WorldWideScience

Sample records for cell function altered

  1. Virus Innexins induce alterations in insect cell and tissue function.

    Science.gov (United States)

    Hasegawa, Daniel K; Erickson, Stephanie L; Hersh, Bradley M; Turnbull, Matthew W

    2017-04-01

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host homologues if present. For example, the polydnavirus vinnexin gene family encodes homologues of insect gap junction genes (innexins) that are expressed in host immune cells (hemocytes). While the roles of Innexin proteins and gap junctions in insect immunity are largely unclear, we previously demonstrated that Vinnexins form functional gap junctions and alter the junctional characteristics of a host Innexin when co-expressed in paired Xenopus oocytes. Here, we test the effect of ectopic vinnexin expression on host cell physiology using both a lepidopteran cell culture model and a dipteran whole organism model. Vinnexin expression in the cell culture system resulted in gene-specific alterations in cell morphology and a slight, but non-statistically significant, reduction in gap junction activity as measured by dye transfer, while ectopic expression of a lepidopteran innexin2 gene led to morphological alterations and increase in gap junction activity. Global ectopic expression in the model dipteran, Drosophila melanogaster, of one vinnexin (vinnexinG) or D. melanogaster innexin2 (Dm-inx2) resulted in embryonic lethality, while expression of the other vinnexin genes had no effect. Furthermore, ectopic expression of vinnexinG, but not other vinnexin genes or Dm-inx2, in D. melanogaster larval gut resulted in developmental arrest in the pupal stage. These data indicate the vinnexins likely have gene-specific roles in host manipulation. They also support the use of Drosophila in further analysis of the role of Vinnexins and other polydnavirus genes in modifying host physiological processes. Finally, our findings suggest the vinnexin genes may be useful to perturb and

  2. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  3. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    Science.gov (United States)

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.; Bryceson, Yenan T.

    2015-01-01

    SUMMARY The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. PMID:25786176

  4. The extent to which melanoma alters tissue-resident dendritic cell function correlates with tumorigenicity

    OpenAIRE

    Hargadon, Kristian Michael

    2015-01-01

    ABSTRACT We have shown that melanoma-derived factors alter the function of differentiated tissue-resident dendritic cells (DC) in a tumorigenicity-dependent manner. Soluble factors, including TGF?1 and VEGF-A, contributed to dendritic cell dysfunction associated with a highly-aggressive melanoma and conferred a phenotype upon DC likely to favor immune escape and tumor outgrowth.

  5. The extent to which melanoma alters tissue-resident dendritic cell function correlates with tumorigenicity.

    Science.gov (United States)

    Hargadon, Kristian Michael

    We have shown that melanoma-derived factors alter the function of differentiated tissue-resident dendritic cells (DC) in a tumorigenicity-dependent manner. Soluble factors, including TGFβ1 and VEGF-A, contributed to dendritic cell dysfunction associated with a highly-aggressive melanoma and conferred a phenotype upon DC likely to favor immune escape and tumor outgrowth.

  6. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  7. Alterations in cell function with ischemia and shock and their correction.

    Science.gov (United States)

    Chaudry, I H; Clemens, M G; Baue, A E

    1981-10-01

    Progressive cell injury occurs with shock and ischemia, beginning with functional changes in the cell and cell membrane. Membrane transport and potential decrease, Na+ enters and K+ leaves cells; N+-K+ adenosine triphosphatase is activated, adenosine triphosphate (ATP) is used, and mitochondria are stimulated as increased lactate produces acidosis. Energy and cyclic adenosine monophosphate levels decrease, Ca2+ regulation is compromised, and nuclear function and protein synthesis are depressed. The cell swells, and further membrane changes occur with altered hormonal effects and mitochondrial uncoupling. Finally, lysosomes leak, intracellular and mitochondria disruption occurs, and the cell is destroyed. Based on these changes, attempts were made to directly support cell function during low-flow states. After volume replacement and vasoactive agents, other modalities, eg, substrates, membrane-stabilizing solutions, osmotic agents, and energy compounds were used. The use of ATP-MgCl2 was helpful in many experimental low-flow states, with an improvement in cell function mediated by micro-circulatory, cell membrane, or energy-recycling effects. Clinical examples of altered cell and organ function with ischemia and shock are numerous and play a critical role in the development of multiple systems failure. The potential for biochemical support and correction of these problems is now recognized. Benefits have already been achieved in myocardial preservation during cardiac operations, kidney preservation for transplantation, and circulatory and metabolic support of the injured and septic patient.

  8. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  9. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  10. Rhein inhibits glucose uptake in Ehrlich ascites tumor cells by alteration of membrane-associated functions.

    Science.gov (United States)

    Castiglione, S; Fanciulli, M; Bruno, T; Evangelista, M; Del Carlo, C; Paggi, M G; Chersi, A; Floridi, A

    1993-06-01

    Rhein (RH), 4,5 dihydroxyanthraquinone-2-carboxylic acid, is known to inhibit the glycolysis of neoplastic cells by impairing glucose uptake. In order to establish whether this might be due to a selective interaction of the carrier with the drug or to functional modifications of the cell membrane, the effect of RH on glucose uptake in Ehrlich ascites tumor cells has been investigated. RH strongly inhibits the uptake of both 2-deoxyglucose and 3-O-methylglucose, so the reduced influx therefore cannot be ascribed to an effect on glucose phosphorylation. The inhibition of glucose transport does not depend on a reduction of the number of the carriers as indicated by the inability of the drug to interfere with the synthesis of the transporter. Moreover, the extent of total binding of cytochalasin B, as well as the fact that glucose specificity is not altered, indicate that the intrinsic activity of the glucose carrier is not affected. We therefore conclude that the inhibition of glucose uptake must be ascribed to an interaction of the drug with cell membranes that results in an alteration of membrane-associated functions.

  11. Alterations in pancreatic β cell function and Trypanosoma cruzi infection: evidence from human and animal studies.

    Science.gov (United States)

    Dufurrena, Quinn; Amjad, Farhad M; Scherer, Philipp E; Weiss, Louis M; Nagajyothi, Jyothi; Roth, Jesse; Tanowitz, Herbert B; Kuliawat, Regina

    2017-03-01

    The parasite Trypanosoma cruzi causes a persistent infection, Chagas disease, affecting millions of persons in endemic areas of Latin America. As a result of immigration, this disease has now been diagnosed in non-endemic areas worldwide. Although, the heart and gastrointestinal tract are the most studied, the insulin-secreting β cell of the endocrine pancreas is also a target of infection. In this review, we summarize available clinical and laboratory evidence to determine whether T. cruzi-infection-mediated changes of β cell function is likely to contribute to the development of hyperglycemia and diabetes. Our literature survey indicates that T. cruzi infection of humans and of experimental animals relates to altered secretory behavior of β cells. The mechanistic basis of these observations appears to be a change in stimulus-secretion pathway function rather than the loss of insulin-producing β cells. Whether this attenuated insulin release ultimately contributes to the pathogenesis of diabetes in human Chagas disease, however, remains to be determined. Since the etiologies of diabetes are multifactorial including genetic and lifestyle factors, the use of cell- and animal-based investigations, allowing direct manipulation of these factors, are important tools in testing if reduced insulin secretion has a causal influence on diabetes in the setting of Chagas disease. Long-term clinical investigations will be required to investigate this link in humans.

  12. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity.

    Directory of Open Access Journals (Sweden)

    Konstantin V Salojin

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.

  13. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-10-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis.

  14. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    International Nuclear Information System (INIS)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-01-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis

  15. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  16. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells.

    Science.gov (United States)

    Zheng, WangLong; Pan, ShunYe; Wang, Guangguang; Wang, Ya Jun; Liu, Qing; Gu, JianHong; Yuan, Yan; Liu, Xue Zhong; Liu, Zong Ping; Bian, Jian Chun

    2016-03-01

    The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (pfunctions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    International Nuclear Information System (INIS)

    Carter, Charleata A.; Hamm, Jonathan T.

    2009-01-01

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  18. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    OpenAIRE

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.

    2015-01-01

    The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-a...

  19. A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Cigliola

    Full Text Available Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36, which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D. GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123 associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis.

  20. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Alteration of Lymphocyte Phenotype and Function in Sickle Cell Anemia: Implications for Vaccine Responses

    Science.gov (United States)

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-01-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper : CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27+IgMhighIgDlow memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. PMID:27237467

  2. Distinctive Regulatory T Cells and Altered Cytokine Profile Locally in the Airways of Young Smokers with Normal Lung Function.

    Science.gov (United States)

    Ostadkarampour, Mahyar; Müller, Malin; Öckinger, Johan; Kullberg, Susanna; Lindén, Anders; Eklund, Anders; Grunewald, Johan; Wahlström, Jan

    2016-01-01

    Smoking influences the immune system in different ways and, hypothetically, effects on pulmonary effector and regulatory T cells emerge as potentially detrimental. Therefore, we characterized the frequencies and characteristics of CD4+ and CD8+ T cell subsets in the blood and lungs of young tobacco smokers. Bronchoalveolar lavage (BAL) and peripheral blood were obtained from healthy moderate smokers (n = 18; 2-24 pack-years) and never-smokers (n = 15), all with normal lung function. Cells were stimulated ex vivo and key intracellular cytokines (IFNγ, IL-17, IL-10 and TNFα) and transcription factors (Foxp3, T-bet and Helios) were analyzed using flow cytometry. Our results indicate that smoking is associated with a decline in lung IL-17+ CD4+ T cells, increased IFNγ+ CD8+ T cells and these alterations relate to the history of daily cigarette consumption. There is an increased fraction of Foxp3+ regulatory T cells being Helios- in the lungs of smokers. Cytokine production is mainly confined to the Helios- T cells, both in regulatory and effector subsets. Moreover, we detected a decline of Helios+Foxp3- postulated regulatory CD8+ T cells in smokers. These alterations in the immune system are likely to increase risk for infection and may have implications for autoimmune processes initiated in the lungs among tobacco smokers.

  3. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    Science.gov (United States)

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  4. TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells.

    Science.gov (United States)

    Fricke, Fabia; Lee, Jennifer; Michalak, Malwina; Warnken, Uwe; Hausser, Ingrid; Suarez-Carmona, Meggy; Halama, Niels; Schnölzer, Martina; Kopitz, Jürgen; Gebert, Johannes

    2017-04-04

    Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status

  5. Altered Actin Dynamics and Functions of Osteoblast-Like Cells in Parabolic Flight may Involve ERK1/2

    Science.gov (United States)

    Dai, Zhongquan; Tan, Yingjun; Yang, Fen; Qu, Lina; Zhang, Hongyu; Wan, Yumin; Li, Yinghui

    2011-01-01

    Osteoblasts are sensitive to mechanical stressors such as gravity and alter their cytoskeletons and functions to adapt; however, the contribution of gravity to this phenomenon is not well understood. In this study, we investigated the effects of acute gravitational changes on the structure and function of osteoblast ROS17/2.8 as generated by parabolic flight. The changes in microfilament cytoskeleton was observed by immunofluorescence stain of Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I for F-actin and G-actin, respectively. To examine osteoblast function, ALP (alkaline phosphatase) activity, osteocalcin secretions and the expression of ALP, COL1A1 (collagen type I alpha 1 chain) and osteocalcin were detected by modified Gomori methods, radioimmunity and RT-PCR, respectively. Double fluorescence staining of phosphorylated p44/42 and F-actin were performed to observe their colocalization relationship. The established semi-quantitative analysis method of fluorescence intensity of EGFP was used to detect the activity changes of COL1A1 promoter in EGFP-ROS cells with MAPK inhibitor PD98059 or F-actin inhibitor cytochalasin B. Results indicate that the altered gravity induced the reorganization of microfilament cytoskeletons of osteoblasts. After 3 h parabolic flight, F-actin of osteoblast cytoskeleton became thicker and directivity, whereas G-actin shrunk and became more concentrated at the edge of nucleus. The excretion of osteocalcin, the activity of ALP and the expression of mRNA decreased. Colocalization analysis indicated that phosphorylated p44/42 MAPK was coupled with F-actin. Inhibitor PD98059 and cytochalasin B decreased the fluorescence intensity of EGFP-ROS cells. Above results suggest that short time gravity variations induce the adjustment of osteoblast structure and functional and ERK1/2 signaling maybe involve these responses. We believe that it is an adaptive method of the osteoblasts to gravity alteration that structure

  6. Gestational Diabetes Alters Functions in Offspring's Umbilical Cord Cells With Implications for Cardiovascular Health.

    Science.gov (United States)

    Amrithraj, Ajith Isaac; Kodali, Anjaneyulu; Nguyen, Linh; Teo, Adrian Kee Keong; Chang, Cheng Wei; Karnani, Neerja; Ng, Kai Lyn; Gluckman, Peter D; Chong, Yap Seng; Stünkel, Walter

    2017-07-01

    Because noncommunicable diseases such as type 2 diabetes mellitus have their roots in prenatal development and conditions such as maternal gestational diabetes mellitus (GDM), we aimed to test this hypothesis in primary cells derived from the offspring of mothers with GDM compared with control subjects. We have assessed primary umbilical cord-derived cells such as human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stem cells from the offspring of mothers with and without GDM. We have compared the primary isolates in cell-based assays measuring proliferation, mitochondrial oxygen consumption, and the ability to support blood vessel growth. We conducted gene expression microarray studies with subsequent pathway analysis and candidate gene validation. We observed striking differences between the two groups, such as lower metabolic rates and impairment of endothelial tube formation in cells with GDM background. HUVECs from subjects with maternal GDM have lower expression of the antiapoptotic protein BCL-xL, suggesting compromised angiogenic capabilities. Comparative gene expression analysis revealed blood vessel formation as a major pathway enriched in the GDM-derived HUVECs with the surface marker CD44 as a gene underexpressed in the GDM group. Functional validation of CD44 revealed that it regulates tube formation in HUVECs, thereby providing insights into a pathway imprinted in primary umbilical cord-derived cells from GDM offspring. Our data demonstrate that primary cells isolated from the umbilical cord of offspring born to mothers with GDM maintain metabolic and molecular imprints of maternal hyperglycemia, reflecting an increased risk for cardiovascular disease later in life. Copyright © 2017 Endocrine Society.

  7. Ionizing radiation selectively reduces skin regulatory T cells and alters immune function.

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    Full Text Available The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth's magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel.

  8. DIABETES IMPAIRS HEMATOPOIETIC STEM CELL MOBILIZATION THROUGH ALTERATION OF NICHE FUNCTION

    Science.gov (United States)

    Ferraro, Francesca; Lymperi, Stefania; Méndez-Ferrer, Simón; Saez, Borja; Spencer, Joel A; Yeap, Beow Y; Masselli, Elena; Graiani, Gallia; Prezioso, Lucia; Rizzini, Elisa Lodi; Mangoni, Marcellina; Rizzoli, Vittorio; Sykes, Stephen M; Lin, Charles P.; Frenette, Paul S.; Quaini, Federico; Scadden, David T.

    2013-01-01

    Autologous hematopoietic stem/progenitor cells (HSPC) transplantation success depends upon adequate cell collection after G-CSF-administration that a substantial fraction of patients fails to achieve. Retrospective analysis of patient records demonstrated that diabetes correlated with lower CD34+ cell mobilization. Using mouse models, we found impaired HSPC egress from the bone marrow in either streptozotocin-induced or db/db diabetic animals. HSPC aberrantly localized within the marrow microenvironment of diabetic animals in association with abnormalities in sympathetic neuron number and function. Markedly increased sympathetic neuron density was accompanied by abnormal response to β-adrenergic stimulation and a failure to generate the G-CSF-induced CXCL12 gradient in nestin-expressing mesenchymal cells associated with HSPC mobilization. Alternative mobilization by direct pharmacologic inhibition of CXCL12-CXCR4 interaction rescued the defect. These data reveal diabetes-induced changes in bone marrow physiology and microanatomy and point to a pathophysiologically based approach to overcome HSPC mobilization defects in diabetic patients. PMID:21998408

  9. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  10. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3?

    Science.gov (United States)

    Bousleiman, Jamie; Pinsky, Alexa; Ki, Sohee; Su, Angela; Morozova, Irina; Kalachikov, Sergey; Wiqas, Amen; Silver, Rae; Sever, Mary; Austin, Rachel Narehood

    2017-01-01

    A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3. PMID:28587098

  12. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    Science.gov (United States)

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  13. Alterations in mitochondria function and morphology in HT29 cells upon conditions inducing differentiation and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Sovová, Vlasta; Štokrová, Jitka; Šloncová, Eva; Kučerová, Dana; Tuháčková, Zdena; Korb, Jan

    2003-01-01

    Roč. 23, č. 6 (2003), s. 1755-1760 ISSN 1019-6439 Institutional research plan: CEZ:AV0Z5052915 Keywords : differentiation-apoptosis-HT29cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.536, year: 2003

  14. Alterations in lipid peroxidation and T-cell function in women with hyperemesis gravidarum.

    Science.gov (United States)

    Biberoglu, E H; Kirbas, A; Dirican, A Ö; Genc, M; Avci, A; Doganay, B; Uygur, D; Biberoglu, K

    2016-01-01

    The objective of this study was to investigate serum adenosine deaminase (ADA) activity as a marker of T lymphocyte activation and parameters of oxidative stress and antioxidant defence in hyperemesis gravidarum (HG). Serum ADA activity, malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels were investigated in 40 pregnant women with the HG and 40 with healthy pregnancies, in a descriptive study. Although serum ADA and CAT were measured to be higher in HG group, the difference was not significant. Serum MDA and GPx levels were significantly elevated in women with HG when compared with those without HG. The significance of changes in lipid peroxidation and T-cell activation in the pathogenesis of HG and whether this is a cause or a compensatory reaction to HG requires further investigations with larger multicentre trials.

  15. Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain.

    Science.gov (United States)

    Blum, E; Procacci, P; Conte, V; Hanani, M

    2014-08-22

    Local peripheral injury activates satellite glial cells (SGCs) in sensory ganglia, which may contribute to chronic pain. We hypothesized that systemic inflammation affects sensory ganglia like local injury. We induced systemic inflammation in mice by injecting lipopolysaccharide (LPS) intraperitoneally, and characterized SGCs and neurons in dorsal root ganglia (DRG), using dye injection, calcium imaging, electron microscopy (EM), immunohistochemistry, and electrical recordings. Several days post-LPS, SGCs were activated, and dye coupling among SGCs increased 3-4.5-fold. EM showed abnormal growth of SGC processes and the formation of new gap junctions. Sensitivity of SGCs to ATP increased twofold, and neuronal excitability was augmented. Blocking gap junctions reduced pain behavior in LPS-treated mice. Thus, changes in DRG due to systemic inflammation are similar to those due to local injury, which may explain the pain in sickness behavior and in other systemic diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Montelukast prevents microparticle-induced inflammatory and functional alterations in human bronchial smooth muscle cells.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Neri, Tommaso; Bardelli, Claudio; Amoruso, Angela; Brunelleschi, Sandra; Celi, Alessandro; Breschi, Maria Cristina

    2013-10-01

    Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitization. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitized cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitization in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Feed intake alters immune cell functions and ovarian infiltration in broiler hens: implications for reproductive performance.

    Science.gov (United States)

    Liu, Zu-Chen; Xie, Yi-Lun; Chang, Chai-Ju; Su, Chia-Ming; Chen, Yu-Hui; Huang, San-Yuan; Walzem, Rosemary L; Chen, Shuen-Ei

    2014-06-01

    Leukocytes are known to participate in ovarian activities in several species, but there is a surprising lack of information for the common chicken. Broiler hens consuming feed ad libitum (AL) exhibit a number of ovarian irregularities, but leukocyte functions are unstudied. In contrast to feed-restricted (R) hens, AL feeding for 7 wk significantly reduced egg production and clutch length while increasing pause length and atretic follicle numbers (P hens contained less progesterone, and follicle walls were thicker with loose fibrous morphology and had less collagenase-3-like gelatinolytic activity but more IL-1beta (P hen peripheral heterophils and monocytes (P hens. © 2014 by the Society for the Study of Reproduction, Inc.

  18. Type 2 diabetes mellitus is associated with altered CD8+ T and natural killer cell function in pulmonary tuberculosis

    Science.gov (United States)

    Kumar, Nathella P; Sridhar, Rathinam; Nair, Dina; Banurekha, Vaithilingam V; Nutman, Thomas B; Babu, Subash

    2015-01-01

    Type 2 diabetes mellitus (DM) is associated with expanded frequencies of mycobacterial antigen-specific CD4+ T helper type 1 (Th1) and Th17 cells in individuals with active pulmonary tuberculosis (TB). No data are available on the role of CD8+ T and natural killer (NK) cells in TB with coincident DM. To identify the role of CD8+ T and NK cells in pulmonary TB with diabetes, we examined mycobacteria-specific immune responses in the whole blood of individuals with TB and DM (TB-DM) and compared them with those without DM (TB-NDM). We found that TB-DM is characterized by elevated frequencies of mycobacterial antigen-stimulated CD8+ T cells expressing type 1 [interferon-γ and interleukin-2 (IL-2)] and type 17 (IL-17F) cytokines. We also found that TB-DM is characterized by expanded frequencies of TB antigen-stimulated NK cells expressing type 1 (tumour necrosis factor-α) and type 17 (IL-17A and IL-17F) cytokines. In contrast, CD8+ T cells were associated with significantly diminished expression of the cytotoxic markers perforin, granzyme B and CD107a both at baseline and following antigen or anti-CD3 stimulation, while NK cells were associated with significantly decreased antigen-stimulated expression of CD107a only. This was not associated with alterations in CD8+ T-cell or NK cell numbers or subset distribution. Therefore, our data suggest that pulmonary TB complicated with type 2 DM is associated with an altered repertoire of cytokine-producing and cytotoxic molecule-expressing CD8+ T and NK cells, possibly contributing to increased pathology. PMID:25363329

  19. Type 2 diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in pulmonary tuberculosis.

    Science.gov (United States)

    Kumar, Nathella P; Sridhar, Rathinam; Nair, Dina; Banurekha, Vaithilingam V; Nutman, Thomas B; Babu, Subash

    2015-04-01

    Type 2 diabetes mellitus (DM) is associated with expanded frequencies of mycobacterial antigen-specific CD4(+) T helper type 1 (Th1) and Th17 cells in individuals with active pulmonary tuberculosis (TB). No data are available on the role of CD8(+) T and natural killer (NK) cells in TB with coincident DM. To identify the role of CD8(+) T and NK cells in pulmonary TB with diabetes, we examined mycobacteria-specific immune responses in the whole blood of individuals with TB and DM (TB-DM) and compared them with those without DM (TB-NDM). We found that TB-DM is characterized by elevated frequencies of mycobacterial antigen-stimulated CD8(+) T cells expressing type 1 [interferon-γ and interleukin-2 (IL-2)] and type 17 (IL-17F) cytokines. We also found that TB-DM is characterized by expanded frequencies of TB antigen-stimulated NK cells expressing type 1 (tumour necrosis factor-α) and type 17 (IL-17A and IL-17F) cytokines. In contrast, CD8(+) T cells were associated with significantly diminished expression of the cytotoxic markers perforin, granzyme B and CD107a both at baseline and following antigen or anti-CD3 stimulation, while NK cells were associated with significantly decreased antigen-stimulated expression of CD107a only. This was not associated with alterations in CD8(+) T-cell or NK cell numbers or subset distribution. Therefore, our data suggest that pulmonary TB complicated with type 2 DM is associated with an altered repertoire of cytokine-producing and cytotoxic molecule-expressing CD8(+) T and NK cells, possibly contributing to increased pathology. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  1. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage

    International Nuclear Information System (INIS)

    Carranza-Rosales, Pilar; Said-Fernandez, Salvador; Sepulveda-Saavedra, Julio; Cruz-Vega, Delia E.; Gandolfi, A. Jay

    2005-01-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl 2 . At concentrations of 1 and 10 μM of HgCl 2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 μM HgCl 2 , both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 μM HgCl 2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 μM HgCl 2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9 h with 15 μM HgCl 2 . This effect was not observed at short times

  2. Altered phenotypic and functional characteristics of CD3+CD56+ NKT-like cells in human gastric cancer.

    Science.gov (United States)

    Peng, Liu-Sheng; Mao, Fang-Yuan; Zhao, Yong-Liang; Wang, Ting-Ting; Chen, Na; Zhang, Jin-Yu; Cheng, Ping; Li, Wen-Hua; Lv, Yi-Pin; Teng, Yong-Sheng; Guo, Gang; Luo, Ping; Chen, Weisan; Zou, Quan-Ming; Zhuang, Yuan

    2016-08-23

    CD3+CD56+ natural killer T (NKT)-like cells are a group of CD3+ T cells sharing characteristics of NK and T cells and constitute a major component of host anti-tumor immune response in human cancer. However, the nature, function and clinical relevance of CD3+CD56+ NKT-like cells in human gastric cancer (GC) remain unclear. In this study, we showed that the frequencies of CD3+CD56+NKT-like cells in GC tumors were significantly decreased and low levels of tumor-infiltrating CD3+CD56+ NKT-like cells were positively correlated with poor survival and disease progression. Most CD3+CD56+NKT-like cells in GC tumors were CD45RA-CD27+/- central/effector-memory cells with decreased activity and lower expression levels of CD69, NKG2D and DNAM-1 than those in non-tumor tissues. We further observed that tumor-infiltrating CD3+CD56+ NKT-like cells had impaired effector function as shown by decreased IFN-γ, TNF-α, granzyme B and Ki-67 expression. Moreover, in vitro studies showed that soluble factors released from GC tumors could induce the functional impairment of CD3+CD56+ NKT-like cells. Collectively, our data indicate that decreased tumor-infiltrating CD3+CD56+ NKT-like cells with impaired effector function are associated with tumor progression and poor survival of GC patients, which may contribute to immune escape of GC.

  3. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  4. Nilotinib Does Not Alter the Secretory Functions of Carotid Artery Endothelial Cells in a Prothrombotic or Antithrombotic Fashion.

    Science.gov (United States)

    Katgı, Abdullah; Sevindik, Ömür Gökmen; Gökbulut, Aysun Adan; Özsan, Güner Hayri; Yüksel, Faize; Solmaz, Şerife Medeni; Alacacıoğlu, İnci; Özcan, Mehmet Ali; Demirkan, Fatih; Baran, Yusuf; Pişkin, Özden

    2015-10-01

    There have been concerns about the possible prothrombotic effects of nilotinib, especially in patients having cardiovascular risk factors. The potential mechanism behind the increased risk of thromboembolic events is still not clear. In this study, we aimed to evaluate possible harmful effects of nilotinib on endothelial cells. To this aim, we examined proliferative capacity and secretory functions of healthy human carotid artery endothelial cells (HCtAECs) in response to nilotinib. 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation method was used to determine antiproliferative effects of nilotinib on HCtAECs. The HCtAECs were incubated with 5, 10, and 100 nmol/L doses of nilotinib for 72 hours. Then, in order to assess the endothelial function, levels of nitric oxide (NO), von Willebrand factor (vWF), tissue plasminogen activator, plasminogen activator inhibitor 1 (PAI-1), and endothelin 1 (ET-1) were evaluated using enzyme-linked immunosorbent assay from tissue culture supernatants. There were slight but statistically significant decreases in cell proliferation in response to nilotinib. Nilotinib increased the secretion of t-PA, PAI-1, and vWF in a dose-dependent manner when compared with the untreated control group. The ET-1 secretion was lower in 5 nmol/L and higher in 10 and 100 nmol/L nilotinib-treated cells as compared to untreated cells. Regarding NO secretion, lower levels were observed in 5 and 10 nmol/L, and higher levels were detected in 100 nmol/L nilotinib-treated cells as compared to untreated control group cells. Considering the results obtained in our study, nilotinib does not affect the functions of endothelial cells either in a prothrombotic or an antithrombotic fashion, despite a dose-dependent decline in cell viability. © The Author(s) 2014.

  5. Colorectal cancer cell lines made resistant to SN38-and Oxaliplatin: Roles of altered ion transporter function in resistance?

    DEFF Research Database (Denmark)

    Sandra, Christensen; Jensen, Niels Frank; Stoeckel, Johanne Danmark

    2013-01-01

    Colorectal cancer (CRC) is the 3rd most common cancer globally, with 5year survival rates of ~50%. Response rates to standard treatments (irinotecan (SN38) or Oxaliplatin (Oxp)) are 31–56% and drug resistance is a major problem. Thus, we established in vitro CRC models to investigate SN38 and Oxp...... resistance in HCT-116, HT-29 and LoVo cells. Microarray analysis and qPCR validation showed that mRNA expression of glutamate transporters SLC1A1 and SLC1A3 were markedly altered in resistant cells. Remarkably, mRNA levels of SLC1A3 were increased by ~40-and ~2500-fold in SN38-and Oxp-resistant HT29 cells......, respectively. Studies are ongoing to assess glutamate uptake in parental and resistant CRC cells and the effect of inhibition/knockdown of SLC1A1 and -3 on SN38- and Oxp resistance. In conclusion, SN38-and Oxp-resistance in CRC cells is associated with SLC1A1 and -3 dysregulation. As these transporters have...

  6. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    Energy Technology Data Exchange (ETDEWEB)

    Pretell, J.O.; Cone, R.E.

    1985-02-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA.

  7. On the Action of General Anesthetics on Cellular Function: Barbiturate Alters the Exocytosis of Catecholamines in a Model Cell System.

    Science.gov (United States)

    Ye, Daixin; Ewing, Andrew

    2018-01-22

    General anesthetics are essential in many areas, however, the cellular mechanisms of anesthetic-induced amnesia and unconsciousness are incompletely understood. Exocytosis is the main mechanism of signal transduction and neuronal communication through the release of chemical transmitters from vesicles to the extracellular environment. Here, we use disk electrodes placed on top of PC12 cells to show that treatment with barbiturate induces fewer molecules released during exocytosis and changes the event dynamics perhaps by inducing a less stable fusion pore that is prone to close faster during partial exocytosis. Larger events are essentially abolished. However, use of intracellular vesicle impact electrochemical cytometry using a nano-tip electrode inserted into a cell shows that the distribution of vesicle transmitter content does not change after barbiturate treatment. This indicates that barbiturate selectively alters the pore size of larger events or perhaps differentially between types of vesicles. Alteration of exocytosis in this manner could be linked to the effects of general anesthetics on memory loss. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Independence of protein kinase C-delta activity from activation loop phosphorylation: structural basis and altered functions in cells.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Graham, Caroline; Shaw, Stephen

    2006-04-28

    Activation loop phosphorylation plays critical regulatory roles for many kinases. Unlike other protein kinase Cs (PKC), PKC-delta does not require phosphorylation of its activation loop (Thr-507) for in vitro activity. We investigated the structural basis for this unusual capacity and its relevance to PKC-delta function in intact cells. Mutational analysis demonstrated that activity without Thr-507 phosphorylation depends on 20 residues N-terminal to the kinase domain and a pair of phenylalanines (Phe-500/Phe-527) unique to PKC-delta in/near the activation loop. Molecular modeling demonstrated that these elements stabilize the activation loop by forming a hydrophobic chain of interactions from the C-lobe to activation loop to N-terminal (helical) extension. In cells PKC-delta mediates both apoptosis and transcription regulation. We found that the T507A mutant of the PKC-delta kinase domain resembled the corresponding wild type in mediating apoptosis in transfected HEK293T cells. But the T507A mutant was completely defective in AP-1 and NF-kappaB reporter assays. A novel assay in which the kinase domain of PKC-delta and its substrate (a fusion protein of PKC substrate peptide with green fluorescent protein) were co-targeted to lipid rafts revealed a major substrate-selective defect of the T507A mutant in phosphorylating the substrate in cells. In vitro analysis showed strong product inhibition on the T507A mutant with particular substrates whose characteristics suggest it contributes to the substrate selective defect of the PKC-delta T507A mutant in cells. Thus, activation loop phosphorylation of PKC-delta may regulate its function in cells in a novel way.

  9. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line.

    Science.gov (United States)

    Baker, Olga J; Camden, Jean M; Redman, Robert S; Jones, Jonathan E; Seye, Cheikh I; Erb, Laurie; Weisman, Gary A

    2008-11-01

    Sjögren's syndrome (SS) is an autoimmune disorder characterized by inflammation and dysfunction of salivary glands, resulting in impaired secretory function. The production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) is elevated in exocrine glands of patients with SS, although little is known about the effects of these cytokines on salivary epithelial cell functions necessary for saliva secretion, including tight junction (TJ) integrity and the establishment of transepithelial ion gradients. The present study demonstrates that chronic exposure of polarized rat parotid gland (Par-C10) epithelial cell monolayers to TNF-alpha and IFN-gamma decreases transepithelial resistance (TER) and anion secretion, as measured by changes in short-circuit current (I(sc)) induced by carbachol, a muscarinic cholinergic receptor agonist, or UTP, a P2Y(2) nucleotide receptor agonist. In contrast, TNF-alpha and IFN-gamma had no effect on agonist-induced increases in the intracellular calcium concentration [Ca(2+)](i) in Par-C10 cells. Furthermore, treatment of Par-C10 cell monolayers with TNF-alpha and IFN-gamma increased paracellular permeability to normally impermeant proteins, altered cell and TJ morphology, and downregulated the expression of the TJ protein, claudin-1, but not other TJ proteins expressed in Par-C10 cells. The decreases in TER, agonist-induced transepithelial anion secretion, and claudin-1 expression caused by TNF-alpha, but not IFN-gamma, were reversible by incubation of Par-C10 cell monolayers with cytokine-free medium for 24 h, indicating that IFN-gamma causes irreversible inhibition of cellular activities associated with fluid secretion in salivary glands. Our results suggest that cytokine production is an important contributor to secretory dysfunction in SS by disrupting TJ integrity of salivary epithelium.

  10. Chronic Alcohol Ingestion Worsens Survival and Alters Gut Epithelial Apoptosis and Cd8+ T Cell Function after Pseudomonas Aeruginosa Pneumonia-Induced Sepsis.

    Science.gov (United States)

    Klingensmith, Nathan J; Fay, Katherine T; Lyons, John D; Chen, Ching-Wen; Otani, Shunsuke; Liang, Zhe; Chihade, Deena B; Burd, Eileen M; Ford, Mandy L; Coopersmith, Craig M

    2018-04-16

    Mortality is higher in septic patients with a history of alcohol use disorder than in septic patients without a history of chronic alcohol usage. We have previously described a model of chronic alcohol ingestion followed by sepsis from cecal ligation and puncture in which alcohol-fed septic mice have higher mortality than water-fed septic mice, associated with altered gut integrity and increased production of TNF and IFNγ by splenic CD4 T cells without alterations in CD8 T cell function. The purpose of this study was to determine whether this represents a common host response to the combination of alcohol and sepsis by creating a new model in which mice with chronic alcohol ingestion were subjected to a different model of sepsis. C57Bl/6 mice were randomized to receive either alcohol or water for 12 weeks and then subjected to Pseudomonas aeruginosa pneumonia. Mice were sacrificed either 24 hours after the onset of sepsis or followed for survival. Alcohol-fed septic mice had significantly higher 7-day mortality than water-fed septic mice (96% vs 58%). This was associated with a 5-fold increase in intestinal apoptosis in alcohol-fed septic animals, accompanied by an increase in the pro-apoptotic protein Bax. Serum IL-6 levels were higher and IL-2 levels were lower in alcohol-fed septic mice. In contrast, CD8 T cell frequency was lower in alcohol-fed mice than water-fed septic mice, associated with increased production of IFNγ and TNF in stimulated splenocytes. No significant differences were noted in CD4 T cells, lung injury or bacteremia. Mice with chronic alcohol ingestion thus have increased mortality regardless of their septic insult, associated with changes in both the gut and the immune system.

  11. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.

    1998-01-01

    This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their

  12. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets.

    Science.gov (United States)

    Carow, Berit; Gao, Yu; Coquet, Jonathan; Reilly, Marie; Rottenberg, Martin E

    2016-09-15

    Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αβ T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Mycobacterium bovis Bacillus Calmette–Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function

    Directory of Open Access Journals (Sweden)

    Ricardo D. Lardone

    2017-08-01

    Full Text Available Intralesional Mycobacterium bovis bacillus Calmette–Guérin (BCG has long been a relatively inexpensive therapy for inoperable cutaneous metastatic melanoma (CMM, although intralesional BCG skin mechanisms remain understudied. We analyzed intralesional BCG-treated CMM lesions combined with in vitro studies to further investigate BCG-altered pathways. Since macrophages play a pivotal role against both cancer and mycobacterial infections, we hypothesized BCG regulates macrophages to promote antitumor immunity. Tumor-associated macrophages (M2 infiltrate melanomas and impair antitumor immunity. BCG-treated, in vitro-polarized M2 (M2-BCG showed transcriptional changes involving inflammation, immune cell recruitment, cross talk, and activation pathways. Mechanistic network analysis indicated M2-BCG potential to improve interferon gamma (IFN-γ responses. Accordingly, frequency of IFN-γ-producing CD4+ T cells responding to M2-BCG vs. mock-treated M2 increased (p < 0.05. Moreover, conditioned media from M2-BCG vs. M2 elevated the frequency of granzyme B-producing CD8+ tumor-infiltrating lymphocytes (TILs facing autologous melanoma cell lines (p < 0.01. Furthermore, transcriptome analysis of intralesional BCG-injected CMM relative to uninjected lesions showed immune function prevalence, with the most enriched pathways representing T cell activation mechanisms. In vitro-infected MM-derived cell lines stimulated higher frequency of IFN-γ-producing TIL from the same melanoma (p < 0.05. Our data suggest BCG favors antitumor responses in CMM through direct/indirect effects on tumor microenvironment cell types including macrophages, T cells, and tumor itself.

  14. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in the gene expression profile, we performed GEP and array-CGH studies on seven clinically well defined cases and eight well characterized cell lines derived from NKL patients. Methods: Array-CGH was performed on a tiling BAC array and GEP on an Affymetrix 133 plus2 array.The two data sets were correlated...... to identify functional alterations associated with the genetic abnormalities.Candidate genes on del 6q21 were identified and further studied for mutations and promoter methylation. Results: Our aCGH study identified frequent recurrent gains (> 25 %) in 1q, 2p, 7q, 13q, 17q and 20pter-qter. Regions of loss...

  15. Histopathological and ultrastructural changes experimentally induced by bee venom in seminiferous epithelium via structural-functional alteration of Sertoli cells.

    Science.gov (United States)

    Florea, Adrian; Puică, Constantin; Hamed, Sami; Tilinca, Mariana; Matei, Horea

    2017-11-01

    We tested here the ability of bee venom (BV) to interfere with spermatogenesis in rats in two experimental conditions. The histopathological changes were assessed with brightfield microscopy using a novel staining technique, based on methylene blue, orange G and ponceau xylidine. Transmission electron microscopy was also used to identify fine subcellular changes. BV injection for 30days in daily doses of 700μg BV/kg resulted in reducing testicular weight, along with significant larger diameters of seminiferous tubules and reduced number of Sertoli cells (SCs). SCs were vacuolated, detached from the basement membrane, many necrosed, leading to the basement membrane denudation. Germ cells layers were separated by empty spaces conferring a rarefied aspect to the tissue, and spermatids were detached into lumen. Thus, the seminiferous epithelium was significantly thinned. Many Leydig cells (LCs) were in a necrotic state, with disrupted plasma membrane and without smooth endoplasmic reticulum. The acute treatment with a single LD50 of 62mgBV/kg, was followed by focal disruptions of the basement membrane and localized areas of necrosis, mainly affecting the SCs. Most of the observed SCs as well as some spermatogonia were highly vacuoled, empty spaces being observed within the epithelium. The SCs count was significantly decreased. Spermatids had also the tendency of separation from the SCs, and the significant larger diameter of the tubules found was associated with a thicker epithelium. Many LCs were necrosed, with disrupted plasma membrane, swollen mitochondria, no endoplasmic reticulum and implicitly showing rarefied cytoplasm. We concluded that BV was a testicular toxicant affecting both the LCs and the seminiferous tubules. The SCs cells represented the primary target site of BV whose effects were next extended upon the germ cells. In all cells, BV triggered unspecific degenerative changes that could impaire spermatogenesis. The present study also proposes an

  16. Altered CD8+ T-Cell Lymphocyte Function and TC1 Cell Stemness Contribute to Enhanced Malignant Tumor Properties in Murine Models of Sleep Apnea.

    Science.gov (United States)

    Akbarpour, Mahzad; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Gileles-Hillel, Alex; Almendros, Isaac; Farré, Ramon; Gozal, David

    2017-02-01

    The presence of obstructive sleep apnea (OSA) in patients with cancer appears to be accompanied by poorer outcomes. However, the mechanisms underlying such association are unknown. Tumor infiltrating lymphocytes (TILs), including CD8+ T cells, function as cytotoxic T lymphocytes (CTLs) and mount immune responses to cancer by the release of cytolytic enzymes, including granzyme B (GzmB), perforin (Prf), and cytokines such as interferon (IFN)-γ. Using established in vivo mouse models, we investigated CD8+ T cells and cancer stem cells (CSCs) in intermittent hypoxia (IH) and sleep fragmentation (SF) in the context of tumor environment. Both IH and SF promoted increased tumor growth and invasion toward adjacent tissues compared to controls. The number and frequency of GzmB-producing CD8+ T cells per milligram of tumor tissue was significantly reduced in IH-exposed mice with impaired cytolytic function in both the groups and correlated with tumor weight. We also found that Oct4+ and CD44+CD133+ expressing CSCs were considerably increased in IH and SF tumors, respectively. Reductions in GzmB in intratumoral CD8+ T cells in combination with the changes in tumor microenvironment that maintain the ability of CSCs to self-renew and even confer this capability to the nonstem population are compatible with reduced immunosurveillance and adverse tumor outcomes in animal models of OSA. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Natural functional SNPs in miR-155 alter its expression level, blood cell counts and immune responses

    Directory of Open Access Journals (Sweden)

    Congcong Li

    2016-08-01

    Full Text Available miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus and humans (Homo sapiens. In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B. Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3' terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.

  18. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states.

    Science.gov (United States)

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  19. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Kocer, Armagan; Sack, Jon T; Andersen, Olaf S

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous

  20. Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liqun Wang

    Full Text Available S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs. The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration.

  1. Nylon wool purification alters the activation of T cells.

    Science.gov (United States)

    Wohler, Jillian E; Barnum, Scott R

    2009-02-01

    Purification of lymphocytes, particularly T cells, is commonly performed using nylon wool. This enrichment method selectively retains B cells and some myeloid cells allowing a significantly more pure T cell population to flow through a nylon wool column. T cells purified in this fashion are assumed to be unaltered and functionally naïve, however some studies have suggested aberrant in vitro T cell responses after nylon wool treatment. We found that nylon wool purification significantly altered T cell proliferation, expression of activation markers and production of cytokines. Our results suggest that nylon wool treatment modifies T cell activation responses and that caution should be used when choosing this purification method.

  2. Altered Neutrophil Function in Localized Juvenile Periodontitis: Intrinsic or Induced?

    Science.gov (United States)

    Agarwal, Sudha; Huang, Jian Ping; Piesco, Nicholas P; Suzuki, Jon B; Riccelli, Angelina E; Johns, Lee P

    1996-03-01

    Localized juvenile periodontitis (LJP) is an aggressive periodontal disease of familial nature. Neutrophils from a majority of patients with this disease exhibit decreased Chemotaxis with increased adherence, oxidative burst, and degranulation in response to opsonized bacteria. It is proposed that the biological basis for these altered neutrophil functions in LJP may be due either to intrinsic cell abnormalities or to the effect of factors present in the sera of LJP patients, which can modulate neutrophil functions. LJP neutrophils exhibit a lower number of receptors for chemoattractants and GP-110 molecules which are known to facilitate Chemotaxis. Furthermore, these cells exhibit lower signal transduction in response to a biological stimulus. These observations suggest that intrinsic cellular defects may be responsible for altered neutrophil functions in LJP. However, healthy neutrophils, when treated with very low concentrations of proinflammatory cytokines, also exhibit the characteristics of altered or "defective" LJP neutrophils. Additionally, healthy neutrophils, when treated with LJP serum, also exhibit many of the characteristics associated with LJP neutrophils. Attempts to identify these factors have shown that cytokines like TNF-α and/or IL1 β in LJP sera may be at least partially responsible for modulating neutrophil functions in LJP. These cytokines are primarily produced by activated macrophages, indicating a role for these cells in the etiology of LJP. The hyper-responsiveness of these cells to an immunologic challenge can result in local increases in cytokines leading to excessive bone loss and tissue damage at the site of infection, while systemic elevations in cytokines would lead to decreased neutrophil Chemotaxis, both of which are observed in LJP. Present evidence indicates that neutrophil functions are indeed altered in the majority of LJP patients. However, the biological basis for the alteration may not be due to the neutrophils themselves

  3. HIV-1 alters the cytokine microenvironment and effector function of CD8+T cells upon antigen-specific activation with mycobacteria

    Science.gov (United States)

    Tuberculosis is the most common opportunistic infection in individuals living with human immunodeficiency virus (HIV). In addition to CD4+ T cell depletion, HIV infection compromises the function of CD8+ T cell-mediated immunity to Mycobacterium tuberculosis (M.tb). These effects on susceptibility ...

  4. A GCH1 haplotype confers sex-specific susceptibility to pain crises and altered endothelial function in adults with sickle cell anemia

    Science.gov (United States)

    Belfer, Inna; Youngblood, Victoria; Darbari, Deepika S.; Wang, Zhengyuan; Diaw, Lena; Freeman, Lita; Desai, Krupa; Dizon, Michael; Allen, Darlene; Cunnington, Colin; Channon, Keith M.; Milton, Jacqueline; Hartley, Stephen W.; Nolan, Vikki; Kato, Gregory J.; Steinberg, Martin H.; Goldman, David; Taylor, James G.

    2014-01-01

    GTP cyclohydrolase (GCH1) is rate limiting for tetrahydrobiopterin (BH4) synthesis, where BH4 is a cofactor for nitric oxide (NO) synthases and aromatic hydroxylases. GCH1 polymorphisms are implicated in the pathophysiology of pain, but have not been investigated in African populations. We examined GCH1 and pain in sickle cell anemia where GCH1 rs8007267 was a risk factor for pain crises in discovery (n = 228; odds ratio [OR] 2.26; P = 0.009) and replication (n = 513; OR 2.23; P = 0.004) cohorts. In vitro, cells from sickle cell anemia subjects homozygous for the risk allele produced higher BH4. In vivo physiological studies of traits likely to be modulated by GCH1 showed rs8007267 is associated with altered endothelial dependent blood flow in females with SCA (8.42% of variation; P = 0.002). The GCH1 pain association is attributable to an African haplotype with where its sickle cell anemia pain association is limited to females (OR 2.69; 95% CI 1.21–5.94; P = 0.01) and has the opposite directional association described in Europeans independent of global admixture. The presence of a GCH1 haplotype with high BH4 in populations of African ancestry could explain the association of rs8007267 with sickle cell anemia pain crises. The vascular effects of GCH1 and BH4 may also have broader implications for cardiovascular disease in populations of African ancestry. PMID:24136375

  5. Small molecule alteration of RNA sequence in cells and animals.

    Science.gov (United States)

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  7. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    2009-11-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space.These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  8. Clerics urge ban on altering germline cells.

    Science.gov (United States)

    Norman, C

    1983-06-24

    A resolution calling for a ban on genetic engineering of human reproductive cells has been signed by leaders of almost every major church group in the United States. Some of the religious leaders, while not certain that a total moratorium should be placed on altering germline cells, signed the statement in order to stimulate public debate on the issue. Legislation has recently been introduced in Congress to set up a committee to monitor genetic engineering and its human applications, but author Jeremy Rifkin, the impetus behind the church leaders' resolution, argues that such tampering threatens the gene pool and should be banned altogether.

  9. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  10. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  11. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential

    Science.gov (United States)

    Knezevic, Jana; Pfefferle, Adam D.; Petrovic, Ivana; Greene, Stephanie B.; Perou, Charles M.; Rosen, Jeffrey M.

    2015-01-01

    Claudin-low tumors are a highly aggressive breast cancer subtype with no targeted treatments and a clinically documented resistance to chemotherapy. They are significantly enriched in cancer stem cells (CSCs), which makes claudin-low tumor models particularly attractive for studying CSC behavior and developing novel approaches to minimize CSC therapy resistance. One proposed mechanism by which CSCs arise is via an epithelial-mesenchymal transition (EMT), and reversal of this process may provide a potential therapeutic approach for increasing tumor chemosensitivity. Therefore, we investigated the role of known EMT regulators, miR-200 family of microRNAs in controlling the epithelial state, stem-like properties, and therapeutic response in an in vivo primary, syngeneic p53null claudin-low tumor model that is normally deficient in miR-200 expression. Using an inducible lentiviral approach, we expressed the miR-200c cluster in this model and found that it changed the epithelial state, and consequently, impeded CSC behavior in these mesenchymal tumors. Moreover, these state changes were accompanied by a decrease in proliferation and an increase in the differentiation status. miR-200c expression also forced a significant reorganization of tumor architecture, affecting important cellular processes involved in cell-cell contact, cell adhesion, and motility. Accordingly, induced miR200c expression significantly enhanced the chemosensitivity and decreased the metastatic potential of this p53null claudin-low tumor model. Collectively, our data suggest that miR-200c expression in claudin-low tumors offers a potential therapeutic application to disrupt the EMT program on multiple fronts in this mesenchymal tumor subtype, by altering tumor growth, chemosensitivity, and metastatic potential in vivo. PMID:25746005

  12. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells.

    Science.gov (United States)

    Frencher, James T; Shen, Hongbo; Yan, Lin; Wilson, Jessica O; Freitag, Nancy E; Rizzo, Alicia N; Chen, Crystal Y; Chen, Zheng W

    2014-12-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactA ΔGCPE: prfA* mutant. The HMBPP-deficient ΔGCPE: mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. © 2014 Society for Leukocyte Biology.

  13. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    Science.gov (United States)

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  14. Violent Video Games Alter Brain Function in Young Men

    Science.gov (United States)

    ... feed News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... functional MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  15. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  17. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  18. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    Directory of Open Access Journals (Sweden)

    Mara Baldry

    Full Text Available Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization.

  19. Alteration of Motor Network Function Following Injury

    Science.gov (United States)

    2013-10-01

    shown theoretically that this can indeed stabilize specific activity features (Ball et al. 2010; Burdakov 2005; Franklin et al. 2010; MacLean et al...strands of bulking nylon were used to ligate the nerve on both sides of a large cell soma. To impale large cells, each cell was individually...compensation between IA and IKCa. This model summarizes all of the data in the current study and provides a framework for interpretation and future

  20. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  1. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  2. Environmental exposure and altered menstrual function

    Energy Technology Data Exchange (ETDEWEB)

    Keye, W.R. Jr.

    1984-01-01

    The impact of environmental agents and occupational factors on hypothalamic and pituitary function and menstruation are poorly understood. To date, most research related to environment, occupation, and reproduction has focused on pregnancy outcome, not menstrual function. It is imperative, however, that menstrual function be considered as an outcome variable in the study of reproduction and occupation.

  3. Diabetes and Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2015-01-01

    Full Text Available Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer’s disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.

  4. Genetic alterations in head and neck squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Nagai M.A.

    1999-01-01

    Full Text Available The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations and tumor suppressor gene inactivation (loss of function mutations, leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.

  5. Alterations in hypothalamic function following thermal injury.

    Science.gov (United States)

    Wilmore, D W; Orcutt, T W; Mason, A D; Pruitt, B A

    1975-08-01

    Nine burn patients with a mean burn size of 39% (range, 23-65%) and five normal individuals studied in an environmental chamber selected optimal comfort temperature by regulating a bedside temperature control unit. The normal individuals selected 27.8 degrees C plus or minus 0.6 (SE) as the comfort temperature and their mean skin temperature was 33.4 plus or minus 0.6 and core temperature 36.9 plus or minus 0.1 while in this environment. In contrast, the burn patients maintained a higher ambient comfort temperature (mean 30.4 plus or minus 0.7, p less than 0.05 when compared to controls) associated with an elevated core (38.4 plus or minus 0.3, p less than 0.01) and surface temperature (35.2 plus or minus 0.4, p less than 0.05). Human growth hormone response to insulin hypoglycemia and arginine infusion was measured in nine additional burn patients (mean burn size, 52%; range, 23-90%) and five normals. Fasting HGH was significantly elevated (1.7 plus or minus 0.2 ng/ml, n = 18, versus control of 0.9 plus or minus 0.1, n = 10, p less than 0.001), despite fasting hyperglycemia in the burn patients (123 plus or minus 5 mg/100 glycemia in the burn patients (123 plus or minus 5 mg/100 ml versus 91 plus or minus 2, p less than 0.001). HGH response to insulin hypoglycemia was diminished in the burn patients with peak HGH value in patients averaging 12.6 ng/ml compared to 27.8 in the recovered patients and 32.6 in the controls (p less than 0.01). Patients receiving an arginine infusion also demonstrated diminished HGH response following injury. The HGH response to known stimuli returned toward normal with time and recovery in the surviving patients. Alterations in comfort temperature, fasting blood glucose, and glucose-HGH interaction occur following thermal trauma. These changes taken together suggest that metabolic responses to injury may be the consequence of homeostatic readjustment within the hypothalamus.

  6. Altered Functional Performance in Patients with Fibromyalgia.

    Science.gov (United States)

    Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G Vivas; França, Lucas G Souza; De Santana, Charles Novaes; Montoya, Pedro

    2017-01-01

    Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished ( p cycle frequency ( p assessment of both psychological responses to pain and physical impairments during postural control and gait.

  7. Altered mitochondrial function after acute alteration of the endogenous insulin/glucagon ratio

    International Nuclear Information System (INIS)

    Rohweder-Dunn, G.; Aprille, J.R.

    1986-01-01

    Mannoheptulose (MH) affects pancreatic Islet cells to cause a drop in serum insulin and a rise in glucagon. This effect peaks 1 hr after injection and results in a 3-fold increase in serum glucose. Here they examined whether metabolic functions of liver mitochondria (mito) are altered by this change in hormone status. Rats fed ad lib on 12 hr light/dark cycles were given MH (2g/kg) or vehicle i.p. during the first 2 hrs of the light cycle. Liver mito were isolated 1 hr later. Acid-extracts were assayed for ATP+ADP+AMP (nmol/mg prot). Citrulline synthesis and pyruvate carboxylation rates (nmol/min/mg prot) were assayed by following H[ 14 C]O 3 - fixation in appropriate media. State 3 and 2,4-DNP-uncoupled respiratory rates (1/2 nmol O 2 /min/mg prot) were assayed polarographically with succinate. The effects of MH on mito are comparable to reported effects of glucagon injection. MH evokes acute reciprocal changes in insulin and glucagon that are highly reproducible. Thus, MH offers an interesting model for studying the effect of endogenous hormones on mito functions

  8. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  9. Mast Cell Function

    Science.gov (United States)

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  10. Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication

    OpenAIRE

    Rodríguez-Mora, Sara; Mateos, Elena; Moran, María; Martín, Miguel Ángel; López, Juan Antonio; Calvo, Enrique; Terrón, María Carmen; Luque, Daniel; Muriaux, Delphine; Alcamí, José; Coiras, Mayte; López-Huertas, María Rosa

    2015-01-01

    Background HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1–72) forms itself an active protein, the presence of the second exon (aa 73–101) results in a more competent transcriptional protein with additional functions. Results Mitochondrial overall functions we...

  11. T Cells in Osteoarthritis: Alterations and Beyond

    OpenAIRE

    Li, Yu-sheng; Luo, Wei; Zhu, Shou-an; Lei, Guang-hua

    2017-01-01

    Although osteoarthritis (OA) has been traditionally regarded as a non-inflammatory disease, reports increasingly suggest that it is inflammatory, at least in certain patients. OA patients often exhibit inflammatory infiltration of synovial membranes by macrophages, T cells, mast cells, B cells, plasma cells, natural killer cells, dendritic cells, granulocytes, etc. Although previous reviews have summarized the knowledge of inflammation in the pathogenesis of OA, as far as we know, no report r...

  12. Metabolic flux prediction in cancer cells with altered substrate uptake.

    Science.gov (United States)

    Schwartz, Jean-Marc; Barber, Michael; Soons, Zita

    2015-12-01

    Proliferating cells, such as cancer cells, are known to have an unusual metabolism, characterized by an increased rate of glycolysis and amino acid metabolism. Our understanding of this phenomenon is limited but could potentially be used in order to develop new therapies. Computational modelling techniques, such as flux balance analysis (FBA), have been used to predict fluxes in various cell types, but remain of limited use to explain the unusual metabolic shifts and altered substrate uptake in human cancer cells. We implemented a new flux prediction method based on elementary modes (EMs) and structural flux (StruF) analysis and tested them against experimentally measured flux data obtained from (13)C-labelling in a cancer cell line. We assessed the quality of predictions using different objective functions along with different techniques in normalizing a metabolic network with more than one substrate input. Results show a good correlation between predicted and experimental values and indicate that the choice of cellular objective critically affects the quality of predictions. In particular, lactate gives an excellent correlation and correctly predicts the high flux through glycolysis, matching the observed characteristics of cancer cells. In contrast with FBA, which requires a priori definition of all uptake rates, often hard to measure, atomic StruFs (aStruFs) are able to predict uptake rates of multiple substrates. © 2015 Authors; published by Portland Press Limited.

  13. Altered Resting Brain Function and Structure in Professional Badminton Players

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  14. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  15. Altered B lymphocyte homeostasis and functions in systemic sclerosis.

    Science.gov (United States)

    Forestier, Alexandra; Guerrier, Thomas; Jouvray, Mathieu; Giovannelli, Jonathan; Lefèvre, Guillaume; Sobanski, Vincent; Hauspie, Carine; Hachulla, Eric; Hatron, Pierre-Yves; Zéphir, Hélène; Vermersch, Patrick; Labalette, Myriam; Launay, David; Dubucquoi, Sylvain

    2018-03-01

    Beyond the production of autoantibodies, B-cells are thought to play a role in systemic sclerosis (SSc) by secreting proinflammatory/profibrotic cytokines. B-cells are a heterogeneous population with different subsets distinguished by their phenotypes and cytokine production. Data about B-cell subsets, cytokine production and intracellular pathways leading to this production are scarce in SSc. The aim of our study was to describe B-cell homeostasis, activation, proliferation, cytokine production in B-cells and serum and B-cell intracellular signaling pathways in SSc. We hypothezided that B-cell homeostasis and cytokine production were altered in SSc and could be explained by serum cytokine as well as by intracellular signaling pathway abnormalities. Forty SSc patients and 20 healthy controls (HC) were prospectively included. B-cell subsets were determined by flow cytometry using CD19, CD21, CD24, CD38, CD27, IgM and IgD. CD25, CD80, CD95, HLA-DR were used to assess B-cell activation. Intracellular production of IL-10 and IL-6 were assessed by flow cytometry after TLR9 and CD40 stimulation. IL-6, IL-10, Ki67, Bcl2 mRNA were quantified in B-cells. Cytokine production was also assessed in sera and supernatants of B-cell culture, using a multiplex approach. Signaling pathways were studied through phosphorylation of mTOR, ERK, STAT3, STAT5 using a flow cytometry approach. We found that SSc patients exhibited an altered peripheral blood B-cell subset distribution, with decreased memory B-cells but increased proportion of naive and CD21 Lo CD38 Lo B-cell subsets. We observed an increased expression of activation markers (CD80, CD95, HLA-DR) on some B-cell subsets, mainly the memory B-cells. Secretion of IL-6, BAFF and CXCL13 were increased in SSc sera. There was no correlation between the peripheral blood B-cell subsets and the serum concentrations of these cytokines. After stimulation, we observed a lower proportion of IL-10 and IL-6 producing B-cells in SSc. Finally, we

  16. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states [v2; ref status: indexed, http://f1000r.es/1tc

    Directory of Open Access Journals (Sweden)

    Tushar Ray

    2013-09-01

    Full Text Available This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump and/or Ca-ATPase (Ca-pump depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM fraction exhibits a (Ca or Mg-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF, the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  17. Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of ogg1.

    Science.gov (United States)

    Yuzefovych, Larysa V; Schuler, A Michele; Chen, Jemimah; Alvarez, Diego F; Eide, Lars; Ledoux, Susan P; Wilson, Glenn L; Rachek, Lyudmila I

    2013-08-01

    Recent evidence has linked mitochondrial dysfunction and DNA damage, increased oxidative stress in skeletal muscle, and insulin resistance (IR). The purpose of this study was to determine the role of the DNA repair enzyme, human 8-oxoguanine DNA glycosylase/apurinic/apyrimidinic lyase (hOGG1), on palmitate-induced mitochondrial dysfunction and IR in primary cultures of skeletal muscle derived from hind limb of ogg1(-/-) knockout mice and transgenic mice, which overexpress human (hOGG1) in mitochondria (transgenic [Tg]/MTS-hOGG1). Following exposure to palmitate, we evaluated mitochondrial DNA (mtDNA) damage, mitochondrial function, production of mitochondrial reactive oxygen species (mtROS), mitochondrial mass, JNK activation, insulin signaling pathways, and glucose uptake. Palmitate-induced mtDNA damage, mtROS, mitochondrial dysfunction, and activation of JNK were all diminished, whereas ATP levels, mitochondrial mass, insulin-stimulated phosphorylation of Akt (Ser 473), and insulin sensitivity were increased in primary myotubes isolated from Tg/MTS-hOGG1 mice compared to myotubes isolated from either knockout or wild-type mice. In addition, both basal and maximal respiratory rates during mitochondrial oxidation on pyruvate showed a variable response, with some animals displaying an increased respiration in muscle fibers isolated from the transgenic mice. Our results support the model that DNA repair enzyme OGG1 plays a pivotal role in repairing mtDNA damage, and consequently, in mtROS production and regulating downstream events leading to IR in skeletal muscle.

  18. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  19. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  20. Connectomics and neuroticism : an altered functional network organization

    NARCIS (Netherlands)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard; Ormel, Johan; Riese, Harriëtte; Aleman, André

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network

  1. Physiological alterations in UV-irradiated cells: liquid holding recovery

    International Nuclear Information System (INIS)

    Aragao, B.R.

    1980-01-01

    The biochemical and physiological alterations that occur in ultraviolet irradiated cells, during liquid holding have been studied. Incubation in buffer acts not to interfer directly with the mechanic repairs but by promoting metabolic alterations that would block some irreversible and lethal physiological responses. (L.M.J.) [pt

  2. Connectomics and Neuroticism: An Altered Functional Network Organization

    OpenAIRE

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2014-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weig...

  3. Raman spectroscopic study of a genetically altered kidney cell

    Science.gov (United States)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  4. Altered Volume and Functional Connectivity of the Habenula in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-12-01

    Full Text Available The pathogenesis of schizophrenia (SCH is associated with the dysfunction of monoamine neurotransmitters, the synthesis and release of which are mainly regulated by a key structure, the habenular (Hb nucleus. However, little is known regarding whether SCH is associated with structural or functional alterations in the Hb. In this study, we combined structural and resting-state functional magnetic resonance imaging to investigate the changes in volume and functional connectivity of the Hb in 15 patients with SCH vs. 16 age- and gender-matched healthy controls (HCs. Morphologically, the absolute volume of the bilateral Hb was significantly lower in the SCH patients than in the HCs. Functionally, the bilateral Hb showed significantly enhanced functional connectivity with the left medial prefrontal cortex (mPFC in the SCH patients. Additionally, the SCH patients exhibited increased functional connectivity of the left Hb with the left lingual gyrus and right inferior frontal gyrus (IFG. A further exploratory analysis revealed that the SCH patients showed increased functional connectivity between the right Hb and several subcortical regions related to dopaminergic pathways, including the left ventral striatum, caudate and putamen. Finally, the increased functional connectivity of the right Hb with the mPFC was positively correlated with the Brief Psychiatric Rating Scale (BPRS scores in the patients. Together, these results suggest that the altered volume and functional connectivity of the Hb may be involved in the pathogenesis of SCH and thus that the Hb may serve as a potential target in developing new therapeutic strategies in SCH.

  5. Functional network connectivity alterations in schizophrenia and depression.

    Science.gov (United States)

    Wu, Xing-Jie; Zeng, Ling-Li; Shen, Hui; Yuan, Lin; Qin, Jian; Zhang, Peng; Hu, Dewen

    2017-05-30

    There is a high degree of overlap between the symptoms of major depressive disorder (MDD) and schizophrenia, but it remains unclear whether the similar symptoms are derived from convergent alterations in functional network connectivity. In this study, we performed a group independent component analysis on resting-state functional MRI data from 20 MDD patients, 24 schizophrenia patients, and 43 matched healthy controls. The functional network connectivity analysis revealed that, compared to healthy controls, the MDD and schizophrenia patients exhibited convergent decreased positive connectivity between the left and right fronto-parietal control network and decreased negative connectivity between the left control and medial visual networks. Furthermore, the MDD patients showed decreased negative connectivity between the left control and auditory networks, and the schizophrenia patients showed decreased positive connectivity between the bilateral control and language networks and decreased negative connectivity between the right control and dorsal attention networks. The convergent network connectivity alterations may underlie the common primary control and regulation disorders, and the divergent connectivity alterations may enable the distinction between the two disorders. All of the convergent and divergent network connectivity alterations were relevant to the control network, suggesting an important role of the network in the pathophysiology of MDD and schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  6. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  7. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  8. Somatic Host Cell Alterations in HPV Carcinogenesis

    OpenAIRE

    Tamara R. Litwin; Megan A. Clarke; Michael Dean; Nicolas Wentzensen

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability ...

  9. Functional lymphatic alterations in patients suffering from lipedema.

    Science.gov (United States)

    Bilancini, S; Lucchi, M; Tucci, S; Eleuteri, P

    1995-04-01

    Lipedema is a chronic vascular disease almost exclusively of female sex, characterized by the deposit of fat on the legs, with an "Egyptian column" shape, orthostatic edema, hypothermia of the skin, alteration of the plantar support, and negativity of Stemmer's sign. The etiology and pathogenesis of this disease are still the object of study, and therapy is very difficult. Various authors have described morphologic and functional alterations of prelymphatic structures and of lymphatic vessels. The big veins remain untouched in the phlebograms and an alteration of the skin elasticity is demonstrated. The present authors have studied by dynamic lymphoscintigraphy 12 women patients suffering from lipedema, and compared the results with those of 5 normal subjects and 5 patients suffering from idiopathic lymphedema who were sex and age matched with the patients suffering from lipedema. The patients suffering from lipedema showed an abnormal lymphoscintigraphic pattern with a slowing of the lymphatic flow that presented some analogies to the alterations found in the patients suffering from lymphedema. A frequent asymmetry was also noticed in the lymphoscintigraphic findings that is in contrast to the symmetry of the clinical profile.

  10. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.

    Directory of Open Access Journals (Sweden)

    David M Gravano

    2010-10-01

    Full Text Available Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach.We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted.In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development

  11. Somatic Host Cell Alterations in HPV Carcinogenesis.

    Science.gov (United States)

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  12. Somatic Host Cell Alterations in HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tamara R. Litwin

    2017-08-01

    Full Text Available High-risk human papilloma virus (HPV infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA and phosphatase and tensin homolog (PTEN, human leukocyte antigen A and B (HLA-A and HLA-B-A/B, and the transforming growth factor beta (TGFβ pathway, and rarely have mutations in the tumor protein p53 (TP53 and RB transcriptional corepressor 1 (RB1 tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  13. Altered functional connectivity of interoception in illness anxiety disorder.

    Science.gov (United States)

    Grossi, Dario; Longarzo, Mariachiara; Quarantelli, Mario; Salvatore, Elena; Cavaliere, Carlo; De Luca, Paolofabrizio; Trojano, Luigi; Aiello, Marco

    2017-01-01

    Interoception collects all information coming from the body and is sustained by several brain areas such as insula and cingulate cortex. Here, we used resting-state functional magnetic resonance imaging to investigate functional connectivity (FC) of networks implied in interoception in patients with Illness anxiety disorders (IADs). We observed significantly reduced FC between the left extrastriate body area (EBA) and the paracentral lobule compared to healthy controls. Moreover, the correlation analysis between behavioural questionnaires and ROI to ROI FC showed that higher levels of illness anxiety were related to hyper-connectivity between EBA and amygdala and hippocampus. Scores on a questionnaire for interoceptive awareness were significantly correlated with higher FC between right hippocampus and nucleus accumbens bilaterally, and with higher connectivity between left anterior cingulate cortex (ACC) and left orbitofrontal cortex (OFC). Last, patients showed increased interoceptive awareness, measured by Self-Awareness Questionnaire (SAQ), and reduced capability in recognizing emotions, indicating inverse correlation between interoception and emotional awareness. Taken together our results suggested that, in absence of structural and micro-structural changes, patients with IADs show functional alteration in the neural network involved in the self-body representation; such functional alteration might be the target of possible treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Generation of functional eyes from pluripotent cells.

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2009-08-01

    Full Text Available Pluripotent cells such as embryonic stem (ES and induced pluripotent stem (iPS cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically, and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision.

  15. Connectomics and neuroticism: an altered functional network organization.

    Science.gov (United States)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2015-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.

  16. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  17. Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models

    Science.gov (United States)

    Klinke, David J.; Kulkarni, Yogesh M.; Wu, Yueting; Byrne-Hoffman, Christina

    2015-01-01

    Challenges in demonstrating durable clinical responses to molecular-targeted therapies has sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics. PMID:24752654

  18. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  19. Visual function alterations in essential tremor: A case report

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2015-09-01

    Full Text Available Our purpose is to report alterations in contrast sensitivity function (CSF and in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter in case of an essential tremor (ET. A complete evaluation of the visual function was performed in a 69-year old patient, including the analysis of the chromatic discrimination by the Fansworth–Munsell 100 hue test, the measurement of the CSF by the CSV-1000E test, and the detection of potential alteration patterns in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter. Visual acuity and intraocular pressure (IOP were within the ranges of normality in both eyes. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography (OCT exam. The results of the color vision examination were also within the ranges of normality. A significant decrease in the achromatic CSFs for right eye (RE and left eye (LE was detected for all spatial frequencies. The statistical global values provided by the multichannel perimeter confirms that there were significant absolute sensitivity losses compared to the normal pattern in RE. In the LE, only a statistically significant decrease in sensitivity was detected for the blue-yellow (BY channel. The pattern standard deviation (PSD values obtained in our patient indicated that there were significant localized losses compared to the normality pattern in the achromatic channel of the RE and in the red-green (RG channel of the LE. Some color vision alterations may be present in ET that cannot be detected with conventional color vision tests, such as the FM 100 Hue.

  20. Radiation-induced motility alterations in medulloblastoma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α 5 . The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α 5 , which lead to increased cell adherence to extracellular matrix proteins. (author)

  1. Investigation of cadmium-induced alterations in renal glomerular function

    International Nuclear Information System (INIS)

    Long, T.J.

    1982-01-01

    This research was designed to test the hypothesis that certain aspects of cadmium-induced renal dysfunction are the result of glomerular, rather than classic tubular, injury. To determine whether cadmium-induced proteinuria was due to altered glomerular function, cadmium was administered chronically at a concentration of 185 ppm in the drinking water. This protocol resulted in the production of proteinuria which when analyzed by high pressure liquid chromatography and radioimmunoassay was indistinguishable from that occurring in control rats. Glomerular filtration rate, renal blood flow, and filtration fraction were all significantly depressed after 20-30 weeks of exposure. In order to further investigate these alterations in glomerular function, an acute exposure model was developed. It was found that a single i.p. injection of cadmium in mercaptoethanol resulted in the onset of acute renal failure. The clinical picture was characterized by a reduction in glomerular filtrate rate of 50-90% within 24 hours, with partial to total recovery occurring by day 7 post-exposure. Histological evidence indicated that to a large extent the reduction in GFR was due to tubular blockade and/or backleak of filtrate across damaged tubules

  2. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Science.gov (United States)

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  3. Distinct mesenchymal alterations in N-cadherin and E-cadherin positive primary renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christof Keller

    Full Text Available Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations.We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact that human proximal epithelial cells uniquely express N-cadherin instead of E-cadherin as major cell-cell adhesion molecule. To provoke mesenchymal alteration we treated these cocultures with TGF-β for up to 6 days. Within this time period, the morphology of distal tubular cells was barely altered. In contrast to tubular cell lines, E-cadherin was not down-regulated by TGF-β, even though TGF-β signal transduction was initiated as demonstrated by nuclear localization of Smad2/3. Analysis of transcription factors and miRNAs possibly involved in E-cadherin regulation revealed high levels of miRNAs of the miR200-family, which may contribute to the stability of E-cadherin expression in human distal tubular epithelial cells. By contrast, proximal tubular epithelial cells altered their phenotype when treated with TGF-β. They became elongated and formed three-dimensional structures. Rho-kinases were identified as modulators of TGF-β-induced morphological alterations. Non-specific inhibition of Rho-kinases resulted in stabilization of the epithelial phenotype, while partial effects were observed upon downregulation of Rho-kinase isoforms ROCK1 and ROCK2. The distinct reactivity of proximal and distal cells was retained when the cells were cultured as polarized cells.Interference with Rho-kinase signaling provides a target to counteract TGF-β-mediated mesenchymal alterations of epithelial cells, particularly in proximal tubular epithelial cells. Furthermore, primary distal tubular cells differed from cell lines by their high phenotypic stability which included constant expression of E

  4. Altered cell mechanics from the inside: dispersed single wall carbon nanotubes integrate with and restructure actin.

    Science.gov (United States)

    Holt, Brian D; Shams, Hengameh; Horst, Travis A; Basu, Saurav; Rape, Andrew D; Wang, Yu-Li; Rohde, Gustavo K; Mofrad, Mohammad R K; Islam, Mohammad F; Dahl, Kris Noel

    2012-05-23

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  5. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  6. Altered osteoblast structure and function in parabolic flight

    Science.gov (United States)

    Zhong-Quan, Dai; Ying-Hui, Li; Fen, Yang; Bai, Ding; Ying-Jun, Tan

    Introduction Bone loss has a significant impact on astronauts during spaceflight being one of the main obstacles preventing interplanetary missions However the exact mechanism is not well understood In the present study we investigated the effects of acute gravitational changes generated by parabolic flight on the structure and function of osteoblasts ROS17 2 8 carried by airbus A300 Methods The alteration of microfilament cytoskeleton was observed by the Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I immunofluorescence stain ALP activity and expression COL1A1 expression osteocalcin secrete which presenting the osteoblast function were detected by modified calcium and cobalt method RT-PCR and radioimmunity methods respectively Results The changed gravity induced the reorganization of microfilament cytoskeleton of osteoblast After 3 hours parabolic flight F-actin of osteoblast cytoskeleton became more thickness and directivity whereas G-actin reduced and relatively concentrated at the edge of nucleus observed by confocal fluorescence microscopy This phenomenon is identical with structure alternation observed in hypergravity but the osteoblast function decrease The excretion of osteocalcin the activity and mRNA expression of ALP decrease but the COL1A1 expression has no changes These results were similar to the changes in simulated or real microgravity Conclusion Above results suggest that short time gravity alternative change induce osteoblast structure and function

  7. Alterations in cognitive and psychological functioning after organic solvent exposure

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  8. Altered Interhemispheric Functional Coordination in Chronic Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2015-01-01

    Full Text Available Purpose. Recent studies suggest that tinnitus may be due in part to aberrant callosal structure and interhemispheric interaction. To explore this hypothesis we use a novel method, voxel-mirrored homotopic connectivity (VMHC, to examine the resting-state interhemispheric functional connectivity and its relationships with clinical characteristics in chronic tinnitus patients. Materials and Methods. Twenty-eight chronic tinnitus patients with normal hearing thresholds and 30 age-, sex-, education-, and hearing threshold-matched healthy controls were included in this study and underwent the resting-state fMRI scanning. We computed the VMHC to analyze the interhemispheric functional coordination between homotopic points of the brain in both groups. Results. Compared to the controls, tinnitus patients showed significantly increased VMHC in the middle temporal gyrus, middle frontal gyrus, and superior occipital gyrus. In tinnitus patients, a positive correlation was found between tinnitus duration and VMHC of the uncus. Moreover, correlations between VMHC changes and tinnitus distress were observed in the transverse temporal gyrus, superior temporal pole, precentral gyrus, and calcarine cortex. Conclusions. These results show altered interhemispheric functional connectivity linked with specific tinnitus characteristics in chronic tinnitus patients, which may be implicated in the neuropathophysiology of tinnitus.

  9. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Peptide fibrils with altered stability, activity, and cell selectivity.

    Science.gov (United States)

    Chen, Long; Liang, Jun F

    2013-07-08

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with cocultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared cocultured human cells; CL-1 aggregates were kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications.

  11. Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation.

    Science.gov (United States)

    Rowlett, Veronica W; Mallampalli, Venkata K P S; Karlstaedt, Anja; Dowhan, William; Taegtmeyer, Heinrich; Margolin, William; Vitrac, Heidi

    2017-07-01

    Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation. IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis

  12. Peptide fibrils with altered stability, activity, and cell selectivity

    OpenAIRE

    Chen, Long; Liang, Jun F.

    2013-01-01

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other ...

  13. Exploring the reproducibility of functional connectivity alterations in Parkinson's disease.

    Science.gov (United States)

    Badea, Liviu; Onu, Mihaela; Wu, Tao; Roceanu, Adina; Bajenaru, Ovidiu

    2017-01-01

    Since anatomic MRI is presently not able to directly discern neuronal loss in Parkinson's Disease (PD), studying the associated functional connectivity (FC) changes seems a promising approach toward developing non-invasive and non-radioactive neuroimaging markers for this disease. While several groups have reported such FC changes in PD, there are also significant discrepancies between studies. Investigating the reproducibility of PD-related FC changes on independent datasets is therefore of crucial importance. We acquired resting-state fMRI scans for 43 subjects (27 patients and 16 normal controls, with 2 replicate scans per subject) and compared the observed FC changes with those obtained in two independent datasets, one made available by the PPMI consortium (91 patients, 18 controls) and a second one by the group of Tao Wu (20 patients, 20 controls). Unfortunately, PD-related functional connectivity changes turned out to be non-reproducible across datasets. This could be due to disease heterogeneity, but also to technical differences. To distinguish between the two, we devised a method to directly check for disease heterogeneity using random splits of a single dataset. Since we still observe non-reproducibility in a large fraction of random splits of the same dataset, we conclude that functional heterogeneity may be a dominating factor behind the lack of reproducibility of FC alterations in different rs-fMRI studies of PD. While global PD-related functional connectivity changes were non-reproducible across datasets, we identified a few individual brain region pairs with marginally consistent FC changes across all three datasets. However, training classifiers on each one of the three datasets to discriminate PD scans from controls produced only low accuracies on the remaining two test datasets. Moreover, classifiers trained and tested on random splits of the same dataset (which are technically homogeneous) also had low test accuracies, directly substantiating

  14. How linear features alter predator movement and the functional response.

    KAUST Repository

    McKenzie, Hannah W

    2012-01-18

    In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.

  15. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  16. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  17. Functional diversity in a fragmented landscape — Habitat alterations affect functional trait composition of frog assemblages in Madagascar

    Directory of Open Access Journals (Sweden)

    Jana C. Riemann

    2017-04-01

    Full Text Available Anthropogenic habitat alterations cause biodiversity loss, which in turn negatively affects ecosystem functioning and services, and thus human well-being. To be able to consider ecosystem functioning in conservation actions, analyzing the effects of habitat alteration on functional diversity is essential. Some altered habitats can maintain a significant part of regional biodiversity, however, functional diversity information in altered habitats is so far mostly lacking. We compared functional richness and functional β-diversity based on resource-use traits of frogs between three land-use categories in a rainforest ecosystem in Madagascar. Land-use categories represent a habitat alteration gradient ranging from continuous forest over forest fragments to matrix habitats including different agricultures. Our study revealed distinct changes in resource-use trait composition and complex patterns in the relationship between species richness and functional richness. Thus, the functional structure of frog assemblages changed due to habitat alterations. However, altered habitats likely provide different, rather than fewer functions compared to intact forest. Streams in all land-use categories were the functionally richest habitats, and thus important for ecosystem functioning. Species richness was one, but not the only driver of functional richness in our system. Functional clustering, potentially due to environmental filters depending on resource availability, was caused by anthropogenic and natural drivers. Our study shows that, even in systems where fragmented landscapes still maintain high species diversity, functional diversity can be altered in human altered habitats, which may affect ecosystem processes like productivity, nutrient cycling, and energy flows.

  18. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    Science.gov (United States)

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  19. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    Science.gov (United States)

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    Science.gov (United States)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  1. Altered eicosanoid production and phospholipid remodeling during cell culture.

    Science.gov (United States)

    Okuno, Toshiaki; Gijón, Miguel A; Zarini, Simona; Martin, Sarah A; Barkley, Robert M; Johnson, Christopher A; Ohba, Mai; Yokomizo, Takehiko; Murphy, Robert C

    2018-03-01

    The remodeling of PUFAs by the Lands cycle is responsible for the diversity of phospholipid molecular species found in cells. There have not been detailed studies of the alteration of phospholipid molecular species as a result of serum starvation or depletion of PUFAs that typically occurs during tissue culture. The time-dependent effect of cell culture on phospholipid molecular species in RAW 264.7 cells cultured for 24, 48, or 72 h was examined by lipidomic strategies. These cells were then stimulated to produce arachidonate metabolites derived from the cyclooxygenase pathway, thromboxane B 2 , PGE 2 , and PGD 2 , and the 5-lipoxygenase pathway, leukotriene (LT)B 4 , LTC 4 , and 5-HETE, which decreased with increasing time in culture. However, the 5-lipoxygenase metabolites of a 20:3 fatty acid, LTB 3 , all trans -LTB 3 , LTC 3 , and 5-hydroxyeicosatrienoic acid, time-dependently increased. Molecular species of arachidonate containing phospholipids were drastically remodeled during cell culture, with a new 20:3 acyl group being populated into phospholipids to replace increasingly scarce arachidonate. In addition, the amount of TNFα induced by lipopolysaccharide stimulation was significantly increased in the cells cultured for 72 h compared with 24 h, suggesting that the remodeling of PUFAs enhanced inflammatory response. These studies supported the rapid operation of the Lands cycle to maintain cell growth and viability by populating PUFA species; however, without sufficient n-6 fatty acids, 20:3 n-9 accumulated, resulting in altered lipid mediator biosynthesis and inflammatory response. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Dynamic alteration in splenic function during acute falciparum malaria

    Energy Technology Data Exchange (ETDEWEB)

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-09-10

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated /sup 51/Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes (mean +/- SD) vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies.

  3. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da; Jesus, E.F.O. de; Lopes, R.T.; Carlin, N.; Toledo, E.S.

    2007-01-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ( 60 Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  4. Altered mesocorticolimbic functional connectivity in psychotic disorder: an analysis of proxy genetic and environmental effects

    NARCIS (Netherlands)

    Peeters, S. C. T.; Gronenschild, E. H. B. M.; van de Ven, V.; Habets, P.; Goebel, R.; van Os, J.; Marcelis, M.; Kahn, Rene; Linszen, Don; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; de Haan, Lieuwe; Krabbendam, Lydia; Myin-Germeys, Inez

    2015-01-01

    Altered dopaminergic neurotransmission in the mesocorticolimbic (MCL) system may mediate psychotic symptoms. In addition, pharmacological dopaminergic manipulation may coincide with altered functional connectivity (fc) 'in rest'. We set out to test whether MCL-fc is conditional on (familial risk

  5. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice C.; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.; Ruby, Edward G.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  6. Muscle fatigue in frog semitendinosus: alterations in contractile function

    Science.gov (United States)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  8. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    Science.gov (United States)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  9. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  10. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  11. Ethics and embryonic stem cell research: altered nuclear transfer as a way forward.

    Science.gov (United States)

    Hurlbut, William B

    2007-01-01

    Ethical controversy in stem cell research arises because current methods to produce embryonic stem cell lines require the destruction of living human embryos. For this reason, there is increasing interest in developing alternative, non-embryonic sources of pluripotent stem cells. This effort is especially important in the US due to the prevailing policy against federal funding of embryo-destructive research. Altered nuclear transfer (ANT) is one of several potential methods to develop alternative sources of pluripotent stem cells. This approach employs the technique of somatic cell nuclear transfer, but the somatic cell nucleus or egg cytoplasm (or both) are first altered before the somatic cell nucleus is transferred into the oocyte. This alteration precludes the coordinated organization and developmental potential that is necessary for the resulting biological entity to be an embryo, but it still allows the entity to generate pluripotent stem cells. Proof-of-principle for one variant of ANT has been established in mice by silencing the functional expression of the gene Cdx2 in the somatic cell nucleus prior to its transfer into an enucleated egg. From the resulting non-embryonic laboratory construct, fully functional pluripotent stem cells were procured. Other more recent studies have suggested the possibility of achieving the same results by preemptively silencing maternally derived Cdx2 messenger RNA in the egg before the act of nuclear transfer. The procedure would produce the equivalent of a tissue culture of pluripotent stem cells. In contrast to the use of embryos 'left over' from clinical in vitro fertilization, ANT could produce pluripotent stem cell lines with an unlimited range of specifically selected and controlled genotypes. Such flexibility would greatly facilitate the study of disease, drug development, and toxicology testing, and may allow the production of therapeutically useful pluripotent stem cells that are immune-compatible. If developed to

  12. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  13. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    Science.gov (United States)

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  14. HTLV-1 Alters T Cells for Viral Persistence and Transmission

    Directory of Open Access Journals (Sweden)

    Azusa Tanaka

    2018-03-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 was the first retrovirus to be discovered as a causative agent of adult T-cell leukemia-lymphoma (ATL and chronic inflammatory diseases. Two viral factors, Tax and HTLV-1 bZIP factor (HBZ, are thought to be involved in the leukemogenesis of ATL. Tax expression is frequently lost due to DNA methylation in the promoter region, genetic changes to the tax gene, and deletion of the 5′ long terminal repeat (LTR in approximately half of all ATL cases. On the other hand, HBZ is expressed in all ATL cases. HBZ is known to function in both protein form and mRNA form, and both forms play an important role in the oncogenic process of HTLV-1. HBZ protein has a variety of functions, including the suppression of apoptosis, the promotion of proliferation, and the impairment of anti-viral activity, through the interaction with several host cellular proteins including p300/CBP, Foxp3, and Foxo3a. These functions dramatically modify the transcriptional profiling of host T cells. HBZ mRNA also promotes T cell proliferation and viability. HBZ changes infected T cells to CCR4+TIGIT+CD4+ effector/memory T cells. This unique immunophenotype enables T cells to migrate into various organs and tissues and to survive in vivo. In this review, we summarize how HBZ hijacks the transcriptional networks and immune systems of host T cells to contribute to HTLV-1 pathogenesis on the basis of recent new findings about HBZ and tax.

  15. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  16. Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis.

    Science.gov (United States)

    Cader, Sarah; Cifelli, Alberto; Abu-Omar, Yasir; Palace, Jacqueline; Matthews, Paul M

    2006-02-01

    Cognitive dysfunction (affecting particularly attention and working memory) occurs early in patients with multiple sclerosis. Previous studies have focused on identifying potentially adaptive functional reorganization through recruitment of new brain regions that could limit expression of these deficits. However, lesion studies remind us that functional specializations in the brain make certain brain regions necessary for a given task. We therefore have asked whether altered functional interactions between regions normally recruited provide an alternative adaptive mechanism with multiple sclerosis pathology. We used a version of the n-back task to probe working memory in patients with early multiple sclerosis. We applied a functional connectivity analysis to test whether relationships between relative activations in different brain regions change in potentially adaptive ways with multiple sclerosis. We studied 21 patients with relapsing-remitting multiple sclerosis and 16 age- and sex-matched healthy controls with 3T functional MRI. The two groups performed equally well on the task. Task-related activations were found in similar regions for patients and controls. However, patients showed relatively reduced activation in the superior frontal and anterior cingulate gyri (P > 0.01). Patients also showed a variable, but generally substantially smaller increase in activation than healthy controls with greater task complexity, depending on the specific brain region assessed (P memory. Functional connectivity analysis suggests that altered inter-hemispheric interactions between dorsal and lateral prefrontal regions may provide an adaptive mechanism that could limit clinical expression of the disease distinct from recruitment of novel processing regions. Together, these results suggest that therapeutic enhancement of the coherence of interactions between brain regions normally recruited (functional enhancement), as well as recruitment of alternative areas or use of

  17. INVASIVE PLANTS HARBOR HUNGRY DETRITIVORES THAT ALTER ECOSYSTEM FUNCTION

    Science.gov (United States)

    Ecosystems are expected to function more efficiently in response to a diverse community of inhabitants. However, biological invasions may change expected relationships between ecosystem function and diversity. We observed increased decomposition, a measure of ecosystem function...

  18. Altered expression of integrins in adriamycin-resistant human breast cancer cells.

    Science.gov (United States)

    Narita, T; Kimura, N; Sato, M; Matsuura, N; Kannagi, R

    1998-01-01

    We investigated alterations in the expression of integrin on adriamycin-resistant MCF-7 (MCF-7/ADR) cells, which had been selected from MCF-7 human breast cancer cells, in order to examine the mechanisms behind the acquisition of malignancy in breast cancer progression. Expression of the alpha 6 integrin subunit of MCF-7/ADR cells was stronger than that of MCF-7 cells, whereas expression of alpha 2 integrin subunit of MCF-7/ADR cells was weaker than that of MCF-7 cells. MCF-7/ADR showed increased binding activity to laminin, but not to collagen or fibronectin, compared to those of parental MCF-7 cells. Adhesion of MCF-7 cells to collagen and laminin was inhibited by the addition of antibody to alpha 2 and alpha 6 integrin subunit, respectively. On the other hand, adhesion of MCF-7/ADR cells to collagen was not inhibited by the addition of antibody to alpha 2, alpha 3 or alpha 6 integrin subunit. Adhesion of MCF-7/ADR cells to laminin was inhibited by not only the antibody to alpha 6 subunit but also the antibody to the alpha 3 subunit. The transmigratory activity of MCF-7/ADR cells was higher than that of MCF-7 cells. A significant inhibitory effect on the transmigration of MCF-7/ADR cells was observed by the addition of antibody to alpha 6 and beta 1 integrin subunit. MCF-7/ADR cells appeared smaller and flatter than MCF-7 cells, and spread to a greater extent on the culture dish. MCF-7 cells cultured on Matrigel for 24 hours formed clusters. In contrast to this, MCF-7/ADR cells expanded with a tubular-like pattern on Matrigel. The spread of MCF-7/ADR cells was incompletely inhibited by addition of the antibody to alpha 3 integrin subunit, and completely inhibited by addition of the antibody to alpha 6 and beta 1 integrin subunit. These findings suggest that integrins on MCF-7/ADR cells are altered from those on parental MCF-7 cells in not only expression but also function, and that interaction between cancer cells and extracellular matrix protein is involved in

  19. Chronic zinc deficiency alters chick gut microbiota composition and function

    Science.gov (United States)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  20. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  1. Maternal obesity alters uterine NK activity through a functional KIR2DL1/S1 imbalance.

    Science.gov (United States)

    Castellana, Barbara; Perdu, Sofie; Kim, Yoona; Chan, Kathy; Atif, Jawairia; Marziali, Megan; Beristain, Alexander G

    2018-03-23

    In pregnancy, uterine natural killer cells (uNK) play essential roles in coordinating uterine angiogenesis, blood vessel remodeling, and promoting maternal tolerance to fetal tissue. Deviances from a normal uterine microenvironment are thought to modify uNK function(s) by limiting their ability to establish a healthy pregnancy. While maternal obesity has become a major health concern due to associations with adverse effects on fetal and maternal health, our understanding into how obesity contributes to poor pregnancy disorders is unknown. Given the importance of uNK in pregnancy, this study examines the impact of obesity on uNK function in women in early pregnancy. We identify that uNK from obese women show a greater propensity for cellular activation, but this difference does not translate into increased effector killing potential. Instead, uNK from obese women express an altered repertoire of natural killer receptors, including an imbalance in inhibitory KIR2DL1 and activating KIR2DS1 receptors that favours HLA-C2-directed uNK activation. Notably, we show that obesity-related KIR2DS1 skewing potentiates TNFα production upon receptor crosslinking. Together, these findings suggest that maternal obesity modifies uNK activity by altering the response towards HLA-C2 antigen and KIR2DL1/2DS1-controlled TNFα release. Further, this work identifies alterations in uNK function resulting from maternal obesity that may impact early developmental processes important in pregnancy health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  3. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  4. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  5. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization

    Directory of Open Access Journals (Sweden)

    Felipe Vidal

    2017-12-01

    Full Text Available One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4 in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25 and polyethylene glycol (PPEG25. G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.

  6. Altered cell-matrix contact: a prerequisite for breast cancer metastasis?

    Science.gov (United States)

    Gui, G P; Puddefoot, J R; Vinson, G P; Wells, C A; Carpenter, R

    1997-01-01

    The integrins are receptors that regulate interaction between epithelial cells and the extracellular matrix. Previous studies have shown that a reduction in the expression of the alpha2beta1, alpha3beta1, alpha6beta1, alpha(v)beta1 and alpha(v)beta5 integrins in primary breast cancer is associated with positive nodal status. In order to assess the functional significance of altered integrin expression, primary breast cancer cells were derived from individual patients with known tumour characteristics using immunomagnetic separation. Purified human fibronectin, vitronectin, laminin and type IV collagen were used to represent the principal extracellular matrix proteins in an in vitro adhesion assay. Primary breast cancer cells from lymph node-positive patients were significantly less adhesive to each of the matrix proteins studied (Pbreast cancer cells from node-negative patients was inhibited by appropriate integrin monoclonal antibodies (Plaminin, but not type IV collagen, was influenced by the inhibitor arginine-glycine-aspartate, suggesting that breast cancer cell recognition of collagen IV is mediated through alternative epitopes. Weak matrix adhesion correlated with loss of integrin expression in tissue sections from corresponding patients assessed using immunohistochemistry. This study demonstrates a link between altered integrin expression and function in primary breast cancers predisposed to metastasize.

  7. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.

    Science.gov (United States)

    Xie, Weiliang; Fisher, John T; Lynch, Thomas J; Luo, Meihui; Evans, Turan I A; Neff, Traci L; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W; Russo, Andrew F; Goodheart, Michael J; Parekh, Kalpaj R; Liu, Xiaoming; Engelhardt, John F

    2011-08-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene-related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway.

  8. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  9. Non-histone nuclear protein HMGN2 differently regulates the urothelium barrier function by altering expression of antimicrobial peptides and tight junction protein genes in UPEC J96-infected bladder epithelial cell monolayer.

    Science.gov (United States)

    Tian, Hanwen; Miao, Junming; Zhang, Fumei; Xiong, Feng; Zhu, Feimei; Li, Jinyu; Wang, Xiaoying; Chen, Shanzhe; Chen, Junli; Huang, Ning; Wang, Yi

    2018-01-01

    The urinary tract is vulnerable to frequent challenges from environmental microflora. Uropathogenic Escherichia coli (UPEC) makes a major contribution to urinary tract infection (UTI). Previous studies have characterized positive roles of non-histone nuclear protein HMGN2 in lung epithelial innate immune response. In the study presented here, we found HMGN2 expression was up-regulated in UPEC J96-infected urothelium. Surprisingly, over-expression of HMGN2 promoted disruption of BECs 5637 cells' intercellular junctions by down-regulating tight junction (TJs) components' expression and physical structure under J96 infection. Further investigation showed that BECs 5637 monolayer, in which HMGN2 was over-expressed, had significantly increased permeability to J96. Our study systemically explored the regulatory roles of HMGN2 in BECs barrier function during UPEC infection and suggested different modulations of intracellular and paracellular routes through which UPEC invades the bladder epithelium.

  10. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...

  11. Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells.

    Science.gov (United States)

    Hargadon, Kristian M; Bishop, Johnathan D; Brandt, John P; Hand, Zachary C; Ararso, Yonathan T; Forrest, Osric A

    2016-01-01

    Dendritic cells (DCs) are key regulators of host immunity that are capable of inducing either immune tolerance or activation. In addition to their well-characterized role in shaping immune responses to foreign pathogens, DCs are also known to be critical for the induction and maintenance of anti-tumor immune responses. Therefore, it is important to understand how tumors influence the function of DCs and the quality of immune responses they elicit. Although the majority of studies in this field to date have utilized either immortalized DC lines or DC populations that have been generated under artificial conditions from hematopoietic precursors in vitro, we wished to investigate how tumors impact the function of already differentiated, tissue-resident DCs. Therefore, we used both an ex vivo and in vivo model system to assess the influence of melanoma-derived factors on DC maturation and activation. In ex vivo studies with freshly isolated splenic DCs, we demonstrate that the extent to which DC maturation and activation are altered by these factors correlates with melanoma tumorigenicity, and we identify partial roles for tumor-derived transforming growth factor (TGF)β1 and vascular endothelial growth factor (VEGF)-A in the altered functionality of DCs. In vivo studies using a lung metastasis model of melanoma also demonstrate tumorigenicity-dependent alterations to the function of lung-resident DCs, and skewed production of proinflammatory cytokines and chemokines by these tumor-altered cells is associated with recruitment of an immune infiltrate that may ultimately favor tumor immune escape and outgrowth.

  12. Detection of alterations in testicular and epididymal function in laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Amann, R.P.

    1986-12-01

    The potential impact of an agent altering male reproductive function is greater for humans than for animals. Consequently, it is essential that sensitive criteria be used to look for effects on a multiplicity of target sites when an agent is evaluated using an animal model. No animal model has reproductive characteristics similar to those of humans, but this does not negate the validity of using animal models. Classic methodologies for reproductive toxicology are limited by the approaches used for subjective evaluation of testicular histology and use of natural mating for fertility tests. After dosing for an interval at least equal to six times the duration of one cycle of the seminiferous epithelium, sperm from ejaculated semen or the cauda epididymidis can be evaluated for normalacy of morphology or function and should be used for artificial insemination of females to critically evaluate fertility. Normal males of animals models ejaculate a great excess of sperm. Artificial insemination of a critical number of sperm, selected to result in slightly less than maximal fertility for control animals, will maximize the probability of detecting a decrease in fertility if the same critical number of sperm is inseminated for treated animals as for control animals. Testicular function should be evaluated by objective, rather than subjective, criteria. Among the more sensitive criteria of testicular function are the minor diameter of essentially round seminiferous tubules, the ratio of leptotene spermatocytes to Sertoli cells, the corrected numbers of germ cells per seminiferous tubule cross section, and the number of homogenization-resistant spermatids per testis.

  13. Altered host cell-bacteria interaction due to nanoparticle interaction with a bacterial biofilm.

    Science.gov (United States)

    Raftery, Tara D; Lindler, Heidi; McNealy, Tamara L

    2013-02-01

    Nanoparticle (NP) use in everyday applications creates the potential for NPs to enter the environment where, in aquatic systems, they are likely to settle on substrates and interact with microbial communities. Legionella pneumophila biofilms are found as part of microbial communities in both natural and man-made environments, especially in man-made cooling systems. The bacterium is the causative agent of Legionnaires' disease. Legionella requires a host cell for replication in the environment, and amoebae commonly serve as this host cell. Our previous work demonstrated significant changes in Legionella biofilm morphology after exposure to 0.7 μg/L gold NPs (AuNPs). Here, we investigate how these morphology changes alter host-bacteria interactions using Acanthamoeba polyphaga as a model. Host-bacteria-NP interactions are affected by NP characteristics. Biofilms exposed to 4- and 18-nm, citrate-capped, spherical AuNPs significantly altered the grazing ability of A. polyphaga, which was not observed in biofilms exposed to 24-nm polystyrene beads. Uptake and replication of NP-exposed planktonic L. pneumophila within A. polyphaga were not altered regardless of NP size or core chemistry. Nanomaterial effects on the interaction of benthic organisms and bacteria may be directly or, as shown here, indirectly dependent on bacterial morphology. NP contamination therefore may alter interactions in a normal ecosystem function.

  14. Tobacco Induced Renal Function Alterations in Wistar Rats: An 8 ...

    African Journals Online (AJOL)

    ... pattern was observed for urea and uric acid levels. Over all, the significant increase (P<0.05) in renal function parameters of the test rats (as compared to the control values), suggests that the ingestion of tobacco snuff has harmful effects on kidney functions. Keywords: Tobacco, Snuff, Kidney function, Nicotine substitute.

  15. Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells

    Directory of Open Access Journals (Sweden)

    Rout Ujjwal K

    2006-08-01

    Full Text Available Abstract Background Valproate, thalidomide and alcohol (ethanol exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta. Methods In the present study, the effects of sodium valproate, thalidomide and alcohol on the migration of human first trimester trophoblast cell line (HTR-8/SVneo were examined in vitro. Cells were cultured in the wells of 48-well culture plates as mono or multilayers. Circular patches of cells were removed from the center of the wells by suction, and the migration of cells into the wound was studied using microscopy. Effects of low and high concentrations of valproate, thalidomide and alcohol were examined on the healing of wounds and on the migration rate of cells by determining the wound areas at 0, 3, 6, 12, 24 and 48 h. Effects of drugs and alcohol on the proliferation and the expression levels of integrin subunits beta1 and alpha5 in cells were examined. Results The migration rates of trophoblast differed between wounds created in mono and multilayers of cells. Exposure to teratogens altered the migration of trophoblast into mono and multilayer wounds. The effects of valproate, thalidomide and alcohol on the proliferation of cells during the rapid migratory phase were mild. Drug exposure caused significant changes in the expression levels of beta1 and alpha5 integrin subunits. Conclusion Results suggest that

  16. Altered CD45 expression in C77G carriers influences immune function and outcome of hepatitis C infection.

    Science.gov (United States)

    Dawes, R; Hennig, B; Irving, W; Petrova, S; Boxall, S; Ward, V; Wallace, D; Macallan, D C; Thursz, M; Hill, A; Bodmer, W; Beverley, P C L; Tchilian, E Z

    2006-08-01

    A polymorphism in exon 4 (C77G) of CD45 that alters CD45 splicing has been associated with autoimmune and infectious diseases in humans. To investigate the effect of C77G in hepatitis C virus (HCV) infected individuals and study the phenotype and function of peripheral blood mononuclear cells (PBMC) from healthy and hepatitis C infected C77G carriers. C77G individuals showed an increased proportion of primed CD45RA and effector memory CD8 T cells and more rapid activation of the lymphocyte specific protein tyrosine kinase (Lck) following CD3 stimulation. Transgenic mice with CD45 expression mimicking that in human C77G variants had more activated/memory T cells, more rapid proliferative responses, and activation of Lck. Changes in CD45 isoform expression can alter immune function in human C77G variants and CD45 transgenic mice. The C77G allele may influence the outcome of HCV infection.

  17. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  18. Functional alterations in neural substrates of geometric reasoning in adults with high-functioning autism.

    Directory of Open Access Journals (Sweden)

    Takashi Yamada

    Full Text Available Individuals with autism spectrum condition (ASC are known to excel in some perceptual cognitive tasks, but such developed functions have been often regarded as "islets of abilities" that do not significantly contribute to broader intellectual capacities. However, recent behavioral studies have reported that individuals with ASC have advantages for performing Raven's (Standard Progressive Matrices (RPM/RSPM, a standard neuropsychological test for general fluid intelligence, raising the possibility that ASC's cognitive strength can be utilized for more general purposes like novel problem solving. Here, the brain activity of 25 adults with high-functioning ASC and 26 matched normal controls (NC was measured using functional magnetic resonance imaging (fMRI to examine neural substrates of geometric reasoning during the engagement of a modified version of the RSPM test. Among the frontal and parietal brain regions involved in fluid intelligence, ASC showed larger activation in the left lateral occipitotemporal cortex (LOTC during an analytic condition with moderate difficulty than NC. Activation in the left LOTC and ventrolateral prefrontal cortex (VLPFC increased with task difficulty in NC, whereas such modulation of activity was absent in ASC. Furthermore, functional connectivity analysis revealed a significant reduction of activation coupling between the left inferior parietal cortex and the right anterior prefrontal cortex during both figural and analytic conditions in ASC. These results indicate altered pattern of functional specialization and integration in the neural system for geometric reasoning in ASC, which may explain its atypical cognitive pattern, including performance on the Raven's Matrices test.

  19. Mitochondrial function is altered in horse atypical myopathy.

    Science.gov (United States)

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  20. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion.

    Science.gov (United States)

    Xie, Nan; Khabbazi, Samira; Nassar, Zeyad D; Gregory, Kye; Vithanage, Tharindu; Anand-Apte, Bela; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-12-01

    Opioids modulate the tumor microenvironment with potential functional consequences for tumor growth and metastasis. We evaluated the effects of morphine administration on the circulating proteolytic profile of tumor-free mice. Serum from morphine-treated (1 or 10 mg/kg, i.p. every 12 h) or saline-treated mice was collected at different time points and tested ex vivo in endothelial, lymphatic endothelial, and breast cancer cell migration assays. Serum from mice that were treated with 10 mg/kg morphine for 3 d displayed reduced chemotactic potential for endothelial and breast cancer cells, and elicited reduced cancer cell invasion through reconstituted basement membrane compared with serum from saline controls. This was associated with decreased circulating matrix metalloproteinase 9 (MMP-9) and increased circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-3/4 as assessed by zymography and reverse zymography. By using quantitative RT-PCR, we confirmed morphine-induced alterations in MMP-9 and TIMP expression and identified organs, including the liver and spleen, in which these changes originated. Pharmacologic inhibition of MMP-9 abrogated the difference in chemotactic attraction between serum from saline-treated and morphine-treated mice, which indicated that reduced proteolytic ability mediated the decreased migration toward serum from morphine-treated mice. This novel mechanism may enable morphine administration to promote an environment that is less conducive to tumor growth, invasion, and metastasis.-Xie, N., Khabbazi, S., Nassar, Z. D., Gregory, K., Vithanage, T., Anand-Apte, B., Cabot, P. J., Sturgess, D., Shaw, P. N., Parat, M.-O. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion. © FASEB.

  1. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  2. Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion

    Science.gov (United States)

    Bozadjieva, Nadejda; Dai, Xiao-Qing; Cummings, Kelsey; Gimeno, Jennifer; Powers, Alvin C.; Gittes, George K.; Rüegg, Markus A.; Hall, Michael N.; MacDonald, Patrick E.

    2017-01-01

    Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell–mass maintenance. PMID:29106387

  3. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.

    Science.gov (United States)

    Weber, Kenneth A; Sentis, Amy I; Bernadel-Huey, Olivia N; Chen, Yufen; Wang, Xue; Parrish, Todd B; Mackey, Sean

    2018-01-15

    The spinal cord has an active role in the modulation and transmission of the neural signals traveling between the body and the brain. Recent advancements in functional magnetic resonance imaging (fMRI) have made the in vivo examination of spinal cord function in humans now possible. This technology has been recently extended to the investigation of resting state functional networks in the spinal cord, leading to the identification of distinct patterns of spinal cord functional connectivity. In this study, we expand on the previous work and further investigate resting state cervical spinal cord functional connectivity in healthy participants (n = 15) using high resolution imaging coupled with both seed-based functional connectivity analyses and graph theory-based metrics. Within spinal cord segment functional connectivity was present between the left and right ventral horns (bilateral motor network), left and right dorsal horns (bilateral sensory network), and the ipsilateral ventral and dorsal horns (unilateral sensory-motor network). Functional connectivity between the spinal cord segments was less apparent with the connectivity centered at the region of interest and spanning spinal cord functional network was demonstrated to be state-dependent as thermal stimulation of the right ventrolateral forearm resulted in significant disruption of the bilateral sensory network, increased network global efficiency, and decreased network modularity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  5. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  6. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  7. Altered functional brain networks in Prader–Willi syndrome

    OpenAIRE

    Zhang, Yi; Zhao, Heng; Qiu, Siyou; Tian, Jie; Wen, Xiaotong; Miller, Jennifer L.; von Deneen, Karen M.; Zhou, Zhenyu; Gold, Mark S.; Liu, Yijun

    2013-01-01

    Prader–Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating-related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting-state functional MRI techniqu...

  8. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  9. Supporting women with advanced breast cancer: the impact of altered functional status on their social roles.

    Science.gov (United States)

    Chen, Bai Qi Peggy; Parmar, Monica P; Gartshore, Kimberley

    2014-01-01

    Despite early detection of breast cancer and the progress of treatment modalities, metastasis-specific symptoms continue to impact women's functional status and daily living. The aim of this study was to explore the experience of altered functional status and social roles of women with advanced breast cancer. Using qualitative descriptive methodology, semi-structured interviews were conducted with 10 women diagnosed with advanced breast cancer and altered functional status attending a tertiary care cancer centre. Results illustrated the adaptive experience of women living with their illness as they reshaped their social roles to fit with their altered functional status and advanced disease. These findings highlight the opportunity for supportive care nursing interventions to facilitate the behavioural and cognitive transitions that are experienced by women with advanced breast cancer and altered functional status. These results may have implications for women with other advanced chronic diseases, though more research is required.

  10. Alteration in pancreatic islet function in human immunodeficiency virus

    DEFF Research Database (Denmark)

    Haugaard, Steen B

    2014-01-01

    Molecular mechanisms behind the defects in insulin production and secretion associated with antihuman immunodeficiency virus (anti-HIV) therapy and the development of HIV-associated lipodystrophy syndrome (HALS) are discussed in this article. Data suggesting insulin resistance on the beta cell...

  11. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin....... In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent......Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  12. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.

    Directory of Open Access Journals (Sweden)

    Peris Munyaka

    Full Text Available The cholinergic anti-inflammatory pathway (CAP is based on vagus nerve (VN activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR signaling. Inflammatory bowel disease (IBD patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs and sequential CD4+/CD25-T cell activation in the context of experimental colitis.The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined.McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy.Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.

  13. Chronic fluoxetine treatment alters cardiovascular functions in unanesthetized rats.

    Science.gov (United States)

    Crestani, Carlos C; Tavares, Rodrigo F; Guimarães, Franscisco S; Correa, Fernando M A; Joca, Sâmia R L; Resstel, Leonardo B M

    2011-11-30

    In the present study, we investigated the effects induced by fluoxetine treatment (10 mg/kg) for either 1 or 21 consecutive days on arterial pressure and heart rate basal levels, baroreflex activity, hemodynamic responses to vasoactive agents and cardiovascular responses to acute restraint stress. Mild hypertension was observed after 21 days of treatment, but not after administration for 1 day. Moreover, chronic treatment affected the baroreflex control of heart rate, which was characterized by a reduced reflex tachycardia and an enhanced bradycardiac baroreflex response. The pressor responses to systemic administration of the selective α(1)-adrenoceptor agonist phenylephrine, as well as the depressor responses to systemic infusion of the nitric oxide donor sodium nitroprusside, were reduced after chronic fluoxetine treatment. Fluoxetine treatment for 21 days reduced both the pressor and tachycardiac responses evoked by acute restraint stress. In conclusion, the results indicate the development of mild hypertension after chronic fluoxetine treatment. This effect was followed by changes in the baroreflex control of heart rate and altered vascular responsiveness to pressor and depressor agents, which may explain, at least in part, the increase in arterial pressure. Chronic fluoxetine treatment also affected cardiovascular responses to restraint stress, thus indicating that fluoxetine may affect cardiovascular adaptation under conditions of stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. PCBs Alter Dopamine Mediated Function in Aging Workers

    Science.gov (United States)

    2007-01-01

    assessment of toxicant - induced deficits in neuropsychological function, measurement of serum PCB concentrations, non-invasive determination of bone...likelihood of exposure to PCBs, lead, mercury , and pesticides, using a four point scale. Each job has also been classified using Standard Industrial and... Diuretics Anti-depressants Beta blockers Diabetes meds Acetaminophen Potassium supplement Gastro-intestinals Ace inhibitors Hyperlipoproteinemia meds

  15. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    Science.gov (United States)

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present…

  16. Altered monocyte function in experimental preeclampsia in the rat

    NARCIS (Netherlands)

    Faas, Marijke M.; Broekema, Martine; Moes, Henk; van der Schaaf, Gerda; Heineman, Maas Jan; de Vos, Paul

    2004-01-01

    OBJECTIVES: In the present study, we evaluated functional activity of monocytes in experimental preeclampsia induced by low-dose endotoxin infusion. STUDY DESIGN: Pregnant (n = 12) and cyclic rats (n = 12) were equipped with a permanent jugular vein cannula and infused with either low-dose endotoxin

  17. Does Exercise Alter Immune Function and Respiratory Infections?

    Science.gov (United States)

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  18. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D

    Directory of Open Access Journals (Sweden)

    Victoria L. Campodónico

    2018-03-01

    Full Text Available Background:Mycobacterium tuberculosis (Mtb rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs.Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared.Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin.Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.

  19. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  20. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    International Nuclear Information System (INIS)

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  1. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  2. Pyrethroid pesticide-induced alterations in dopamine transporter function

    International Nuclear Information System (INIS)

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2006-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD

  3. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells.

    Science.gov (United States)

    Marcinkiewicz, Katarzyna M; Gudas, Lorraine J

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. © 2013 Elsevier Inc. All rights reserved.

  4. Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.

    Science.gov (United States)

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

    2013-12-01

    The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis.

  5. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Grdina, D.J.; Frazier, M.E.

    1987-01-01

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  6. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells

  7. Altered Venous Function during Long-Duration Spaceflights

    Directory of Open Access Journals (Sweden)

    Jacques-Olivier Fortrat

    2017-09-01

    Full Text Available Aims: Venous adaptation to microgravity, associated with cardiovascular deconditioning, may contribute to orthostatic intolerance following spaceflight. The aim of this study was to analyze the main parameters of venous hemodynamics with long-duration spaceflight.Methods: Venous plethysmography was performed on 24 cosmonauts before, during, and after spaceflights aboard the International Space Station. Venous plethysmography assessed venous filling and emptying functions as well as microvascular filtration, in response to different levels of venous occlusion pressure. Calf volume was assessed using calf circumference measurements.Results: Calf volume decreased during spaceflight from 2.3 ± 0.3 to 1.7 ± 0.2 L (p < 0.001, and recovered after it (2.3 ± 0.3 L. Venous compliance, determined as the relationship between occlusion pressure and the change in venous volume, increased during spaceflight from 0.090 ± 0.005 to 0.120 ± 0.007 (p < 0.01 and recovered 8 days after landing (0.071 ± 0.005, arbitrary units. The index of venous emptying rate decreased during spaceflight from −0.004 ± 0.022 to −0.212 ± 0.033 (p < 0.001, arbitrary units. The index of vascular microfiltration increased during spaceflight from 6.1 ± 1.8 to 10.6 ± 7.9 (p < 0.05, arbitrary units.Conclusion: This study demonstrated that overall venous function is changed during spaceflight. In future, venous function should be considered when developing countermeasures to prevent cardiovascular deconditioning and orthostatic intolerance with long-duration spaceflight.

  8. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    Science.gov (United States)

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  9. Alteration in pancreatic islet function in human immunodeficiency virus.

    Science.gov (United States)

    Haugaard, Steen B

    2014-09-01

    Molecular mechanisms behind the defects in insulin production and secretion associated with antihuman immunodeficiency virus (anti-HIV) therapy and the development of HIV-associated lipodystrophy syndrome (HALS) are discussed in this article. Data suggesting insulin resistance on the beta cell and defects in first-phase insulin release of HALS patients are presented. Hepatic extraction of insulin, nonglucose insulin secretagogues and insulin-like growth factor release may exert influence on the demand of circulating insulin and on insulin secretion in HIV-infected patients. Finally, the paucity in understanding the incretin effects in HIV and HIV therapy in relation to insulin secretion is highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  11. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  12. Alteration of renal function of rats following spaceflight

    Science.gov (United States)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  13. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    Science.gov (United States)

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Cigarette Smoke Alters the Hematopoietic Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Robert W. Siggins

    2014-02-01

    Full Text Available Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs. Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT recipients with a history of smoking.

  15. A Corn Tissue Culture Cell Line with Altered Lipid Metabolism

    OpenAIRE

    Yue-ie C, Hsing; Jack M, Widholm; Robert W, Rinne; Institute of Botany, Academia Sinica; Department of Agronomy, University of Illinois at Urbana; Plant Physiology and Genetics Research Unit, Department of Agriculture, Agricultural Research Service and Department of Agronomy, University of Illinois at Urbana

    1991-01-01

    A variant corn callus line derived from callus which originated from etiolated leaves of Illinois High Oil corn (Zea mays L.) has been identified. The variant corn callus line had increased lipid content concomitant with increased acetyl-CoA carboxylase activity and altered biotin-containing protein patterns relative to the wild type callus. The variant callus line also had altered fatty acid composition concomitant with decreased oleate desaturase activity compared to the wild type callus. T...

  16. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  17. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    Directory of Open Access Journals (Sweden)

    Pilar Tornero-Esteban

    Full Text Available Osteoarthritis (OA is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs. WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis.MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases.Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2 signaling node was present in OA-MSCs.Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  18. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    Science.gov (United States)

    Tornero-Esteban, Pilar; Peralta-Sastre, Ascensión; Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  19. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells.

    Science.gov (United States)

    Conley, Sabena M; Zhu, Xiang-Yang; Eirin, Alfonso; Tang, Hui; Lerman, Amir; van Wijnen, Andre J; Lerman, Lilach O

    2018-02-20

    Metabolic syndrome (MetS) is associated with insulin resistance (IR) and impaired glucose metabolism in muscle, fat, and other cells, and may induce inflammation and vascular remodeling. Endogenous reparative systems, including adipose tissue-derived mesenchymal stem/stromal cells (MSC), are responsible for repair of damaged tissue. MSC have also been proposed as an exogenous therapeutic intervention in patients with cardiovascular and chronic kidney disease (CKD). The feasibility of using autologous cells depends on their integrity, but whether in MetS IR involves adipose tissue-derived MSC remains unknown. The aim of this study was to examine the expression of mRNA involved in insulin signaling in MSC from subjects with MetS. Domestic pigs consumed a lean or obese diet (n=6 each) for 16weeks. MSC were collected from subcutaneous abdominal fat and analyzed using high-throughput RNA-sequencing for expression of genes involved in insulin signaling. Expression profiles for enriched (fold change>1.4, pinsulin signaling. Enriched mRNAs were implicated in biological pathways including hepatic glucose metabolism, adipocyte differentiation, and transcription regulation, and down-regulated mRNAs in intracellular calcium signaling and cleaving peptides. Functional analysis suggested that overall these alterations could increase IR. MetS alters mRNA expression related to insulin signaling in adipose tissue-derived MSC. These observations mandate caution during administration of autologous MSC in subjects with MetS. Copyright © 2017. Published by Elsevier B.V.

  1. An electrophysiological analysis of altered cognitive functions in Huntington disease.

    Science.gov (United States)

    Münte, T F; Ridao-Alonso, M E; Preinfalk, J; Jung, A; Wieringa, B M; Matzke, M; Dengler, R; Johannes, S

    1997-09-01

    Neuropsychological deficits are a main feature of Huntington disease (HD) with previous data suggesting involvement of memory functions and visual processing. To increase the knowledge about cognitive malfunction in HD in the domains of visual processing and memory by the use of modern electrophysiological techniques (event-related potentials [ERPs]). A case-control design was used. Three ERP paradigms were used; a parallel visual search paradigm allowed for the simultaneous processing of a multi-element visual array in search of a target stimulus, while a serial search paradigm with varied numbers of distractor items necessitated a serial one by one scanning of the arrays. The third experiment was a word-recognition memory task. The measurements were obtained in a neurophysiological laboratory of a university hospital. Nine patients with HD and 9 control subjects matched for age, sex, and education were studied. Components of averaged ERPs were quantified by latency and amplitude measures and subjected to statistical analysis. Behavioral measures (search time, hit rate, and recognition accuracy) were assessed as well. The early visual components showed a significant latency shift (delay of about 50 milliseconds) in HD. In the search paradigms the P3 components differentiating target and standard stimuli were virtually absent in HD as was the ERP effect indexing word recognition. This was accompanied by a marked delay in search times and lower hit rates in the search tasks and a grossly reduced recognition accuracy in the memory task. The results suggest marked impairments of patients with HD in early visual sensory processing (early components). Deficits in visual search might be attributed to an impairment to deploy attentional resources across the visual field and/or an inability to control eye movements. The ERPs in the memory task differed grossly from similar data obtained by others in patients with Alzheimer disease, suggesting a different neural basis for

  2. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  3. Altered functionality of anti-bacterial antibodies in patients with chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Anne Lamontagne

    Full Text Available Using comparative glycoproteomics, we have previously identified a glycoprotein that is altered in both amount and glycosylation as a function of liver cirrhosis. The altered glycoprotein is an agalactosylated (G0 immunoglobulin G molecule (IgG that recognizes the heterophilic alpha-gal epitope. Since the alpha gal epitope is found on gut enterobacteria, it has been hypothesized that anti-gal antibodies are generated as a result of increased bacterial exposure in patients with liver disease.The N-linked glycosylation of anti-gal IgG molecules from patients with fibrosis and cirrhosis was determined and the effector function of anti-bacterial antibodies from over 100 patients examined. In addition, markers of microbial exposure were determined.Surprisingly, the subset of agalactosylated anti-gal antibodies described here, was impaired in their ability to mediate complement mediated lysis and inhibited the complement-mediated destruction of common gut bacteria. In an analysis of serum from more than 100 patients with liver disease, we have shown that those with increased levels of this modified anti-gal antibody had increased levels of markers of bacterial exposure.Anti-gal antibodies in patients with liver cirrhosis were reduced in their ability to mediate complement mediated lysis of target cells. As bacterial infection is a major complication in patients with cirrhosis and bacterial products such as LPS are thought to play a major role in the development and progression of liver fibrosis, this finding has many clinical implications in the etiology, prognosis and treatment of liver disease.

  4. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  5. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  6. Diethylstilbestrol alters positive and negative selection of T cells in the thymus and modulates T-cell repertoire in the periphery

    International Nuclear Information System (INIS)

    Brown, Nicole; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2006-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effects of DES on T-cell differentiation in the thymus using the HY-TCR transgenic (Tg) mouse model in which the female mice exhibit positive selection of T cells bearing the Tg TCR, while the male mice show negative selection of such T cells. In female HY-TCR-Tg mice, exposure to DES showed more pronounced decrease in thymic cellularity when compared to male mice. Additionally, female mice also showed a significant decrease in the proportion of double-positive (DP) T cells in the thymus and HY-TCR-specific CD8 + T cells in the periphery. Male mice exhibiting negative selection also showed decreased thymic cellularity following DES exposure. Moreover, the male mice showed increased proportion of double-negative (DN) T cells in the thymus and decreased proportion of CD8 + T cells. The density of expression of HY-TCR on CD8 + cells was increased following DES exposure in both females and males. Finally, the proliferative response of thymocytes to mitogens and peripheral lymph node T cells to male H-Y antigen was significantly altered in female and male mice following DES treatment. Taken together, these data suggest that DES alters T-cell differentiation in the thymus by interfering with positive and negative selection processes, which in turn modulates the T-cell repertoire in the periphery

  7. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.

    Science.gov (United States)

    Wong, Elissa L; Lutz, Nina M; Hogan, Victoria A; Lamantia, Cassandra E; McMurray, Helene R; Myers, Jason R; Ashton, John M; Majewska, Ania K

    2018-01-01

    Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in

  8. Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells.

    Science.gov (United States)

    Hatfield, Kimberley Joanne; Reikvam, Håkon; Bruserud, Øystein

    2014-11-01

    The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characteristics associated with clonogenic capacity. Cells were cultured in medium supplemented with recombinant growth factors FMS-like tyrosine kinase-3 ligand, stem cell factor, IL-3, G-CSF and thrombopoietin. The colony-forming unit assay was used to estimate the number of progenitors in AML cell populations after 35 days of culture, and microarray was used to study global gene expression profiles between AML patients. Long-term cell proliferation was observed in 7 of 31 patients, whereas 3 additional patients showed long-term proliferation after endothelial cell coculture. Patient-specific differences in constitutive cytokine release were maintained during cell culture. Patients with long-term proliferation showed altered expression in six cell cycle-related genes (HMMR, BUB1, NUSAP1, AURKB, CCNF, DLGAP5), two genes involved in DNA replication (TOP2A, RFC3) and one gene with unknown function (LHFPL2). We identified a subset of AML patients characterized by long-term in vitro cell proliferation and altered expression of cell cycle regulators that may be potential candidates for treatment of AML.

  9. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging

    Science.gov (United States)

    Corydon, Thomas J.; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-01

    Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711

  10. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.

    Science.gov (United States)

    Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-28

    Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24(th) DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31(st) parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.

  11. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Kampinga, H.H.

    1989-01-01

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  12. Exposure to the endocrine disruptor nonylphenol alters structure and function of thyroid gland in rats.

    Science.gov (United States)

    Xi, Yue; Li, Dehua; San, Wei

    2013-08-10

    Nonylphenol (NP) is an estrogenic-like compound which can induce vitellogenin synthesis in males and immature teleostean species. Known as an endocrine disruptor, it has been reported to affect endocrine glands; however, little is known about its effects on thyroid function. The present study aimed to evaluate whether exposure to NP alters the structure and function of the thyroid gland of rats and/or the underlying mechanisms. Rats were gavaged with NP (40, 80 and 200 mg/kg/d) for 15 days. Serum levels of thyroid-stimulating hormone were determined by radioimmunoassay. Ultramicroscopic structure of follicular cells was examined by a transmission electron microscope. Histopathology was conducted with hematoxylin-eosin (HE) staining. We found that NP exposure induced a decrease in serum levels of free tetraiodothyronine (FT) 3 and FT4 while it induced an increase in serum levels of thyroid-stimulating hormone (TSH) in a dose-dependent manner. There was a negative correlation between different doses of NP with serum levels of FT3 and FT4 (FT4 r=-0.932; FT3 r=-0.926) and a positive correlation with serum levels of TSH (r=0.967). Histological and morphometric study in the NP-exposed group revealed dilation of endoplasmic reticulum into cystic in thyroid follicular cells. Mitochondrion was damaged in the 80 and 200 mg/kg/d groups. Exposure to NP may lead to thyroid dysfunction. It may be a potential contributor to thyroid disruption. © 2013 Elsevier B.V. All rights reserved.

  13. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    Science.gov (United States)

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-06

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells.

  14. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell.

    Science.gov (United States)

    Merhi, Zaher; Polotsky, Alex J; Bradford, Andrew P; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-10-01

    To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = -.60, P = .048). Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. © The Author(s) 2015.

  15. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  16. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  17. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  18. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    Science.gov (United States)

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  19. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  1. [Signaling network-based functional cell design].

    Science.gov (United States)

    Ju, Jianqi; Wei, Ping

    2017-03-25

    Cellular signaling networks act as the central processor to deal with environmental signals and regulate cell function, and determine cell fate. Using synthetic biology approach to engineer cell signaling networks is crucial for ultimately constructing man-made "cell machines". Cellular signaling networks can encode sophisticated cell information by processing quantitatively signaling dynamics, which enables multi-dimensional regulation of functional sub-circuits. Here, we first review the research progresses on the signaling coding mechanisms; and then elaborate the methodologies and applications of cells signaling engineering; finally, we envision that signaling-based cell engineering are important for the increasingly-complicated next generation synthetic biology.

  2. Viscoelastic properties of differentiating blood cells are fate- and function-dependent.

    Directory of Open Access Journals (Sweden)

    Andrew E Ekpenyong

    Full Text Available Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (minutes, compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies.

  3. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Directory of Open Access Journals (Sweden)

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  4. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...... the immunomodulatory potential of antibiotics and reveal the local metabolic microenvironment to be an important determinant of infection resolution....

  5. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.

  6. Adolescent Cannabis Use: What is the Evidence for Functional Brain Alteration?

    Science.gov (United States)

    Lorenzetti, Valentina; Alonso-Lana, Silvia; Youssef, George J; Verdejo-Garcia, Antonio; Suo, Chao; Cousijn, Janna; Takagi, Michael; Yücel, Murat; Solowij, Nadia

    2016-01-01

    Cannabis use typically commences during adolescence, a period during which the brain undergoes profound remodeling in areas that are high in cannabinoid receptors and that mediate cognitive control and emotion regulation. It is therefore important to determine the impact of adolescent cannabis use on brain function. We investigate the impact of adolescent cannabis use on brain function by reviewing the functional magnetic resonance imaging studies in adolescent samples. We systematically reviewed the literature and identified 13 functional neuroimaging studies in adolescent cannabis users (aged 13 to 18 years) performing working memory, inhibition and reward processing tasks. The majority of the studies found altered brain function, but intact behavioural task performance in adolescent cannabis users versus controls. The most consistently reported differences were in the frontal-parietal network, which mediates cognitive control. Heavier use was associated with abnormal brain function in most samples. A minority of studies controlled for the influence of confounders that can also undermine brain function, such as tobacco and alcohol use, psychopathology symptoms, family history of psychiatric disorders and substance use. Emerging evidence shows abnormal frontal-parietal network activity in adolescent cannabis users, particularly in heavier users. Brain functional alterations may reflect a compensatory neural mechanism that enables normal behavioural performance. It remains unclear if cannabis exposure drives these alterations, as substance use and mental health confounders have not been systematically examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  8. Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2003-11-01

    Full Text Available Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pHe resulted in a distinct shift of lysosomes from the perinuclear region to the cell periphery irrespective of the HMECs' degree of malignancy. With decreasing pH, larger lysosomal vesicles were observed more frequently in highly metastatic breast cancer cells, whereas smaller lysosomes were observed in poorly metastatic breast cancer cells and HMECs. The number of lysosomes decreased with acidic pH values. The displacement of lysosomes to the cell periphery driven by extracellular acidosis may facilitate exocytosis of these lysosomes and increase secretion of degradative enzymes. Filopodia formations, which were observed more frequently in highly metastatic breast cancer cells maintained at acidic pHe, may also contribute to invasion.

  9. Altered nutrition during hot droughts will impair forest functions in the future

    Science.gov (United States)

    Grossiord, C.; Gessler, A.; Reed, S.; Dickman, L. T.; Collins, A.; Schönbeck, L.; Sevanto, S.; Vilagrosa, A.; McDowell, N. G.

    2017-12-01

    Rising greenhouse gas emissions will increase atmospheric temperature globally and alter hydrological cycles resulting in more extreme and recurrent droughts in the coming century. Nutrition is a key component affecting the vulnerability of forests to extreme climate. Models typically assume that global warming will enhance nitrogen cycling in terrestrial ecosystems and lead to improved plant functions. Drought on the other hand is expected to weaken the same processes, leading to a clear conflict and inability to predict how nutrition and plant functions will be impacted by a simultaneously warming and drying climate. We used a unique setup consisting of long-term manipulation of climate on mature trees to examine how individual vs. combined warming and drought would alter soil N cycling and tree functions. The site consists of the longest record of tree responses to experimental warming and precipitation reduction in natural conditions.Changes in soil nitrogen cycling (e.g. microbial activity, nitrification and ammonification rates, N concentration) occurred in response to the treatments. In addition, temperature rise and precipitation reduction altered the ability of trees to take up nitrogen and modified nitrogen allocation patterns between aboveground and belowground compartments. Although no additive effect of warming and drying were found for the two studied species, contrasting responses to warming and droughts were observed between the two functional types. Overall, our results show that higher temperature and reduced precipitation will alter the nutrition of forest ecosystems in the future with potentially large consequences for forest functions, structure and biodiversity.

  10. Metaxin deficiency alters mitochondrial membrane permeability and leads to resistance to TNF-induced cell killing.

    Science.gov (United States)

    Ono, Koh; Wang, Xiaofei; Kim, Sung Ouk; Armstrong, Lucas C; Bornstein, Paul; Han, Jiahuai

    2010-02-01

    Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-X(L) overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Met(mut)) and Bcl-X(L)-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaΔTM/C) or Bcl-X(L) in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-X(L) overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-X(L) appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-X(L) may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-X(L) overexpression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.

  11. Modulation of Conjunctival Goblet Cell Function by Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    L. Contreras-Ruiz

    2013-01-01

    Full Text Available Ocular surface inflammation associated with Sjögren’s syndrome is characterized by a loss of secretory function and alteration in numbers of mucin secreting goblet cells. Such changes are a prominent feature of ocular surface inflammatory diseases and are attributed to inflammation; however, the exact effect of the inflammatory cytokines on conjunctival goblet cell function remains largely unknown. In this study, we developed a primary culture of mouse goblet cells from conjunctival tissue and evaluated the effects on their function by inflammatory cytokines detected in the conjunctiva of mouse model of Sjögren’s syndrome (Thrombospondin-1 deficient mice. We found that apoptosis of goblet cells was primarily induced by TNF-α and IFN-γ. These two cytokines also inhibited mucin secretion by goblet cells in response to cholinergic stimulation, whereas IL-6 enhanced such secretion. No changes in secretory response were detected in the presence of IL-13 or IL-17. Goblet cells proliferated to varying degrees in response to all the tested cytokines with the greatest response to IL-13 followed by IL-6. Our results therefore reveal that inflammatory cytokines expressed in the conjunctiva during an ocular surface disease directly disrupt conjunctival goblet cell functions, compromising the protective function of tears, thereby contributing to ocular surface damage.

  12. Programming cell fate on bio-functionalized silicon.

    Science.gov (United States)

    Premnath, Priyatha; Tan, Bo; Venkatakrishnan, Krishnan

    2015-04-01

    Controlling the growth of cells on the surface of silicon without an additive layer or topographical modification is unexplored. This research article delineates the discovery of unique properties of a bio-functionalized silicon substrate, programmed to repel or control cells, generated by ultrafast femtosecond pulse interaction with silicon. Remarkably, bio-functionalization in any shape or size without change in topology or morphology is observed indicating only sub-surface phase transformations. Material characterization reveals the presence of a unique mixture of phases of SiO2 and Si. Consequently, these variations in phase alter the physicochemical characteristics on the surface of silicon resulting in its bio-functionalization. The culture of mouse embryonic fibroblasts shows unique adhesion characteristics on these bio-functionalized silicon surfaces that include cell controlling, cell trapping, and cell shaping. Furthermore, the directionality of fibroblasts is restrained parallel to bio-functionalized zones as evidenced by changes in cytoskeleton. The controlling of proliferation, migration and adhesion of cells is attributed to unique phase bio-functionalization. This method presents considerable promise in a myriad of applications such as tissue engineering, MEMS, and lab-on-a-chip devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Possible role of a hydrogen peroxide-mediated mechanism in glucocorticoid receptor functional alterations associated with moderate asthma

    Directory of Open Access Journals (Sweden)

    Perišić Tatjana

    2008-01-01

    Full Text Available It is well known that pathogenesis and maintenance of chronic asthma is associated with alterations of glucocorticoid receptor (GR function, and also with persistent pulmonary inflammation, the important mediators of which are reactive oxygen and nitrogen species. In this paper, we tested a hypothesis that GR functional alterations in asthma result from the action of oxidants. To that end, we conducted a series of ex vivo treatments of peripheral blood mononuclear cells (PBMCs of healthy donors with oxidizing agents (3 morpholinosydnonimine, SIN1; S-nitroso-N-acetyl-penicillamine, SNAP; and hydrogen peroxide, H2O2 and compared the resulting GR modifications with those previously noticed in asthmatic patients. The results show that treatment of PBMCs by H2O2 provoked an increase in the level of GR protein, accompanied by a rise in the number of hormone-binding sites and a decline in the receptor's affinity for the hormone. The H2O2 induced changes, including a characteristic GR isoprotein expression pattern, were found to be very similar to the GR changes previously observed in PBMCs of moderate asthmatic patients, but not in mild asthmatics and healthy subjects. Treatment with the other oxidants applied herein produced different effects or exerted no influence on GR. Thus, this study provides preliminary data suggesting that functional alterations of the GR associated with moderate asthma may be mediated by redox mechanisms that are based on oxidative and regulatory actions of H2O2.

  14. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    Science.gov (United States)

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi

    Directory of Open Access Journals (Sweden)

    Juan José Muñoz

    2018-04-01

    Full Text Available For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T and thymic epithelial cells (TECs, have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T–TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.

  16. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...... transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  17. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  18. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Finaurini, Sara; Basilico, Nicoletta; Corbett, Yolanda; D’Alessandro, Sarah; Parapini, Silvia; Olliaro, Piero; Haynes, Richard K.; Taramelli, Donatella

    2012-01-01

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  19. Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis.

    Science.gov (United States)

    Yao, Yuan-Wei; Liu, Lu; Ma, Shan-Shan; Shi, Xin-Hui; Zhou, Nan; Zhang, Jin-Tao; Potenza, Marc N

    2017-12-01

    This meta-analytic study aimed to identify the common and specific neural alterations in Internet gaming disorder (IGD) across different domains and modalities. Two separate meta-analyses for functional neural activation and gray-matter volume were conducted. Sub-meta-analyses for the domains of reward, cold-executive, and hot-executive functions were also performed, respectively. IGD subjects, compared with healthy controls, showed: (1) hyperactivation in the anterior and posterior cingulate cortices, caudate, posterior inferior frontal gyrus (IFG), which were mainly associated with studies measuring reward and cold-executive functions; and, (2) hypoactivation in the anterior IFG in relation to hot-executive function, the posterior insula, somatomotor and somatosensory cortices in relation to reward function. Furthermore, IGD subjects showed reduced gray-matter volume in the anterior cingulate, orbitofrontal, dorsolateral prefrontal, and premotor cortices. These findings suggest that IGD is associated with both functional and structural neural alterations in fronto-striatal and fronto-cingulate regions. Moreover, multi-domain assessments capture different aspects of neural alterations in IGD, which may be helpful for developing effective interventions targeting specific functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tissue landscape alters adjacent cell fates during Drosophila egg development.

    Science.gov (United States)

    Manning, Lathiena A; Weideman, Ann Marie; Peercy, Bradford E; Starz-Gaiano, Michelle

    2015-06-17

    Extracellular signalling molecules control many biological processes, but the influence of tissue architecture on the local concentrations of these factors is unclear. Here we examine this issue in the Drosophila egg chamber, where two anterior cells secrete Unpaired (Upd) to activate Signal transducer and activator of transcription (STAT) signalling in the epithelium. High STAT signalling promotes cell motility. Genetic analysis shows that all cells near the Upd source can respond. However, using upright imaging, we show surprising asymmetries in STAT activation patterns, suggesting that some cells experience different Upd levels than predicted by their location. We develop a three-dimensional mathematical model to characterize the spatio-temporal distribution of the activator. Simulations show that irregular tissue domains can produce asymmetric distributions of Upd, consistent with results in vivo. Mutant analysis substantiates this idea. We conclude that cellular landscape can heavily influence the effect of diffusible activators and should be more widely considered.

  1. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  2. Phenobarbital alters hepatic Mrp2 function by direct and indirect interactions

    NARCIS (Netherlands)

    Patel, NJ; Zamek-Gliszczynski, MJ; Zhang, PJ; Han, YH; Jansen, PLM; Meier, PJ; Stieger, B; Brouwer, KLR

    Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of

  3. Phenobarbital alters hepatic Mrp2 function by direct and indirect interactions

    NARCIS (Netherlands)

    Patel, Nita J.; Zamek-Gliszczynski, Maciej J.; Zhang, Peijin; Han, Yong-Hae; Jansen, Peter L. M.; Meier, Peter J.; Stieger, Bruno; Brouwer, Kim L. R.

    2003-01-01

    Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of

  4. Expression and structural-functional alterations of α-1-acid glycoprotein at the pathological state

    Directory of Open Access Journals (Sweden)

    Kulinich A. O.

    2010-07-01

    Full Text Available The review analyzes up-to-date knowledge on structure and biological functions of α-acid glycoprotein. The special attention is given to alterations of fucosylation, sialylation and branching of orosomucoid at the acute, chronic inflammation and oncotransformations.

  5. Exploring the human microbiome from multiple perspectives: factors altering its composition and function.

    Science.gov (United States)

    Rojo, David; Méndez-García, Celia; Raczkowska, Beata Anna; Bargiela, Rafael; Moya, Andrés; Ferrer, Manuel; Barbas, Coral

    2017-07-01

    Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols. © FEMS 2017.

  6. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Science.gov (United States)

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  7. Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex.

    Science.gov (United States)

    Roy, Tara Sankar; Seidler, Frederic J; Slotkin, Theodore A

    2002-01-01

    Offspring of women who smoke during pregnancy show behavioral abnormalities, including increased incidence of attentional deficit, learning disabilities, and cognitive dysfunction. Animal models indicate that nicotine elicits changes in neural cell replication and differentiation, leading to deficits in synaptic neurochemistry and behavioral performance, many of which first emerge at adolescence. We evaluated cellular morphology and regional architecture in the juvenile and adolescent hippocampus and the somatosensory cortex in rats exposed to nicotine prenatally. Pregnant rats were given nicotine throughout gestation via minipump infusion of 2 mg/kg/day, a regimen that elicits nicotine plasma levels comparable with those found in smokers. On postnatal days 21 and 30, brains were perfusion-fixed, coronal slices were taken between the anterior commissure and median eminence, and the morphology of the dorsal hippocampus and somatosensory cortex was characterized. In the hippocampal CA3 region and dentate gyrus, we found a substantial decrease in cell size, with corresponding decrements in cell layer thickness, and increments in cell packing density. Smaller, transient changes were seen in CA1. In layer 5 of the somatosensory cortex, although there was no significant decrement in the average cell size, there was a reduction in the proportion of medium-sized pyramidal neurons, and an increase in the proportion of smaller, nonpyramidal cells. All regions showed elevated numbers of glia. Taken together with previous work on neurochemical and functional defects, these data demonstrate that prenatal nicotine exposure compromises neuronal maturation, leading to long-lasting alterations in the structure of key brain regions involved in cognition, learning, and memory.

  8. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  9. Trimethyloxonium modification of batrachotoxin-activated Na channels alters functionally important protein residues.

    OpenAIRE

    Cherbavaz, D B

    1995-01-01

    The extracellular side of single batrachotoxin-activated voltage-dependent Na channels isolated from rat skeletal muscle membranes incorporated into neutral planar lipid bilayers were treated in situ with the carboxyl methylating reagent, trimethyloxonium (TMO). These experiments were designed to determine whether TMO alters Na channel function by a general through-space electrostatic mechanism or by methylating specific carboxyl groups essential to channel function. TMO modification reduced ...

  10. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK. We found that extended ACK exposure (40 weeks in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.

  11. Engineering Cell Shape and Function

    Science.gov (United States)

    Singhvi, Rahul; Kumar, Amit; Lopez, Gabriel P.; Stephanopoulos, Gregory N.; Wang, Daniel I. C.; Whitesides, George M.; Ingber, Donald E.

    1994-04-01

    An elastomeric stamp, containing defined features on the micrometer scale, was used to imprint gold surfaces with specific patterns of self-assembled monolayers of alkanethiols and, thereby, to create islands of defined shape and size that support extracellular matrix protein adsorption and cell attachment. Through this technique, it was possible to place cells in predetermined locations and arrays, separated by defined distances, and to dictate their shape. Limiting the degree of cell extension provided control over cell growth and protein secretion. This method is experimentally simple and highly adaptable. It should be useful for applications in biotechnology that require analysis of individual cells cultured at high density or repeated access to cells placed in specified locations.

  12. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  13. Altered morphologies and functions of the olfactory bulb and hippocampus induced by miR-30c

    Directory of Open Access Journals (Sweden)

    Tingting eSun

    2016-05-01

    Full Text Available Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ and dentate gyrus (DG by stereotaxic injection with their respective up-and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for three months, we detected significant morphological changes in the olfactory bulb (OB and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain.

  14. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Uncovering Factors Related to Pancreatic Beta-Cell Function.

    Science.gov (United States)

    Curran, Aoife M; Ryan, Miriam F; Drummond, Elaine; Gibney, Eileen R; Gibney, Michael J; Roche, Helen M; Brennan, Lorraine

    2016-01-01

    beta-cell function. The ability of the RA index to modulate insulin secretion was confirmed in mechanistic studies. Future work should identify strategies to alter the RA index.

  16. Uncovering Factors Related to Pancreatic Beta-Cell Function.

    Directory of Open Access Journals (Sweden)

    Aoife M Curran

    of beta-cell function. The ability of the RA index to modulate insulin secretion was confirmed in mechanistic studies. Future work should identify strategies to alter the RA index.

  17. Conjunctival Goblet Cell Function: Effect of Contact Lens Wear and Cytokines

    OpenAIRE

    Garc?a-Posadas, Laura; Contreras-Ruiz, Laura; Soriano-Roman?, Laura; Dartt, Darlene A.; Diebold, Yolanda

    2016-01-01

    This review focuses on conjunctival goblet cells and their essential function in the maintenance of eye health. The main function of goblet cells is to produce and secrete mucins that lubricate the ocular surface. An excess or a defect in those mucins leads to several alterations that makes goblet cells central players in maintaining the proper mucin balance and ensuring the correct function of ocular surface tissues. A typical pathology that occurs with mucous deficiency is dry eye disease, ...

  18. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  19. Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

    Directory of Open Access Journals (Sweden)

    Wilhelm Paulander

    Full Text Available It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH• formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP. Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

  20. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    Science.gov (United States)

    Folkesson, Anders; Charbon, Godefroid; Løbner-Olesen, Anders; Ingmer, Hanne

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH•) formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF) probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed. PMID:24647480

  1. Islet-cell dysfunction induced by glucocorticoid treatment: potential role for altered sympathovagal balance?

    Science.gov (United States)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E; Tushuizen, Maarten E; Holst, Jens J; Deacon, Carolyn F; Karemaker, John M; Heine, Robert J; Mari, Andrea; Diamant, Michaela

    2013-04-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system. A randomized, placebo-controlled, double-blind, dose-response intervention study was conducted in 32 healthy males (age: 21±2years; BMI: 21.9±1.7kg/m(2)). Participants were allocated to prednisolone 7.5mg once daily (n=12), prednisolone 30mg once daily (n=12), or placebo (n=8) for two weeks. Beta-cell function was measured by hyperglycemic clamp with arginine stimulation, glucagon levels were measured following a standardized meal test. We found that prednisolone treatment dose-dependently reduced C-peptide secretion following arginine stimulation on top of hyperglycemia (ASI-iAUCCP): -2.8 (-5.2;0.2) and -3.1 (-8.8; -1.0) nmolL(-1)min(-1) for prednisolone 7.5mg and prednisolone 30mg, respectively (P=0.035 vs. placebo). Fasting glucagon levels increased dose-dependently (vs. placebo; P=0.001), whereas postprandial glucagon levels were only increased by prednisolone 30mg. Changes in parasympathetic activity related with changes in fasting glucose levels (r=-0.407; P=0.03) and showed a trend towards correlation with fasting glucagon concentrations (r=-0.337; P=0.07). The change in sympathovagal balance was inversely related to ASI-iAUCCP (r=-0.365; P=0.05). We conclude that in addition to inducing insulin resistance, prednisolone treatment dose-dependently impaired islet-cell function. Altered sympathovagal balance may be related to these effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  3. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1.

    Directory of Open Access Journals (Sweden)

    Anna Sandebring

    2009-05-01

    Full Text Available PTEN-induced novel kinase 1 (PINK1 mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1 exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential.

  4. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  5. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  6. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    Science.gov (United States)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  7. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  8. Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration

    Science.gov (United States)

    2015-12-01

    of the cellular elements normally present in peripheral nerve . 2. KEYWORDS: peripheral nerve repair , nerve injury , decellularized nerve ... nerve regeneration. The slow rate of nerve re generation in limbs results in poor prognosis for patients suffering from severe injuries , leading to...allograft, neural regeneration, stem cells, stress altered cells, peripheral nerve injury model, nerve graft 3 This comprehensive final report summarizes

  9. PATCHED and p53 gene alterations in sporadic and hereditary basal cell cancer

    NARCIS (Netherlands)

    Ling, G.; Ahmadian, A.; Persson, A.; Undén, A. B.; Afink, G.; Williams, C.; Uhlén, M.; Toftgård, R.; Lundeberg, J.; Pontén, F.

    2001-01-01

    It is widely accepted that disruption of the hedgehog-patched pathway is a key event in development of basal cell cancer. In addition to patched gene alterations, p53 gene mutations are also frequent in basal cell cancer. We determined loss of heterozygosity in the patched and p53 loci as well as

  10. Doxycycline alters metabolism and proliferation of human cell lines.

    Directory of Open Access Journals (Sweden)

    Ethan Ahler

    Full Text Available The tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells-including inhibition of the mitochondrial ribosome-there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.

  11. Allopregnanolone Alters the Gene Expression Profile of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Carmen J. Zamora-Sánchez

    2018-03-01

    Full Text Available Glioblastomas (GBM are the most frequent and aggressive brain tumors. In these malignancies, progesterone (P4 promotes proliferation, migration, and invasion. The P4 metabolite allopregnanolone (3α-THP similarly promotes cell proliferation in the U87 human GBM cell line. Here, we evaluated global changes in gene expression of U87 cells treated with 3α-THP, P4, and the 5α-reductase inhibitor, finasteride (F. 3α-THP modified the expression of 137 genes, while F changed 90. Besides, both steroids regulated the expression of 69 genes. After performing an over-representation analysis of gene ontology terms, we selected 10 genes whose products are cytoskeleton components, transcription factors, and proteins involved in the maintenance of DNA stability and replication to validate their expression changes by RT-qPCR. 3α-THP up-regulated six genes, two of them were also up-regulated by F. Two genes were up-regulated by P4 alone, however, such an effect was blocked by F when cells were treated with both steroids. The remaining genes were regulated by the combined treatments of 3α-THP + F or P4 + F. An in-silico analysis revealed that promoters of the six up-regulated genes by 3α-THP possess cyclic adenosine monophosphate (cAMP responsive elements along with CCAAT/Enhancer binding protein alpha (CEBPα binding sites. These findings suggest that P4 and 3α-THP regulate different sets of genes that participate in the growth of GBMs.

  12. Oncogene-directed alterations in cancer cell metabolism.

    Science.gov (United States)

    Nagarajan, Arvindhan; Malvi, Parmanand; Wajapeyee, Narendra

    2016-07-01

    Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.

  13. Understanding and altering cell tropism of vesicular stomatitis virus

    OpenAIRE

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Grdzelishvili, Valery Z.

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a sa...

  14. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  15. Regulation of Satellite Cell Function in Sarcopenia

    Science.gov (United States)

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  16. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  17. Stratification of clear cell renal cell carcinoma (ccRCC genomes by gene-directed copy number alteration (CNA analysis.

    Directory of Open Access Journals (Sweden)

    H-J Thiesen

    Full Text Available Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs presented in 48 clear cell renal cell carcinoma (ccRCC genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25 and 20 G3 (ratio 0.58. Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes has been successfully validated on published Swiss data (GSE19949 leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and

  18. Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alphav integrin function.

    Science.gov (United States)

    Jurjus, Rosalyn A; Liu, Yueyuan; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Stepp, Mary Ann

    2008-01-01

    ABSTRACT The goal of this study is to determine whether dermal fibroblasts lacking syndecan-1 (sdc1) show differences in integrin expression and function that could contribute to the delayed skin and corneal wound healing phenotypes seen in sdc-1 null mice. Using primary dermal fibroblasts, we show that after 3 days in culture no differences in alpha-smooth muscle actin were detected but sdc-1 null cells expressed significantly more alphav and beta1 integrin than wildtype (wt) cells. Transforming growth factor beta1 (TGFbeta1) treatment at day 3 increased alphav- and beta1-integrin expression in sdc-1 null cells at day 5 whereas wt cells showed increased expression only of alphav-integrin. Using time-lapse studies, we showed that the sdc-1 null fibroblasts migrate faster than wt fibroblasts, treatment with TGFbeta1 increased these migration differences, and treatment with a TGFbeta1 antagonist caused sdc-1 null fibroblasts to slow down and migrate at the same rate as untreated wt cells. Cell spreading studies on replated fibroblasts showed altered cell spreading and focal adhesion formation on vitronectin and fibronectin-coated surfaces. Additional time lapse studies with beta1- and alphav-integrin antibody antagonists, showed that wt fibroblasts expressing sdc-1 had activated integrins on their surface that impeded their migration whereas the null cells expressed alphav-containing integrins which were less adhesive and enhanced cell migration. Surface expression studies showed increased surface expression of alpha2beta1 and alpha3beta1 on the sdc-1 null fibroblasts compared with wt fibroblasts but no significant differences in surface expression of alpha5beta1, alphavbeta3, or alphavbeta5. Taken together, our data indicates that sdc-1 functions in the activation of alphav-containing integrins and support the hypothesis that impaired wound healing phenotypes seen in sdc-1 null mice could be due to integrin-mediated defects in fibroblast migration after injury.

  19. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  20. Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells.

    Science.gov (United States)

    Jeng, Yow-Jiun; Watson, Cheryl S

    2011-01-01

    Estrogens are potent nongenomic phospho-activators of extracellular-signal-regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause).

  1. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  2. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  3. Understanding Alterations in Cell Nano-architecture during Early Carcinogenesis using Optical Microscopy

    Science.gov (United States)

    Damania, Dhwanil

    Carcinogenesis is a complex multi-step process which eventually results in a malignant phenotype that often progresses into a fatal metastatic stage. There are several molecular changes (e.g. DNA methylation, activation of proto-oncogenes, loss of tumor-suppressor genes, histone acetylation) that occur in cells prior to the microscopically detectable morphological alterations. Hence, it is intuitive that these molecular changes should impact various biochemical, biophysical and transport processes within the cell and therefore its nanoscale morphology. Furthermore, recent studies have established that apparently `normal' cells (i.e., away from the actual tumor location) undergo similar genetic/epigenetic changes as the actual cancer cells, giving rise to the phenomenon of field carcinogenesis. Unfortunately, traditional microscopy or histopathology cannot resolve structures below 300 nm due to diffraction-limited resolution. Hence, we developed a novel optical imaging technique, partial wave spectroscopic (PWS) microscopy or optical nanocytology which quantifies the nanoscale refractive-index fluctuations (i.e. mass-density variations such as chromatin compaction) in an optically measured biomarker, disorder strength (Ld). This dissertation proves the nanoscale sensitivity of PWS nanocytology and shows that increase in Ld parallels neoplastic potential of a cell by using standardized cell-lines and animal-models. Based on concept of field carcinogenesis, we employ PWS nanocytology in a multi-center clinical study on approximately 450 patients in four different cancer-types (colon, ovarian, thyroid and lung) and we illustrate that nanoscale disorder increase is a ubiquitous phenomenon across different organs. We further demonstrate the potential of PWS nanocytology in predicting risk for developing future neoplasia. Biologically, we prove that cytoskeletal organization in both nucleus and cytoplasm plays a crucial role in governing L d-differences. Moreover, we

  4. Subversion of pulmonary dendritic cell function by paramyxovirus infections.

    Science.gov (United States)

    Guerrero-Plata, Antonieta; Kolli, Deepthi; Hong, Chao; Casola, Antonella; Garofalo, Roberto P

    2009-03-01

    Lower respiratory tract infections caused by the paramyxoviruses human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are characterized by short-lasting virus-specific immunity and often long-term airway morbidity, both of which may be the result of alterations in the Ag-presenting function of the lung which follow these infections. In this study, we investigated whether hMPV and RSV experimental infections alter the phenotype and function of dendritic cell (DC) subsets that are recruited to the lung. Characterization of lung DC trafficking demonstrated a differential recruitment of plasmacytoid DC (pDC), conventional DC (cDC), and IFN-producing killer DC to the lung and draining lymph nodes after hMPV and RSV infection. In vitro infection of lung DC indicated that in pDC, production of IFN-alpha, TNF-alpha, and CCL5 was induced only by hMPV, whereas CCL3 and CCL4 were induced by both viruses. In cDC, a similar repertoire of cytokines was induced by hMPV and RSV, except for IFN-beta, which was not induced by RSV. The function of lung pDC was altered following hMPV or RSV infection in vivo, as we demonstrated a reduced capacity of lung pDC to produce IFN-alpha as well as other cytokines including IL-6, TNF-alpha, CCL2, CCL3, and CCL4 in response to TLR9 stimulation. Moreover, we observed an impaired capacity of cDC from infected mice to present Ag to CD4(+) T cells, an effect that lasted beyond the acute phase of infection. Our findings suggest that acute paramyxovirus infections can alter the long-term immune function of pulmonary DC.

  5. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  6. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.

    Science.gov (United States)

    Zhang, Hang; Xu, Lele; Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation

  7. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents.

    Directory of Open Access Journals (Sweden)

    Msizi Innocent Mhlongo

    2016-10-01

    Full Text Available Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones - abscisic acid, methyljasmonate and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i quinic acid (chlorogenic acids, (ii tyramine, (iii polyamines or (iv glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense

  8. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.

    Science.gov (United States)

    Hibi, Masaaki; Kaneda, Hiroyasu; Tanizaki, Junko; Sakai, Kazuko; Togashi, Yosuke; Terashima, Masato; De Velasco, Marco Antonio; Fujita, Yoshihiko; Banno, Eri; Nakamura, Yu; Takeda, Masayuki; Ito, Akihiko; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko; Okamoto, Isamu; Nishio, Kazuto

    2016-11-01

    Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Asthma pregnancy alters postnatal development of chromaffin cells in the rat adrenal medulla.

    Directory of Open Access Journals (Sweden)

    Xiu-Ming Wu

    Full Text Available Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3 to postnatal day 60 (P60. Asthmatic pregnant rats (AP, nerve growth factor (NGF-treated pregnant rats (NP and NGF antibody-treated pregnant rats (ANP were sensitized and challenged with ovalbumin (OVA; NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP, offspring from AP (OAP, offspring from NP (ONP, and offspring from ANP (OANP. The expressions of phenylethanolamine N-methyltransferase (PNMT protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI, corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.

  10. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins

    Science.gov (United States)

    McClain, Jonathon L.

    2016-01-01

    Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal was to assess specifically the impact of FA on essential glial cell functions that are involved with neurotransmission in the enteric nervous system. To this end, we generated a new optogenetic mouse model to study specifically the effects of FA on enteric glial Ca2+ signaling by crossing PC::G5-tdTomato mice with Sox10::creERT2 mice. FA did not change the peak glial Ca2+ response when averaged across all glia within a ganglion. However, FA decreased the percent of responding glia by 30% (P glial cells that still exhibited a response by 26% (P glial or neurodegeneration, but glial cells significantly increased glial fibrillary acid protein by 56% (P glial metabolism with FA causes key changes in glial functions associated with their roles in neurotransmission and phenotypic changes indicative of reactive gliosis. NEW & NOTEWORTHY Our study shows that the acute impairment of enteric glial metabolism with fluoroacetate (FA) alters specific glial functions that are associated with the modification of neurotransmission in the gut. These include subtle changes to glial agonist-evoked calcium signaling, the subsequent disruption of connexin-43 hemichannels, and changes in protein expression that are consistent with a transition to reactive glia. These changes in glial function offer a mechanistic explanation for the effects of FA on peripheral neuronal networks. PMID:27784805

  11. Modulation of antigen presenting cell functions during chronic HPV infection

    Directory of Open Access Journals (Sweden)

    Abate Assefa Bashaw

    2017-12-01

    Full Text Available High-risk human papillomaviruses (HR-HPV infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.

  12. REGULATORY T–CELLS: ORIGIN AND FUNCTION

    Directory of Open Access Journals (Sweden)

    I. S. Freidlin

    2005-01-01

    Full Text Available Abstract. Over the past decade a population of so–called “regulatory T cells” (Treg cells has been linked to the prevention of autoimmunity. In this review we discuss the molecular mechanisms of Treg cells development and function including the identification of the unique molecular marker of Treg cells – the transcription factor Foxp3. We discuss also the mechanisms of suppression, which include the direct cell contact through binding of cell surface molecules CTLA–4 on Treg cells to CD80/CD86 molecules of effector T cells and the local secretion of cytokines (IL–10, TGFβ. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. These cells are a good target for designing ways to induce or abrogate immunological tolerance to self and non–self antigens. (Med. Immunol., 2005, vol.7, № 4, pp. 347–354

  13. Genetic variation in serotonin transporter alters resting brain function in healthy individuals.

    Science.gov (United States)

    Rao, Hengyi; Gillihan, Seth J; Wang, Jiongjiong; Korczykowski, Marc; Sankoorikal, Geena Mary V; Kaercher, Kristin A; Brodkin, Edward S; Detre, John A; Farah, Martha J

    2007-09-15

    Perfusion functional magnetic resonance imaging (fMRI) was used to investigate the effect of genetic variation of the human serotonin transporter (5-HTT) gene (5-HTTLPR, SLC6A4) on resting brain function of healthy individuals. Twenty-six healthy subjects, half homozygous for the 5-HTTLPR short allele (s/s group) and half homozygous for the long allele (l/l group), underwent perfusion functional and structural magnetic resonance imaging during a resting state. The two genotype groups had no psychiatric illness and were similar in age, gender, and personality scores. Compared with the l/l group, the s/s group showed significantly increased resting cerebral blood flow (CBF) in the amygdala and decreased CBF in the ventromedial prefrontal cortex. The effect of functional modulation in these regions by 5-HTTLPR genotype cannot be accounted for by variations in brain anatomy, personality, or self-reported mood. The 5-HTTLPR genotype alters resting brain function in emotion-related regions in healthy individuals, including the amygdala and ventromedial prefrontal cortex. Such alterations suggest a broad role of the 5-HTT gene in brain function that may be associated with the genetic susceptibility for mood disorders such as depression.

  14. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial

    OpenAIRE

    Taren, Adrienne A.; Gianaros, Peter J.; Greco, Carol M.; Lindsay, Emily K.; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K.; Ferris, Jennifer L.; Julson, Erica; Marsland, Anna L.; Bursley, James K.; Ramsburg, Jared; Creswell, J. David

    2015-01-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month...

  15. α-Cell Dysfunctions and Molecular Alterations in Male Insulinopenic Diabetic Mice Are Not Completely Corrected by Insulin.

    Science.gov (United States)

    Dusaulcy, Rodolphe; Handgraaf, Sandra; Heddad-Masson, Mounia; Visentin, Florian; Vesin, Christian; Reimann, Franck; Gribble, Fiona; Philippe, Jacques; Gosmain, Yvan

    2016-02-01

    Glucagon and α-cell dysfunction are critical in the development of hyperglycemia during diabetes both in humans and rodents. We hypothesized that α-cell dysfunction leading to dysregulated glucagon secretion in diabetes is due to both a lack of insulin and intrinsic defects. To characterize α-cell dysfunction in diabetes, we used glucagon-Venus transgenic male mice and induced insulinopenic hyperglycemia by streptozotocin administration leading to alterations of glucagon secretion. We investigated the in vivo impact of insulinopenic hyperglycemia on glucagon-producing cells using FACS-sorted α-cells from control and diabetic mice. We demonstrate that increased glucagonemia in diabetic mice is mainly due to increases of glucagon release and biosynthesis per cell compared with controls without changes in α-cell mass. We identified genes coding for proteins involved in glucagon biosynthesis and secretion, α-cell differentiation, and potential stress markers such as the glucagon, Arx, MafB, cMaf, Brain4, Foxa1, Foxa3, HNF4α, TCF7L2, Glut1, Sglt2, Cav2.1, Cav2.2, Nav1.7, Kir6.2/Sur1, Pten, IR, NeuroD1, GPR40, and Sumo1 genes, which were abnormally regulated in diabetic mice. Importantly, insulin treatment partially corrected α-cell function and expression of genes coding for proglucagon, or involved in glucagon secretion, glucose transport and insulin signaling but not those coding for cMAF, FOXA1, and α-cell differentiation markers as well as GPR40, NEUROD1, CAV2.1, and SUMO1. Our results indicate that insulinopenic diabetes induce marked α-cell dysfunction and molecular alteration, which are only partially corrected by in vivo insulin treatment.

  16. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    Lohrer, H.

    1987-01-01

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.) [de

  17. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  18. Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response

    Science.gov (United States)

    Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2011-01-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  19. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy.

    Science.gov (United States)

    Xiong, Jinbo; Xiong, Shangling; Qian, Peng; Zhang, Demin; Liu, Lian; Fei, Yuejun

    2016-12-01

    Elevated seawater temperature has altered the coupling between coastal primary production and heterotrophic bacterioplankton respiration. This shift, in turn, could influence the feedback of ocean ecosystem to climate warming. However, little is known about how natural bacterioplankton community responds to increasing seawater temperature. To investigate warming effects on the bacterioplankton community, we collected water samples from temperature gradients (ranged from 15.0 to 18.6 °C) created by a thermal flume of a coal power plant. The results showed that increasing temperatures significantly stimulated bacterial abundance, grazing rate, and altered bacterioplankton community compositions (BCCs). The spatial distribution of bacterioplankton community followed a distance similarity decay relationship, with a turnover of 0.005. A variance partitioning analysis showed that temperature directly constrained 2.01 % variation in BCCs, while temperature-induced changes in water geochemical and grazing rate indirectly accounted for 4.03 and 12.8 % of the community variance, respectively. Furthermore, the relative abundances of 24 bacterial families were linearly increased or decreased (P < 0.05 in all cases) with increasing temperatures. Notably, the change pattern for a given bacterial family was in concert with its known functions. In addition, community functional redundancy consistently decreased along the temperature gradient. This study demonstrates that elevated temperature, combined with substrate supply and trophic interactions, dramatically alters BCCs, concomitant with decreases in functional redundancy. The responses of sensitive assemblages are temperature dependent, which could indicate temperature departures.

  20. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  1. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  2. Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge

    Directory of Open Access Journals (Sweden)

    Leavell Sarah

    2010-05-01

    Full Text Available Abstract Background Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control and then cats were vaginally challenged with cell-associated or cell-free FIV. Results Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls. Conclusions The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus can be modulated by mucosal exposure to uninfected heterologous cells.

  3. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  4. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  5. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  6. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Directory of Open Access Journals (Sweden)

    Sophia Mueller

    Full Text Available Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA. We applied diffusion tensor imaging (DTI, voxel-based morphometry (VBM and resting state functional connectivity magnetic resonance imaging (fcMRI to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male and 12 healthy controls (mean age 33.3, SD 9.0, 8 male. Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  7. Mitochondria, endothelial cell function, and vascular diseases.

    Science.gov (United States)

    Tang, Xiaoqiang; Luo, Yu-Xuan; Chen, Hou-Zao; Liu, De-Pei

    2014-01-01

    Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.

  8. Mitochondria, Endothelial Cell Function and Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqiang eTang

    2014-05-01

    Full Text Available Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.

  9. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications

    Science.gov (United States)

    Stengel, Andreas; Wang, Lixin; Taché, Yvette

    2011-01-01

    Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress. PMID:21782868

  10. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  11. Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey

    2005-04-01

    Full Text Available Abstract Background Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. Methods We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient or Lama2-/- (laminin-α2-deficient mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. Results We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2-/- muscles showed similar significant increases in CD45+ cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2-/- muscles compared to healthy muscles. In particular, the most abundant Sca-1-/CD45- subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2-/- muscles. Conclusion The similar increases in CD45+ cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

  12. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    Science.gov (United States)

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-03-22

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  13. Pseudomonas fluorescens alters epithelial permeability and translocates across Caco-2/TC7 intestinal cells

    Directory of Open Access Journals (Sweden)

    Madi Amar

    2010-11-01

    Full Text Available Abstract Background Pseudomonas fluorescens has long been considered as a psychrotrophic microorganism. Recently, we have shown that clinical strains of P. fluorescens (biovar 1 are able to adapt at a growth temperature of 37°C or above and induce a specific inflammatory response. Interestingly, a highly specific antigen of P. fluorescens, I2, is detected in the serum of patients with Crohn's disease but the possible role of this bacterium in the disease has not yet been explored. In the present study, we examined the ability of a psychrotrophic and a clinical strain of P. fluorescens to modulate the permeability of a Caco-2/TC7 intestinal epithelial model, reorganize the actin cytoskeleton, invade the target cells and translocate across the epithelium. The behaviour of these two strains was compared to that of the well known opportunistic pathogen P. aeruginosa PAO1. Results Both strains of P. fluorescens were found to decrease the transepithelial resistance (TER of Caco-2/TC7 differentiated monolayers. This was associated with an increase in paracellular permeability and F-actin microfilaments rearrangements. Moreover, the invasion and translocation tests demonstrated that the two strains used in this study can invade and translocate across the differentiated Caco-2/TC7 cell monolayers. Conclusions The present work shows for the first time, that P. fluorescens is able to alter the intestinal epithelial barrier function by disorganizing the F-actin microfilament network. Moreover, we reveal that independently of their origins, the two P. fluorescens strains can translocate across differentiated Caco-2/TC7 cell monolayers by using the transcellular pathway. These findings could, at least in part, explain the presence of the P. fluorescens specific I2 antigen in the serum of patients with Crohn's disease.

  14. Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.

    Science.gov (United States)

    Rifatbegovic, Fikret; Frech, Christian; Abbasi, M Reza; Taschner-Mandl, Sabine; Weiss, Tamara; Schmidt, Wolfgang M; Schmidt, Iris; Ladenstein, Ruth; Ambros, Inge M; Ambros, Peter F

    2018-01-15

    Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of metastatic (M) stage patients present with disseminated tumor cells (DTCs) in the bone marrow (BM) at diagnosis and relapse. Although these cells represent a major obstacle in the treatment of neuroblastoma patients, insights into their expression profile remained elusive. The present RNA-Seq study of stage 4/M primary tumors, enriched BM-derived diagnostic and relapse DTCs, as well as the corresponding BM-derived mononuclear cells (MNCs) from 53 patients revealed 322 differentially expressed genes in DTCs as compared to the tumors (q 2). Particularly, the levels of transcripts encoded by mitochondrial DNA were elevated in DTCs, whereas, for example, genes involved in angiogenesis were downregulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q  6). Interestingly, we found the transcriptome of relapse DTCs largely resembling those of diagnostic DTCs with only 113 differentially expressed genes under relaxed cut-offs (q 0.5). Notably, relapse DTCs showed a positional enrichment of 31 downregulated genes on chromosome 19, including five tumor suppressor genes: SIRT6, BBC3/PUMA, STK11, CADM4 and GLTSCR2. This first RNA-Seq analysis of neuroblastoma DTCs revealed their unique expression profile in comparison to the tumors and MNCs, and less pronounced differences between diagnostic and relapse DTCs. The latter preferentially affected downregulation of genes encoded by chromosome 19. As these alterations might be associated with treatment failure and disease relapse, further functional studies on DTCs should be considered. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  15. Altered Sympathetic-to-Immune Cell Signaling via β2-Adrenergic Receptors in Adjuvant Arthritis

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2013-01-01

    Full Text Available Adjuvant-induced arthritic (AA differentially affects norepinephrine concentrations in immune organs, and in vivo β-adrenergic receptor (β-AR agonist treatment distinctly regulates ex vivo cytokine profiles in different immune organs. We examined the contribution of altered β-AR functioning in AA to understand these disparate findings. Twenty-one or 28 days after disease induction, we examined β2-AR expression in spleen and draining lymph nodes (DLNs for the arthritic limbs using radioligand binding and western blots and splenocyte β-AR-stimulated cAMP production using enzyme-linked immunoassay (EIA. During severe disease, β-AR agonists failed to induce splenocyte cAMP production, and β-AR affinity and density declined, indicating receptor desensitization and downregulation. Splenocyte β2-AR phosphorylation (pβ2-AR by protein kinase A (pβ2-ARPKA decreased in severe disease, and pβ2-AR by G protein-coupled receptor kinases (pβ2-ARGRK increased in chronic disease. Conversely, in DLN cells, pβ2-ARPKA rose during severe disease, but fell during chronic disease, and pβ2-ARGRK increased during both disease stages. A similar pβ2-AR pattern in DLN cells with the mycobacterial cell wall component of complete Freund’s adjuvant suggests that pattern recognition receptors (i.e., toll-like receptors are important for DLN pβ2-AR patterns. Collectively, our findings indicate lymphoid organ- and disease stage-specific sympathetic dysregulation, possibly explaining immune compartment-specific differences in β2-AR-mediated regulation of cytokine production in AA and rheumatoid arthritis.

  16. Altered Sympathetic-to-Immune Cell Signaling via β 2-Adrenergic Receptors in Adjuvant Arthritis

    Science.gov (United States)

    Bellinger, Denise L.; Schaller, Jill A.; Osredkar, Tracy

    2013-01-01

    Adjuvant-induced arthritic (AA) differentially affects norepinephrine concentrations in immune organs, and in vivo β-adrenergic receptor (β-AR) agonist treatment distinctly regulates ex vivo cytokine profiles in different immune organs. We examined the contribution of altered β-AR functioning in AA to understand these disparate findings. Twenty-one or 28 days after disease induction, we examined β 2-AR expression in spleen and draining lymph nodes (DLNs) for the arthritic limbs using radioligand binding and western blots and splenocyte β-AR-stimulated cAMP production using enzyme-linked immunoassay (EIA). During severe disease, β-AR agonists failed to induce splenocyte cAMP production, and β-AR affinity and density declined, indicating receptor desensitization and downregulation. Splenocyte β 2-AR phosphorylation (pβ 2-AR) by protein kinase A (pβ 2-ARPKA) decreased in severe disease, and pβ 2-AR by G protein-coupled receptor kinases (pβ 2-ARGRK) increased in chronic disease. Conversely, in DLN cells, pβ 2-ARPKA rose during severe disease, but fell during chronic disease, and pβ 2-ARGRK increased during both disease stages. A similar pβ 2-AR pattern in DLN cells with the mycobacterial cell wall component of complete Freund's adjuvant suggests that pattern recognition receptors (i.e., toll-like receptors) are important for DLN pβ 2-AR patterns. Collectively, our findings indicate lymphoid organ- and disease stage-specific sympathetic dysregulation, possibly explaining immune compartment-specific differences in β 2-AR-mediated regulation of cytokine production in AA and rheumatoid arthritis. PMID:24194774

  17. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  18. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jinghua [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Zhang, Jianyun [Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Feixue [Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Liu, Jing, E-mail: jliue@zju.edu.cn [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-05-05

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  19. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    International Nuclear Information System (INIS)

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-01-01

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  20. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    Science.gov (United States)

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Shin Teng

    Full Text Available Bipolar disorder is characterized by internally affective fluctuations. The abnormality of inherently mental state can be assessed using resting-state fMRI data without producing task-induced biases. In this study, we hypothesized that the resting-state connectivity related to the frontal, striatal, and thalamic regions, which were associated with mood regulations and cognitive functions, can be altered for bipolar disorder. We used the Pearson's correlation coefficients to estimate functional connectivity followed by the hierarchical modular analysis to categorize the resting-state functional regions of interest (ROIs. The selected functional connectivities associated with the striatal-thalamic circuit and default mode network (DMN were compared between bipolar patients and healthy controls. Significantly decreased connectivity in the striatal-thalamic circuit and between the striatal regions and the middle and posterior cingulate cortex was observed in the bipolar patients. We also observed that the bipolar patients exhibited significantly increased connectivity between the thalamic regions and the parahippocampus. No significant changes of connectivity related to the frontal regions in the DMN were observed. The changed resting-state connectivity related to the striatal-thalamic circuit might be an inherent basis for the altered emotional and cognitive processing in the bipolar patients.

  2. The brain functional connectome is robustly altered by lack of sleep.

    Science.gov (United States)

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus.

    Science.gov (United States)

    Brozoski, Thomas; Brozoski, Daniel; Wisner, Kurt; Bauer, Carol

    2017-07-01

    Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No

  4. Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair

    Science.gov (United States)

    Menon, Arjun; Eddinger, Thomas J.; Wang, Hongfeng; Wendell, David C.; Toth, Jeffrey M.

    2012-01-01

    Coarctation of the aorta (CoA) is associated with substantial morbidity despite treatment. Mechanically induced structural and functional vascular changes are implicated; however, their relationship with smooth muscle (SM) phenotypic expression is not fully understood. Using a clinically representative rabbit model of CoA and correction, we quantified mechanical alterations from a 20-mmHg blood pressure (BP) gradient in the thoracic aorta and related the expression of key SM contractile and focal adhesion proteins with remodeling, relaxation, and stiffness. Systolic and mean BP were elevated for CoA rabbits compared with controls leading to remodeling, stiffening, an altered force response, and endothelial dysfunction both proximally and distally. The proximal changes persisted for corrected rabbits despite >12 wk of normal BP (∼4 human years). Computational fluid dynamic simulations revealed reduced wall shear stress (WSS) proximally in CoA compared with control and corrected rabbits. Distally, WSS was markedly increased in CoA rabbits due to a stenotic velocity jet, which has persistent effects as WSS was significantly reduced in corrected rabbits. Immunohistochemistry revealed significantly increased nonmuscle myosin and reduced SM myosin heavy chain expression in the proximal arteries of CoA and corrected rabbits but no differences in SM α-actin, talin, or fibronectin. These findings indicate that CoA can cause alterations in the SM phenotype contributing to structural and functional changes in the proximal arteries that accompany the mechanical stimuli of elevated BP and altered WSS. Importantly, these changes are not reversed upon BP correction and may serve as markers of disease severity, which explains the persistent morbidity observed in CoA patients. PMID:23023871

  5. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  6. Early alterations of red blood cell rheology in critically ill patients.

    Science.gov (United States)

    Reggiori, Giulia; Occhipinti, Giovanna; De Gasperi, Andrea; Vincent, Jean-Louis; Piagnerelli, Michael

    2009-12-01

    To investigate red blood cell rheology in a large intensive care unit population on admission, and to assess the possible influence of comorbidities on the rheology. : Prospective study. Medico-surgical intensive care unit with 31 beds. All intensive care unit admissions during a 5-month period and 20 healthy volunteers. Blood sampling. A total of 196 intensive care patients (160 without and 36 with sepsis) and 20 healthy volunteers were studied. Red blood cell rheology (deformability and aggregation) was assessed ex vivo using the laser-assisted optical rotational cell analyzer (LORCA; Mechatronics Instruments BV, AN Zwaag, Netherlands) within the first 24 hrs after intensive care unit admission. Red blood cell deformability was determined by the elongation index in relation to the shear stress (0.3 to 50 Pa) applied on the red blood cell membrane surface. Aggregation was assessed by the aggregation index. Septic patients were more likely to have anemia, coagulation abnormalities, and comorbidities than were nonseptic patients. Red blood cell deformability was significantly altered in septic compared to nonseptic patients and volunteers for the majority of shear stress rates studied. The aggregation index was greater in septic patients than in volunteers (67.9% [54.7-73.5] vs. 61.8% [58.2-68.4]; p < .05). Only sepsis and hematologic disease influenced the elongation index (both p < .01). Other comorbidities, like cancer, diabetes mellitus, cirrhosis, and terminal renal failure, had no effect on the elongation index. Aggregation index was related to the degree of organ failure (Sequential Organ Failure Assessment score), the red blood cell count, and fibrinogen concentrations. Early alterations of red blood cell rheology are common in intensive care unit patients, especially in those with sepsis. Comorbidities (other than hematologic diseases) do not significantly influence these abnormalities. These alterations could contribute to the microcirculatory alterations

  7. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues

    OpenAIRE

    Dilek Akşit; Alper Yazıcı; Hasan Akşit; Esin S. Sarı; Arzu Yay; Onur Yıldız; Adil Kılıç; Sıtkı S. Ermiş; Kamil Seyrek

    2016-01-01

    Background: Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. Aims: The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. Study Design: Animal experiment. Methods: Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was ...

  8. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B.; Mandel, U.

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  9. Dyslipidemia-associated alterations in B cell subpopulation frequency and phenotype during experimental atherosclerosis.

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-04-01

    Lymphocytes, the cellular effectors of adaptive immunity, are involved in the chronic inflammatory process known as atherosclerosis. Proatherogenic and atheroprotective properties have been ascribed to B cells. However, information regarding the role of B cells during atherosclerosis is scarce. Both the frequency and the phenotype of B cell subpopulations were studied by flow cytometry in wild type and apolipoprotein-E-deficient (apoE(-/-)) mice fed a high-fat (HFD) or control diet. Whereas the proportion of follicular cells was decreased, transitional 1-like cells were increased in mice with advanced atherosclerotic lesions (apoE(-/-) HFD). B cells in atherosclerotic mice were more activated, indicated by their higher surface expression of CD80, CD86, CD40 and CD95 and increased serum IgG1 levels. In the aorta, a decreased frequency of B cells was observed in mice with advanced atherosclerosis. Low expression of CD19 was observed on B cells from the spleen, aorta and lymph nodes of apoE(-/-) HFD mice. This alteration correlated with serum levels of IgG1 and cholesterol. A reduction in CD19 expression was induced in splenic cells from young apoE(-/-) mice cultured with lipemic serum. These results show that mice with advanced atherosclerosis display a variety of alterations in the frequency and phenotype of B lymphocytes, most of which are associated with dyslipidemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  12. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions.

    Science.gov (United States)

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-05-05

    Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Venom of the Chilean Latrodectus mactans alters bovine spermatozoa calcium and function by blocking the TEA-sensitive K(+) current.

    Science.gov (United States)

    Navarrete, Patricia; Martínez-Torres, Ataúlfo; Gutiérrez, Raúl Sánchez; Mejía, Fernando Romero; Parodi, Jorge

    2010-08-01

    The morphology and size of spermatozoa make it difficult to study the functional properties of the plasma membrane, however, some studies have revealed the presence of a number of ion channels in this cell. We measured the calcium (Ca(++)) influx induced by depolarization of the plasma membrane and by venom isolated from the Chilean black widow spider (Latrodectus mactans), and functional changes in the presence of either high potassium or total venom. Our results indicate that the venom increased the Ca(++) influx, with an EC50 of 6.1 microg/mL and triggering the acrosome reaction in 43.26% of the cells. The application of potassium (10 mM K(+)) or total venom (10 microg/mL) did not affect the morphology or DNA stability of the sperm. The effects induced by high K(+) and venom suggest that direct blocking of K(+) currents alters the passive properties of the plasma membrane, leading to the entry of Ca(++). These results show the importance of functional changes induced by depolarizing the spermatozoa and by venom. This venom possesses one or more molecules that may be used as pharmacological tools for studies on spermatozoa and have potential applications in reproductive biotechnology.

  14. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    Science.gov (United States)

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what

  15. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  16. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Science.gov (United States)

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  17. Does moderate hypoxia alter working memory and executive function during prolonged exercise?

    Science.gov (United States)

    Komiyama, Takaaki; Sudo, Mizuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki; Ando, Soichi

    2015-02-01

    It has been suggested that acute exercise improves cognitive function. However, little is known about how exercise under hypoxia affects cognitive function. The purpose of this study was to determine if hypoxia alters working memory and executive function during prolonged exercise. Sixteen participants performed cognitive tasks at rest and during exercise under normoxia and hypoxia [fraction of inspired oxygen (FIO2)=0.15, corresponding to an altitude of approximately 2600 m]. The level of hypoxia was moderate. We used a combination of Spatial Delayed Response (Spatial DR) task and Go/No-Go (GNG) task, where spatial working memory and executive function are required. Working memory was assessed by the accuracy of the Spatial DR task, and executive function was assessed by the accuracy and reaction time in the GNG task. The participants cycled an ergometer for 30 min under normoxia and moderate hypoxia while keeping their heart rate (HR) at 140 beats/min. They performed the cognitive tasks 5 min and 23 min after their HR reached 140 beats/min. Moderate hypoxia did not alter the accuracy of the Spatial DR (P=0.38) and GNG tasks (P=0.14). In contrast, reaction time in the GNG task significantly decreased during exercise relative to rest under normoxia and moderate hypoxia (P=0.02). These results suggest that moderate hypoxia and resultant biological processes did not provide sufficient stress to impair working memory and executive function during prolonged exercise. The beneficial effects on speed of response appear to persist during prolonged exercise under moderate hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Altered structural and functional thalamocortical networks in secondarily generalized extratemporal lobe seizures

    Directory of Open Access Journals (Sweden)

    Syu-Jyun Peng

    2017-01-01

    Full Text Available Structural and functional abnormalities in the thalamocortical network in primary generalized epilepsies or mesial temporal lobe epilepsy have recently been identified by voxel-wise analyses of neuroimaging. However, evidence is needed regarding the profiles of the thalamocortical network in patients with secondarily generalized seizures from focal neocortical sources. We used high-resolution T1-weighted, diffusion-tensor and resting-state functional MR imaging (rs-fMRI to examine 16 patients with secondarily generalized extratemporal lobe seizures and 16 healthy controls. All the patients were medically effective and MRI-negative. Using whole brain voxel-based morphometry (VBM to compare the patients with the normal controls, we observed significantly decreased gray matter (GM density in the thalamus and 3 frontal gyri and significantly reduced white matter (WM fractional anisotropy (FA in the bilateral anterior corona radiata of the patients. Alterations in the thalamocortical functional connectivity with different cortices were identified by the rs-fMRI analysis seeding of the whole thalamus. The prefrontal gyri with the greatest functional connectivity were also traced by seeding a sub-thalamic region that is demarcated in an atlas, in which the thalamic parcellation is based on the WM connectivity to the cortices. This sub-thalamic region anatomically contains the mediodorsal thalamic nucleus where, concordantly, there was a significant decrease in thalamic GM density in the VBM study. In contrast to the negative correlation between the disease duration and reduced thalamic densities and subcortical FA values, the strength of the functional thalamocortical connectivity had a paradoxical correlation. Our results conclusively indicate that generalized seizures with a focal cortical source are associated with structural and functional alterations in the thalamocortical network.

  20. Sleep Disturbance May Alter White Matter and Resting State Functional Connectivities in Parkinson's Disease.

    Science.gov (United States)

    Chung, Seok Jong; Choi, Yong-Ho; Kwon, Hunki; Park, Yeong-Hun; Yun, Hyuk Jin; Yoo, Han Soo; Moon, Seock Hyeon; Ye, Byoung Seok; Sohn, Young H; Lee, Jong-Min; Lee, Phil Hyu

    2017-03-01

    To clarify whether sleep disturbance would alter the patterns of structural and functional networks underlying cognitive dysfunction in patients with Parkinson's disease (PD). Among the 180 patients with nondemented PD in our cohort, 45 patients were classified as the group with sleep disturbance according to the 5-item scales for outcomes in Parkinson's disease nighttime scale. Based on propensity scores, another 45 PD patients without sleep disturbance were matched to this group. We performed a comparative analysis of cortical thickness, diffusion tensor imaging-based white matter integrity, resting-state functional connectivity, and cognitive performance between PD patients with and without sleep disturbance. PD patients with sleep disturbance showed poorer performance in attention and working memory and a tendency toward a lower score in frontal executive function relative to those without sleep disturbance. The PD with sleep disturbance group exhibited widespread white matter disintegration compared to the PD without sleep disturbance group, although there were no significant differences in cortical thickness between the PD subgroups. On functional network analysis, PD patients with sleep disturbance exhibited less severely decreased cortical functional connectivity within the default mode network, central executive network, and dorsal attention network when compared to those without sleep disturbance. The present study suggests that sleep disturbance in PD patients could be associated with white matter and functional network alterations in conjunction with cognitive impairment. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    Directory of Open Access Journals (Sweden)

    Letizia Mattii

    Full Text Available The pathogenesis of diverticular disease (DD is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD.By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors.This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  2. Altered Expression Pattern of Molecular Factors Involved in Colonic Smooth Muscle Functions: An Immunohistochemical Study in Patients with Diverticular Disease

    Science.gov (United States)

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    Background The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. Methods and Findings By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. Conclusion This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease. PMID:23437299

  3. Alteration of Tight and Adherens Junctions on 50-Hz Magnetic Field Exposure in Madin Darby Canine Kidney (MDCK Cells

    Directory of Open Access Journals (Sweden)

    Zoltán Somosy

    2004-01-01

    Full Text Available Adherens (AJ and tight junctions (TJ, as integrated parts of the junctional complex, are multifunctional specialized regions of the cell membrane in epithelial cells. They are responsible for cell-to-cell interactions and also have great importance in cellular signaling processes including Wnt protein-mediated signals. As electromagnetic field (EMF exposure is known to cause alterations in the function as well as supramolecular organization of different cell contacts, our goal was to investigate the effect of 50-Hz magnetic field (MF exposures on the subcellular distribution of some representative structural proteins (occludin, β-catenin, and cadherin found in AJ and TJ. Additionally, cellular β-catenin content was also quantified by Western blot analysis. 50-Hz MF exposures seemed to increase the staining intensity (amount of occludin, cadherins, and β-catenin in the junctional area of MDCK cells, while Western blot data indicated the quantity of b-catenin was found significantly decreased at both time points after EM exposures. Our results demonstrate that MF are able to modify the distribution of TJ and AJ structural proteins, tending to stabilize these cell contacts. The quantitative changes of β-catenin suggest a causative relationship between MF effects on the cell junctional complex and the Wnt signaling pathway.

  4. The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains.

    Science.gov (United States)

    Matthys, Walter; Vanderschuren, Louk J M J; Schutter, Dennis J L G

    2013-02-01

    This review discusses neurobiological studies of oppositional defiant disorder and conduct disorder within the conceptual framework of three interrelated mental domains: punishment processing, reward processing, and cognitive control. First, impaired fear conditioning, reduced cortisol reactivity to stress, amygdala hyporeactivity to negative stimuli, and altered serotonin and noradrenaline neurotransmission suggest low punishment sensitivity, which may compromise the ability of children and adolescents to make associations between inappropriate behaviors and forthcoming punishments. Second, sympathetic nervous system hyporeactivity to incentives, low basal heart rate associated with sensation seeking, orbitofrontal cortex hyporeactiviy to reward, and altered dopamine functioning suggest a hyposensitivity to reward. The associated unpleasant emotional state may make children and adolescents prone to sensation-seeking behavior such as rule breaking, delinquency, and substance abuse. Third, impairments in executive functions, especially when motivational factors are involved, as well as structural deficits and impaired functioning of the paralimbic system encompassing the orbitofrontal and cingulate cortex, suggest impaired cognitive control over emotional behavior. In the discussion we argue that more insight into the neurobiology of oppositional defiance disorder and conduct disorder may be obtained by studying these disorders separately and by paying attention to the heterogeneity of symptoms within each disorder.

  5. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Science.gov (United States)

    Rogers, G B; Keating, D J; Young, R L; Wong, M-L; Licinio, J; Wesselingh, S

    2016-01-01

    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut–brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies. PMID:27090305

  6. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    Science.gov (United States)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  7. Altered functional connectivity within the central reward network in overweight and obese women

    Science.gov (United States)

    Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A

    2015-01-01

    Background/Objectives: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. Subjects/Methods: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26–38 kg m−2) and 31 lean (BMI=19–25 kg m−2) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. Results: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, ingestive behaviors. PMID:25599560

  8. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  9. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression.

    Science.gov (United States)

    Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G

    2017-03-14

    Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.

  10. A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function.

    Science.gov (United States)

    Walsh, Matthew R; DeLong, John P; Hanley, Torrance C; Post, David M

    2012-08-22

    It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of 'cascading evolutionary change' in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife (Alosa pseudoharengus), drives life-history evolution in a species of zooplankton prey (Daphnia ambigua). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes.

  11. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  12. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cell phone use and parotid salivary gland alterations: no molecular evidence.

    Science.gov (United States)

    de Souza, Fabrício T A; Correia-Silva, Jeane F; Ferreira, Efigênia F; Siqueira, Elisa C; Duarte, Alessandra P; Gomez, Marcus Vinícius; Gomez, Ricardo S; Gomes, Carolina C

    2014-07-01

    The association between cell phone use and the development of parotid tumors is controversial. Because there is unequivocal evidence that the microenvironment is important for tumor formation, we investigated in the parotid glands whether cell phone use alters the expression of gene products related to cellular stress. We used the saliva produced by the parotid glands of 62 individuals to assess molecular alterations compatible with cellular stress, comparing the saliva from the gland exposed to cell phone radiation (ipsilateral) to the saliva from the opposite, unexposed parotid gland (contralateral) of each individual. We compared salivary flow, total protein concentration, p53, p21, reactive oxygen species (ROS), and salivary levels of glutathione (GSH), heat shock proteins 27 and 70, and IgA between the ipsilateral and contralateral parotids. No difference was found for any of these parameters, even when grouping individuals by period of cell phone use in years or by monthly average calls in minutes. We provide molecular evidence that the exposure of parotid glands to cell phone use does not alter parotid salivary flow, protein concentration, or levels of proteins of genes that are directly or indirectly affected by heat-induced cellular stress. ©2014 American Association for Cancer Research.

  14. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  15. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  16. Cell functional enviromics: Unravelling the function of environmental factors

    Directory of Open Access Journals (Sweden)

    Alves Paula M

    2011-06-01

    Full Text Available Abstract Background While functional genomics, focused on gene functions and gene-gene interactions, has become a very active field of research in molecular biology, equivalent methodologies embracing the environment and gene-environment interactions are relatively less developed. Understanding the function of environmental factors is, however, of paramount importance given the complex, interactive nature of environmental and genetic factors across multiple time scales. Results Here, we propose a systems biology framework, where the function of environmental factors is set at its core. We set forth a "reverse" functional analysis approach, whereby cellular functions are reconstructed from the analysis of dynamic envirome data. Our results show these data sets can be mapped to less than 20 core cellular functions in a typical mammalian cell culture, while explaining over 90% of flux data variance. A functional enviromics map can be created, which provides a template for manipulating the environmental factors to induce a desired phenotypic trait. Conclusion Our results support the feasibility of cellular function reconstruction guided by the analysis and manipulation of dynamic envirome data.

  17. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  18. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  19. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    Science.gov (United States)

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  20. The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability

    Science.gov (United States)

    Campostrini, Giulia; Bonzanni, Mattia; Lissoni, Alessio; Bazzini, Claudia; Milanesi, Raffaella; Vezzoli, Elena; Francolini, Maura; Baruscotti, Mirko; Bucchi, Annalisa; Rivolta, Ilaria; Fantini, Matteo; Severi, Stefano; Cappato, Riccardo; Crotti, Lia; J. Schwartz, Peter; DiFrancesco, Dario; Barbuti, Andrea

    2017-01-01

    Abstract Aims Caveolinopathies are a family of genetic disorders arising from alterations of the caveolin-3 (cav-3) gene. The T78M cav-3 variant has been associated with both skeletal and cardiac muscle pathologies but its functional contribution, especially to cardiac diseases, is still controversial. Here, we evaluated the effect of the T78M cav-3 variant on cardiac ion channel function and membrane excitability. Methods and results We transfected either the wild type (WT) or T78M cav-3 in caveolin-1 knock-out mouse embryonic fibroblasts and found by immunofluorescence and electron microscopy that both are expressed at the plasma membrane and form caveolae. Two ion channels known to interact and co-immunoprecipitate with the cav-3, hKv1.5 and hHCN4, interact also with T78M cav-3 and reside in lipid rafts. Electrophysiological analysis showed that the T78M cav-3 causes hKv1.5 channels to activate and inactivate at more hyperpolarized potentials and the hHCN4 channels to activate at more depolarized potentials, in a dominant way. In spontaneously beating neonatal cardiomyocytes, the expression of the T78M cav-3 significantly increased action potential peak-to-peak variability without altering neither the mean rate nor the maximum diastolic potential. We also found that in a small cohort of patients with supraventricular arrhythmias, the T78M cav-3 variant is more frequent than in the general population. Finally, in silico analysis of both sinoatrial and atrial cell models confirmed that the T78M-dependent changes are compatible with a pro-arrhythmic effect. Conclusion This study demonstrates that the T78M cav-3 induces complex modifications in ion channel function that ultimately alter membrane excitability. The presence of the T78M cav-3 can thus generate a susceptible substrate that, in concert with other structural alterations and/or genetic mutations, may become arrhythmogenic. PMID:28898996

  1. Scintigraphic Methods to Evaluate Alterations of Gastric and Esophageal Functions in Female Obesity

    Directory of Open Access Journals (Sweden)

    Özgür Ömür

    2014-02-01

    Full Text Available Objective: Altered gastrointestinal function has frequently been observed in obese patients. The aim of this study was to investigate the frequency of gastro-esophageal reflux (GER and to determine the alterations of gastric emptying and esophageal transit by scintigraphic methods in obese patients. Methods: Scintigraphic studies of 50 obese female non-diabetic patients who had not received any treatment for weight control were retrospectively reviewed. Mean Body Mass Index (BMI was 34.96±3.04 kg/m² (range:32-39 kg/m². All subjects were submitted to scintigraphic evaluation of esophageal transit, gastro-esophageal reflux, gastric emptying and presence of Helicobacter pylori infection. The data of obese patients were compared with those of sex-age matched 30 non-obese cases who were selected from our clinical archive. Results: In obese group, seventeen (34% patients were found to be GER positive scintigraphically; mean gastric emptying time (t½ was 59.18±30.8 min and the mean esophageal transit time was 8.9±7.2 s. Frequency of positive GER scintigraphy and the mean value of esophageal transit time were significantly higher in obese patients than non-obese control subjects. Gastric emptying time and esophageal transit time values were significantly longer in GER positive obese patients than GER negative ones. There was no statistically significant difference in the frequency of positive C14 urea breath test between obese and non-obese subjects and there were also no statistically significant correlations between BMI, GER, esophageal transit time and gastric emptying time. Conclusion: In our study, 42 of the 50 obese patients had esophago-gastric motility alterations. The significance of these alterations in obesity is not fully understood, but it is believed that these changes could be because of potential contributing factors in the development or maintenance of obesity or changes in eating habits

  2. Altered Brain Functional Connectome in Migraine with and without Restless Legs Syndrome: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Fu-Chi Yang

    2018-01-01

    Full Text Available BackgroundMigraine is frequently comorbid with restless legs syndrome (RLS, both displaying functional connectivity (FC alterations in multiple brain networks, although the neurological basis of this association is unknown.MethodsWe performed resting-state functional magnetic resonance imaging and network-wise analysis of FC in migraine patients with and without RLS and healthy controls (CRL. Network-based statistics (NBS and composite FC matrix analyses were performed to identify the patterns of FC changes. Correlation analyses were performed to identify associations between alterations in FC and clinical profiles.ResultsNBS results revealed that both migraine patients with and without RLS exhibited lower FC than CRL in the dorsal attention, salience, default mode, cingulo-opercular, visual, frontoparietal, auditory, and sensory/somatomotor networks. Further composite FC matrix analyses revealed differences in FC of the salience, default mode to subcortical and frontoparietal, auditory to salience, and memory retrieval networks between migraine patients with and without RLS. There was a trend toward a negative association between RLS severity and cross-network abnormalities in the default mode to subcortical network.DiscussionMigraine patients with and without RLS exhibit disruptions of brain FC. Such findings suggest that these disorders are associated with differential neuropathological mechanisms and may aid in the future development of neuroimaging-driven biomarkers for these conditions.

  3. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells.

    Science.gov (United States)

    Kucerova, Lucia; Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Kozovska, Zuzana

    2013-11-09

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses.

  4. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Kucerova, Lucia; Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Kozovska, Zuzana

    2013-01-01

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  5. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Afsar R. Naqvi

    2018-03-01

    Full Text Available Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV], miR-H1 [herpes simplex virus 1 (HSV1], and miR-UL-70-3p [human cytomegalovirus (HCMV] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK. Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in

  6. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    Science.gov (United States)

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  8. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis.

    Science.gov (United States)

    Wang, ShaoPeng; Cai, YuDong

    2017-12-19

    Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations have been identified, and the mutation signatures have been uncovered across different cancer types. However, somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma (COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the aforementioned cancer types, patients they were encoded into a large number of numerical values based upon the enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the incremental feature selection (IFS) method to identify functional alteration features that could be used to build the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coefficient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498 for the classification of the five cancer types. Further analysis indicated that some of these features and rules were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-origin for cancer detection but also

  9. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    Science.gov (United States)

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dynamic functional connectivity and brain metastability during altered states of consciousness.

    Science.gov (United States)

    Cavanna, Federico; Vilas, Martina G; Palmucci, Matías; Tagliazucchi, Enzo

    2017-10-03

    The scientific study of human consciousness has greatly benefited from the development of non-invasive brain imaging methods. The quest to identify the neural correlates of consciousness combined psychophysical experimentation with neuroimaging tools such as functional magnetic resonance imaging (fMRI) to map the changes in neural activity associated with conscious vs. unconscious percepts. Different neuroimaging methods have also been applied to characterize spontaneous brain activity fluctuations during altered states of consciousness, and to develop quantitative metrics for the level of consciousness. Most of these studies, however, have not explored the dynamic nature of the whole-brain imaging data provided by fMRI. A series of empirical and computational studies strongly suggests that the temporal fluctuations observed in this data present a non-trivial structure, and that this structure is compatible with the exploration of a discrete repertoire of states. In this review we focus on how dynamic neuroimaging can be used to address theoretical accounts of consciousness based on the hypothesis of a dynamic core, i.e. a constantly evolving and transiently stable set of coordinated neurons that constitute an integrated and differentiated physical substrate for each conscious experience. We review work exploring the possibility that metastability in brain dynamics leads to a repertoire of dynamic core states, and discuss how it might be modified during altered states of consciousness. This discussion prompts us to review neuroimaging studies aimed to map the dynamic exploration of the repertoire of states as a function of consciousness. Complementary studies of the dynamic core hypothesis using perturbative methods are also discussed. Finally, we propose that a link between metastability in brain dynamics and the level of consciousness could pave the way towards a mechanistic understanding of altered states of consciousness using tools from dynamical systems

  11. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari, Abbas; Qanie, Diyako; Levin Andersen, Thomas

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  12. Alteration of parafollicular (C cells activity in the experimental model of hypothyroidism in rats.

    Directory of Open Access Journals (Sweden)

    Zbigniew Puchalski

    2007-06-01

    Full Text Available Our previous study has shown the alteration of C cells activity in rats with experimental model of hyperthyroidism. The aim of the present study was the evaluation of parafollicular cells activity in rats with hypothyroidism evoked by propylthiouracil (PTU given in drinking water over 21 days. Histological, ultrastructural and immunocytochemical studies using specific antibodies against calcitonin and CGRP were performed on thyroid glands taken from experimental and control groups of rats. Moreover, in all animals the calcitonin plasma levels were evaluated by radioimmunoassay. After chronic administration of PTU, thyroid image showed predominant microfollicular hyperplasia and attenuated density of parafollicular cells. The intensity of immunocytochemical reactions for CT and CGRP were weaker in the majority of C cells in comparison to the control rats, in which strong immunocytochemical reaction was observed. Examination in the electron microscope reveals the features of hypoactivity both in follicular and parafollicular cells, in which the quantity and electron density of secretory granules were smaller in comparison to the control group. These microscopic changes were accompanied by a significant decrease of calcitonin plasma concentration. Alteration of C cells activity in the experimental model of hypothyroidism, accompanied by microfollicular hypertrophy, may point to the mutual cooperation between parafollicular and follicular cells.

  13. Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional Connectivity in the Primate Brain.

    Science.gov (United States)

    Krause, Matthew R; Zanos, Theodoros P; Csorba, Bennett A; Pilly, Praveen K; Choe, Jaehoon; Phillips, Matthew E; Datta, Abhishek; Pack, Christopher C

    2017-10-23

    There has been growing interest in transcranial direct current stimulation (tDCS), a non-invasive technique purported to modulate neural activity via weak, externally applied electric fields. Although some promising preliminary data have been reported for applications ranging from stroke rehabilitation to cognitive enhancement, little is known about how tDCS affects the human brain, and some studies have concluded that it may have no effect at all. Here, we describe a macaque model of tDCS that allows us to simultaneously examine the effects of tDCS on brain activity and behavior. We find that applying tDCS to right prefrontal cortex improves monkeys' performance on an associative learning task. While firing rates do not change within the targeted area, tDCS does induce large low-frequency oscillations in the underlying tissue. These oscillations alter functional connectivity, both locally and between distant brain areas, and these long-range changes correlate with tDCS's effects on behavior. Together, these results are consistent with the idea that tDCS leads to widespread changes in brain activity and suggest that it may be a valuable method for cheaply and non-invasively altering functional connectivity in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations.

    Science.gov (United States)

    Gorgulho, Rita; Jacinto, Raquel; Lopes, Susana S; Pereira, Sofia A; Tranfield, Erin M; Martins, Gabriel G; Gualda, Emilio J; Derks, Rico J E; Correia, Ana C; Steenvoorden, Evelyne; Pintado, Petra; Mayboroda, Oleg A; Monteiro, Emilia C; Morello, Judit

    2018-01-01

    Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.

  15. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    The amygdala is a large grey matter complex in the limbic system, and it may contribute in the neurolimbic pain network in migraine. However, the detailed neuromechanism remained to be elucidated. The objective of this study is to investigate the amygdala structural and functional changes in migraine and to elucidate the mechanism of neurolimbic pain-modulating in the migraine pathogenesis. Conventional MRI, 3D structure images and resting state functional MRI were performed in 18 normal controls (NC), 18 patients with episodic migraine (EM), and 16 patients with chronic migraine (CM). The amygdala volume was measured using FreeSurfer software and the functional connectivity (FC) of bilateral amygdala was computed over the whole brain. Analysis of covariance was performed on the individual FC maps among groups. The increased FC of left amygdala was observed in EM compared with NC, and the decreased of right amygdala was revealed in CM compared with NC. The increased FC of bilateral amygdala was observed in CM compared with EM. The correlation analysis showed a negative correlation between the score of sleep quality (0, normal; 1, mild sleep disturbance; 2, moderate sleep disturbance; 3, serious sleep disturbance) and the increased FC strength of left amygdala in EM compared with NC, and a positive correlation between the score of sleep quality and the increased FC strength of left amygdala in CM compared with EM, and other clinical variables showed no significant correlation with altered FC of amygdala. The altered functional connectivity of amygdala demonstrated that neurolimbic pain network contribute in the EM pathogenesis and CM chronicization.

  16. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    Science.gov (United States)

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities

  17. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Ellmore, Timothy M; Castriotta, Richard J; Hendley, Katie L; Aalbers, Brian M; Furr-Stimming, Erin; Hood, Ashley J; Suescun, Jessika; Beurlot, Michelle R; Hendley, Roy T; Schiess, Mya C

    2013-12-01

    Rapid eye movement sleep behavior disorder (RBD) is a condition closely associated with Parkinson disease (PD). RBD is a sleep disturbance that frequently manifests early in the development of PD, likely reflecting disruption in normal functioning of anatomical areas affected by neurodegenerative processes. Although specific neuropathological aspects shared by RBD and PD have yet to be fully documented, further characterization is critical to discovering reliable biomarkers that predict PD onset. In the current study, we tested the hypothesis of altered functional connections of the substantia nigra (SN) in patients in whom RBD was diagnosed. Between-groups, single time point imaging. UTHSC-H 3 telsa MRI center. Ten patients with RBD, 11 patients with PD, and 10 age-matched controls. NA. We measured correlations of SN time series using resting state blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) in patients with idiopathic RBD who were at risk for developing PD, patients in whom PD was diagnosed, and age-matched controls. Using voxelwise analysis of variance, different correlations (P < 0.01, whole-brain corrected) between left SN and left putamen were found in patients with RBD compared with controls and patients with PD. SN correlations with right cuneus/precuneus and superior occipital gyrus were significantly different for patients with RBD compared with both controls and patients with PD. The results suggest that altered nigrostriatal and nigrocortical connectivity characterizes rapid eye movement sleep behavior disorder before onset of obvious motor impairment. The functional changes are discussed in the context of degeneration in dopaminergic and cognition-related networks.

  18. Association between functional alterations of senescence and senility and disorders of gait and balance

    Directory of Open Access Journals (Sweden)

    Homero Teixeira-Leite

    2012-07-01

    Full Text Available OBJECTIVES: Declines in cognition and mobility are frequently observed in the elderly, and it has been suggested that the appearance of gait disorders in older individuals may constitute a marker of cognitive decline that precedes significant findings in functional performance screening tests. This study sought to evaluate the relationship between functional capacities and gait and balance in an elderly community monitored by the Preventive and Integrated Care Unit of the Hospital Adventista Silvestre in Rio de Janeiro, RJ, Brazil. METHODS: Elderly individuals (193 females and 90 males were submitted to a broad geriatric evaluation, which included the following tests: 1 a performance-oriented mobility assessment (POMA to evaluate gait; 2 a mini-mental state examination (MMSE; 3 the use of Katz and Lawton scales to assess functional capacity; 4 the application of the geriatric depression scale (GDS; and 5 a mini-nutritional assessment (MNA scale. RESULTS: Reductions in MMSE, Katz and Lawton scores were associated with reductions in POMA scores, and we also observed that significant reductions in POMA scores were present in persons for whom the MMSE and Katz scores did not clearly indicate cognitive dysfunction. We also demonstrated that a decline in the scores obtained with the GDS and MNA scales was associated with a decline in the POMA scores. CONCLUSIONS: Considering that significant alterations in the POMA scores were observed prior to the identification of significant alterations in cognitive capacity using either the MMSE or the Katz systems, a prospective study seems warranted to assess the predictive capacity of POMA scores regarding the associated decline in functional capacity.

  19. Functional and morphological alterations associated with working memory dysfunction in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2017-03-01

    Background Generalized anxiety disorder (GAD) has been related to functional brain activities and structural brain abnormalities. Purpose To investigate the neural mechanism on working memory dysfunction in patients with GAD in terms of the combined functional and morphological brain abnormalities. Material and Methods Patients with GAD and healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted (T1W) magnetic resonance imaging (MRI) and functional MRI (fMRI). In this study, fMRI and voxel-based morphometry (VBM) were used for assessing the differential brain activation patterns, as well as for comparing the morphological alterations between the two groups. Results In response to the neutral distractors, the patients showed significantly lower activities in the regions of the fusiform gyrus (FuG), superior parietal gyrus (SPG), precuneus (PCu), superior occipital gyrus (SOG), lingual gyrus (LiG), cuneus (Cun), calcarine cortex (CaC), parahippocampal gyrus (PHG) and cerebellar cortex (Cb) compared to the controls. In response to the anxiety-inducing distractors, the patients showed significantly higher activity in the hippocampus and lower activities in the regions of the dorsolateral prefrontal cortex (DLPFC), FuG, SPG, PCu, SOG, and Cb. Also, the patients showed a significant reduction of the white matter volumes in the DLPFC, anterior limb of the internal capsule (ALIC) and midbrain. Conclusion This study provides the first evidence for the association between the morphometric alterations and functional deficit in the working memory processing with the neutral and anxiety-inducing distractors in GAD patients. These findings would be helpful to understand the neural mechanisms on working memory impairment in connection with GAD symptoms.

  20. Structural learning difficulties implicate altered hippocampal functioning in adults with autism spectrum disorder.

    Science.gov (United States)

    Ring, Melanie; Derwent, Claire L T; Gaigg, Sebastian B; Bowler, Dermot M

    2017-08-01

    Structural learning is fundamental to the formation of cognitive maps that are necessary for learning, memory, and spatial navigation. It also enables successful navigation of the social world, which is something that individuals with autism spectrum disorder (ASD) find particularly difficult. To master these situations, a person needs to bind pieces of information to one another and to consider the context in which experiences happen. Such binding is a capacity of the hippocampus. Although altered hippocampal function has for long been suspected to play a role in the etiology of ASD, the relevant evidence has remained inconclusive because few behavioral tests that are known to specifically necessitate preserved hippocampal function have been employed in studies of ASD. To address this gap in the literature, a total sample of 57 pairs of age and ability matched ASD and comparison participants was divided into 3 subsamples who were asked either to complete structural learning, or 1 of 2 configural learning control tasks (biconditional discrimination and transverse patterning) drawn from animal research. As predicted, ASD adults demonstrated specific difficulty with structural learning but not with other forms of configural learning. These differences were not attributable to decreased attentional shifting or increased perseveration, which would have indicated atypical frontal modulation of hippocampal processes. Instead, the observations implicate atypical hippocampal functioning as the source of structural learning difficulties in ASD. The data suggest that disturbances in domain-general cognitive processes such as structural learning, caused by altered hippocampal function, play a critical role in the etiology of ASD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  2. Alterations in Interhemispheric Functional and Anatomical Connectivity are Associated with Tobacco Smoking in Humans

    Directory of Open Access Journals (Sweden)

    Humsini eViswanath

    2015-03-01

    Full Text Available Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity using magnetic resonance imaging (MRI in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers.

  3. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes

    Science.gov (United States)

    West, William W.; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19− or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19− or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19− cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19− cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors. PMID:25940703

  4. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  5. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    sulphate helps to connect the intracellular cytoskeleton to the extracellular matrix in focal adhesions. This evidence includes: the co-localization of actin and heparan sulphate proteoglycan during the process of cell spreading, and in isolated focal adhesions; biochemical analyses of a hydrophobic......Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface...

  6. Combining Growth Factor and Bone Marrow Cell Therapy Induces Bleeding and Alters Immune Response After Stroke in Mice.

    Science.gov (United States)

    Strecker, Jan-Kolja; Olk, Joanna; Hoppen, Maike; Gess, Burkhard; Diederich, Kai; Schmidt, Antje; Schäbitz, Wolf-Rüdiger; Schilling, Matthias; Minnerup, Jens

    2016-03-01

    Bone marrow cell (BMC)-based therapies, either the transplantation of exogenous cells or stimulation of endogenous cells by growth factors like the granulocyte colony-stimulating factor (G-CSF), are considered a promising means of treating stroke. In contrast to large preclinical evidence, however, a recent clinical stroke trial on G-CSF was neutral. We, therefore, aimed to investigate possible synergistic effects of co-administration of G-CSF and BMCs after experimental stroke in mice to enhance the efficacy compared with single treatments. We used an animal model for experimental stroke as paradigm to study possible synergistic effects of co-administration of G-CSF and BMCs on the functional outcome and the pathophysiological mechanism. G-CSF treatment alone led to an improved functional outcome, a reduced infarct volume, increased blood vessel stabilization, and decreased overall inflammation. Surprisingly, the combination of G-CSF and BMCs abrogated G-CSFs' beneficial effects and resulted in increased hemorrhagic infarct transformation, altered blood-brain barrier, excessive astrogliosis, and altered immune cell polarization. These increased rates of infarct bleeding were mainly mediated by elevated matrix metalloproteinase-9-mediated blood-brain barrier breakdown in G-CSF- and BMCs-treated animals combined with an increased number of dilated and thus likely more fragile vessels in the subacute phase after cerebral ischemia. Our results provide new insights into both BMC-based therapies and immune cell biology and help to understand potential adverse and unexpected side effects. © 2016 American Heart Association, Inc.

  7. "Hard" and "soft" lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy.

    Science.gov (United States)

    Garrido, Federico; Cabrera, Teresa; Aptsiauri, Natalia

    2010-07-15

    The ability of cancer cells to escape from the natural or immunotherapy-induced antitumor immune response is often associated with alterations in the tumor cell surface expression of Major Histocompatibility Complex (MHC) Class I antigens. Considerable knowledge has been gained on the prevalence of various patterns of MHC Class I defects and the underlying molecular mechanisms in different types of cancer. In contrast, few data are available on the changes in MHC Class I expression happening during the course of cancer immunotherapy. We have recently proposed that the progression or regression of a tumor lesion in cancer patients undergoing immunotherapy could be predetermined by the molecular mechanism responsible for the MHC Class I alteration and not by the type of immunotherapy used, i.e., interleukin-2 (IL-2), Bacillus Calmette-Guèrin (BCG), interferon-alpha (IFN-alpha), peptides alone, dendritic cells loaded with peptides, protein-bound polysaccharide etc. If the molecular alteration responsible for the changes in MHC Class I expression is reversible by cytokines ("soft" lesion), the MHC Class I expression will be upregulated, the specific T cell-mediated response will increase and the lesion will regress. However, if the molecular defect is structural ("hard" lesion), the MHC Class I expression will remain low, the escape mechanism will prevail and the primary tumor or the metastatic lesion will progress. According to this idea, the nature of the preexisting MHC Class I lesion in the cancer cell has a crucial impact determining the final outcome of cancer immunotherapy. In this article, we discuss the importance of these two types of molecular mechanisms of MHC Class I-altered expression.

  8. Cardiovascular Deconditioning in Humans: Alteration in Cardiovascular Regulation and Function During Simulated Microgravity

    Science.gov (United States)

    Cohen, Richard

    1999-01-01

    Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In this project we apply a powerful, new method - cardiovascular system identification (CSI) - for the study of the effects of space flight on the cardiovascular system so that effective countermeasures can be developed. CSI involves the mathematical analysis of second-to-second fluctuations in non-invasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV - respiratory activity) in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of all the physiologic mechanisms coupling these signals, CSI provides a model of the closed-loop cardiovascular regulatory state in an individual subject. The model includes quantitative descriptions of the heart rate baroreflex, autonomic function, as well as other important physiologic mechanisms. We are in the process of incorporating beat-to-beat fluctuations of stroke volume into the CSI technique in order to quantify additional physiologic mechanisms such as those involved in control of peripheral vascular resistance and alterations in cardiac contractility. We apply CSI in conjunction with the two general protocols of the Human Studies Core project. The first protocol involves ground-based, human head down tilt bed rest to simulate microgravity and acute stressors - upright tilt, standing and bicycle exercise - to provide orthostatic and exercise challenges. The second protocol is intended to be the same as the first but with the addition of sleep deprivation to determine whether

  9. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation.

    Science.gov (United States)

    Wei, Hongen; Zou, Hua; Sheikh, Ashfaq M; Malik, Mazhar; Dobkin, Carl; Brown, W Ted; Li, Xiaohong

    2011-05-19

    Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS) may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  10. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

    Directory of Open Access Journals (Sweden)

    Dobkin Carl

    2011-05-01

    Full Text Available Abstract Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  11. Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Dahyun eYi

    2015-02-01

    Full Text Available Despite potential implications for the early detection of impending AD, very little is known about the differences of large scale brain networks between amnestic MCI (aMCI with high cerebral amyloid beta protein (Aβ deposition (i.e., aMCI+ and aMCI with no or very little Aβ deposition (i.e., aMCI-. We first aimed to extend the current literature on altering intrinsic functional connectivity (FC of the default mode network (DMN and salience network (SN from CN to AD dementia. Second, we further examined the differences of the DMN and the SN between aMCI-, aMCI+, and CN. Forty-three older adult (12 CN, 10 aMCI+, 10 aMCI-, and 11 AD dementia subjects were included. All participants received clinical and neuropsychological assessment, resting state functional MRI, structural MRI, and Pittsburgh compound-B-PET scans. FC data were preprocessed using Multivariate Exploratory Linear Optimized Decomposition into Independent Components of FSL. Group comparisons were carried out using the dual-regression approach. In addition, to verify presence of grey matter (GM volume changes with intrinsic functional network alterations, Voxel Based Morphometry was performed on the acquired T1-weighted data. As expected, AD dementia participants exhibited decreased FC in the DMN compared to CN (in precuneus and cingulate gyrus. The degree of alteration in the DMN in aMCI+ compared to CN was intermediate to that of AD. In contrast, aMCI- exhibited increased FC in the DMN compared to CN (in precuneus as well as aMCI+. In terms of the SN, aMCI- exhibited decreased FC compared to both CN and aMCI+ particularly in the inferior frontal gyrus. FC within the SN in aMCI+ and AD did not differ from CN. Compared to CN, aMCI- showed atrophy in bilateral superior temporal gyri whereas aMCI+ showed atrophy in right precuneus. The results indicate that despite of the similarity in cross-sectional cognitive features aMCI- has quite different functional brain connectivity compared to

  12. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Science.gov (United States)

    Filkor, Kata; Hegedűs, Zoltán; Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

    2013-01-01

    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with

  13. Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone.

    Science.gov (United States)

    Beggs, Luke A; Yarrow, Joshua F; Conover, Christine F; Meuleman, John R; Beck, Darren T; Morrow, Matthew; Zou, Baiming; Shuster, Jonathan J; Borst, Stephen E

    2014-09-01

    Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.

  14. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function inCaenorhabditis elegans.

    Science.gov (United States)

    Chan, Jason P; Brown, Jaylene; Hark, Brandon; Nolan, Abby; Servello, Dustin; Hrobuchak, Hannah; Staab, Trisha A

    2017-01-01

    Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans . We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase ( hyl-1 ), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1 . Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.

  15. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jason P. Chan

    2017-09-01

    Full Text Available Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P, mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1, which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.

  16. Gravity Vector Changes Induce Alterations in Nervous and Testicular Cells in Cultures and in Testis Slices

    Science.gov (United States)

    Uva, B.; Strollo, F.; Ricci, F.; Masini, M. A.

    Cultured astrocytes, neurons and testicular cells (myoid, germ, Sertoli, Leydig cells) as well as rat testes and testes'slices, were subjected to modeled microgravity using a three dimensional Random Positioning Machine (10-6G) for 5min, 30min, 1h, 24h and 32h. Parallel cell cultures and tissues were submitted to hypergravity using an hyperfuge (2.5G) for the same period of time. At the end of the rotations the cultures and tissues were fixed, the tissue was sectioned (5 micron). All the specimens were processed for immunohistochemical identification of microtubules, mitochondria, 3 hydroxysteroid dehydrogenase, 17 hydroxysteroid dehydrogenase, caspase 7, heat shock proteins and identification of DNA fragmentation. At 5min at modeled microgravity and hypergravity, the histology of the cells in culture and the tissues was altered, microtubules and mitochondria were disorganized. Numerous cells underwent apoptosis. Immunostaining for enzymes involved in ion transmembrane transport, as Na+/K+ATPase and cotransporter proteins, and in steroidogenesis diminished or was abolished. At 1h in modeled microgravity or hypergravity, HSPs were expressed and ion transport enzymes as well as steroidogenic enzymes were again immunostainable. These data show that microgravity and hypergravity cause only transient alterations, and tissues and cells in cultures are able to adapt to different gravity conditions.

  17. Metabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic Change.

    Science.gov (United States)

    Zhou, Zhengqiu; Ibekwe, Elochukwu; Chornenkyy, Yevgen

    2018-01-17

    The mitochondrion is an important organelle and provides energy for a plethora of intracellular reactions. Metabolic dysregulation has dire consequences for the cell, and alteration in metabolism has been identified in multiple disease states-cancer being one. Otto Warburg demonstrated that cancer cells, in the presence of oxygen, undergo glycolysis by reprogramming their metabolism-termed "aerobic glycolysis". Alterations in metabolism enable cancer cells to gain a growth advantage by obtaining precursors for macromolecule biosynthesis, such as nucleic acids and lipids. To date, several molecules, termed "oncometabolites", have been identified to be elevated in cancer cells and arise from mutations in nuclear encoded mitochondrial enzymes. Furthermore, there is evidence that oncometabolites can affect mitochondrial dynamics. It is believed that oncometabolites can assist in reprogramming enzymatic pathways and providing cancer cells with selective advantages. In this review, we will touch upon the effects of normal and aberrant mitochondrial metabolism in normal and cancer cells, the advantages of metabolic reprogramming, effects of oncometabolites on metabolism and mitochondrial dynamics and therapies aimed at targeting oncometabolites and metabolic aberrations.

  18. Metabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic Change

    Directory of Open Access Journals (Sweden)

    Zhengqiu Zhou

    2018-01-01

    Full Text Available The mitochondrion is an important organelle and provides energy for a plethora of intracellular reactions. Metabolic dysregulation has dire consequences for the cell, and alteration in metabolism has been identified in multiple disease states—cancer being one. Otto Warburg demonstrated that cancer cells, in the presence of oxygen, undergo glycolysis by reprogramming their metabolism—termed “aerobic glycolysis”. Alterations in metabolism enable cancer cells to gain a growth advantage by obtaining precursors for macromolecule biosynthesis, such as nucleic acids and lipids. To date, several molecules, termed “oncometabolites”, have been identified to be elevated in cancer cells and arise from mutations in nuclear encoded mitochondrial enzymes. Furthermore, there is evidence that oncometabolites can affect mitochondrial dynamics. It is believed that oncometabolites can assist in reprogramming enzymatic pathways and providing cancer cells with selective advantages. In this review, we will touch upon the effects of normal and aberrant mitochondrial metabolism in normal and cancer cells, the advantages of metabolic reprogramming, effects of oncometabolites on metabolism and mitochondrial dynamics and therapies aimed at targeting oncometabolites and metabolic aberrations.

  19. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    International Nuclear Information System (INIS)

    Horton, Megan K.; Blount, Benjamin C.; Valentin-Blasini, Liza; Wapner, Ronald; Whyatt, Robin; Gennings, Chris; Factor-Litvak, Pam

    2015-01-01

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood.

  20. [The value of double contrast arthrotomography combined with cinematography in the diagnosis of functional and structural TMJ alterations].

    Science.gov (United States)

    Engelke, W; Grossniklaus, B; Sailer, H F

    1991-01-01

    Double contrast arthrotomography combined with cinematography as a diagnostic instrument establishing functional and structural TMJ alterations is evaluated for its diagnostic value and reliability within the chain of diagnostic measures applied. In 131 patients double-contrast arthrotomography was followed by a comprehensive history of joint problems, and verification of the clinical findings as well as the arthrographic diagnosis and the post-arthrographic TMJ alterations. Our interest was focussed, among others, on the question whether arthrography alone would have any therapeutic effect or produce an alteration in TMJ function.

  1. Alterations in the nuclear proteome of HIV-1 infected T-cells

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Jagadish, Teena; Haverland, Nicole A. [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Ciborowski, Pawel [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States)

    2014-11-15

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.

  2. Alterations in the nuclear proteome of HIV-1 infected T-cells

    International Nuclear Information System (INIS)

    DeBoer, Jason; Jagadish, Teena; Haverland, Nicole A.; Madson, Christian J.; Ciborowski, Pawel; Belshan, Michael

    2014-01-01

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines

  3. Detection of copy number alterations in cell-free tumor DNA from plasma

    DEFF Research Database (Denmark)

    Østrup, Olga; Ahlborn, Lise Barlebo; Lassen, Ulrik

    2017-01-01

    purposes, however specify and reliability of methods have to be tested. METHODS: SNP microarrays (Affymetrix) were used to generate whole-genome copy number profiles from plasma ccfDNA (OncoScan) and paired tumor biopsies (CytoScan) from ten patients with metastatic cancers. Numerical, segmental and focal......BACKGROUND: Somatic copy number alterations (SCNAs) occurring in tumors can provide information about tumor classification, patient's outcome or treatment targets. Liquid biopsies, incl. plasma samples containing circulating cell-free tumor DNA (ccfDNA) can be used to assess SCNAs for clinical...... of SCNAs changes during the treatment course of one patient also indicated that apoptosis/necrosis of non-cancerous cells presumably induced by treatment can influence ccfDNA composition and introduce false-negative findings into the analysis of liquid biopsies. CONCLUSIONS: Genomic alterations detected...

  4. Transcutaneous Spinal Direct Current Stimulation Alters Resting-State Functional Connectivity.

    Science.gov (United States)

    Schweizer, Lauren; Meyer-Frießem, Christine H; Zahn, Peter K; Tegenthoff, Martin; Schmidt-Wilcke, Tobias

    2017-08-01

    Transcutaneous spinal direct current stimulation (tsDCS) is a noninvasive method that can modulate spinal reflexes, sensory afferent conduction, and even pain perception. Although neurophysiological evidence suggests that tsDCS alters somatosensory and nociceptive afferent conduction to the cortex, its supraspinal effects have not yet been investigated by using functional imaging to investigate tsDCS-induced alterations in intrinsic functional connectivity (FC). Therefore, we hypothesize that tsDCS-induced changes in neurophysiological measures might also be reflected in spontaneous brain activity. We investigated tsDCS-induced changes in somatosensory cortical connectivity by using seed-to-voxel-based analyses from the bilateral primary somatosensory cortex (S1) and the thalamus in a double-blind, crossover study design. Resting state FC was measured by using blood oxygenation level-dependent, functional magnetic resonance imaging (3T Philips) before and after anodal, cathodal, and sham tsDCS (20 min, 2.5 mA, active electrode centered over T11 spinous process, reference electrode over left shoulder blade) in a double-blind, crossover study of 20 healthy men (24 ± 0.7 years). As compared with sham, anodal tsDCS resulted in a decreased connectivity between the S1 and the ipsilateral posterior insula for both left and right hemispheres. Anodal tsDCS also resulted in decreased thalamic connectivity with the anterior cingulate cortex, and increased connectivity between S1 and the thalamus. Cathodal tsDCS showed increased FC between the right thalamus and both left and right posterior insulae, and decreased connectivity between the S1 seeds and the occipital cortex. Our results provide evidence of supraspinal effects of tsDCS and suggest that tsDCS may provide a noninvasive intervention that is able to target cortical sensory networks.

  5. Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities.

    Science.gov (United States)

    Ehlinger, Daniel G; Commons, Kathryn G

    2017-10-01

    Polymorphism in the gene CACNA1C, encoding the pore-forming subunit of Cav1.2 L-type calcium channels, has one of the strongest genetic linkages to schizophrenia, bipolar disorder and major depressive disorder: psychopathologies in which serotonin signaling has been implicated. Additionally, a gain-of-function mutation in CACNA1C is responsible for the neurodevelopmental disorder Timothy syndrome that presents with prominent behavioral features on the autism spectrum. Given an emerging role for serotonin in the etiology of autism spectrum disorders (ASD), we investigate the relationship between Cav1.2 and the ascending serotonin system in the Timothy syndrome type 2 (TS2-neo) mouse, which displays behavioral features consistent with the core triad of ASD. We find that TS2-neo mice exhibit enhanced serotonin tissue content and axon innervation of the dorsal striatum, as well as decreased serotonin turnover in the amygdala. These regionally specific alterations are accompanied by an enhanced active coping response during acute stress (forced swim), serotonin neuron Fos activity in the caudal dorsal raphe, and serotonin type 1A receptor-dependent feedback inhibition of the rostral dorsal raphe nuclei. Collectively, these results suggest that the global gain-of-function Cav1.2 mutation associated with Timothy syndrome has pleiotropic effects on the ascending serotonin system including neuroanatomical changes, regional differences in forebrain serotonin metabolism and feedback regulatory control mechanisms within the dorsal raphe. Altered activity of the ascending serotonin system continues to emerge as a common neural signature across several ASD mouse models, and the capacity for Cav1.2 L-type calcium channels to impact both serotonin structure and function has important implications for several neuropsychiatric conditions. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA.Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week.There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the

  7. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas; Scheuermann, Valérie; Blot, Stéphane; Ghaleh, Bijan; de Tombe, Pieter P.; Cazorla, Olivier

    2018-01-01

    Aim Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. Objective The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. Methods and results We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9 μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. Conclusions We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.

  8. Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila.

    Directory of Open Access Journals (Sweden)

    Erik C Johnson

    2010-09-01

    Full Text Available Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK, a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ and through expression of a dominant negative alpha (AMPKα variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O(2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits thr