cell growth and promote differentiation in U937 and HL-60 cells. In addition, GA upregulated the expression of p21waf1/cip1 in the two cell lines. Finally, downregulating the p21waf1/cip1 expression with small interfering RNA partially blocked GA-induced cell growth inhibition and differentiation. These results of this study revealed that GA may be used as one of the investigational drugs for acute myeloid leukemia.

  5. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    Energy Technology Data Exchange (ETDEWEB)

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  6. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer.

    Science.gov (United States)

    Li, Qing; Zhang, Xuan; Li, Ning; Liu, Qin; Chen, Dongfeng

    2017-02-09

    Emerging evidence has shown that microRNAs (miRNAs) play important roles in tumor development and progression. In particular, miR-30b is thought to be closely related to the migration, invasion, proliferation, communication, and drug resistance of tumor cells. However, the potential value of miR-30b in human esophageal cancer (EC) remains unclear. In this study, we investigated the biological functions of miR-30b and its potential role in EC. The results indicated that the expression levels of miR-30b were decreased in EC tissues and were correlated with invasion classification (P < 0.01), lymph node metastasis (P < 0.01), and pathological stage (P < 0.05). Log-rank tests demonstrated that low expression of miR-30bwas strongly correlated with poor overall survival in patients with EC (P < 0.05). Moreover, overexpression of miR-30b markedly inhibited the growth, migration, and invasion of ECA109 and TE-1 cells by directly downregulating homeobox A1 (HOXA1). When HOXA1 was reintroduced into miR-30b-transfected ECA109 or TE-1 cells, the inhibitory effects of miR-30b on EC cell growth, migration, and invasion were markedly reversed. In conclusion, our findings demonstrated that miR-30b could inhibit tumor cell growth, migration, and invasion by directly targeting HOXA1 in EC cells.

  7. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2.

    Science.gov (United States)

    Li, Chen-Shuang; Tian, Haijun; Zou, Min; Zhao, Ke-Wei; Li, Yawei; Lao, Lifeng; Brochmann, Elsa J; Duarte, M Eugenia L; Daubs, Michael D; Zhou, Yan-Heng; Murray, Samuel S; Wang, Jeffrey C

    2015-10-16

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous.

  8. NF-kappa B signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells

    NARCIS (Netherlands)

    Yao, Jun; Duan, Li; Fan, Mingwen; Wu, Xinxing

    2006-01-01

    The HDAC inhibitor Trichostatin A (TSA) exhibits antiturnour activity in various tumour cells. However, little is known about the effect of TSA on growth of human tongue carcinoma cells. In this study, we observed that TSA concentration-dependently inhibited growth of human tongue carcinoma Tca8113

  9. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  10. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  11. Knockdown of RAGE inhibits growth and invasion of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    X.C. Xu

    2013-11-01

    Full Text Available The receptor for advanced glycation endproducts (RAGE is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of RAGE in gastric cancer is still elusive. In this study, we investigated the expression and molecular mechanisms of RAGE in gastric cancer cells. Forty cases of gastric cancer and corresponding adjacent non-cancerous tissues (ANCT were collected, and the expression of RAGE was assessed using immunohistochemistry (IHC in biopsy samples. Furthermore, RAGE signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE used to transfect into human gastric cancer SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA and matrix metallopeptidase-2 (MMP-2 was detected by Real-time PCR and Western blot assays. Cell proliferative activities and invasive capability were respectively determined by MTT and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. As a consequence, RAGE was found highly expressed in cancer tissues compared with the ANCT (70.0% vs 45.0%, P=0.039, and correlated with lymph node metastases (P=0.026. Knockdown of RAGE reduced cell proliferation and invasion of gastric cancer with decreased expression of AKT, PCNA and MMP-2, and induced cell apoptosis and cycle arrest. Altogether, upregulation of RAGE expression is associated with lymph node metastases of gastric cancer, and blockade of RAGE signaling suppresses growth and invasion of gastric cancer cells through AKT pathway, suggesting that RAGE may represent a potential therapeutic target for this aggressive malignancy.

  12. Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system.

    Science.gov (United States)

    Okuno, Tomofumi; Miura, Kiyoshi; Sakazaki, Fumitoshi; Nakamuro, Katsuhiko; Ueno, Hitoshi

    2012-01-01

    The purpose of this study was to clarify the cell growth inhibitory mechanism of human breast cancer cells caused by selenium (Se) compounds. In the presence of 17β-estradiol (E(2)) at physiological concentrations, growth of estrogen receptor α (ERα)-positive T47D cells was markedly inhibited by 1 × 10(-6) mol/L methylseleninic acid (MSA) with no Se related toxicity.Under conditions where cell growth was inhibited, MSA decreased ERα mRNA levels and subsequent protein levels; further decreasing expression of estrogen-responsive finger protein (Efp) which is a target gene product of ERα and promotes G2/M progression of the cell cycle. Therefore, the decline in Efp expression is presumed to be involved in G2 arrest. Coincidentally, the antioxidative thioredoxin/ thioredoxin reductase (Trx/TrxR) system in cells was enhanced by the synergistic action of E(2) and MSA. It has been reported that ROS-induced oxidative stress enhanced ERα expression. E(2) increased production of intracellular ROS in T47D cells. Meanwhile, MSA significantly decreased E(2)-induced ROS accumulation. From these results, activation of the Trx/TrxR system induced by the coexistence of MSA and E(2) suppresses oxidative stress and decreases expression of ERα, and finally induces the growth arrest of T47D cells through disruption of ERα signaling.

  13. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas.

    Science.gov (United States)

    Naylor, Tara L; Tang, Huaping; Ratsch, Boris A; Enns, Andreas; Loo, Alice; Chen, Liqing; Lenz, Peter; Waters, Nigel J; Schuler, Walter; Dörken, Bernd; Yao, Yung-Mae; Warmuth, Markus; Lenz, Georg; Stegmeier, Frank

    2011-04-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and CD79A/B. In this study, we offer evidence of therapeutic potential for the selective PKC (protein kinase C) inhibitor sotrastaurin (STN) in preclinical models of DLBCL. A significant fraction of ABC DLBCL cell lines exhibited strong sensitivity to STN, and we found that the molecular nature of NF-κB pathway lesions predicted responsiveness. CD79A/B mutations correlated with STN sensitivity, whereas CARD11 mutations rendered ABC DLBCL cell lines insensitive. Growth inhibitory effects of PKC inhibition correlated with NF-κB pathway inhibition and were mediated by induction of G₁-phase cell-cycle arrest and/or cell death. We found that STN produced significant antitumor effects in a mouse xenograft model of CD79A/B-mutated DLBCL. Collectively, our findings offer a strong rationale for the clinical evaluation of STN in ABC DLBCL patients who harbor CD79 mutations also illustrating the necessity to stratify DLBCL patients according to their genetic abnormalities.

  14. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  15. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    Science.gov (United States)

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  16. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  17. Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibited colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Bing ZHANG; Xian-xi LIU; Yan ZHANG; Chun-ying JIANG; Qing-shan TENG; Hai-yan HU; Wei WANG; Lei GONG

    2006-01-01

    Aim: To construct a recombinant adenovirus that can simultaneously express both antisense ornithine decarboxylase (ODC) and adenosylmethionine decarboxylase (AdoMetDC) and detect its inhibitory effect on the intracellular polyamine pool and colorectal cancer cell growth. Methods: A 205-bp cDNA of AdoMetDC was reverse-inserted into recombinant pAdTrack-ODCas vectors and recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the packaging cell HEK293 after they were linearized by Pad. Green fluorescent protein expression was used to monitor the process of adenovirus packaging. The ODC and AdoMetDC protein levels were identified by western blotting, and intracellular polyamine content was detected by reverse-phase high performance liquid chromatography. A viable cell count was used to determine the growth of HT-29 cells with or without exogenous polyamine. Results: Sequencing confirmed that AdoMetDC cDNA was successfully ligated into the pAdTrack-ODCas vector. GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting demonstrated that both ODC and AdoMetDC were downregulated by Ad-ODC-AdoMetDCas, and consequently 3 kinds of polyamine (putrescine, spermidine and spermine) were reduced to very low levels. HT-29 cell growth was significantly inhibited as compared with control conditions, and growth arrest was not reversed by exogenous putrescine. Conclusion: The successfully constructed recombinant adenovirus, Ad-ODC-AdoMetDCas, blocked polyamine synthesis and has therapeutic potential for treating colorectal cancer in vitro.

  18. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available L-carnitine (LC is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1 LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2 LC treatment selectively induces the expression of p21(cip1 gene, mRNA and protein in cancer cells but not p27(kip1; (4 LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5 LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6 LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1 gene but not p27(kip1 detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  19. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis.

    Science.gov (United States)

    Qi, Runzi; An, Huazhang; Yu, Yizhi; Zhang, Minghui; Liu, Shuxun; Xu, Hongmei; Guo, Zhenghong; Cheng, Tao; Cao, Xuetao

    2003-12-01

    Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis; hence, perturbed Notch signaling may contribute to tumorigenesis. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in Africa and Asia. The mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression of HCC are not clear. We constitutively overexpressed active Notch1 in human HCC to explore the effects of Notch1 signaling on HCC cell growth and to investigate the underlying molecular mechanisms. We show here that overexpression of Notch1 was able to inhibit the growth of HCC cells in vitro and in vivo. Biochemical analysis revealed the involvement of cell cycle regulated proteins in Notch1-mediated G(0)/G(1) arrest of HCC cells. Compared with green fluorescent protein (GFP) control, transient transfection of Notch1 ICN decreased expression of cyclin A (3.5-fold), cyclin D1 (2-fold), cyclin E (4.5-fold), CDK2 (2.8-fold), and the phosphorylated form of retinoblastoma protein (3-fold). Up-regulation of p21(waf/cip1) protein expression was observed in SMMC7721-ICN cells stably expressing active Notch1 but not in SMMC7721-GFP cells, which only express GFP. Furthermore, a 12-fold increase in p53 expression and an increase (4.8-fold) in Jun-NH(2)-terminal kinase activation were induced in SMMC7721-ICN cells compared with SMMC7721-GFP cells. In contrast, expression of the antiapoptotic Bcl-2 protein could not be detected in SMMC7721-ICN cells. These findings suggest that Notch1 signaling may participate in the development of HCC cells, affecting multiple pathways that control both cell proliferation and apoptosis.

  20. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    Full Text Available BACKGROUND: Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium. CONCLUSIONS/SIGNIFICANCE: Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  1. MiR-940 Inhibited Cell Growth and Migration in Triple-Negative Breast Cancer

    Science.gov (United States)

    Hou, Lingmi; Chen, Maoshan; Yang, Hongwei; Xing, Tianyong; Li, Jingdong; Li, Guangwu; Zhang, Lina; Deng, Shishan; Hu, Jiani; Zhao, Xiaobo; Jiang, Jun

    2016-01-01

    Background Breast cancer is the main type of cancer in women, and triple-negative breast cancer (TNBC) is a unique subtype of breast cancer. The expression of miR-940 has been shown to play an important role in various cancers; however, the role of miR-940 in TNBC remains unknown. Material/Methods The expression of miR-940 in TNBC tissues or cells were tested by qRT-PCR; the expression of miR-940 in cells were overexpressed by miR-940 mimics, and suppressed by anti-miR-940. Bioinformatics algorithms from TargetScanHuman were used to predict the target genes of miR-940. The interaction between miR-940 and ZNF24 was confirmed by dual luciferase assays. The protein level was assayed by Western blot. Results TNBC tissues and cells showed lower miR-940 levels. Conclusions MiR-940 inhibited cellular proliferation and migration in TNBC. PMID:27731867

  2. Inhibition of fibroblast growth factor 2-induced apoptosis involves survivin expression, protein kinase Cα activation and subcellular translocation of Smac in human small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Desheng Xiao; Kuansong Wang; Jianhua Zhou; Huiqiu Cao; Zhenghao Deng; Yongbin Hu; Xiahui Qu; Jifang Wen

    2008-01-01

    To investigate the mechanism by which fibroblast growth factor 2 (FGF-2) inhibits apoptosis in the human small cell lung cancer cell line H446 subjected to serum starvation,apoptosis was evaluated by flow cytometry, Hoechst 33258 staining, caspase-3 activity, and DNA fragmentation.Survivin expression induced by FGF-2 and protein kinase Cα (PKCα) translocation was detected by subcellular fractionation and Western blot analysis. In addition, FGF-2-induced release of Smac from mitochondria to the cytoplasm was analyzed by Western blotting and immunofluorescence.FGF-2 reduced apoptosis induced by serum starvation and up-regulated survivin expression in H446 cells in a dosedependent and time-dependent manner, and inhibited caspase-3 activity. FGF-2 also inhibited the release of Smac from mitochondria to the cytoplasm induced by serum starvation and increased PKCα translocation from the cytoplasm to the cell membrane. In addition, PKC inhibitor inhibited the expression of survivin. FGF-2 up-regulates the expression of survivin protein in H446 cells and blocks the release of Smac from mitochondria to the cytoplasm. PKCα regulated FGF-2-induced survivin expression. Thus, survivin, Smac,and PKCα might play important roles in the inhibition of apoptosis by FGF-2 in human small cell lung cancer cells.

  3. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Guan, Siao-Syun; Chang, Jungshan; Cheng, Chun-Chia; Luo, Tsai-Yueh; Ho, Ai-Sheng; Wang, Chia-Chi; Wu, Cheng-Tien; Liu, Shing-Hwa

    2014-07-15

    Colorectal cancer (CRC) is known as a common malignant neoplasm worldwide. The role of EGFR/HER2 in CRC is unclear. Afatinib is an irreversible EGFR/HER2 inhibitor. There were few studies of afatinib on CRC. Here, we investigated the protein levels/expressions of HER2 in sera and tumors from CRC patients and the therapeutic effect of afatinib on HER2-overexpressed CRC in vitro and in vivo. The increased HER2 levels were detected in the collected sera and tumors of patients with CRC. The serological HER2 levels were correlated with the tumor HER2 expressions in patients. Afatinib also inhibited the HER2-positive tumor cell growth and caused apoptosis in HER2-overexpressed human colorectal cancer HCT-15 cells but not in low HER2 expressed human gastric cancer MKN45 cells. In vivo study showed that afatinib reduced tumor growth in HER2-overexpressed xenografts. Moreover, afatinib-encapsulated micelles displayed higher cytotoxic activity in HCT-15 cells and were more effective for tumor growth suppression in HCT-15-induced tumor xenografts than afatinib performance alone. Taken together, these findings suggest that higher serum HER2 levels reflect the higher HER2 contents in tumors of CRC patients, and the improved afatinib-encapsulated micelles possess high therapeutic efficacy in HER2-overexpressed CRC in vitro and in vivo.

  4. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  5. Metformin Induced AMPK Activation, G0/G1 Phase Cell Cycle Arrest and the Inhibition of Growth of Esophageal Squamous Cell Carcinomas In Vitro and In Vivo.

    Science.gov (United States)

    Cai, Xianbin; Hu, Xi; Tan, Xiaojun; Cheng, Weijie; Wang, Qinjia; Chen, Xiaofeng; Guan, Yinghong; Chen, Chong; Jing, Xubin

    2015-01-01

    Esophageal squamous cell carcinomas (ESCC) have become a severe threat to health and the current treatments for ESCC are frequently not effective. Recent epidemiological studies suggest that the anti-hyperglycemic agent metformin may reduce the risk of developing cancer, including ESCC, among diabetic patients. However, the antitumor effects of metformin on ESCC and the mechanisms underlying its cell cycle regulation remain elusive. The findings reported herein show that the anti-proliferative action of metformin on ESCC cell lines is partially mediated by AMPK. Moreover, we observed that metformin induced G0/G1 phase arrest accompanied by the up-regulation of p21CIP1 and p27KIP1. In vivo experiments further showed that metformin inhibited tumor growth in a ESCC xenograft model. Most importantly, the up-regulation of AMPK, p53, p21CIP1, p27KIP1 and the down-regulation of cyclinD1 are involved in the anti-tumor action of metformin in vivo. In conclusion, metformin inhibits the growth of ESCC cells both in cell cultures and in an animal model. AMPK, p53, p21CIP1, p27KIP1 and cyclinD1 are involved in the inhibition of tumor growth that is induced by metformin and cell cycle arrest in ESCC. These findings indicate that metformin has the potential for use in the treatment of ESCC.

  6. ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma.

    Science.gov (United States)

    Wang, Zhi-Ming; Yang, Dong-Sheng; Liu, Jie; Liu, Hong-Bo; Ye, Ming; Zhang, Yu-Fei

    2016-03-01

    The objective of this study is to determine the effects of Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y-27632 on the growth, invasion, and migration of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma (TSCC). The methods of the study are as follows: After being routinely cultured for 24 h, Tca8113 and CAL-27 cells were treated with Y-27632 solution. The morphological change of Y-27632-treated cells was observed under an optical microscope and an inverted microscope; MTT assay was performed to measure the optical density (OD) of cells and calculate cell growth inhibition rate; the change of apoptosis was detected by AnnexinV-FITC/PI assay; cell invasion and migration were measured by Transwell assay. The results were as follows: (1) With increasing concentration of Y-27632, cell morphology changed and cell apoptosis appeared; (2) MTT assay showed that inhibition effect of Y-27632 on Tca8113 and CAL-27 cells was enhanced with increasing concentrations and time (all P Y-27632; (4) Transwell assay showed, after a treatment with Y-27632, the number of migrated and invaded Tca8113 and CAL-27 cells in each group was statistically different (all P Y-27632 was decreased and less Tca8113 and CAL-27 cells in experimental groups passed through polycarbonate membrane (all P Y-27632 can inhibit the growth, invasion, and migration of Tca8113 and CAL-27 cells, suggesting that Y-27632 may be therapeutically useful in TSCC.

  7. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  8. Effects of COX-2 inhibition on expression of vascular endothelial growth factor and interleukin-8 in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yu Danny CW

    2008-07-01

    Full Text Available Abstract Background Cyclooxygenase (COX-2 has been implicated in tumour progression, angiogenesis and metastasis in non-small cell lung cancer (NSCLC. We speculated that inhibition of COX-2 activity might reduce expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF and interleukin-8 (IL-8 in lung cancer cells. Methods The levels of IL-8, VEGF and prostaglandin E2 (PGE2 were measured by ELISA. Expression of COX-1 and COX-2 was determined by Western blotting. Inhibition or knockdown of COX-2 was achieved by treating NSCLC cells with specific COX-2 inhibitor NS-398 or COX-2 siRNA, respectively. Results We found that NSCLC cell lines produced more IL-8 than VEGF (p 2 was significantly higher in NSCLC cell lines than SCLC cell lines (p 2 production. VEGF was significantly reduced following the treatment of NS-398 in A549 (by 31% and MOR/P (by 47% cells lines which expressing strong COX-2, but not in H460 cell line which expressing very low COX-2. However, IL-8 was not reduced in these cell lines. To confirm these results, we knocked down COX-2 expression with COX-2 siRNA in these cell lines. VEGF was significantly decreased in A549 (by 24% and in MOR/P (by 53%, but not in H460 whereas IL-8 was not affected in any cell line. Conclusion We conclude that NSCLC cells produce much higher levels of IL-8 than SCLC cells whereas both NSCLC and SCLC cells produce similar levels of VEGF. COX-2 is only expressed in NSCLC cells, but not in SCLC cells. VEGF is produced in both NSCLC and SCLC cells regardless of COX-2 expression. However, VEGF production is, at least partly, COX-2 dependent in NSCLC cells expressing COX-2. In contrast, IL-8 production is COX-2 independent in both NSCLC and SCLC cells. We speculate that combined targeting of COX-2 and IL-8 may be useful in the treatment of patients with NSCLC and targeting VEGF may be useful in the treatment of patients with SCLC.

  9. Neolignans from Saururus chinensis inhibit PC-3 prostate cancer cell growth via apoptosis and senescence-like mechanisms.

    Science.gov (United States)

    Song, Seo-Young; Lee, Inkyoung; Park, Chaehwa; Lee, Hyeon; Hahm, Jong-Cheon; Kang, Won Ki

    2005-10-01

    This study investigated the anticancer activity and related mechanisms of neolignans, especially threo, erythro-manassantin A (compound 2), which are isolated from Saururus chinensis, in PC-3 cells. Compound 2 strongly inhibited the proliferation of PC-3 cells in a dose-dependent manner. Different cell morphologies were observed depending on the concentration of compound 2, which suggested different growth inhibitory mechanisms. DNA flow cytometry indicated that both low and high concentrations of compound 2 induced the arrest of PC-3 cells in G1 phase. Western blot analyses showed that hyperphosphorylated Rb and E2F-1 were decreased, whereas hypophosphorylated Rb was increased. The cells treated with compound 2 at 200 ng/ml showed shrinkage morphologically, and the staining of annexin V-FITC revealed apoptotic cell death of these cells. The induction of apoptosis was accompanied by the cleavage of caspase-3, -8, and -9, as well as the downregulation of the Bcl-2 and the upregulation of Bax. By contrast, at low compound 2 concentration (1 ng/ml), the cells arrested in G1 showed characteristic changes in morphology, such as an enlarged, flattened cell shape; the majority strongly expressed SA-beta-galactosidase activity. The number of cells undergoing apoptosis was negligible, and no poly(ADP-ribose) polymerase (PARP) cleavage was observed. The increase of p21 was noticed. However, it appeared to be transient rather than sustained. The protein p27 may be important for maintaining the senescence machinery induced by compound 2 because p27 expression was increased at low concentration compared with that at high concentration. In conclusion, compound 2 showed a significant growth inhibitory effect in PC-3 cells via two different mechanisms, i.e., apoptosis at high concentration and senescence at low concentration.

  10. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Wei, Shao-Hua [College of Chemistry and Materials Science, Nanjing Normal University, Nanjing (China); Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Ao, Gui-Zhen [Department of Medicinal Chemistry, School of Pharmacy, Soochow University, Jiangsu (China); Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Xu, Guang-Lin, E-mail: xudunlop@126.com [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Department of Pharmacology, University of Michigan, Ann Arbor (United States)

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  11. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt.

    Science.gov (United States)

    Harrison, Megan E; Power Coombs, Melanie R; Delaney, Leanne M; Hoskin, David W

    2014-10-01

    Epidemiological studies show that fruit- and vegetable-rich diets are associated with a reduced risk of developing certain forms of cancer, including breast cancer. In this study we demonstrate that a subcytotoxic concentration of apigenin, which is a flavone found at high concentrations in parsley, onions, grapefruit, oranges, and chamomile tea, inhibited DNA synthesis in a panel of human breast cancer cell lines (MDA-MB-231, MBA-MB-468, MCF-7, SK-BR-3). Decreased proliferation of MDA-MB-468 cells in the presence of apigenin was associated with G2/M phase cell cycle arrest and the production of reactive oxygen species. Apigenin-treated MDA-MB-468 cells also showed reduced phosphorylation of Akt (protein kinase B), which is an essential effector serine/threonine kinase in the phosphatidylinositide 3-kinase pathway that promotes tumor growth and progression. However, exposure to the antioxidant reduced glutathione failed to reverse apigenin-mediated inhibition of Akt phosphorylation and cell proliferation, indicating that these effects were not due to oxidative stress. Taken together, these findings suggest that low-dose apigenin has the potential to slow or prevent breast cancer progression.

  12. GENISTEIN INHIBITS EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN HER-2/NEU TRANSFECTED HUMAN BREAST CANCER MCF-7 CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHU Jun-dong; YU Xiao-ping; MI Man-tian

    2006-01-01

    Objective: our previous studies have demonstrated that HER-2/neu gene expression in human breast cancer MCF-7 cells promotes angiogenesis in MCF-7 cells xenograft tumors, and genistein inhibits angiogenesis in MCF-7 cells with HER-2/neu expression xenograft tumors. Here, the effects of genistein on the expression of vascular endothelial growth factor (VEGF) inMCR-7 cells with HER-2/neu expression were further studied for exploring the molecular mechanism of anti-angiogenesis in HER-2/neu-overexpressing breast cancer by genistein. Methods: HER-2/neu-overexpressing MCF-7 cells (MCF-7/HER-2)were established by transfecting HER-2/neu gene into HER-2/neu negative expression breast cancer MCF-7 cells.Immunocytochemical staining, western blot and reverse transcription-polymerase chain reaction (RT-PCR) were adopted to measure the expression of VEGF in MCF-7/HER-2 cells treated by genistein for 24, 48 and 72h. Results: HER-2/neu expression up-regulated VEGF mRNA and protein in MCF-7 cells, genistein decreased VEGF mRNA and protein level in MCF-7/HER-2 cells in a time-dependent manner. Conclusion: These results suggest that VEGF plays an important role in HER-2/neu gene expression promoted antiogenesis in breast cancer and genistein induced down-regulation of the expression of VEGF may be one of the molecular mechanisms of its anti-angiogenesis in HER-2/neu-overexpressing breast cancer.

  13. IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.

    Science.gov (United States)

    Tang, Jian-Cai; Shen, Guo-Bo; Wang, Shi-Min; Wan, Yong-Sheng; Wei, Yu-Quan

    2014-01-01

    Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

  14. Cannabidiol inhibits growth and induces programmed cell death in kaposi sarcoma-associated herpesvirus-infected endothelium.

    Science.gov (United States)

    Maor, Yehoshua; Yu, Jinlong; Kuzontkoski, Paula M; Dezube, Bruce J; Zhang, Xuefeng; Groopman, Jerome E

    2012-07-01

    Kaposi sarcoma is the most common neoplasm caused by Kaposi sarcoma-associated herpesvirus (KSHV). It is prevalent among the elderly in the Mediterranean, inhabitants of sub-Saharan Africa, and immunocompromised individuals such as organ transplant recipients and AIDS patients. Current treatments for Kaposi sarcoma can inhibit tumor growth but are not able to eliminate KSHV from the host. When the host's immune system weakens, KSHV begins to replicate again, and active tumor growth ensues. New therapeutic approaches are needed. Cannabidiol (CBD), a plant-derived cannabinoid, exhibits promising antitumor effects without inducing psychoactive side effects. CBD is emerging as a novel therapeutic for various disorders, including cancer. In this study, we investigated the effects of CBD both on the infection of endothelial cells (ECs) by KSHV and on the growth and apoptosis of KSHV-infected ECs, an in vitro model for the transformation of normal endothelium to Kaposi sarcoma. While CBD did not affect the efficiency with which KSHV infected ECs, it reduced proliferation and induced apoptosis in those infected by the virus. CBD inhibited the expression of KSHV viral G protein-coupled receptor (vGPCR), its agonist, the chemokine growth-regulated protein α (GRO-α), vascular endothelial growth factor receptor 3 (VEGFR-3), and the VEGFR-3 ligand, vascular endothelial growth factor C (VEGF-C). This suggests a potential mechanism by which CBD exerts its effects on KSHV-infected endothelium and supports the further examination of CBD as a novel targeted agent for the treatment of Kaposi sarcoma.

  15. Selective growth inhibition of a human malignant melanoma cell line by sesame oil in vitro.

    Science.gov (United States)

    Smith, D E; Salerno, J W

    1992-06-01

    Ayurveda, an ancient and comprehensive system of natural medicine, recommends regular topical application to the skin of sesame oil, above all other oils, as a health-promoting procedure. We examined the effect of sesame oil and several other vegetable oils and their major component fatty acids on the proliferation rate of human normal and malignant melanocytes growing at similar rates in serum-free media. We found that sesame and safflower oils, both of which contain large amounts of linoleate in triglyceride form, selectively inhibited malignant melanoma growth over normal melanocytes whereas coconut, olive and mineral oils, which contain little or no linoleate as triglyceride, did not. These oils were tested at a range of 10-300 micrograms/ml. We found that of the fatty acids tested, only linoleic acid was selectively inhibitory while palmitic and oleic were not. These fatty acids were tested in the range of 3-100 micrograms/ml. These results suggest that certain vegetable oils rich in linoleic acid, such as the sesame oil, recommended for topical use by Ayurveda, may contain selective antineoplastic properties which are similar to those demonstrated for essential polyunsaturated fatty acids and their metabolites. This suggests that whole vegetable oils may have potential clinical usefulness.

  16. The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Julio R. Fernández Massó

    2013-01-01

    Full Text Available We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552 was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.

  17. Flurbiprofen benzyl nitrate (NBS-242 inhibits the growth of A-431 human epidermoid carcinoma cells and targets ß-catenin

    Directory of Open Access Journals (Sweden)

    Nath N

    2013-05-01

    Full Text Available Niharika Nath,1,2 Xiaoping Liu,3 Lloydine Jacobs,1 Khosrow Kashfi1,3 1Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, USA; 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA Background: The Wnt/ß-catenin/T cell factor (TCF signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs. Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. Methods: We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242, and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/ß-catenin, cyclin D1, and caspase-3. Results: NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50 for growth inhibition being 60 ± 4 µM, 320 ± 20 µM, and 880 ± 65 µM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved ß-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of ß-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels

  18. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.

    Science.gov (United States)

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-11-01

    Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine-suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xenograft athymic nude mice. Solanine regulates the protein levels of cell cycle proteins, including Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21 in vivo and in vitro. Also, in cultured DU145 cell, solanine significantly inhibits cell growth. Moreover, the administration of NAC, an active oxygen scavenger, markedly reduces solanine-induced cell death. Blockade of P38 MAPK kinase cannot suppress reactive oxygen species (ROS), but can suppress solanine-induced cell apoptosis. Also, inhibition of ROS by NAC inactivates P38 pathway. Taken together, the data suggest that inhibition of prostate cancer growth by solanine may be through blocking the expression of cell cycle proteins and inducing apoptosis via ROS and activation of P38 pathway. These findings indicate an attractive therapeutic potential of solanine for suppression of prostate cancer.

  19. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  20. Short-term resveratrol exposure causes in vitro and in vivo growth inhibition and apoptosis of bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Mo-Li Wu

    Full Text Available Conventional adjuvant chemotherapies for bladder transitional cell carcinomas (TCCs may cause strong systemic toxicity and local irritation. Non-toxic resveratrol inhibits TCC cell growth but its feasibility in clinical management of TCCs remains obscure. This study aimed to evaluate the safety and anti-TCC efficacy of resveratrol, using the experimental models closer to the clinical treatment condition. Human TCC EJ cells were exposed to 100 µM, 150 µM and 200 µM resveratrol respectively for 1 hour and 2 hours to mimic intravesical drug instillation and the cell responses were analyzed by multiple experimental approaches. An orthotopic TCC nude mouse model was established by injecting EJ cells into the sub-urothelial layer and used for short-term intravesical resveratrol instillation. The safety of resveratrol instillation was evaluated and compared with that of MCC. The results revealed that 2 h 150 µM or 200 µM resveratrol treatment leaded to remarkable S phase arrest and apoptosis at 72 h time-point, accompanied with attenuated phosphorylation, nuclear translocation and transcription of STAT3, down-regulation of STAT3 downstream genes (survivin, cyclinD1, c-Myc and VEGF and nuclear translocations of Sirt1 and p53. The importance of STAT3 signaling in cell growth was confirmed by treating EJ cells with JAK2 inhibitor tyrphostin AG490. The efficacy and safety of resveratrol instillation were proved by the findings from nude mouse orthotopic xenograft models, because this treatment caused growth suppression, distinctive apoptosis and STAT3 inactivation of the transplanted tumors without affecting normal urothelium. Our results thus suggest for the first time the practical values of resveratrol as a safe and effective agent in the post-operative treatment of TCCs.

  1. Identification of the sAPRIL binding peptide and its growth inhibition effects in the colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiao-qing He

    Full Text Available A proliferation-inducing ligand (APRIL is a member of the tumor necrosis factor (TNF super family. It binds to its specific receptors and is involved in multiple processes during tumorigenesis and tumor cells proliferation. High levels of APRIL expression are closely correlated to the growth, metastasis, and 5-FU drug resistance of colorectal cancer. The aim of this study was to identify a specific APRIL binding peptide (BP able to block APRIL activity that could be used as a potential treatment for colorectal cancer.A phage display library was used to identify peptides that bound selectively to soluble recombinant human APRIL (sAPRIL. The peptides with the highest binding affinity for sAPRIL were identified using ELISA. The effects of sAPRIL-BP on cell proliferation and cell cycle/apoptosis in vitro were evaluated using the CCK-8 assay and flow cytometry, respectively. An in vivo mouse model of colorectal cancer was used to determine the anti-tumor efficacy of the sAPRIL-BP.Three candidate peptides were characterized from eight phage clones with high binding affinity for sAPRIL. The peptide with the highest affinity was selected for further characterization. The identified sAPRIL-BP suppressed tumor cell proliferation and cell cycle progression in LOVO cells in a dose-dependent manner. In vivo in a mouse colorectal challenge model, the sAPRIL-BP reduced the growth of tumor xenografts in nude mice by inhibiting proliferation and inducing apoptosis intratumorally. Moreover, in an in vivo metastasis model, sAPRIL-BP reduced liver metastasis of colorectal cancer cells.sAPRIL-BP significantly suppressed tumor growth in vitro and in vivo and might be a candidate for treating colorectal cancers that express high levels of APRIL.

  2. Hepatitis C virus core proteins derived from different quasispecies of genotype 1b inhibit the growth of Chang liver cells

    Institute of Scientific and Technical Information of China (English)

    Xue-Bing Yan; Lei Mei; Xia Feng; Mei-Rong Wan; Zhi Chen; Nicole Pavia; Christian Brechot

    2008-01-01

    AIM: To investigate the influence of different quasispecies of hepatitis C virus (HCV) genotype 1b core protein on growth of Chang liver cells.METHODS: Three eukaryotic expression plasmids (pEGFP-N1/core) that contained different quasispecies truncated core proteins of HCV genotype 1b were constructed. These were derived from tumor (T) and nontumor (NT) tissues of a patient infected with HCV and C191 (HCV-J6). The core protein expression plasmids were transiently transfected into Chang liver cells. At different times, the cell cycle and apoptosis was assayed by flow cytometry, and cell proliferation was assayed by methyl thiazolyl tetrazolium (MTT) assay.RESULTS: The proportion of S-phase Chang liver cells transfected with pEGFP-N1/core was significantly lower than that of cells transfected with blank plasmid at three different times after transfection (all P NT > C191), and apoptosis was increased in cells transfected with pEGFP-N1/core as the transfection time increased (72 h > 48 h > 24 h).CONCLUSION: These results suggest that HCV genotype 1b core protein induces apoptosis, and inhibits cellcycle progression and proliferation of Chang liver cells.Different quasispecies core proteins of HCV genotype 1b might have some differences in the pathogenesis of HCV persistent infection and hepatocellular carcinoma.

  3. Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Rui-hua

    2012-04-01

    Full Text Available Abstract Background Human olfactomedin 4 (OLFM4 gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance. Methods OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2 or tumor necrosis factor-alpha (TNF α were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk. Results The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P 2O2 or TNF α-induced apoptosis and caspase-3 activity (all P 2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P Conclusion Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.

  4. Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis.

    Science.gov (United States)

    Oh, S; Xiaofei, E; Ni, D; Pirooz, S D; Lee, J-Y; Lee, D; Zhao, Z; Lee, S; Lee, H; Ku, B; Kowalik, T; Martin, S E; Oh, B-H; Jung, J U; Liang, C

    2011-03-01

    The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.

  5. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    Science.gov (United States)

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  6. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    Science.gov (United States)

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  7. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest

    Directory of Open Access Journals (Sweden)

    Qiusheng Lan

    2015-08-01

    Full Text Available The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2 apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  8. A Peptide Antagonist of the ErbB1 Receptor Inhibits Receptor Activation, Tumor Cell Growth and Migration In Vitro and Xenograft Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Ruodan Xu

    2010-01-01

    Full Text Available The epidermal growth factor family of receptor tyrosine kinases (ErbBs plays essential roles in tumorigenesis and cancer disease progression, and therefore has become an attractive target for structure-based drug design. ErbB receptors are activated by ligand-induced homo- and heterodimerization. Structural studies have revealed that ErbB receptor dimers are stabilized by receptor–receptor interactions, primarily mediated by a region in the second extracellular domain, termed the “dimerization arm”. The present study is the first biological characterization of a peptide, termed Inherbin3, which constitutes part of the dimerization arm of ErbB3. Inherbin3 binds to the extracellular domains of all four ErbB receptors, with the lowest peptide binding affinity for ErbB4. Inherbin3 functions as an antagonist of epidermal growth factor (EGF-ErbB1 signaling. We show that Inherbin3 inhibits EGF-induced ErbB1 phosphorylation, cell growth, and migration in two human tumor cell lines, A549 and HN5, expressing moderate and high ErbB1 levels, respectively. Furthermore, we show that Inherbin3 inhibits tumor growth in vivo and induces apoptosis in a tumor xenograft model employing the human non-small cell lung cancer cell line A549. The Inherbin3 peptide may be a useful tool for investigating the mechanisms of ErbB receptor homo- and heterodimerization. Moreover, the here described biological effects of Inherbin3 suggest that peptide-based targeting of ErbB receptor dimerization is a promising anti-cancer therapeutic strategy.

  9. Dauricine inhibits insulin-like growth factor-Ⅰ-induced hypoxia inducible factor 1α protein accumulation and vascular endothelial growth factor expression in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xu-dong TANG; Xin ZHOU; Ke-yuan ZHOU

    2009-01-01

    Aim: To investigate the effects of dauricine (Dau) on insulin-like growth factor-Ⅰ (IGF-Ⅰ)-induced hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human breast cancer cells (MCF-7).Methods: Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of Dau, followed by incubation with IGF-Ⅰ for 6 h. HIF-1α and VEGF protein expression levels were analyzed by Western blotting and ELISA, respectively.HIF-1α and VEGF mRNA levels were determined by real-time PCR. In vitro angiogenesis was observed via the human umbilical vein endothelial cell (HUVEC) tube formation assay. An in vitro invasion assay on HUVECs was performed.Results: Dau significantly inhibited IGF-Ⅰ-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-Ⅰ.Mechanistically, Dau suppressed IGF-Ⅰ-induced HIF-1α and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway. In addition, Dan reduced IGF-Ⅰ-induced HIF-1α protein accumulation by inhibiting its synthesis as well as by promoting its degradation. Functionally, Dau inhibited angiogenesis in vitro. Moreover, Dau had a direct effect on IGF-Ⅰ-induced invasion of HUVECs.Conclusion: Dau inhibits human breast cancer angiogenesis by suppressing HIF-1α protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anticancer activities of Dau in human breast cancer.

  10. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  11. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways.

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells' apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro's dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days.

  12. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration.

    Science.gov (United States)

    Zheng, Yi-Chao; Duan, Ying-Chao; Ma, Jin-Lian; Xu, Rui-Min; Zi, Xiaolin; Lv, Wen-Lei; Wang, Meng-Meng; Ye, Xian-Wei; Zhu, Shun; Mobley, David; Zhu, Yan-Yan; Wang, Jun-Wei; Li, Jin-Feng; Wang, Zhi-Ru; Zhao, Wen; Liu, Hong-Min

    2013-11-14

    Lysine specific demethylase 1 (LSD1), the first identified histone demethylase, plays an important role in epigenetic regulation of gene activation and repression. The up-regulated LSD1's expression has been reported in several malignant tumors. In the current study, we designed and synthesized five series of 1,2,3-triazole-dithiocarbamate hybrids and screened their inhibitory activity toward LSD1. We found that some of these compounds, especially compound 26, exhibited the most specific and robust inhibition of LSD1. Interestingly, compound 26 also showed potent and selective cytotoxicity against LSD1 overexpressing gastric cancer cell lines MGC-803 and HGC-27, as well as marked inhibition of cell migration and invasion, compared to 2-PCPA. Furthermore, compound 26 effectively reduced the tumor growth bared by human gastric cancer cells in vivo with no signs of adverse side effects. These findings suggested that compound 26 deserves further investigation as a lead compound in the treatment of LSD1 overexpressing gastric cancer.

  13. MicroRNA-145 targets vascular endothelial growth factor and inhibits invasion and metastasis of osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    Lei Fan; Qiang Wu; Xiaojuan Xing; Yulong Wei; Zengwu Shao

    2012-01-01

    MicroRNAs are important gene regulators that play a profound role in tumorigenesis.MicroRNA-145 (miR-145),an important member in the family of microRNAs,is underexpressed in several types of tumors and acts as a tumor suppressor.The role and probable pathways of miR-145in osteosarcoma carcinogenesis are still unknown.In this study,we found that miR-145 was significantly underexpressed in osteosarcoma tissues,and the over-expression of miR-145 could inhibit invasion and angiopoiesis of osteosarcoma cells.Furthermore,the results showed that vascular endothelial growth factor (VEGF) expression was down-regulated in osteosarcoma cells after miR-145 transfection.On the basis of these results,we performed the luciferase assay and verified that miR-145 could downregulate VEGF at the translational level by partially binding to VEGF 3' untranslated region (3'UTR).Therefore,it can be concluded that miR-145 can inhibit invasion and metastasis of osteosarcoma cells.One of the mechanisms is the down-regulation of VEGF expression by miR-145 by binding to the 3'UTR of VEGF mRNA specifically.These novel findings may have extensive implications for an effective gene therapy of osteosarcoma.

  14. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.Y. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, M.S.; Lee, M.K. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, J.S.; Yi, H.K. [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Nam, S.Y. [Department of Alternative Therapy, Jeonju University, Jeonju (Korea, Republic of); Lee, D.Y.; Hwang, P.H. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-01-13

    Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

  15. Taspine isolated from Radix et Rhizoma Leonticis inhibits growth of human umbilical vein endothelial cell (HUVEC) by inducing its apoptosis.

    Science.gov (United States)

    Zhang, Yanmin; He, Langchong; Zhou, Yali

    2008-01-01

    The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.

  16. beta-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells.

    Science.gov (United States)

    Zhang, Wei; Yan, Shuang; Liu, Mei; Zhang, Guo; Yang, Shangbin; He, Shun; Bai, Jinfeng; Quan, Lanping; Zhu, Hongxia; Dong, Yan; Xu, Ningzhi

    2010-10-01

    Epidemiological and experimental studies have indicated selenium could reduce the risk of some cancers. In our present study, growth inhibition and apoptosis were detected upon methylseleninic acid (MSA) treatment in human esophageal squamous cell carcinoma cell lines EC9706 and KYSE150. MSA reduced beta-catenin protein levels, while there was no significant change observed on transcriptional levels. Moreover, we found MSA accelerated the degradation of beta-catenin and activated glycogen synthase kinase 3beta (GSK-3beta). Some targets of beta-catenin/TCF pathway and apoptosis-related genes altered after MSA treatment. Notably, utilizing the inducible 293-TR/beta-catenin cell line, we found the apoptotic phenotypes induced by MSA were partially reversed by the overexpression of beta-catenin. Overall, our data indicate the effects induced by MSA in ESCC cells may act on the inhibition of beta-catenin/TCF pathway.

  17. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene

    Directory of Open Access Journals (Sweden)

    Huang RFS

    2015-04-01

    Full Text Available Rwei-Fen S Huang,1,2,* Yi-Jun Wei,1,2,* Baskaran Stephen Inbaraj,3 Bing-Huei Chen1,3,4 1Graduate Institute of Nutrition and Food Science, 2Department of Nutritional Science, 3Department of Food Science, 4Graduate Institute of Medicine, Fu Jen University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Lycopene (LP, an important functional compound in tomatoes, and gold nanoparticles (AN, have received considerable attention as potential candidates for cancer therapy. However, the extreme instability and poor bioavailability of LP limits its in vivo application. This study intends to develop a nanoemulsion system incorporating both LP and AN, and to study the possible synergistic effects on the inhibition of the HT-29 colon cancer cell line. LP–nanogold nanoemulsion containing Tween 80 as an emulsifier was prepared, followed by characterization using transmission electron microscopy (TEM, dynamic light scattering (DLS analysis, ultraviolet spectroscopy, and zeta potential analysis. The particle size as determined by TEM and DLS was 21.3±3.7 nm and 25.0±4.2 nm for nanoemulsion and 4.7±1.1 nm and 3.3±0.6 nm for AN, while the zeta potential of nanoemulsion and AN was -32.2±1.8 mV and -48.5±2.7 mV, respectively. Compared with the control treatment, both the combo (AN 10 ppm plus LP 12 µM and nanoemulsion (AN 0.16 ppm plus LP 0.4 µM treatments resulted in a five- and 15-fold rise in early apoptotic cells of HT-29, respectively. Also, the nanoemulsion significantly reduced the expressions of procaspases 8, 3, and 9, as well as PARP-1 and Bcl-2, while Bax expression was enhanced. A fivefold decline in the migration capability of HT-29 cells was observed for this nanoemulsion when compared to control, with the invasion-associated markers being significantly reversed through the upregulation of the epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP-2, and

  18. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.

    Science.gov (United States)

    Li, Nan; Xi, Yaguang; Tinsley, Heather N; Gurpinar, Evrim; Gary, Bernard D; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B; Abadi, Ashraf H; Moyer, Mary P; Grizzle, William E; Chang, Wen-Chi; Clapper, Margie L; Piazza, Gary A

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.

  19. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  20. MiR-138 Inhibits Tumor Growth Through Repression of EZH2 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Huijun Zhang

    2013-01-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play important roles in tumorigenesis. We investigated the roles and mechanisms of miR-138 in human non-small cell lung cancer (NSCLC. Methods: The expression of miR-138 was first examined in NSCLC cell lines and tumourtissues by real-time PCR The in vitro and in vivo functional effect of miR-138 was examined further. A luciferase reporter assay was conducted to confirm target association between miR-138 and the enhancer of zeste homolog 2 (EZH2. Results: miR-138 was frequently downregulated in NSCLC cells and tissues. Overexpression of miR-138 inhibited proliferation of NSCLC cells in vitro and tumor growth in vivo. The EZH2 oncogene, which is often overexpressed in various human cancers and acts as an important regulator of cell growth and tumor invasion, was identified as a novel target of miR-138. miR-138 can bind to the 3′ untranslated region (3′ UTR of EZH2 and suppress the expression of EZH2 at both mRNA and protein levels. Furthermore, knockdown of EZH2 phenocopied the tumor suppressive effects of miR-138 in cell models, whereas ectopic expression of EZH2 rescued the suppressive effects of miR-138. Conclusion: These findings define a tumor suppressor function for miR-138 in NSCLC and further suggest that miR-138 may represent a potential therapeutic target for NSCLC patients.

  1. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro

    Science.gov (United States)

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-01-01

    Background: Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. Objectives: To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. Materials and Methods: TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Results: Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. Conclusion: TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. SUMMARY Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS

  2. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Edelweiss, Maria Isabel; Behr, Guilherme A; Zanin, Rafael; Schröder, Rafael; Simões-Pires, André; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2012-06-01

    Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.

  3. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    Science.gov (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  4. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  5. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.

    Science.gov (United States)

    Poornima, Paramasivan; Weng, Ching Feng; Padma, Viswanadha Vijaya

    2014-01-01

    Neferine is the major bisbenzylisoquinoline alkaloid isolated from the seed embryo of a traditional medicinal plant Nelumbo nucifera (Lotus). Epidemiological studies have revealed the therapeutic potential of lotus seed embryo. Although several mechanisms have been proposed, a clear anticancer action mechanism of neferine on lung cancer cells is still not known. Lung cancer is the most common cause of cancer death in the world, and the patients with advanced stage of nonsmall lung cancer require adjunct chemotherapy after surgical resection for the eradication of cancer cells. In this study, the effects of neferine were evaluated and characterized in A549 cells. Neferine induced apoptosis in a dose-dependent manner with the hypergeneration of reactive oxygen species, activation of MAPKs, lipid peroxidation, depletion of cellular antioxidant pool, loss of mitochondrial membrane potential, and intracellular calcium accumulation. Furthermore, neferine treatment leads to the inhibition of nuclear factor kappaB and Bcl2, upregulation of Bax and Bad, release of cytochrome C, activation of caspase cascade, and DNA fragmentation. In addition, neferine could induce p53 and its effector protein p21 and downregulation of cell cycle regulatory protein cyclin D1 thereby inducing G1 cell cycle arrest. These results suggest a novel function of neferine as an apoptosis inducer in lung cancer cells.

  6. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  7. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  8. An antisense oligodeoxynucleotide that depletes RI alpha subunit of cyclic AMP-dependent protein kinase induces growth inhibition in human cancer cells.

    Science.gov (United States)

    Yokozaki, H; Budillon, A; Tortora, G; Meissner, S; Beaucage, S L; Miki, K; Cho-Chung, Y S

    1993-02-15

    Enhanced expression of the RI alpha subunit of cyclic AMP-dependent protein kinase type I has been correlated with cancer cell growth. We provide evidence that RI alpha is a growth-inducing protein that may be essential for neoplastic cell growth. Human colon, breast, and gastric carcinoma and neuroblastoma cell lines exposed to a 21-mer human RI alpha antisense phosphorothioate oligodeoxynucleotide (S-oligodeoxynucleotide) exhibited growth inhibition with no sign of cytotoxicity. Mismatched sequence (random) S-oligodeoxynucleotides of the same length exhibited no effect. The growth inhibitory effect of RI alpha antisense oligomer correlated with a decrease in the RI alpha mRNA and protein levels and with an increase in RII beta (the regulatory subunit of protein kinase type II) expression. The growth inhibition was abolished, however, when cells were exposed simultaneously to both RI alpha and RII beta antisense S-oligodeoxynucleotides. The RII beta antisense S-oligodeoxynucleotide alone, exhibiting suppression of RII beta along with enhancement of RI alpha expression, led to slight stimulation of cell growth. These results demonstrate that two isoforms of cyclic AMP receptor proteins, RI alpha and RII beta, are reciprocally related in the growth control of cancer cells and that the RI alpha antisense oligodeoxynucleotide, which efficiently depletes the growth stimulatory RI alpha, is a powerful biological tool toward suppression of malignancy.

  9. Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines.

    Science.gov (United States)

    Tomlinson, Darren C; L'Hôte, Corine G; Kennedy, Wendy; Pitt, Eva; Knowles, Margaret A

    2005-11-15

    Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that play key roles in proliferation, differentiation, and tumorigenesis. FGFR3 was identified as the major family member expressed in both normal human urothelium and cultured normal human urothelial (NHU) cells and was expressed as the IIIb isoform. We also identified a splice variant, FGFR3 Delta8-10, lacking exons encoding the COOH-terminal half of immunoglobulin-like domain III and the transmembrane domain. Previous reports have assumed that this is a cancer-specific splice variant. We showed that FGFR3 Delta8-10 is a normal transcript in NHU cells and is translated, N-glycosylated, and secreted. Primary urothelium expressed high levels of FGFR3 transcripts. In culture, levels were reduced in actively proliferating cells but increased at confluence and as cells approached senescence. Cells overexpressing FGFR3 IIIb showed FGF1-induced proliferation, which was inhibited by the addition of FGFR3 Delta8-10. In bladder tumor cell lines derived from aggressive carcinomas, there were significant alterations in the relative expression of isoforms including an overall decrease in the proportion of FGFR3 Delta8-10 and predominant expression of FGFR3 IIIc in some cases. In summary, alternative splicing of FGFR3 IIIb in NHU cells represents a normal mechanism to generate a transcript that regulates proliferation and in bladder cancer, the ratio of FGFR3 isoforms is significantly altered.

  10. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    Science.gov (United States)

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  11. Peroxisome proliferator-activated receptor-gamma inhibits transformed growth of non-small cell lung cancer cells through selective suppression of Snail.

    Science.gov (United States)

    Choudhary, Rashmi; Li, Howard; Winn, Robert A; Sorenson, Amber L; Weiser-Evans, Mary C M; Nemenoff, Raphael A

    2010-03-01

    Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits transformed growth of non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. We have demonstrated that activation of PPARgamma promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-kappaB. The Snail family of transcription factors, which includes Snail (Snail1), Slug (Snail2), and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARgamma activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARgamma activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARgamma activators.

  12. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  13. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism

    Science.gov (United States)

    Zhou, Li; Wu, Feifei; Jin, Wangdong; Yan, Bo; Chen, Xin; He, Yingfei; Yang, Weiji; Du, Wenlin; Zhang, Qiang; Guo, Yonghua; Yuan, Qiang; Dong, Xiaoqiao; Yu, Wenhua; Zhang, Jin; Xiao, Luwei; Tong, Peijian; Shan, Letian; Efferth, Thomas

    2017-01-01

    Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural

  14. A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells

    Institute of Scientific and Technical Information of China (English)

    Da-chuan LIU; Chuan-bing ZANG; Hong-yu LIU; Kurt POSSINGER; Shao-guang FAN; Elena ELSTNER

    2004-01-01

    AIM: To examine the effect of a novel peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist TZD 18 on cell proliferation and apoptosis in human glioblastoma T98G cells and its possible mechanism. METHODS: RTPCR, MTT, TUNEL, Flow cytometry, and Western blot analysis were employed. RESULTS: TZD18 inhibited the growth of T98G cells in a concentration-dependent manner, which was associated with a G1 to S cell cycle arrest.Besides, significant apoptosis was induced after treatment with a non-toxic dose of TZD 18. During the process,the expression of Bcl-2 protein was down-regulated, while that of Bax and p27kip proteins was up-regulated, and the activity of caspase-3 was elevated. However, this effect appeared to be PPARα and PPARγ independent since their antagonists could not reverse this effect. CONCLUSIONS: TZD18, a novel PPARα/γ dual agonist, inhibited cell growth and induce apoptosis in human glioblastoma T98G cells in vitro, indicating a therapeutic potential for TZD 18 in the treatment of glioblastoma.

  15. Cooperative cell-growth inhibition by combination treatment with ZD1839 (Iressa) and trastuzumab (Herceptin) in non-small-cell lung cancer.

    Science.gov (United States)

    Nakamura, Hisashi; Takamori, Shinzo; Fujii, Teruhiko; Ono, Mayumi; Yamana, Hideaki; Kuwano, Michihiko; Shirouzu, Kazuo

    2005-12-08

    An important recent advance in anticancer therapy was the development of molecular-targeting drugs, such as the epidermal growth-factor receptor (EGFR)-targeting drug ZD1839 (Iressa) and the HER2-trageting anti-HER2 monoclonal antibody trastuzumab (Herceptin). ZD1839 and trastuzumab are reported to improve the therapeutic efficacy of treatment for non-small-cell lung cancer (NSCLC) and breast cancer, respectively, although the effectiveness of either drug alone is not satisfactory. NSCLC cells often express both EGFR and HER2. We therefore investigated whether a combination of ZD1839 and trastuzumab had an additive or synergistic antitumor effect. In culture ZD1839 inhibited the growth of four NSCLC cell lines (A549, NCI-H23, NCI-H727, and NCI-H661) that expressed various levels of EGFR, HER2, HER3, and HER4. A significant cytotoxic effect was observed when ZD1839 was combined with trastuzumab in A549 cells. However, this combination had no apparent effect in NCI-H23 cells. Significant G(1)-phase arrest, increased p27 expression and decreased cyclin E or D1 levels were detected in A549 cells treated with ZD1839 and trastuzumab. No significant effects were detected in NCI-H23 cells examined. The combination treatment significantly inhibited the phosphorylation of EGFR, HER2, retinoblastoma, extracellular signal-regulated kinase-1/2, and protein kinase B/Akt in A549 cells, but not in NCI-H23 cells. Our results indicated that increased levels of constitutive EGFR/HER2 heterodimers were formed in A549 cells in the presence of ZD1839, whereas no heterodimer formation was detected in NCI-H23 cells. We therefore suggest that combination treatment with ZD1839 and trastuzumab might have improved therapeutic efficacy against NSCLC cells expressing both EGFR and HER2.

  16. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration.

    Science.gov (United States)

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.

  17. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth

    Science.gov (United States)

    Studies support that the bran fraction of rice contains bioactive compounds capable of inhibiting the formation of colonic tumors. Screening bran extracts from diverse rice varieties represents a novel approach to assessing the colon cancer chemopreventive properties of rice bran. We analyzed a pane...

  18. Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.

    Science.gov (United States)

    Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank

    2010-12-01

    Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration.

  19. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition.

    Science.gov (United States)

    Afonja, Olubunmi; Raaka, Bruce M; Huang, Ambrose; Das, Sharmistha; Zhao, Xinyu; Helmer, Elizabeth; Juste, Dominique; Samuels, Herbert H

    2002-11-01

    Retinoic acid receptors (RARs) are ligand-dependent transcription factors which are members of the steroid/thyroid hormone receptor gene family. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. PCR-amplified subtractive hybridization was used to identify candidate retinoid-regulated genes that may be involved in growth inhibition. One candidate gene identified was SOX9, a member of the high mobility group (HMG) box gene family of transcription factors. SOX9 gene expression is rapidly stimulated by RAR-agonists in T-47D cells and other retinoid-inhibited breast cancer cell lines. In support of this finding, a database search indicates that SOX9 is expressed as an EST in breast tumor cells. SOX9 is known to be expressed in chondrocytes where it regulates the transcription of type II collagen and in testes where it plays a role in male sexual differentiation. RAR pan-agonists and the RARalpha-selective agonist Am580, but not RXR agonists, stimulate the expression of SOX9 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not stimulate SOX9 in breast cancer cell lines which were not growth inhibited by retinoids. Expression of SOX9 in T-47D cells leads to cycle changes similar to those found with RAR-agonists while expression of a dominant negative form of SOX9 blocks RA-mediated cell cycle changes, suggesting a role for SOX9 in retinoid-mediated growth inhibition.

  20. Down-regulation of G protein-coupled receptor 137 by RNA interference inhibits cell growth of two hepatoma cell lines.

    Science.gov (United States)

    Shao, Xin; Liu, Yong; Huang, Hai; Zhuang, Linyuan; Luo, Tianping; Huang, Huping; Ge, Xinguo

    2015-04-01

    G protein-coupled receptors (GPCRs) are important signal transduction mediators and pharmacological therapeutic targets. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPCR around 10 years ago. Some orphan GPCRs have been implicated in cancer cell proliferation and migration. The aim of this study is to investigate the role of GPR137 in hepatocellular carcinoma (HCC). GPR137 is widely expressed in several human HCC cell lines, as determined by real-time PCR. We then applied lentivirus mediated RNA interference (RNAi) to knock down GPR137 expression in two HCC cell lines HepG2 and Bel7404. Depletion of GPR137 remarkably inhibited cell proliferation and colony formation capacity. Knockdown of GPR137 in HepG2 cells led to cell cycle arrest at G0/G1 phase and G2/M phase, and induced cell apoptosis, as determined by flow cytometry analysis, which contributed to cell growth inhibition. Our findings suggested that GPR137 could facilitate HCC cell proliferation and thus promote hepatocarcinogenesis.

  1. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  2. Nuclear Factor-κB Signaling Pathway Constitutively Activated in Esophageal Squamous Cell Carcinoma Cell Lines and Inhibition of Growth of Cells by Small Interfering RNA

    Institute of Scientific and Technical Information of China (English)

    Fang TIAN; Wei-Dong ZANG; Wei-Hong HOU; Hong-Tao LIU; Le-Xun XUE

    2006-01-01

    Although constitutive nuclear factor (NF)-κB activation has been reported in many human tumors, the role of the NF-κB pathway in esophageal squamous cell carcinoma (ESCC) has not been known.In this study, NF-κB pathway in two ESCC cell lines was investigated using immunocytochemistry, Western blot and reverse transcription-polymerase chain reaction. The activation of NF-κB DNA binding was determined by electrophoretic mobility-shift assay. RNA interference was used to specifically inhibit the expression of p65. Growth of cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.The results showed that p50, p65, Iκ Bα, p-Iκ Bα and Iκ B kinase β were expressed and mainly localized in the cytoplasm. Reverse transcription-polymerase chain reaction results showed the constitutive expressions of p50, p65 and Iκ Bα mRNA in the two ESCC cell lines. Furthermore, the nuclear extracts revealed that p50 and p65 translocated to the nucleus had DNA-binding activity. Finally, small interfering RNA of p65 decreased the expression of p65, and the viability of cells transfected with p65 small interfering RNA was significantly suppressed at the same concentration of 5-fluorouracil (P<0.05) compared to untransfected cells. The results of this study showed that there was the constitutively activated NF-κB signaling pathway in the ESCC cell lines. RNA interference targeting at p65 increased the sensitivity of the ESCC cell lines to 5-fluorouracil,suggesting that NF-κB might be a good target for cancer treatment.

  3. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-03-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells. We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.

  4. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth

    Science.gov (United States)

    Chen, Lixia; Xia, Guiyang; Qiu, Feng; Wu, Chunli; Denmon, Andria P.; Zi, Xiaolin

    2016-01-01

    We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as “hairy groundcherry” in English and “Deng-Long-Cao” in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation. PMID:27581364

  5. Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth

    NARCIS (Netherlands)

    Wang, Yi; Da Silva Domingues, Joana E.; Subbiandoss, Guruprakash; van der Mei, Henny C.; Busscher, Henk J.; Libera, Matthew

    2014-01-01

    Surfaces with cell adhesiveness modulated at micro length scales can exploit differences between tissue/bacterial cell size, membrane/wall plasticity, and adhesion mechanisms to differentially control tissue-cell/material and bacteria/material interactions. This study explores the short-term interac

  6. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran

  7. The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous cell carcinoma cell growth in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Song, Xin-mao; Ji, Yang-yang; Jiang, Hui; Xu, Lin-gen, E-mail: drlingenxu@126.com

    2013-11-01

    Highlights: •AZD8055 induces significant cytotoxic effects in cultured HNSCC cells. •AZD8055 blocks mTORC1 and mTORC2 activation in cultured HNSCC cells. •JNK activation is required for AZD8055-induced HNSCC cell death. •AZD8055 inhibits Hep-2 cell growth in vivo, and was more efficient than rapamycin. -- Abstract: The serine/threonine kinase mammalian target of rapamycin (mTOR) promotes cell survival and proliferation, and is constitutively activated in head and neck squamous cell carcinoma (HNSCC). Thus mTOR is an important target for drug development in this disease. Here we tested the anti-tumor ability of AZD8055, the novel mTOR inhibitor, in HNSCC cells. AZD8055 induced dramatic cell death of HNSCC lines (Hep-2 and SCC-9) through autophagy. AZD8055 blocked both mTOR complex (mTORC) 1 and mTORC2 activation without affecting Erk in cultured HNSCC cells. Meanwhile, AZD8055 induced significant c-Jun N-terminal kinase (JNK) activation, which was also required for cancer cell death. JNK inhibition by its inhibitors (SP 600125 and JNK-IN-8), or by RNA interference (RNAi) alleviated AZD8055-induced cell death. Finally, AZD8055 markedly increased the survival of Hep-2 transplanted mice through a significant reduction of tumor growth, without apparent toxicity, and its anti-tumor ability was more potent than rapamycin. Meanwhile, AZD8055 administration activated JNK while blocking mTORC1/2 in Hep-2 tumor engrafts. Our current results strongly suggest that AZD8055 may be further investigated for HNSCC treatment in clinical trials.

  8. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells.

    Science.gov (United States)

    Cárdenas-Aguayo, María del Carmen; Santa-Olalla, Jesús; Baizabal, José-Manuel; Salgado, Luis-Miguel; Covarrubias, Luis

    2003-12-01

    Although apoptosis has been considered the typical mechanism for physiological cell death, presently alternative mechanisms need to be considered. We previously showed that fibroblast growth factor-2 (FGF2) could act as a survival factor for neural precursor cells. To study the death mechanism activated by the absence of this growth factor, we followed the changes in cell morphology and determined cell viability by staining with several dyes after FGF2 removal from mesencephalic neural-progenitor-cell cultures. The changes observed did not correspond to those associated with apoptosis. After 48 h in the absence of FGF2, cells began to develop vacuoles in their cytoplasm, a phenotype that became very obvious 3-5 days later. Double-membrane vacuoles containing cell debris were observed. Vacuolated cells did not stain with either ethidium bromide or trypan Blue, and did not show chromatin condensations. Nonetheless, during the course of culture, vacuolated cells formed aggregates with highly condensed chromatin and detached from the plate. Neural progenitor cells grown in the presence of FGF2 did not display any of those characteristics. The vacuolated phenotype could be reversed by the addition of FGF2. Typical autophagy inhibitors such as 3-MA and LY294002 inhibited vacuole development, whereas a broad-spectrum caspase inhibitor did not. Interestingly, Bcl-2 overexpression retarded vacuole development. In conclusion, we identified a death autophagy-like mechanism activated by the lack of a specific survival factor that can be inhibited by Bcl2. We propose that anti-apoptotic Bcl2 family members are key molecules controlling death activation independently of the cell degeneration mechanism used.

  9. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  10. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S;

    1999-01-01

    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...... regulator of chromaffin cell division.......Transforming growth factor-betas are members of a superfamily of multifunctional cytokines regulating cell growth and differentiation. Their functions in neural and endocrine cells are not well understood. We show here that transforming growth factor-betas are synthesized, stored and released...

  11. Concurrent inhibition of mTORC1 and mTORC2 by WYE-687 inhibits renal cell carcinoma cell growth in vitro and in vivo

    Science.gov (United States)

    Zhu, Hua; Chen, Xinfeng; Zheng, Bing; Shan, Yuxi

    2017-01-01

    Mammalian target of rapamycin (mTOR)in renal cell carcinoma (RCC) represents a valuable oncotarget for treatment. We here tested the potential anti-RCC activity by a novel mTOR kinase inhibitor WYE-687in vitro and in vivo.WYE-687 was cytotoxic and anti-proliferative to established RCC cell lines (786-O and A498) and primary human RCC cells. Yet, it was non-cytotoxic toHK-2 tubular epithelial cells.WYE-687 provoked caspase-dependent apoptosis in the RCC cells. At the molecular level, WYE-687 almost completely blocked mTORC1 (p-S6K1 and p-S6) and mTORC2 (p-Akt Ser 473) activation in both 786-Ocells and primary human RCC cells, where it downregulated both hypoxia-inducible factor (HIF)-1α and HIF-2α expression. Significantly, oral administration of WYE-687 potently suppressed786-O tumor xenograft growth in nude mice. mTORC1/2 activation and HIF-1α/2α expression were also remarkably downregulated in WYE-687-treated tumor tissues. Thus, our preclinical results imply that WYE-687 may have important translational value for the treatment of RCC. PMID:28257457

  12. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    Science.gov (United States)

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  13. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    Science.gov (United States)

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  14. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  15. Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage.

    Science.gov (United States)

    Qin, Rong; Wang, Congyue; Chen, Da; Björn, Lars O; Li, Shaoshan

    2015-05-01

    Copper (Cu) is considered to be an indispensable microelement for plants. Excessive Cu, however, is toxic and disturbs several processes in the plant. The present study addressed the effects of ionic Cu (2.0 µM and 8.0 µM) on mitosis, the microtubule cytoskeleton, and DNA in root tip cells of Allium cepa var. agrogarum L. to better understand Cu toxicity on plant root systems. The results indicated that Cu accumulated in roots and that root growth was inhibited dramatically in Cu treatment groups. Chromosomal aberrations (for example, C-mitosis, chromosome bridges, chromosome stickiness, and micronucleus) were observed, and the mitotic index decreased during Cu treatments at different concentrations. Microtubules were one of the target sites of Cu toxicity in root tip meristematic cells, and Cu exposure substantially impaired microtubule arrangements. The content of α-tubulin decreased following 36 h of exposure to 2.0 µM or 8.0 µM of Cu in comparison with the control group. Copper increased DNA damage and suppressed cell cycle progression. The above toxic effects became more serious with increasing Cu concentration and prolonged exposure time.

  16. RNA interference targeting extracellular matrix metalloproteinase inducer (CD147) inhibits growth and increases chemosensitivity in human cervical cancer cells.

    Science.gov (United States)

    Zhang, F; Zeng, Y L; Zhang, X G; Chen, W J; Yang, R; Li, S J

    2013-01-01

    Overexpression of extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN CD147) has been implicated in the growth and survival of malignant cells. However, its presence and role in cervical cancer cells has not been well-studied. In the present study, small interfering RNA (siRNA) was designed and synthesized to breakdown the expression of CD147. The present data demonstrated that 24 and 48 hours after transfecting CD147 siRNA, both the CD147 mRNA and protein expression were significantly inhibited as determined by quantitative real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Meanwhile, simultaneous silencing of CD147 resulted in distinctly increasing MMP-9, VEGF, and MDR-1. Further studies demonstrated decreased CD147 expression, resulted in G1/S phase transition with flow cytometry analysis, as well as the resistance of the cells to 5-FU. These findings provide further evidence that CD147 may become a promising therapeutic target for human cervical cancer and a potential chemotherapy-sensitizing agent.

  17. Prostacyclin Inhibits Non-Small Cell Lung Cancer Growth by a Frizzled 9-Dependent Pathway That Is Blocked by Secreted Frizzled-Related Protein 1

    Directory of Open Access Journals (Sweden)

    Meredith A. Tennis

    2010-03-01

    Full Text Available The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9 and the activation of peroxisome proliferator-activated receptor-γ (PPARγ. Silencing of Fzd 9 blocked PPARγ activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARγ and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.

  18. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    Science.gov (United States)

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-04

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  19. PTEN Loss Antagonizes Calcitriol-mediated Growth Inhibition in Prostate Epithelial Cells

    Science.gov (United States)

    2010-05-01

    contributes to the outcome of cancer therapy. Cell 2002;109:335-346. 35. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A...the outcome of cancer therapy. Cell 2002;109:335-346. 46. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A

  20. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis.

    Science.gov (United States)

    Sanvoranart, Tanwarat; Supokawej, Aungkura; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Poungvarin, Niphon; Sathornsumetee, Sith; Issaragrisil, Surapol

    2016-11-01

    Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

  1. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by oridonin nanosuspension.

    Science.gov (United States)

    Feng, Fei-Fei; Zhang, Dian-Rui; Tian, Ke-Li; Lou, Hai-Yan; Qi, Xiao-Li; Wang, Yan-Cai; Duan, Cun-Xian; Jia, Le-Jiao; Wang, Fei-Hu; Liu, Yue; Zhang, Qiang

    2011-05-01

    The mechanism for anti-tumor activity of oridonin (ORI) nanosuspension, prepared by the high pressure homogenization method, was studied using MCF-7 human breast carcinoma cells in vitro. MTT assay, observation of morphologic changes, flow cytometric analysis, and western blot analysis indicated that ORI nanosuspension could significantly intensify the in vitro anti-tumor activity to MCF-7 cells, as compared with ORI solution. Furthermore, ORI nanosuspension induced G₂/M stage proliferation arrest and apoptosis in MCF-7 cells depending on its concentration. In addition, western blot analysis indicated that the pro-caspase-3 protein was not cleaved into the activated form and the expression of anti-apoptotic Bcl-2 protein decreased, on the contrary, the expression of pro-apoptotic Bax protein increased in a dose-dependent manner in ORI nanosuspension-treated cells. These observations indicated that the anti-tumor activity of ORI nanosuspension was intensified by cell-cycle arrest and apoptosis induction.

  2. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations

    Science.gov (United States)

    Castoldi, Raffaella; Schanzer, Jürgen; Panke, Christian; Jucknischke, Ute; Neubert, Natalie J.; Croasdale, Rebecca; Scheuer, Werner; Auer, Johannes; Klein, Christian; Niederfellner, Gerhard; Kobold, Sebastian; Sustmann, Claudio

    2016-01-01

    Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is often causative for this phenomenon. These findings led to an increasing number of combination approaches either within a protein family, e.g. the ErbB family or by targeting RTKs of different phylogenetic origin like HER1 and cMet or HER1 and IGF1R. Progress in antibody engineering technology enabled generation of clinical grade bispecific antibodies (BsAbs) to design drugs inherently addressing such resistance mechanisms. Limited data are available on multi-specific antibodies targeting three or more RTKs. In the present study, we have evaluated the cloning, eukaryotic expression and purification of tetraspecific, tetravalent Fc-containing antibodies targeting HER3, cMet, HER1 and IGF1R. The antibodies are based on the combination of single-chain Fab and Fv fragments in an IgG1 antibody format enhanced by the knob-into-hole technology. They are non-agonistic and inhibit tumor cell growth comparable to the combination of four parental antibodies. Importantly, TetraMabs show improved apoptosis induction and tumor growth inhibition over individual monospecific or BsAbs in cellular assays. In addition, a mimicry assay to reflect heterogeneous expression of antigens in a tumor mass was established. With this novel in vitro assay, we can demonstrate the superiority of a tetraspecific antibody to bispecific tumor antigen-binding antibodies in early pre-clinical development. PMID:27578890

  3. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  4. A novel sulindac derivative inhibits lung adenocarcinoma cell growth through suppression of Akt/mTOR signaling and induction of autophagy.

    Science.gov (United States)

    Gurpinar, Evrim; Grizzle, William E; Shacka, John J; Mader, Burton J; Li, Nan; Piazza, Nicholas A; Russo, Suzanne; Keeton, Adam B; Piazza, Gary A

    2013-05-01

    Nonsteroidal anti-inflammatory drugs such as sulindac sulfide have shown promising antineoplastic activity in multiple tumor types, but toxicities resulting from COX inhibition limit their use in cancer therapy. We recently described a N,N-dimethylethyl amine derivative of sulindac sulfide, sulindac sulfide amide (SSA), that does not inhibit COX-1 or -2, yet displays potent tumor cell growth-inhibitory activity. Here, we studied the basis for the growth-inhibitory effects of SSA on human lung adenocarcinoma cell lines. SSA potently inhibited the growth of lung tumor cells with IC50 values of 2 to 5 μmol/L compared with 44 to 52 μmol/L for sulindac sulfide. SSA also suppressed DNA synthesis and caused a G0-G1 cell-cycle arrest. SSA-induced cell death was associated with characteristics of autophagy, but significant caspase activation or PARP cleavage was not observed after treatment at its IC50 value. siRNA knockdown of Atg7 attenuated SSA-induced autophagy and cell death, whereas pan-caspase inhibitor ZVAD was not able to rescue viability. SSA treatment also inhibited Akt/mTOR signaling and the expression of downstream proteins that are regulated by this pathway. Overexpression of a constitutively active form of Akt was able to reduce autophagy markers and confer resistance to SSA-induced cell death. Our findings provide evidence that SSA inhibits lung tumor cell growth by a mechanism involving autophagy induction through the suppression of Akt/mTOR signaling. This unique mechanism of action, along with its increased potency and lack of COX inhibition, supports the development of SSA or related analogs for the prevention and/or treatment of lung cancer.

  5. Berberine inhibits growth and induces G1 arrest and apoptosis in human cholangiocarcinoma QBC939 cells.

    Science.gov (United States)

    He, Wei; Wang, Bin; Zhuang, Yun; Shao, Dong; Sun, Kewen; Chen, Jianping

    2012-01-01

    The chemotherapeutic approach using non-toxic natural products may be one of the strategies for the management of the cholangiocarcinoma. Here we report that in vitro treatment of human cholangiocarcinoma QBC939 cells with berberine, a naturally occurring isoquinoline alkaloid, decreased cell viability and induced cell death in a dose-dependent manner, which was associated with an increase in G1 arrest. Our western blot analysis showed that berberine-induced G1 cell cycle arrest was mediated through the increased expression of cyclin-dependent kinase inhibitors (Cdki) proteins (Cip1/p21 and Kip1/p27); a simultaneous decrease in Cdk2 and Cdk4 and cyclins D1, and reduced activity of the Cyclins-Cdk complex. In additional studies, treatment of QBC939 cells with different concentrations (10, 40, 80 μM) of berberine for 48 h resulted in a significant dose-dependent increase in apoptosis compared to the non-berberine-treated control, which was associated with an increased expression of pro-apoptotic protein Bax and decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-xL. Together, this study for the first time identified berberine as a chemotherapeutic agent against human cholangiocarcinoma cells QBC939 cells in vitro. Further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of cholangiocarcinoma.

  6. An off-target nucleostemin RNAi inhibits growth in human glioblastoma-derived cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jon Gil-Ranedo

    Full Text Available Glioblastomas (GBM may contain a variable proportion of active cancer stem cells (CSCs capable of self-renewal, of aggregating into CD133(+ neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA. In doing so, we found an off-target nucleostemin RNAi (shRNA22 that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor.

  7. Growth inhibition and induction of apoptosis in human cancerous HeLa cells by Maytenus procumbens.

    Science.gov (United States)

    Momtaz, S; Hussein, A A; Ostad, S N; Abdollahi, M; Lall, N

    2013-01-01

    The possible biochemical activities of the acetonic/ethanolic extract of the leaves of Maytenus procumbens (L.M.P), and its isolated compounds were investigated in the present study. In cytotoxicity assay, L.M.P showed IC(50) of 68.79, 51.22, 78.49, 76.59, and 76.64μg/ml on Caco-2, HeLa, HT29, NIH3T3, and T47D cells, respectively. Bioassay guided fractionation led to the isolation and identification of a new triterpene: '30-hydroxy-11α-methoxy-18β-olean-12-en-3-one' (HMO) in addition to a known terpenoid: 'asiatic acid' (AA). HMO exhibited the most cytotoxicity against HeLa cells and was further investigated for its ability to induce apoptosis in HeLa cells. HMO induced apoptosis up to 20.41% in HeLa cells versus control group (0.40%). Antioxidant/oxidative properties of L.M.P and HMO were investigated using extracellular (DPPH), and intracellular (ROS) assays. Experimental samples represented a time and concentration-dependent formation of ROS in Hela cells. Generation of ROS seems one of the mechanisms by which HMO induces apoptosis in Hela cells. Conclusion is that the active components in L.M.P might serve as a mediator of the ROS scavenging system and have the potential to act as prooxidant or antioxidant depending on the biological environment of the cells.

  8. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells.

    Science.gov (United States)

    Xu, Hui; Kong, Ying-Yu; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Lu, Yu-Jia; Li, Wei; Zhou, Xuan-Wei

    2016-04-06

    FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.

  9. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  10. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and Fibroblast Growth Factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  11. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  12. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    Science.gov (United States)

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  13. Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors

    OpenAIRE

    Li, Xi; Pathi, Satya S.; Safe, Stephen

    2015-01-01

    Background Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. Methods The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-...

  14. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells.

    Science.gov (United States)

    Lee, Kang Pa; Lee, Kwan; Park, Won-Hwan; Kim, Hyuck; Hong, Heeok

    2015-02-01

    The proliferation and migration of vascular smooth muscle cells (VSMCs) in blood vessels are important in the pathogenesis of vascular disorders such as atherosclerosis and restenosis. Piperine, a major component of black pepper, has antioxidant, anticancer, and anti-inflammatory activity. However, the antiatherosclerotic effects of piperine have not been investigated. In this study, the effects of piperine on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs were investigated. The antiproliferative effects of piperine were determined using MTT assays, cell counting, real-time polymerase chain reaction, and western blots. Our results showed that piperine significantly attenuated the proliferation of VSMCs by increasing the expression of p27(kip1), regulating the mRNA expression of cell cycle enzymes (cyclin D, cyclin E, and PCNA), and decreasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in a noncytotoxic concentration-dependent manner (30-100 μM). Moreover, we examined the effects of piperine on the migration of PDGF-BB-stimulated VSMCs, as determined by the Boyden chamber assay, H2DCFDA staining, and western blots. Our results showed that 100 μM piperine decreased cell migration, the production of reactive oxygen species (ROS), and phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Taken together, our results suggest that piperine inhibits PDGF-BB-induced proliferation and the migration of VSMCs by inducing cell cycle arrest and suppressing MAPK phosphorylation and ROS. These findings suggest that piperine may be beneficial for the treatment of vascular-related disorders and diseases.

  15. Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro.

    Science.gov (United States)

    Hsu, Faye Yuan-yi; Zhao, Yi; Anderson, W French; Johnston, Patrick B

    2007-06-01

    The fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), results from the chromosome translocation t(2;5)(p23;q25) and is present in 50-70 percent of anaplastic large-cell lymphomas (ALCLs). NPM-ALK is a constitutively activated kinase that transforms cells through stimulating several mitogenic signaling pathways. To examine if the NPM-ALK is a potential therapeutic target in ALCL, we used siRNA to specifically downregulate the expression of the NPM-ALK in ALCL cell lines. In this report, we demonstrated viability loss in t(2;5)-positive ALCL cell lines, SUDHL-1 and Karpas 299 cells, but not in lymphoma cell lines without the chromosome translocation, Jurkat and Granta 519 cells. Further study demonstrated that the downregulation of NPM-ALK resulted in decreased cell proliferation and increased cell apoptosis. When used in combination with chemotherapeutic agents, such as doxorubicin, the inhibition of the NPM-ALK augments the chemosensitivity of the tumor cells. These results revealed the importance of continuous expression of NPM-ALK in maintaining the growth of ALCL cells. Our data also suggested that the repression of the fusion gene might be a potential novel therapeutic strategy for NPM-ALK positive ALCLs.

  16. Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site.

    Science.gov (United States)

    Chen, Liqun; Wang, Zhi-Gang; Aleshin, Alexander E; Chen, Fan; Chen, Jiebo; Jiang, Fuquan; Alitongbieke, Gulimiran; Zeng, Zhiping; Ma, Yue; Huang, Mingfeng; Zhou, Hu; Cadwell, Gregory; Zheng, Jian-Feng; Huang, Pei-Qiang; Liddington, Robert C; Zhang, Xiao-kun; Su, Ying

    2014-05-22

    Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.

  17. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  18. TRAF6 inhibits proangiogenic signals in endothelial cells and regulates the expression of vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Sarah; Datta, Dipak; Flaxenburg, Jesse A.; Pal, Soumitro [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Briscoe, David M., E-mail: david.briscoe@childrens.harvard.edu [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer TNF-receptor associated factors (TRAFs) function in the angiogenesis response. Black-Right-Pointing-Pointer TRAF6 regulates basal and inducible expression of VEGF in endothelial cells (EC). Black-Right-Pointing-Pointer TRAF6 is an endogenous inhibitor of EC proliferation and migration in EC. Black-Right-Pointing-Pointer TRAF6 inhibits VEGF expression in part via its ability to regulate Src signaling. -- Abstract: TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P < 0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [{sup 3}H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling

  19. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Directory of Open Access Journals (Sweden)

    Carly A Buckner

    Full Text Available Electromagnetic field (EMF exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+ channels. Blocking Ca(2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  20. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  1. Local administration of cells containing an inserted IL-2 gene and producing IL-2 inhibits growth of human tumours in nu/nu mice.

    Science.gov (United States)

    Bubenik, J; Voitenok, N N; Kieler, J; Prassolov, V S; Chumakov, P M; Bubenikova, D; Simova, J; Jandlova, T

    1988-12-01

    We have prepared a retroviral expression construct, pPS-IL-2, in which human IL-2 cDNA has been inserted into the polylinker region, and have used the retroviral vector to introduce the functional IL-2 gene into a fibroblast cell line, RAT-1. Peritumoral administration of IL-2-producing RAT-1 cells into congenitally athymic (nu/nu) mice carrying subcutaneous transplants of human carcinoma cells inhibited the growth of the human tumour xenografts.

  2. Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colony-stimulating factor production from T cells.

    Science.gov (United States)

    Oehler, L; Kollars, M; Bohle, B; Berer, A; Reiter, E; Lechner, K; Geissler, K

    1999-02-01

    Numerous cytokines released from accessory cells have been shown to exert either stimulatory or inhibitory growth signals on burst-forming unit-erythroid (BFU-E) growth. Because of its cytokine synthesis-inhibiting effects on T cells and monocytes, interleukin-10 (IL-10) may be a potential candidate for indirectly affecting erythropoiesis. We investigated the effects of IL-10 on BFU-E growth from normal human peripheral blood mononuclear cells (PBMC) using a clonogenic progenitor cell assay. The addition of recombinant human IL-10 to cultures containing recombinant human erythropoietin suppressed BFU-E growth in a dose-dependent manner (by 55.2%, range 47.3-63.3%, p cultivating highly enriched CD34+ cells. BFU-E growth from PBMC also was markedly suppressed in the presence of a neutralizing anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody (by 48.7%, range 32.9-61.2% inhibition,p < 0.01), but not by neutralizing antibodies against granulocyte colony-stimulating factor and interleukin-3. This suggests a stimulatory role of endogenously released GM-CSF on BFU-E formation. Also, the addition of exogenous GM-CSF completely restored IL-10-induced suppression of BFU-E growth. To determine the cellular source of GM-CSF production, we analyzed GM-CSF levels in suspension cultures containing PBMC that were either depleted of monocytes or T cells. Monocyte-depleted PBMC showed spontaneous production of increasing amounts of GM-CSF on days 3, 5, and 7, respectively, which could be suppressed by IL-10, whereas GM-CSF levels did not increase in cultures containing T-cell-depleted PBMC. Our data indicate that IL-10 inhibits the growth of erythroid progenitor cells in vitro, most likely by suppression of endogenous GM-CSF production from T cells.

  3. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells

    Science.gov (United States)

    Loonstra, Ate; Vooijs, Marc; Beverloo, H. Berna; Allak, Bushra Al; van Drunen, Ellen; Kanaar, Roland; Berns, Anton; Jonkers, Jos

    2001-01-01

    The use of Cre/loxP recombination in mammalian cells has expanded rapidly. We describe here that Cre expression in cultured mammalian cells may result in a markedly reduced proliferation and that this effect is dependent on the endonuclease activity of Cre. Chromosome analysis after Cre expression revealed numerous chromosomal aberrations and an increased number of sister chromatid exchanges. Titration experiments in mouse embryo fibroblasts with a ligand-regulatable Cre-ERT show that toxicity is dependent on the level of Cre activity. Prolonged, low levels of Cre activity permit recombination without concomitant toxicity. This urges for a careful titration of Cre activity in conditional gene modification in mammalian cells. PMID:11481484

  4. New Arylthioindoles and Related Bioisosteres at the Sulfur Bridging Group. 4. Synthesis, Tubulin Polymerization, Cell Growth Inhibition, and Molecular Modeling Studies

    Science.gov (United States)

    La Regina, Giuseppe; Sarkar, Taradas; Bai, Ruoli; Edler, Michael C.; Saletti, Roberto; Coluccia, Antonio; Piscitelli, Francesco; Minelli, Lara; Gatti, Valerio; Mazzoccoli, Carmela; Palermo, Vanessa; Mazzoni, Cristina; Falcone, Claudio; Scovassi, Anna Ivana; Giansanti, Vincenzo; Campiglia, Pietro; Porta, Amalia; Maresca, Bruno; Hamel, Ernest; Brancale, Andrea; Novellino, Ettore; Silvestri, Romano

    2009-01-01

    New arylthioindoles along with the corresponding ketone and methylene compounds were potent tubulin assembly inhibitors. As growth inhibitors of MCF-7 cells, sulfur derivatives were superior or sometimes equivalent to the ketones, while methylene derivatives were substantially less effective. Esters 24, 27–29, 36, 39,and 41 showed ~50% of inhibition on human HeLa and HCT116/chr3 cells at 0.5 μM, and these compounds inhibited the growth of HEK, M14, and U937 cells with IC50's in the 78–220 nM range. While murine macrophage J744.1 cell growth was significantly less affected (20% at higher concentrations), four other nontransformed cell lines remained sensitive to these esters. The effect of drug treatment on cell morphology was examined by time-lapse microscopy. In a protocol set up to evaluate toxicity on the Saccharomyces cerevisiae BY4741 wild type strain, compounds 24 and 54 strongly reduced cell growth, and 29, 36, and 39 also showed significant inhibition. PMID:19601594

  5. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

  6. Inhibition of growth and induction of apoptosis in human lung cancer cells by Br-oxph

    Directory of Open Access Journals (Sweden)

    Koleva Vanya

    2014-01-01

    Full Text Available The study was aimed at evaluating apoptotic potential of Br-oxph (4-bromoN,N-diethyl-5,5-dimethyl-2,5-dihydro-1,2-oxaphosphol-2-amine 2-oxide in vitro. The dose response effect of Br-oxph (dose range 1-3 mg/ml, for 48 h on SK-MES-1 cells viability was determined by means of WST-1 cell proliferation assay. The half maximal inhibitory concentration (ІС50 value was determined - 1.8 mg/ml. The ability of the compound tested to induce apoptosis was tested by ELISA to detect cellular DNA fragmentation. We provided a quantitative assessment of the apoptotic potential of Br-oxph in human lung carcinoma cells at concentrations corresponding to ІС50 and 2хІС50 for 3 hours. Treatment with 2хІС50 significantly increased the amount of cytoplasmic DNA-fragments. Results obtained from the present study confirm that Br-oxph target the cancerous cells towards apoptosis.

  7. Activation of arylhydrocarbon receptor (AhR) in T lineage cells inhibits cellular growth

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, K.; Tomohiro, I.; Chiharu, T. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    Dioxins, including the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), exert their toxic effects by binding and activating the arylhydrocarbon receptor (AhR), a liganddependent transcription factor. Upon binding dioxins, the AhR in the cytoplasm is activated and translocated to the nucleus, where it heterodimerizes with another transcription factor, ARNT. The AhR/ARNT heterodimer modulates expressions of various genes by binding xenobiotic responsive elements (XREs) in their enhancer regions or modifies cellular functions through protein-protein interactions. The AhR activation by TCDD exposure induces various immunotoxic reactions including thymus involution and suppression of T cell-dependent antibody production. We have investigated the roles of AhR activation in T lineage cells and their underlying mechanisms by generating transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T cells and by transiently expressing the CA-AhR mutant in Jurkat T cells.

  8. EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

    Directory of Open Access Journals (Sweden)

    Farnaz Barneh

    2013-01-01

    Full Text Available Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc. Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence. Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel. Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.

  9. Polar biophenolics in sweet potato greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth.

    Science.gov (United States)

    Gundala, Sushma R; Yang, Chunhua; Lakshminarayana, N; Asif, Ghazia; Gupta, Meenakshi V; Shamsi, Shahab; Aneja, Ritu

    2013-09-01

    Polyphenolic phytochemicals present in fruits and vegetables indisputably confer anticancer benefits upon regular consumption. Recently, we demonstrated the growth-inhibitory and apoptosis-inducing properties of polyphenol-rich sweet potato greens extract (SPGE) in cell culture and in vivo prostate cancer xenograft models. However, the bioactive constituents remain elusive. Here, we report a bioactivity-guided fractionation of SPGE based upon differential solvent polarity using chromatographic techniques that led to the identification of a remarkably active polyphenol-enriched fraction, F5, which was ~100-fold more potent than the parent extract as shown by IC50 measurements in human prostate cancer cells. High-performance liquid chromatography-ultraviolet and mass spectrometric analyses of the seven SPGE fractions suggested varying abundance of the major phenols, quinic acid (QA), caffeic acid, its ester chlorogenic acid, and isochlorogenic acids, 4,5-di-CQA, 3,5-di-CQA and 3,4-di-CQA, with a distinct composition of the most active fraction, F5. Subfractionation of F5 resulted in loss of bioactivity, suggesting synergistic interactions among the constituent phytochemicals. Quantitative analyses revealed a ~2.6- and ~3.6-fold enrichment of QA and chlorogenic acid, respectively, in F5 and a definitive ratiometric relationship between the isochlorogenic acids. Daily oral administration of 400mg/kg body wt of F5 inhibited growth and progression of prostate tumor xenografts by ~75% in nude mice, as evidenced by tumor volume measurements and non-invasive real-time bioluminescence imaging. These data generate compelling grounds to further examine the chemopreventive efficacy of the most active fraction of SPGE and suggest its potential usefulness as a dietary supplement for prostate cancer management.

  10. Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances.

    Science.gov (United States)

    Lu, Qing-Yi; Arteaga, James R; Zhang, Qifeng; Huerta, Sergio; Go, Vay Liang W; Heber, David

    2005-01-01

    Although the avocado is known as a rich source of monounsaturated fatty acids, there has been far less attention given to its content of other bioactive substances including carotenoids, which might contribute to cancer preventive properties similar to those attributed to other fruits and vegetables. The yellow-green color of the avocado prompted us to study the carotenoid content of this fruit using established methods in our laboratory. The California Hass avocado (Persea americana Mill.) was selected for study, because it is the most commonly consumed variety in the southwest United States. These avocados were found to contain the highest content of lutein among commonly eaten fruits as well as measurable amounts of related carotenoids (zeaxanthin, alpha-carotene, and beta-carotene). Lutein accounted for 70% of the measured carotenoids, and the avocado also contained significant quantities of vitamin E. An acetone extract of avocado containing these carotenoids and tocopherols was shown to inhibit the growth of both androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines in vitro. Incubation of PC-3 cells with the avocado extract led to G(2)/M cell cycle arrest accompanied by an increase in p27 protein expression. Lutein alone did not reproduce the effects of the avocado extract on cancer cell proliferation. In common with other colorful fruits and vegetables, the avocado contains numerous bioactive carotenoids. Because the avocado also contains a significant amount of monounsaturated fat, these bioactive carotenoids are likely to be absorbed into the bloodstream, where in combination with other diet-derived phytochemicals they may contribute to the significant cancer risk reduction associated with a diet of fruits and vegetables.

  11. Androgen inhibits the growth of carcinoma cell lines established from prostate cancer xenografts that escape androgen treatment.

    Science.gov (United States)

    Joly-Pharaboz, Marie-Odile; Kalach, Jean-Jacques; Pharaboz, Julie; Chantepie, Jacqueline; Nicolas, Brigitte; Baille, Marie-Laurence; Ruffion, Alain; Benahmed, Mohamed; André, Jean

    2008-07-01

    Most prostate cancers escape endocrine therapy by diverse mechanisms. One of them might be growth repression by androgen. We reported that androgen represses the growth in culture of MOP cells (a sub-line of LNCaP cells) and that of MOP cell xenografts, although tumor growth becomes androgen-independent (AI). Here we explore whether AI tumors contain androgen-responsive cells. ME carcinoma cells were established from AI tumors. The responses to androgen were examined by cell counting, DAPI labeling, flow cytometry, PSA immunoassay and tumor size follow-up. Androgen receptors (AR) were analyzed by western blotting and DNA sequencing. The pattern of responses of these cells to androgen was compared to that of MOP cells and that of JAC cells established from LNCaP-like MOP cells. R1881, a synthetic androgen: (1) repressed the growth of all the six ME cell lines obtained, MOP and JAC cells, (2) augmented the secretion of PSA, (3) induced spectacular cell bubbling/fragmentation and (4) blocked the cell cycle and induced a modest increase of apoptosis. All the androgen-repressed cells expressed the same level of mutated AR as LNCaP cells. In nude mice, the growth of ME-2 cell xenografts displayed transient androgen repression similar to that of MOP cells. In culture neither fibroblasts nor extra-cellular matrix altered the effects of R1881 on cell proliferation. These results demonstrate that androgen-independent tumors contain androgen-responsive cells. The apparent discrepancy between the responses to androgen of tumors and those of carcinoma cells in culture suggests that microenvironmental factors contribute to the androgen responsiveness of tumor cells in vivo. These modifications, albeit unspecified, could be suitable targets for restoring the androgen responsiveness of AI tumors.

  12. In vitro cancer cell growth inhibition and antioxidant activity of Bombax ceiba (Bombacaceae) flower extracts.

    Science.gov (United States)

    Tundis, Rosa; Rashed, Khaled; Said, Ataa; Menichini, Francesco; Loizzo, Monica R

    2014-05-01

    The flowers of Bombax ceiba were investigated for their chemical composition, antioxidant effects and antiproliferative activity against seven human cancer cell lines. The antiproliferative responses of diethyl ether (DE) and light petroleum (PE) extracts were evaluated by sulforhodamine B (SRB) assay against MCF-7, HeLa, COR-L23, C32, A375, ACHN, and LNCaP cells in comparison with a human normal cell line, 142BR. Moreover, extracts were characterized by GC-MS analysis and tested for their antioxidant properties by different in vitro systems, namely DPPH, Fe-chelating activity and beta-carotene bleaching test. Both PE and DE extracts showed the highest antiproliferative activity against human renal adenocarcinoma (ACHN) in a concentration-dependent manner. PE extract showed the highest radical scavenging activity against the DPPH radical, while DE extract was more active in the beta-carotene bleaching test. The presence of beta-sitosterol and some fatty acids may contribute to the bioactivity of B. ceiba flower extracts.

  13. Interleukin-2 gene-encoded stromal cells inhibit the growth of metastatic cholangiocarcinomas

    Institute of Scientific and Technical Information of China (English)

    Myung-Hwan Kim; Sang Soo Lee; Sung Koo Lee; Seung-Gyu Lee; Chul-Won Suh; Gyung-Yub Gong; Jung-Sun Park; Young-Hoon Kim; Sang-Hee Kim

    2006-01-01

    AIM: To demonstrate bone marrow stromal cells (BMSCs) can be used as an attractive target for genetic modification in the treatment of malignant diseases.METHODS: Using a hamster model of biliary cancer,we investigated the therapeutic effects of interleukin-2 (IL-2) gene-modified BMSCs. Syrian golden hamsters were injected via the femoral vein with 5x10s cells of the KIGB-5 biliary cancer cell line (n=20). One week later,the hamsters were injected intraperitoneally with BMSCs containing Ad/hIL-2 and Ad/△E1, unmodified BMSCs, or RPMI only (control) and observed for 12 wk (n=5/each group).RESULTS: All hamsters treated with BMSCs containing Ad/hIL-2 survived with no evidence of the disease during this period. In contrast, hamsters in the other three groups showed disseminated metastases involving the lungs as early as 4 wk.CONCLUSION: Ad/IL-2 therapy is effective in the treatment of biliary cancer.

  14. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  15. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu Guodong

    2009-12-01

    Full Text Available Abstract Background Transforming growth factor-beta (TGF-beta is known to exert multiple regulatory functions in the human placenta, including inhibition of estrodial production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression. Methods To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII and type I receptor (ALK5 receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phophorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment. Results and Discussion TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-β1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the

  16. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation.

    Science.gov (United States)

    Biever, Jessica J; Brinkman, Doug; Gardner, Gary

    2014-06-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280-320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction.

  17. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress.

    Science.gov (United States)

    Yaffe, Paul B; Power Coombs, Melanie R; Doucette, Carolyn D; Walsh, Mark; Hoskin, David W

    2015-10-01

    Piperine, a piperidine alkaloid present in black pepper, inhibits the growth of cancer cells, although the mechanism of action is not well understood. In this study, we show that piperine (75-150 µM) inhibited the growth of several colon cancer cell lines but had little effect on the growth of normal fibroblasts and epithelial cells. Piperine inhibited HT-29 colon carcinoma cell proliferation by causing G1 phase cell cycle arrest that was associated with decreased expression of cyclins D1 and D3 and their activating partner cyclin-dependent kinases 4 and 6, as well as reduced phosphorylation of the retinoblastoma protein and up-regulation of p21/WAF1 and p27/KIP1 expression. In addition, piperine caused hydroxyl radical production and apoptosis that was partially dependent on the production of reactive oxygen species. Piperine-treated HT-29 cells showed loss of mitochondrial membrane integrity and cleavage of poly (ADP-ribose) polymerase-1, as well as caspase activation and reduced apoptosis in the presence of the pan-caspase inhibitor zVAD-FMK. Increased expression of the endoplasmic reticulum stress-associated proteins inositol-requiring 1α protein, C/EBP homologous protein, and binding immunoglobulin protein, and activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, as well as decreased phosphorylation of Akt and reduced survivin expression were also observed in piperine-treated HT-29 cells. Furthermore, piperine inhibited colony formation by HT-29 cells, as well as the growth of HT-29 spheroids. Cell cycle arrest and endoplasmic reticulum stress-associated apoptosis following piperine treatment of HT-29 cells provides the first evidence that piperine may be useful in the treatment of colon cancer.

  18. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  19. Anti-Müllerian hormone inhibits growth of AMH type II receptor-positive human ovarian granulosa cell tumor cells by activating apoptosis.

    Science.gov (United States)

    Anttonen, Mikko; Färkkilä, Anniina; Tauriala, Hanna; Kauppinen, Marjut; Maclaughlin, David T; Unkila-Kallio, Leila; Bützow, Ralf; Heikinheimo, Markku

    2011-11-01

    Ovarian granulosa cell tumors (GCTs) are sex cord stromal tumors that constitute 3-5% of all ovarian cancers. GCTs usually present with an indolent course but there is a high risk of recurrence, which associates with increased mortality, and targeted treatments would be desirable. Anti-Müllerian hormone (AMH), a key factor regulating sexual differentiation of the reproductive organs, has been implicated as a growth inhibitor in ovarian cancer. GCTs and normal granulosa cells produce AMH, but its expression in large GCTs is usually downregulated. Further, as the lack of specific AMH-signaling pathway components leads to GCT development in mice, we hypothesized that AMH inhibits growth of GCTs. Utilizing a large panel of human GCT tissue samples, we found that AMH type I receptors (ALK2, ALK3 and ALK6) and type II receptor (AMHRII), as well as their downstream effectors Smad1/5, are expressed and active in GCTs. AMHRII expression was detected in the vast majority (96%) of GCTs and correlated with AMH mRNA and protein expression. AMH mRNA level was low in large GCTs, confirming previous findings on low-AMH protein expression in large human as well as mouse GCTs. To study the functional role of AMH in this peculiar ovarian cancer, we utilized a human GCT cell line (KGN) and 10 primary GCT cell cultures. We found that the AMH-Smad1/5-signaling pathway was active in these cells, and that exogenous AMH further activated Smad1/5 in KGN cells. Furthermore, AMH treatment reduced the number of KGN cells and primary GCT cells, with increasing amounts of AMH leading to augmented activation of caspase-3 and subsequent apoptosis. All in all, these data support the premise that AMH is a growth inhibitor of GCTs.

  20. Octa-arginine mediated delivery of wild-type Lnk protein inhibits TPO-induced M-MOK megakaryoblastic leukemic cell growth by promoting apoptosis.

    Directory of Open Access Journals (Sweden)

    Chung Yeng Looi

    Full Text Available BACKGROUND: Lnk plays a non-redundant role by negatively regulating cytokine signaling of TPO, SCF or EPO. Retroviral expression of Lnk has been shown to suppress hematopoietic leukemic cell proliferation indicating its therapeutic value in cancer therapy. However, retroviral gene delivery carries risks of insertional mutagenesis. To circumvent this undesired consequence, we fused a cell permeable peptide octa-arginine to Lnk and evaluated the efficacy of inhibition of leukemic cell proliferation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: In this study, proliferation assays, flow cytometry, Western Blot analyses were performed on wild-type (WT, mutant Lnk R8 or BSA treated M-MOK cells. We found that delivered WT, but not mutant Lnk R8 blocked TPO-induced M-MOK megakaryoblastic leukemic cell proliferation. In contrast, WT Lnk R8 showed no growth inhibitive effect on non-hematopoietic HELA or COS-7 cell. Moreover, we demonstrated that TPO-induced M-MOK cell growth inhibition by WT Lnk R8 was dose-dependent. Penetrated WT Lnk R8 induced cell cycle arrest and apoptosis. Immunoprecipitation and Western blots data indicated WT Lnk R8 interacted with endogeneous Jak2 and downregulated Jak-Stat and MAPK phosphorylation level in M-MOK cells after TPO stimulation. Treatment with specific inhibitors (TG101348 and PD98059 indicated Jak-Stat and MAPK pathways were crucial for TPO-induced proliferation of M-MOK cells. Further analyses using TF-1 and HEL leukemic cell-lines showed that WT Lnk R8 inhibited Jak2-dependent cell proliferation. Using cord blood-derived CD34+ stem cells, we found that delivered WT Lnk R8 blocked TPO-induced megakaryopoiesis in vitro. CONCLUSIONS/SIGNIFICANCE: Intracellular delivery of WT Lnk R8 fusion protein efficiently inhibited TPO-induced M-MOK leukemic cell growth by promoting apoptosis. WT Lnk R8 protein delivery may provide a safer and more practical approach to inhibit leukemic cell growth worthy of further development.

  1. Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action.

    Science.gov (United States)

    Braga, Melissa; Bhasin, Shalender; Jasuja, Ravi; Pervin, Shehla; Singh, Rajan

    2012-03-05

    Testosterone (T) administration is associated with increased satellite cell number and skeletal muscle hypertrophy, although there is considerable heterogeneity in the response of different skeletal muscle groups to T in vivo. We investigated the effects of T on the growth and differentiation of satellite cells isolated from levator ani (LA) and gastrocnemius (gastroc) muscles. T up regulated follistatin (Fst) expression, but down regulated the mRNA and protein expression of a number of genes in the transforming growth factor-beta (TGF-β)-signaling pathway. Inhibition of Fst expression by small interfering RNA (siRNA) inhibited myogenic differentiation and blocked the pro-myogenic effects of T. Treatment of satellite cells with T or Fst up regulated the expression of Pax7 and PCNA, and increased their proliferation. T and Fst blocked TGF-β induced inhibition of growth and myogenic differentiation and down regulated TGF-β-dependent transcriptome in both LA and gastroc cells. We conclude that T stimulation of satellite cell proliferation and myogenic differentiation are associated with up regulation of Fst and inhibition of TGF-β-signaling.

  2. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo