WorldWideScience

Sample records for cell flying capacitor

  1. Three cell flying capacitor inverter for dielectric barrier discharge plasma applications

    International Nuclear Information System (INIS)

    Flores-Fuentes, A.; Lopez-Callejas, A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Barocio, S.R.

    2009-01-01

    It is reported the design, construction and initial tests of a three cell flying capacitor inverter (TCFCI) in a half-bridge configuration. The device operates at a 200 k Hz frequency which leads to a voltage output at 12.5 k Hz presenting an acceptable response in an open-loop configuration. These features outdo those reported in the current multilevel converter literature. The TCFCI is driven by pulse width modulation, following a phase shift (PS-PWM) control strategy, in order to generate a steady AC voltage signal. This inverter is used to excite a dielectric barrier discharge cell (DBDC) intended for cold plasma generation at room pressure. Some results obtained for two different kinds of atmosphere, helium and argon, are presented. All the system having been tested, early recorded voltage and current waveforms, are included. Finally, three methods for calculating the related electric efficiency of the discharge cell are discussed. (author)

  2. Initial capacitor charging in grid-connected flying capacitor multilevel converters

    OpenAIRE

    Ghias, Amer M.Y.M.; Pou Félix, Josep; Agelidis, Vassilios; Ciobotaru, Mihai

    2014-01-01

    This letter reports a method for the initial charging of capacitors in grid-connected flying capacitor (FC) multilevel converters. A resistor is inserted between each phase of the FC converter and the grid. A voltage balancing algorithm is activated from the beginning of the process and the FC converter generates proper output voltages to achieve balanced charging of both the dc-bus capacitor and the FCs. The proposed initial charging method achieves low voltage and current stress on the powe...

  3. The flying-capacitor SEPIC converter with the balancing circuit

    Directory of Open Access Journals (Sweden)

    Kawa Adam

    2016-09-01

    Full Text Available The paper presents investigation results of the natural balancing phenomena in the flying-capacitor SEPIC converters. The SEPIC converters topologies can be reconfigured to the flying-capacitor topology. Owing to this modification the advantageous increase of frequency of the current in the chokes and the decrease of semiconductors voltages can be achieved which is shown in this paper. Similarly to other multilevel flying capacitor topologies the adequate voltage sharing of the flying capacitors is an important issue for safe operation of the converter. The paper focuses on the analysis of the flying capacitor voltages balancing in the converter by natural currents as well as by the application of the additional RLC balancing booster. The paper proves that the natural balancing can be achieved by the specific application of the balancing circuit in the flying-capacitor SEPIC topology and proves the specific differences in the balancing process by natural currents of converter and with the usage of the balancing circuit. An operation of the converter with the balancing circuit and the natural balancing ability is studied here.

  4. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  5. Bulk Modulus Capacitor Load Cells

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1990-04-01

    Measurement of forces present at various locations within the SSC Model Dipole collared coil assembly is of great practical interest to development engineers. Of particular interest are the forces between coils at the parting plane and forces that exist between coils and pole pieces. It is also desired to observe these forces under the various conditions that a magnet will experience such as: during the collaring process, post-collaring, under the influence of cryogens, and during field excitation. A twenty eight thousandths of an inch thick capacitor load cell which utilizes the hydrostatic condition of a stressed plastic dielectric has been designed. These cells are currently being installed on SSC Model Dipoles. The theory, development, and application of these cells will be discussed

  6. Bulk modulus capacitor load cells

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1990-01-01

    Measurement of forces present at various locations within the SSC Model Dipole collared coil assembly is of great practical interest to development engineers. Of particular interest are the forces between coils at the parting plane and forces that exist between coils and pole pieces. It is also desired to observe these forces under the various conditions that a magnet will experience such as: during the collaring process, post-collaring, under the influence of cryogens, and during field excitation. A twenty eight thousandths of an inch thick capacitor load cell which utilizes the hydrostatic condition of a stressed plastic dielectric has been designed. These cells are currently being installed on SSC Model Dipoles. The theory, development, and application of these cells will be discussed. 1 fig

  7. Active control of flying capacitor currents in multilevel voltage-source inverters

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2013-01-01

    Roč. 58, č. 4 (2013), s. 393-410 ISSN 0001-7043 Institutional support: RVO:61388998 Keywords : voltage source inverter (VSI) * multilevel inverter * flying capacitor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...

  9. High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yi-Feng Wang

    2015-04-01

    Full Text Available This paper proposes and discusses a novel AC/DC converter suitable for small-scaled wind power generation system applications. By introducing flyback cells into the three-phase single-switch Boost circuit, the proposed converter is designed as single-stage and has both rectification and high step-up power conversion functions. It is able to obtain high voltage gain at low input voltage level, and high efficiency, low total harmonic distortion (THD at rated power. The inherent power factor correction (PFC is also determined, and can reach 0.99. Besides, since no electrolytic capacitor is employed and high voltage gain is achieved, the converter can also collect weak power at low input voltage in combination with energy storage devices, and contribute to a better low-wind-speed/low-power performance. Finally, a 400 W prototype is built to verify the theoretical analysis, and its efficiency is 87.6%, while THD is 7.4% at rated power.

  10. Capacitors.

    Science.gov (United States)

    Trotter, Donald M., Jr.

    1988-01-01

    Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)

  11. Single-carrier phase-disposition PWM implementation for multilevel flying capacitor converters

    OpenAIRE

    Ghias, Amer M.Y.M; Pou Félix, Josep; Capellá Frau, Gabriel José; Agelidis, Vassilios; Aguilera, Ricardo P; Meynard, Thierry A.

    2015-01-01

    This letter proposes a new implementation of phase-disposition pulse-width modulation (PD-PWM) for multilevel flying capacitor (FC) converters using a single triangular carrier. The proposed implementation is much simpler than conventional PD-PWM techniques based on multiple trapezoidal-shaped carriers, generates the same results as far as natural capacitor voltage balance is concerned and offers better quality line-to-line voltages when compared to phase-shifted PWM. The proposed algorithm i...

  12. Floating body cell a novel capacitor-less DRAM cell

    CERN Document Server

    Ohsawa, Takashi

    2011-01-01

    DRAM together with NAND Flash is driving semiconductor technologies with wide spectrum of usage ranging from PC, mobile phone and digital home appliances to solid-state disk (SSD). However, the DRAM cell which consists of a data storage capacitor (1C) and a switching transistor (1T) is facing serious difficulty in shrinking the size of the capacitor whose capacitance needs to be kept almost constant (20~30fF) throughout generations. The availability of a new DRAM cell which does not rely on an explicit capacitor for storing its data is more than ever awaited for further increasing the bit dens

  13. Comparison between three phase three and five level of flying capacitor multilevel inverter

    Science.gov (United States)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Tzen, Bryon Sim Phin

    2017-09-01

    Multilevel inverter is increasingly being used in medium and high power application as conventional inverter have limited power hold and high total harmonics distortion. At present, there is a lot of literature regarding the topology and switching technique for multilevel inverter. The three common types of multilevel inverter are Diode Clamp Multilevel Inverter (DCMI), Cascaded Multilevel Inverter (CMI) and Flying Capacitor Multilevel Inverter (FCMI). This paper proposed the Three Phase Flying Capacitor Multilevel Inverter (FCMI) with Sinusoidal Pulse Width Modulation (SPWM) switching technique. This paper analysed the performance of FCMI and its characteristics based on parameters such as output phase voltage waveform and the total harmonics distortion (THD). The performance was accessed using Matlab/Simulink software. The result obtained shows that with higher number of levels for FCMI, the output THD was lowered due to near sinusoidal output waveform.

  14. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages of the p......Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...

  15. EVALUATION OF VARIOUS UNIPOLAR MULTICARRIER PWM STRATEGIES FOR FIVE LEVEL FLYING CAPACITOR INVERTER

    Directory of Open Access Journals (Sweden)

    B. SHANTHI

    2012-06-01

    Full Text Available This paper presents the comparison of unipolar multicarrier Pulse Width Modulation (PWM techniques for the Flying Capacitor Multi Level Inverter (FCMLI. Due to switch combination redundancies, there are certain degrees of freedom to generate the five level AC output voltage. This paper presents the use of Control Freedom Degree (CFD combination. The effectiveness of the PWM strategies developed using CFD are demonstrated by simulation and experimentation. The results indicate that the multilevel inverter triggered by the developed USHPWM strategy exhibits reduced harmonics. PWM strategies developed are implemented in real time using dSPACE/Real Time Interface (RTI. The simulation and experimental output closely match with each other validating the strategies presented.

  16. Atmospheric-pressure dielectric barrier discharge generation by a full-bridge flying capacitor multilevel inverter

    Science.gov (United States)

    Peña-Eguiluz, Rosendo; López-Fernández, José, A.; Mercado-Cabrera, Antonio; Jaramillo-Sierra, Bethsabet; López-Callejas, Régulo; Rodríguez-Méndez, Benjamín; Valencia-Alvarado, Raúl; Flores-Fuentes, Allan, A.; Muñoz-Castro, Arturo E.

    2017-07-01

    A new configuration of a resonant full-bridge flying capacitor multicell inverter has been designed and constructed with the aim of achieving an extended output voltage frequency range with low harmonic distortion and reduced semiconductor commutation losses. This configuration was tested as a power supply for two different coaxial dielectric barrier discharge reactors, one of them employed for electric characterization and the other one for inorganic compound elimination in an aqueous solution. Two different gas mixtures, 90% Ar-10% O2 and 80% Ar-20% O2, were individually supplied during the experiments; the results showed a high-efficiency removal of meta-cresol (m-cresol) to the order of 98%, which was obtained by adding more oxygen to the plasma gas mixture.

  17. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained.......DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...

  18. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  19. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  20. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  1. Enhancing charge harvest from microbial fuel cells by controlling the charging and discharging frequency of capacitors.

    Science.gov (United States)

    Ren, Shiting; Xia, Xue; Yuan, Lulu; Liang, Peng; Huang, Xia

    2013-10-01

    Capacitor is a storage device to harvest charge produced from microbial fuel cells (MFCs). In intermittent charging mode, the capacitor is charged by an MFC first, and then discharged through an external resistance. The charge harvested by capacitor is affected by the charging and discharging frequency. In the present study, the effect of the charging and discharging frequency on charge harvest was investigated. At the switching time (ts) of 100 s, the average current over each time segment reached its maximum value (1.59 mA) the earliest, higher than the other tested conditions, and the highest COD removal (63%) was also obtained, while the coulombic efficiency reached the highest of 67% at the ts of 400 s. Results suggested that lower ts led to higher current output and COD removal, but appropriate ts should be selected in consideration of charge recovery efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Capacitor-within-Capacitor: Electrically Controlled Capacitors

    OpenAIRE

    Grebel, Haim

    2017-01-01

    Capacitors are typically connected together in one of two configurations: either in series, or in parallel. Here, a new configuration is introduced: a capacitor-within-capacitor (CWC). The overall capacitance of the new structure is larger than an ordinary two-plate capacitor and may be electrically controlled. It thus has implications to electronic circuitry and energy storage elements alike.

  3. Impact of frequency modulation ratio on capacitor cells balancing in phase-shifted PWM based chain-link STATCOM

    DEFF Research Database (Denmark)

    Behrouzian, Ehsan; Bongiorno, Massimo; Teodorescu, Remus

    2014-01-01

    that any deviation from the ideal conditions lead to undesired harmonics, which will impact the charge of the dc capacitors. It is also shown that for low switching frequencies, cells voltage sideband harmonics interact with baseband harmonics of the current and causes extra source of unbalance. In order...... distribution among cells of the same phase leg, thus contributing to the capacitors balancing. Theoretical conclusions are validated through PSCAD simulation results....

  4. Current Controller for Multi-level Front-end Converter and Its Digital Implementation Considerations on Three-level Flying Capacitor Topology

    Science.gov (United States)

    Tekwani, P. N.; Shah, M. T.

    2017-10-01

    This paper presents behaviour analysis and digital implementation of current error space phasor based hysteresis controller applied to three-phase three-level flying capacitor converter as front-end topology. The controller is self-adaptive in nature, and takes the converter from three-level to two-level mode of operation and vice versa, following various trajectories of sector change with the change in reference dc-link voltage demanded by the load. It keeps current error space phasor within the prescribed hexagonal boundary. During the contingencies, the proposed controller takes the converter in over modulation mode to meet the load demand, and once the need is satisfied, controller brings back the converter in normal operating range. Simulation results are presented to validate behaviour of controller to meet the said contingencies. Unity power factor is assured by proposed controller with low current harmonic distortion satisfying limits prescribed in IEEE 519-2014. Proposed controller is implemented using TMS320LF2407 16-bit fixed-point digital signal processor. Detailed analysis of numerical format to avoid overflow of sensed variables in processor, and per-unit model implementation in software are discussed and hardware results are presented at various stages of signal conditioning to validate the experimental setup. Control logic for the generation of reference currents is implemented in TMS320LF2407A using assembly language and experimental results are also presented for the same.

  5. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development

    International Nuclear Information System (INIS)

    Paladini, Vanessa; Donateo, Teresa; De Risi, Arturo; Laforgia, Domenico

    2007-01-01

    In the last decades, due to emissions reduction policies, research focused on alternative powertrains among which hybrid electric vehicles (HEVs) powered by fuel cells are becoming an attractive solution. One of the main issues of these vehicles is the energy management in order to improve the overall fuel economy. The present investigation aims at identifying the best hybrid vehicle configuration and control strategy to reduce fuel consumption. The study focuses on a car powered by a fuel cell and equipped with two secondary energy storage devices: batteries and super-capacitors. To model the powertrain behavior an on purpose simulation program called ECoS has been developed in Matlab/Simulink environment. The fuel cell model is based on the Amphlett theory. The battery and the super-capacitor models account for charge/discharge efficiency. The analyzed powertrain is also equipped with an energy regeneration system to recover braking energy. The numerical optimization of vehicle configuration and control strategy of the hybrid electric vehicle has been carried out with a multi objective genetic algorithm. The goal of the optimization is the reduction of hydrogen consumption while sustaining the battery state of charge. By applying the algorithm to different driving cycles, several optimized configurations have been identified and discussed

  6. Electric Double-Layer Capacitor Module with Series-Parallel Reconfigurable Cell Voltage Equalizers

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    When electric double-layer capacitors (EDLCs) are connected in series, cell voltage imbalance that results due to non-uniform cell properties is observed. Cell voltage imbalance should be minimized to prolong cycle lives and maximize the available energy of cells. In this study, we propose a series-parallel reconfigurable cell voltage equalizer that is considered suitable for energy-storage systems using EDLCs instead of traditional secondary batteries as main energy-storage sources. The proposed equalizer requires only EDLCs and switches as its main circuit elements, and it utilizes EDLCs not only for energy storage but also for equalization. An equivalent circuit model using equivalent resistors that can be regarded as an index of equalization speed is developed. Current distribution and cell voltage imbalance during operation are quantitatively generalized. Experimental charge-discharge tests were performed for EDLC modules to demonstrate the performance of the cell voltage equalizer. All the cells in the modules could be charged/discharged uniformly even when a degradation-mimicking cell was intentionally included in the module. The resultant cell voltage imbalances and current distributions were in good agreement with those predicted by mathematical analyses.

  7. Vented Capacitor

    Science.gov (United States)

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  8. Capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator

    International Nuclear Information System (INIS)

    Kim, Tae-Hyun; Park, Jea-Gun

    2013-01-01

    We investigated the combined effect of the strained Si channel and hole confinement on the memory margin enhancement for a capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator (ε-Si SGOI). The memory margin for the ε-Si SGOI capacitor-less memory cell was higher than that of the memory cell fabricated on an unstrained Si-on-insulator (SOI) and increased with increasing Ge concentration of the relaxed SiGe layer; i.e. the memory margin for the ε-Si SGOI capacitor-less memory cell (138.6 µA) at a 32 at% Ge concentration was 3.3 times higher than the SOI capacitor-less memory cell (43 µA). (paper)

  9. Polarization Sensitive Measurements of Molecular Reorientation in a Glass Capacitor Cell

    Science.gov (United States)

    Cooper, Nathan; Lawhead, Carlos; Anderson, Josiah; Shiver, Tegan; Prayaga, Chandra; Ujj, Laszlo

    2014-03-01

    It is well known that molecules having a permanent dipole moment tend to orient in the direction of the electric field at room temperature. The reorientation can be probed with the help of linear spectroscopy methods such as fluorescence anisotropy measurements. We have used nonlinear polarization sensitive Raman scattering spectroscopy to quantify the orientation effect of the dipoles. Vibrational spectra of the molecules has been recorded as a function of the external electric field. The polarization changes observed during the measurement are directly linked to the molecular reorientation rearrangement. Spectra has been recorded with a laser spectrometer comprised of a Nd:YAG laser and an optical parametric oscillator and an imaging spectrometer with a CCD detector. In order to make this measurement we have constructed a glass capacitor cell coated in TiO and applied a significant electric field (0-3 kV/mm) to the sample. Our measurements showed that the orientation effect is most significant for liquid crystals as observed previously with non-polarization sensitive CARS spectroscopy.

  10. A Novel Voltage Equalization Charger Using Capacitors, Diodes, and an AC Power Source for Energy Storage Cells

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Conventional voltage equalizers or equalization chargers, which are used for series-connected energy storage cells to eliminate cell voltage imbalance, consisting of a number of switches or transformers tend to be complex with the number of series connection of the energy storage cells. A novel voltage equalization charger consisting only of capacitors, diodes, and an ac power source is proposed, and its dc equivalent circuit expressed by resistors and a dc power source is derived in this paper. Experimental charge tests demonstrated that series-connected EDLCs could be charged up to the uniform voltage by the proposed equalization charger.

  11. Unsubstituted polyaromatic hydrocarbons (PAH's) in extracts of coal fly ash from the fly ash test cell in Montour, Pennsylvania

    International Nuclear Information System (INIS)

    Applequist, M.D.

    1989-01-01

    Isotope Dilution Mass Spectrometry (IDMS) was used to identify and to quantify trace amounts of selected, unsubstituted polyaromatic hydrocarbons (PAH's) present in extracts of coal fly ash from the solid waste disposal test cell at Montour, Pennsylvania. Isotope dilution experiments using deuterated analogs of polyaromatic hydrocarbons demonstrated that the concentrations of benzo[a]pyrene and anthracene were lower than 1 ng/g of fly ash. Isotope dilution experiments demonstrated that benzo[a]pyrene could be detected at concentrations as high as 1 ng/g when an isotopic carrier was used at a concentration of 125 ng/g in the analytical method. Maximum concentrations of fluorene, fluoranthene, pyrene and chrysene were conservatively estimated to be 3 ng/g of fly ash, using a 95 percent confidence interval based on analytical precision of ±1 ng/g of fly ash. Concentrations of phenanthrene were found to range from 6 to 38 ng/g of fly ash with a mean concentration of 14 ng/g of fly ash. Two sources of phenanthrene were speculated: incomplete combustion of phenanthrene in the coal furnace and addition of phenanthrene to the fly ash after collection by electrostatic precipitators

  12. Use of super-capacitors in the motorization of fuel cell electric powered vehicles; Utilisation de supercondensateurs dans la motorisation de vehicules electriques a pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Djerdir, A.; Gualous, H.; Berthon, A. [L2ES, IGE, 90 - Belfort (France); Bouquain, D. [CREEBEL, 90 - Belfort (France); Ayad, M.Y.; Rasoanarivo, I.; Rael, S.; Davat, B. [GREEN, 54 - Vandoeuvre les Nancy (France)

    2000-07-01

    The aim of this work is to integrate super-capacitors in a fuel cell vehicle as an auxiliary energy source able to provide and to recover an energy power. The super-capacitors elements are got together in series/parallel and inserted on-board of the vehicle. A tension level and an energy converter/packager have been chosen. (O.M.)

  13. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...

  14. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  15. Switchable capacitor

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Tilmans, H.A.C.; De Raedt, W.

    2003-01-01

    A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom elecrode, a dielaectric layer deposited on at least part of sai bottum electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to the

  16. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  17. Switchable capacitor

    NARCIS (Netherlands)

    Rottenberg, Xavier; Jansen, Henricus V.; Tilmans, H.A.C.; Tilmans, Hendrikus; De Raedt, Walter

    2011-01-01

    A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom elecrode, a dielaectric layer deposited on at least part of sai bottum electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to the

  18. A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings

    Directory of Open Access Journals (Sweden)

    Yunlong Shang

    2017-02-01

    Full Text Available Due to the low cost, small size, and ease of control, the switched-capacitor (SC battery equalizers are promising among active balancing methods. However, it is difficult to achieve the full cell equalization for the SC equalizers due to the inevitable voltage drops across Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET switches. Moreover, when the voltage gap among cells is larger, the balancing efficiency is lower, while the balancing speed becomes slower as the voltage gap gets smaller. In order to soften these downsides, this paper proposes a cell-to-cell battery equalization topology with zero-current switching (ZCS and zero-voltage gap (ZVG among cells based on three-resonant-state SC converters. Based on the conventional inductor-capacitor (LC converter, an additional resonant path is built to release the charge of the capacitor into the inductor in each switching cycle, which lays the foundations for obtaining ZVG among cells, improves the balancing efficiency at a large voltage gap, and increases the balancing speed at a small voltage gap. A four-lithium-ion-cell prototype is applied to validate the theoretical analysis. Experiment results demonstrate that the proposed topology has good equalization performances with fast equalization, ZCS, and ZVG among cells.

  19. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I. [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  20. Impact of Switching Harmonics on Capacitor Cells Balancing in Phase-Shifted PWM-Based Cascaded H-Bridge STATCOM

    DEFF Research Database (Denmark)

    Behrouzian, Ehsan; Bongiorno, Massimo; Teodorescu, Remus

    2017-01-01

    The purpose of this paper is to investigate the impact of switching harmonics on the instantaneous power distribution in the cells of a cascaded H-bridge-based STATCOM when using phase-shifted pulse width modulation. The case of high- and low-switching frequency for the converter cells is investi......The purpose of this paper is to investigate the impact of switching harmonics on the instantaneous power distribution in the cells of a cascaded H-bridge-based STATCOM when using phase-shifted pulse width modulation. The case of high- and low-switching frequency for the converter cells...... is investigated and the interaction between voltage and current harmonics is analyzed. It is shown that in both cases, this interaction results in an uneven power distribution among the cells in the same phase leg, leading to drifting of the dc-capacitor voltages and thereby the need for proper stabilization...

  1. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun [National Program Center for Tera-bit-level Nonvolatile Memory Development, Department of Electronic Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Chung, Sung-Woong [Hynix Semiconductor Incorporated, Amiri, Bubaleup, Icheonsi, Gyeonggido 467-701 (Korea, Republic of); Enomoto, Hirofumi, E-mail: parkjgL@hanyang.ac.kr [Sumco Corporation, 4-3146-12 Hachimanpara, Yonezawa-shi, Yamagata 992-1128 (Japan)

    2011-08-05

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to {approx} 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 {mu}A memory margin. This is a step toward achieving a terabit volatile memory cell.

  2. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  3. Switched-capacitor isolated LED driver

    Science.gov (United States)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  4. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  5. Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells

    Science.gov (United States)

    Franzetti, G-A; Laud-Duval, K; van der Ent, W; Brisac, A; Irondelle, M; Aubert, S; Dirksen, U; Bouvier, C; de Pinieux, G; Snaar-Jagalska, E; Chavrier, P; Delattre, O

    2017-01-01

    Ewing sarcoma is characterized by the expression of the chimeric EWSR1-FLI1 transcription factor. Proteomic analyses indicate that the decrease of EWSR1-FLI1 expression leads to major changes in effectors of the dynamics of the actin cytoskeleton and the adhesion processes with a shift from cell-to-cell to cell-matrix adhesion. These changes are associated with a dramatic increase of in vivo cell migration and invasion potential. Importantly, EWSR1-FLI1 expression, evaluated by single-cell RT-ddPCR/immunofluorescence analyses, and activity, assessed by expression of EWSR1-FLI1 downstream targets, are heterogeneous in cell lines and in tumours and can fluctuate along time in a fully reversible process between EWSR1-FLI1high states, characterized by highly active cell proliferation, and EWSR1-FLI1low states where cells have a strong propensity to migrate, invade and metastasize. This new model of phenotypic plasticity proposes that the dynamic fluctuation of the expression level of a dominant oncogene is an intrinsic characteristic of its oncogenic potential. PMID:28135250

  6. Generalized Multi-Cell Switched-Inductor and Switched-Capacitor Z-source Inverters

    DEFF Research Database (Denmark)

    Li, Ding; Chiang Loh, Poh; Zhu, Miao

    2013-01-01

    -type Z-source in- verters were earlier proposed. These new classes of inverters are generally more robust and less sensitive to electromagnetic noises. However, their boosting capabilities are somehow compromised by high component stresses and poorer spectral performances caused by low modulation ratios....... Their boosting gains are, therefore, limited in practice. To overcome these shortcomings, the generalized switched-inductor and switched-capacitor Z-source inverters are proposed, whose extra boosting abilities and other advantages have already been verified in simulation and experiment....

  7. Multilayer capacitors, method for making multilayer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Balachandran, Uthamalingam

    2018-03-06

    The invention provides a stacked capacitor configuration comprising subunits each with a thickness of as low as 20 microns. Also provided is combination capacitor and printed wire board wherein the capacitor is encapsulated by the wire board. The invented capacitors are applicable in micro-electronic applications and high power applications, whether it is AC to DC or DC to AC, or DC to DC.

  8. Capacitor Discharge - A Capacitor Tutorial [video

    OpenAIRE

    Naval Postgraduate School Physics

    2014-01-01

    NPS Physics Physics Demonstrations Here's a capacitor discharge demonstrated by physicist Dr. Dernardo. Dr. D gives a nice capacitor lesson along with some fireworks. Charging and Discharging a Capacitor is dangerous. Do not try this at home. Dr. Bruce Denardo uses eleven 9V batteries, connected in series for a total of 99 creating a pretty large spark.

  9. Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG

    2000-01-01

    The light response of fly photoreceptor cells is modulated by changes in free Ca2+ concentration. Fly phototransduction and most processes regulating it take place in or very close to the rhabdomere. We therefore measured the kinetics and the absolute values of the free Ca2+ concentration in the

  10. Effects of Li4Ti5O12 Anode Electrode Thickness on the Cell Balancing of Hybrid Super Capacitor.

    Science.gov (United States)

    Lee, Jong-Kyu; Yoon, Jung-Rag

    2015-03-01

    The hybrid super capacitor was prepared by controlling the anode electrode thickness to optimize cell balancing. With an increasing anode electrode thickness, the internal resistance increased, while the capacitance was not changed remarkably. The potential of the cathode increased and that of the anode was decreased with the working voltage. However, the potential variation of the cathode was larger than that of the anode due to the difference in the reaction mechanism of the cathode and anode. The discharge capacity retention as a function of the current rates increased and the cycle performance was improved with an increasing anode electrode thickness. The effects of the anode electrode thickness on the electrode potential are also discussed.

  11. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    Science.gov (United States)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored

  12. Capacitors with low equivalent series resistance

    Science.gov (United States)

    Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  13. Design of an hybrid source with fuel cell and super-capacitors; Conception d'une source hybride utilisant une pile a combustible et des supercondensateurs

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Ph.

    2005-12-15

    The design and testing of a purely super-capacitor energy storage device as auxiliary power source in electrical vehicle applications having a PEM fuel cell as main source are presented. The two control strategies are explained. The control algorithms are that fuel cell is simply operating in almost steady state conditions in order to lessen the mechanical stresses of fuel cell and to ensure a good synchronization between fuel flow and fuel cell current. Super-capacitors are functioning during absence of energy from fuel cell, transient energy delivery or transient energy recovery. The system utilizes two modules of SAFT super-capacitive storage device. This device is connected to a 42 V DC bus by a 2-quadrant dc/dc converter, and fuel cell is connected to the dc bus by a boost converter. The system structure is realized by analogical current loops and digital control (dSPACE) for voltage loops and estimation algorithms. Experimental results with a 500 W PEM fuel cell point out the slow dynamics naturally of fuel cell because of thermodynamic and mechanical operation, and also substantiate that the super-capacitors can improve dynamics and power conditioning for automotive electrical system. (author)

  14. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.

  15. Ecteinascidin 743 Interferes with the Activity of EWS-FLI1 in Ewing Sarcoma Cells

    Directory of Open Access Journals (Sweden)

    Patrick J. Grohar

    2011-02-01

    Full Text Available ET-743 (trabectedin; Yondelis is approved in Europe for the treatment of soft tissue sarcomas. Emerging phase 1 and 2 clinical data have shown high response rates in myxoid liposarcoma in part owing to the inhibition of the FUS-CHOP transcription factor. In this report, we show that modulation of specific oncogenic transcription factors by ET-743 may extend to other tumor types. We demonstrate that, among a panel of pediatric sarcomas, Ewing sarcoma family of tumors (ESFTs cell lines bearing the EWS-FLI1 transcription factor are the most sensitive to treatment with ET-743 compared with osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. We show that ET-743 reverses a gene signature of induced downstream targets of EWS-FLI1 in two different ESFT cell lines (P = .001. In addition, ET-743 directly suppresses the promoter activity of a known EWS-FLI1 downstream target NR0B1 luciferase reporter construct without changing the activity of a constitutively active control in ESFT cells. Furthermore, the effect is specific to EWS-FLI1, as forced expression of EWS-FLI1 in a cell type that normally lacks this fusion protein, HT1080 cells, induces the same NR0B1 promoter, but this activation is completely blocked by ET-743 treatment. Finally, we used gene set enrichment analysis to confirm that other mechanisms of ET-743 are active in ESFT cells. These results suggest a particular role for ET-743 in the treatment of translocation-positive tumors. In addition, the modulation of EWS-FLI1 makes it a novel targeting agent for ESFT and suggests that further development of this compound for the treatment of ESFT is warranted.

  16. Fly-FUCCI: A Versatile Tool for Studying Cell Proliferation in Complex Tissues

    Directory of Open Access Journals (Sweden)

    Norman Zielke

    2014-04-01

    Full Text Available One promising approach for in vivo studies of cell proliferation is the FUCCI system (fluorescent ubiquitination-based cell cycle indicator. Here, we report the development of a Drosophila-specific FUCCI system (Fly-FUCCI that allows one to distinguish G1, S, and G2 phases of interphase. Fly-FUCCI relies on fluorochrome-tagged degrons from the Cyclin B and E2F1 proteins, which are degraded by the ubiquitin E3-ligases APC/C and CRL4Cdt2, during mitosis or the onset of S phase, respectively. These probes can track cell-cycle patterns in cultured Drosophila cells, eye and wing imaginal discs, salivary glands, the adult midgut, and probably other tissues. To support a broad range of experimental applications, we have generated a toolkit of transgenic Drosophila lines that express the Fly-FUCCI probes under control of the UASt, UASp, QUAS, and ubiquitin promoters. The Fly-FUCCI system should be a valuable tool for visualizing cell-cycle activity during development, tissue homeostasis, and neoplastic growth.

  17. Diversity of cell death pathways: insight from the fly ovary.

    Science.gov (United States)

    Jenkins, Victoria K; Timmons, Allison K; McCall, Kimberly

    2013-11-01

    Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Neural coding in antennal olfactory cells of tsetse flies (Glossina spp.)

    NARCIS (Netherlands)

    Voskamp, K.E; Noorman, N; Mastebroek, H.A K; van Schoot, N.E.G.; den Otter, C.J

    1998-01-01

    Spike trains from individual antennal olfactory cells of tsetse flies (Glossina spp.) obtained during steady-state conditions (spontaneous as well as during stimulation with 1-octen-3-ol) and dynamic stimulation with repetitive pulses of 1-octen-3-ol were investigated by studying the spike frequency

  19. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  20. Insights into neural stem cell biology from flies.

    Science.gov (United States)

    Egger, Boris; Chell, James M; Brand, Andrea H

    2008-01-12

    Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.

  1. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Lagirand-Cantaloube, Julie; Laud, Karine; Lilienbaum, Alain; Tirode, Franck; Delattre, Olivier; Auclair, Christian; Kryszke, Marie-Helene

    2010-01-01

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  2. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Laud, Karine, E-mail: karine.laud@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Lilienbaum, Alain, E-mail: alain.lilienbaum@univ-paris-diderot.fr [EA300 Universite Paris 7, Stress et pathologies du cytosquelette, Paris (France); Tirode, Franck, E-mail: franck.tirode@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Delattre, Olivier, E-mail: olivier.delattre@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Auclair, Christian, E-mail: auclair@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Kryszke, Marie-Helene, E-mail: kryszke@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France)

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.

  3. Simple hardware implementation of voltage balancing in capacitor-clamped inverter

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2009-01-01

    Roč. 54, č. 4 (2009), s. 325-341 ISSN 0001-7043 R&D Projects: GA MPO FT-TA4/077 Institutional research plan: CEZ:AV0Z20570509 Keywords : capacitor-clamped multilevel inverter * flying capacitor voltage balancing * pulse width modulation (PWM) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  5. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    International Nuclear Information System (INIS)

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-01-01

    Research highlights: → Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. → The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. → While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. → This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  6. Electrochemical flow capacitors

    Science.gov (United States)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  7. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Diabate, Silvia; Plaumann, Diana; Uebel, Caroline; Weiss, Carsten [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen (Germany); Bergfeldt, Britta [Karlsruhe Institute of Technology, Institute of Technical Chemistry, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. (orig.)

  8. FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2

    Directory of Open Access Journals (Sweden)

    Inam Jasim Lafta

    2017-12-01

    Full Text Available FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2 was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinomas, FLI1 is significantly under expressed in all of the stages of breast cancer upon using 18S as an internal control. This FLI1 expression was correlated with ER, PR and HER2 status. In conclusion FLI1 can be exploited as a preliminary marker that can predict the status of ER, PR and HER2 in primary breast tumors.

  9. Degradation Effect on Reliability Evaluation of Aluminum Electrolytic Capacitor in Backup Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of power density as well as reliability. In this paper, according to the degradation data of electrolytic capacitors through the accelerated test, the time-to-failure of the capacitor cell is acquired and it can be...

  10. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells

    Directory of Open Access Journals (Sweden)

    Saroj Kandel

    2017-09-01

    Full Text Available Bioretention cells (BRCs have shown potential for storm water quantity and quality control. However, the phosphorus (P removal in BRC has been variable due to differences of soil properties in filter media. The objectives of this research were to identify and evaluate P accumulation in filter media and to quantify effluent P reduction in BRC. Each cell has a sand and fly ash media designed to remove phosphorous. Filter media were collected in 2014 across the cell surface and to a depth of 0.6 m to quantify the P accumulation. The mean total P (T-P concentration increased over the seven years of operation, but the changes were not statistically significant. The average Mehlich-3 P (M3-P and water-soluble P (WS-P concentrations in the media profiles showed higher P accumulation in the top 0.15 m. The average M3-P and WS-P concentrations between 0.15 m to 0.30 m, and 0.30 m to 0.60 m were variable on all four BRCs media. The media with 5% fly ash significantly retained M3-P and WS-P over the top 0.15 m. Stormwater influent and effluent samples from three of the BRCs monitored over one year showed reductions in both P concentration (68% to 75% and P mass (76% to 93%.

  11. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.

    Science.gov (United States)

    Byk, T; Bar-Yaacov, M; Doza, Y N; Minke, B; Selinger, Z

    1993-01-01

    Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446607

  12. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Prêtre, Kathya; Rechfeld, Florian; Thalhammer, Verena; Oesch, Susanne; Wachtel, Marco; Schäfer, Beat W; Niggli, Felix K

    2012-11-01

    Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes. Copyright © 2012 UICC.

  13. Charging a Capacitor with a Photovoltaic Module

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2017-01-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric…

  14. Capacitor Hardness Demonstration Program.

    Science.gov (United States)

    1983-08-01

    resulted in the development of a prototype all-film capacitor using polyvinylidene fluoride (PVDF) manufactured by the Kureha Corporation. This is a...of dielectric film. Check for imperfections, such as scratches and high molecular weight gels. The film presently coming from Kureha is of poor...PVDF film obtained from Kureha . AFRPL will be apprised of this qualifi- cation procedure. 2. AFRPL will issue a change order to redirect the program

  15. An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism

    Directory of Open Access Journals (Sweden)

    Chuncai Xiao

    2015-01-01

    Full Text Available Fruit fly optimization algorithm (FOA invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA, by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA.

  16. Repair studies utilizing a fly-pupariation model of postmitotic cell response

    International Nuclear Information System (INIS)

    Ducoff, H.S.; Jayaraman, S.; Blumenthal, L.K.

    1984-01-01

    Delay in pupariation of irradiated fly (and other insect) larvae results from a neuroendocrine disturbance and represents a dose-dependent response of differentiated postmitotic tissue. Many experimental manipulations (e.g. heating) may themselves upset timing, limiting usefulness of this phenomenon as a model of postmitotic tissue response. Doses >20 Gy inhibit retraction of specific muscles at time of pupariation, leading to formation of elongate puparia. Degree of elongation (ratio of length: breadth) was also a function of dose. Peak sensitivity for elongation occurs later than that for delay, but both endpoints exhibit rapid kinetics for sparing effect of dose fractionations (sdf). With degree of elongation as endpoint, we demonstrated synergism between heat and radiation, and heat markedly inhibited sdf. Maintenance of irradiated larvae under wet conditions greatly prolonged the larval stage, and degree of elongation was reduced. This recovery, analogous to repair of potentially-lethal damage (PLD) in plateau-phase cell cultures, proceeds much more slowly than sdf. (author)

  17. BioCapacitor: A novel principle for biosensors.

    Science.gov (United States)

    Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako

    2016-02-15

    Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors

  18. Capacitor assembly and related method of forming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.

    2017-12-19

    A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radial direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.

  19. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  20. Protection of large capacitor banks

    International Nuclear Information System (INIS)

    Sprott, J.C.; Lovell, T.W.

    1982-06-01

    Large capacitor banks, as used in many pulsed plasma experiments, are subject to catastrophic failure in the event of a short in the output or in an individual capacitor. Methods are described for protecting such banks to minimize the damage and down-time caused by such a failure

  1. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    Science.gov (United States)

    Benaouadj, M.; Aboubou, A.; Ayad, M. Y.; Bahri, M.; Boucetta, A.

    2016-07-01

    In this work, an optimal control (under constraints) based on the Pontryagin's maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control.Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  2. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    International Nuclear Information System (INIS)

    Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A.; Ayad, M. Y.

    2016-01-01

    In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  3. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    Energy Technology Data Exchange (ETDEWEB)

    Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A. [MSE Laboratory, Mohamed khiderBiskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  4. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: lyang@u.washington.edu [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States); Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A. [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States)

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  5. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  6. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  7. The Use of Photoelectric Cells as Sources of Power for Anti fly Biophysical Devices

    International Nuclear Information System (INIS)

    Aliev, R.; Aliboev, M.; Bazarov, O.; Tulanova, B.

    2011-01-01

    An anti fly biophysical device is developed and optimized. It has a luminescent bulb, solid emitters, and a photoelectric power source. Promising uses of industrial photoelectric batteries are proposed, and the feasibility of their adoption in agriculture is shown. (authors)

  8. Ferroelectric Fractional-Order Capacitors

    KAUST Repository

    Agambayev, Agamyrat

    2017-07-25

    Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.

  9. Stacked Switched Capacitor Energy Buffer Architecture

    OpenAIRE

    Chen, Minjie; Perreault, David J.; Afridi, Khurram

    2012-01-01

    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  10. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  11. Mutual capacitor and its applications

    Directory of Open Access Journals (Sweden)

    Chun Li

    2014-06-01

    Full Text Available This study presents a new ac circuit element – the mutual capacitor, being a dual of the mutual inductor, which is also a new ac transformer. This element is characteristic of the mutual-capacitance coupling of a multi-capacitance system. A unity-coupled mutual capacitor works as an ideal current or voltage transformer, and incidentally acts as waveform separating when inductor employed or waveform converting from square-wave to quasi-sine or waveform filtering, between ports. As a transformer, the mutual capacitor is easy to design, easy for heat cooling, more accurate for current or voltage transformation, dissipating less energy as well as saving materials, suitable for high-power and high-voltage applications. Experiments to demonstrate performances of unity-coupled mutual capacitors are also given.

  12. Ferroelectric capacitor with reduced imprint

    Science.gov (United States)

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  13. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  14. Efficiency Improvement of Capacitor Operation

    Directory of Open Access Journals (Sweden)

    V. P. Kashcheev

    2010-01-01

    Full Text Available A system of modernized capacitor ball-cleaning that prevents formation of depositions on internal capacitor tube surface has been developed in the paper.The system has been introduced at the Minsk TPP-4 (Power Block No.5. The paper presupposes that the economic effect will be nearly 0.43 million US dollars per year at one poer block with turbine Т-250/300-240.

  15. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  16. Lithium-Sulfur Capacitors.

    Science.gov (United States)

    Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul

    2018-02-21

    Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg -1 and power densities of 72.2-4097.3 W kg -1 , which are the highest reported values for an asymmetric system to date. This approach involved the use of a prelithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

  17. Development of electrochemical super capacitors for EMA applications

    Science.gov (United States)

    Kosek, J. A.; Dunning, T.; Laconti, A. B.

    1995-01-01

    In a NASA SBIR Phase I program (Contract No. NAS8-40119), Giner, Inc. evaluated the feasibility of fabricating an all-solid-ionomer multicell electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils. This capacitor can possibly be used by NASA as a high-rate energy source for electromechanical actuator (EMA) activation for advanced space missions. The high unit cell capacitance and low repeating element thickness will allow for the fabrication of a low-volume, low-weight device, favorable characteristics for space applications. These same characteristics also make the capacitor attractive for terrestrial applications, such as load-leveling batteries or fuel cells in electric vehicle applications. Although the projected energy densities for electrochemical capacitors are about two orders of magnitude lower than that of batteries, the high-power-density characteristics of these devices render them as potentially viable candidates for meeting pulse or peak electrical power requirements for some anticipated aerospace mission scenarios, especially those with discharge times on the millisecond to second time scale. On a volumetric or gravimetric basis, the advantages of utilizing electrochemical capacitors rather than batteries for meeting the peak power demands associated with a specific mission scenario will largely depend upon the total and pulse durations of the power peaks. The effect of preparation conditions on RuO(x), the active component in an all-solid-ionomer electrochemical capacitor, was evaluated during this program. Methods were identified to prepare RuO(x) having a surface areagreater than 180 sq m/g, and a capacitance of greater than 2 F/sq cm. Further efforts to reproducibly obtain these high-surface-area materials in scaled-up batches will be evaluated in Phase 2. During this Phase 1 program we identified a superior Nafion 105 membrane, having a film thickness of 5 mils, that showed

  18. Fli+ etsrp+ hemato-vascular progenitor cells proliferate at the lateral plate mesoderm during vasculogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Chang Zoon Chun

    2011-02-01

    Full Text Available Vasculogenesis, the de novo formation of blood vessels from precursor cells is critical for a developing embryo. However, the signals and events that dictate the formation of primary axial vessels remain poorly understood.In this study, we use ets-related protein-1 (etsrp, which is essential for vascular development, to analyze the early stages of vasculogenesis in zebrafish. We found etsrp(+ cells of the head, trunk and tail follow distinct developmental sequences. Using a combination of genetic, molecular and chemical approaches, we demonstrate that fli(+etsrp(+ hemato-vascular progenitors (FEVPs are proliferating at the lateral plate mesoderm (LPM. The Shh-VEGF-Notch-Hey2 signaling pathway controls the proliferation process, and experimental modulation of single components of this pathway alters etsrp(+ cell numbers at the LPM.This study for the first time defines factors controlling proliferation, and cell numbers of pre-migratory FEVPs in zebrafish.

  19. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  20. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  1. Shapeable short circuit resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  2. Super Capacitor Development At NASA MSFC

    Science.gov (United States)

    Hall, David K.

    2000-01-01

    A viewgraph presentation outlines super capacitor development at NASA Marshall Space Flight Center. The concept, proof of concept testing and the test set-ups are described. An overview of super capacitor classification is shown and several types of capacitors are detailed: Ni-C chemical double layer (CDL), Ru-Oxide pseudo-cap, and a Ru-Oxide 2 F 30 V capacitor.

  3. Super miniaturization of film capacitor dielectrics

    Science.gov (United States)

    Lavene, B.

    1981-01-01

    The alignment of the stable electrical characteristics of film capacitors in the physical dimensions of ceramic and tantalum capacitors are discussed. The reliability of polycarbonate and mylar capacitors are described with respect to their compatibility with military specifications. Graphic illustrations are presented which show electrical and physical comparisons of film, ceramic, and tantalum capacitors. The major focus is on volumetric efficiency, weight reduction, and electrical stability.

  4. Power electronic converters without electrolytic capacitors

    OpenAIRE

    Van den Bossche, Alex; Haddad, Salim; Mordjaoui, Mourad

    2017-01-01

    Power electronic converters may have a quite long lifetime, but some applications such as converters for automotive and photovoltaic could even desire a longer life. One of the elements to increase the lifetime of converters is to avoid electrolytic capacitors, They can be replaced by metalized film capacitors or ceramic capacitors. A lot of converter types can be re-designed to use them, but it influences the way of designing, as a lower capacitance value is used. Electrolytic capacitors are...

  5. Integrated capacitor arrangement for ultrahigh capacitance values

    NARCIS (Netherlands)

    Roozeboom, F.; Klootwijk, J.H.; Kemmeren, A.L.A.M.; Reefman, D.; Verhoeven, J.F.C.M.

    2011-01-01

    An electronic device includes at least one trench capacitor that can also take the form of an inverse structure, a pillar capacitor. An alternating layer sequence of at least two dielectric layers and at least two electrically conductive layers is provided in the trench capacitor or on the pillar

  6. Maintenance-free super-capacitor-based WSN power supply

    Science.gov (United States)

    Vidrascu, Mihai G.; Svasta, Paul; Vladescu, Marian

    2016-12-01

    Super-capacitors are highly reliable devices, outlasting any existing battery in operating conditions, cycle number and ruggedness. They are perfect candidates for energy storage in remote wireless sensor network nodes. Other applications [1] use a combination of rechargeable battery as the main storage device and a low capacity EDLC as energy buffer. This paper describes the design and the results from a module consisting of a single large capacitor, a MPPC charger and a boost converter. Unlike other devices, this prototype uses one storage device (a single EDLC), it does not involve software components [2] and it can operate from a single solar cell.

  7. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  8. High Energy Density Cryogenic Capacitors

    Science.gov (United States)

    2006-07-07

    used to facilitate the melt- extrusion process or provide the extruded film with desirable mechanical properties, which in turn degrade their electrical...96 1 7.2.2 COTS Materials ( Polypropylene and Polyester) .................................. 97 7.2.3...18 Fig. 2-7. DC life test of COTS capacitors with metallized polypropylene system shows substantial increase in

  9. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (design of miniature filters and power converters.

  10. Flying Scared

    DEFF Research Database (Denmark)

    Dal Sie, Marco; Josiassen, Alexander

    service quality expectations and fear of flying affect travellers' flight choices on long-haul flights. The study was set in Bangkok and primary data were obtained from a large sample of travelers departing from Suvarnabhumi Airport. While service quality emerged as a relevant factor, fear of flying didn......’t turn out as a variable affecting travellers’ choices....

  11. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  12. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma

    Science.gov (United States)

    Chaturvedi, Aashi; Hoffman, Laura M.; Jensen, Christopher C.; Lin, Yi-Chun; Grossmann, Allie H.; Randall, R. Lor; Lessnick, Stephen L.; Welm, Alana L.; Beckerle, Mary C.

    2014-01-01

    Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised. PMID:25057021

  13. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed task will involve the design of a hybrid power system with lithium-ion (li-ion) capacitors (LICs), li-ion batteries and solar cells. The challenge in...

  14. Super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  15. Electrically Variable or Programmable Nonvolatile Capacitors

    Science.gov (United States)

    Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li

    2009-01-01

    Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.

  16. Characterization of Tantalum Polymer Capacitors

    Science.gov (United States)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  17. Switched-Capacitor Voltage Multiplier

    Science.gov (United States)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  18. Charging/Safety-Interlock Connection For Capacitor Bank

    Science.gov (United States)

    Rippel, Wally E.

    1990-01-01

    Electrically controlled mechanical interlock apparatus prevents connection of bank of capacitors to battery or other dc power supply until capacitors precharged to nearly full supply voltage. Precharge eliminates excessive inrush current, which damages capacitors, wires, or connectors. Circuit in apparatus also discharges capacitors after power turned off or capacitors disconnected from power supply.

  19. A Two-terminal Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This letter proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. It is application independent and can be specified by rated...... voltage, ripple current, equivalent series resistance, and operational frequency range. The concept, control method, self-power scheme, and impedance characteristics of the active capacitor are presented. A case study of the proposed active capacitor for a capacitive DC-link application is discussed....... The results reveal a significantly lower overall energy storage of passive elements and a reduced cost to fulfill a specific reliability target, compared to a passive capacitor solution. Proof-of-concept experimental results are given to verify the functionality of the proposed capacitor....

  20. Low-Inductance Capacitor For Low Temperatures

    Science.gov (United States)

    Rhodes, David B.; Jones, Stephen B.; Franke, John M.

    1989-01-01

    Planar capacitor made on epoxy/fiberglass printed-circuit board. Planar design and flat copper plates ensure low inductance and low series resistance. Planar construction minimized effects of thermal contraction, and epoxy/fiberglass substrate ensured high breakdown voltage. Design is simple, and this type of capacitor easy for any printed-circuit-board facility to fabricate. Design suitable for any small-capacitance, high-voltage capacitor, whether operating at low or high temperature.

  1. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    OpenAIRE

    Hojin Choi; Hyeonseok Yoon

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, t...

  2. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  3. Charging Capacitors According to Maxwell's Equations: Impossible

    OpenAIRE

    Funaro, Daniele

    2014-01-01

    The charge of an ideal parallel capacitor leads to the resolution of the wave equation for the electric field with prescribed initial conditions and boundary constraints. Independently of the capacitor's shape and the applied voltage, none of the corresponding solutions is compatible with the full set of Maxwell's equations. The paradoxical situation persists even by weakening boundary conditions, resulting in the impossibility to describe a trivial phenomenon such as the capacitor's charging...

  4. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  5. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... The subject low cost alkaline electrochemical capacitor designs are based upon titanium nitride electrodes which exhibit 125 mF/sq cm surface capacitance density and remarkable electrochemical...

  6. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  7. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Muhammad Taher Abuelma'atti; Muhammad Haroon Khan

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  8. Influence of Mixed Solvent on the Electrochemical Property of Hybrid Capacitor.

    Science.gov (United States)

    Lee, Byunggwan; Yoon, J R

    2015-11-01

    The hybrid capacitors (2245 size, cylindrical type) were prepared by using activated carbon cathode and Li4Ti5O12 anode. In order to improve the cell operation at high temperature range, propylene carbonate (PC) was used in combination with acetonitrile (AN) with volume ratio of 7:3, 5:5, and 3:7, respectively. We investigated the electrochemical behavior of the hybrid capacitors that enabled cell operation with stability at high temperature. The organic electrolyte of hybrid capacitor containing PC and AN with a volume ratio 7:3 intended to exhibit highly reversible cycle performance with good capacity retention at 60 degrees C after 2200 cycles. From this study, it has been found that the very strong influence of the solvent nature on the characteristics of hybrid capacitor, and the difference in performance associated with the two solvents.

  9. Capacitor ageing in electronic devices

    Directory of Open Access Journals (Sweden)

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  10. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  11. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  12. Capacitor storage voltage stabilization device

    International Nuclear Information System (INIS)

    Logvin, V.V.; Gusev, E.V.

    1987-01-01

    An electric circuit of a device designed for charging and stabilizing a capacitor storage is described. A phase-pulse method for thyristor control in the power transformer first circuit is used. In the process of storage charging the triggering angle of thyristors linearly grows, that excludes the necessity of application of current-limiting elements in the charging circuit. The averaged charging voltage of the storage linearly dependce on charging time. Charging is realized by a series of short-time current pulses. Output voltage is controlled within 10...95% limits of the rated value. Voltage instability is ≤0.5% at power supply voltage variation of ±10%

  13. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Science.gov (United States)

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  14. Quantitative proteomics on the fly

    NARCIS (Netherlands)

    Gouw, J.W.|info:eu-repo/dai/nl/304837377

    2009-01-01

    The development of multicellular organisms is characterized by complex processes that progressively transform essentially a single cell into a creature with complicated structures and highly specialized functions. The fruit fly Drosophila melanogaster provides an excellent model system to

  15. Cryogenic Capacitors for Low-Temperature Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop low-temperature multilayer ceramic capacitors (MLCCs) capable of operating at cyrogenic temperatures (<77K). These capacitors...

  16. Microprocessor Controlled Capacitor Bank Switching System for ...

    African Journals Online (AJOL)

    In this work, analysis and development of a microprocessor controlled capacitor bank switching system for deployment in a smart distribution network was carried out. This system was implemented by the use of discreet components such as resistors, capacitors, transistor, diode, automatic voltage regulator, with the ...

  17. Simple Ways to Make Real Capacitors

    Science.gov (United States)

    Herman, Rhett

    2014-01-01

    Many of us have grabbed two pieces of aluminum foil and a paper towel, quickly sandwiched them together, and exclaimed in lecture, "Look! It's easy to make a capacitor!" Then we move on from there, calculating things such as capacitances with various dielectrics or plate sizes, the capacitance of capacitor networks, RC circuits,…

  18. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  19. Are the Textbook Writers Wrong about Capacitors?

    Science.gov (United States)

    French, A. P.

    1993-01-01

    Refutes a recent article which stated that the standard textbook treatment of two capacitors in series is wrong. States that the calculated capacitance is correct if measured immediately after a dc voltage is applied and that perhaps the effect is due to the choice of materials making up the capacitor. (MVL)

  20. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5. Hydrogel membrane electrolyte for electrochemical capacitors ... In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported.

  1. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  2. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  3. Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines.

    Science.gov (United States)

    Fampa, Patrícia; Corrêa-da-Silva, Miguel S; Lima, Dinair C; Oliveira, Sandra M P; Motta, Maria Cristina M; Saraiva, Elvira M B

    2003-09-15

    Interaction experiments between hematophagous insects and monoxenous trypanosomatids have become relevant, once cases of human infection involving these protozoa have been reported. Moreover, investigations related to the interaction of insects with trypanosomatids that harbour an endosymbiotic bacterium and thereby lack the paraflagellar rod structure are important to elucidate the role of this structure in the adhesion process. In this work, we compared the interaction of endosymbiont-bearing trypanosomatids and their aposymbiotic counterpart strains (without endosymbionts) with cell lines of Anopheles gambiae, Aedes albopictus and Lutzomyia longipalpis and with explanted guts of the respective insects. Endosymbiont-bearing strains interacted better with insect cells and guts when compared with aposymbiotic strains. In vitro binding assays revealed that the trypanosomatids interacted with the gut epithelial cells via flagellum and cell body. Flagella attached to the insect gut were enlarged, containing electrondense filaments between the axoneme and flagellar membrane at the point of adhesion. Interactions involving the flagellum lacking paraflagellar rod structure were mainly observed close to tight junctions, between epithelial cells. Endosymbiont-bearing trypanosomatids were able to colonise Aedes aegypti guts after protozoa feeding.

  4. Improving the specific energy of Li-Ion capacitor laminate cell using hybrid activated Carbon/LiNi0.5Co0.2Mn0.3O2 as positive electrodes

    Science.gov (United States)

    Hagen, M.; Cao, W. J.; Shellikeri, A.; Adams, D.; Chen, X. J.; Brandt, W.; Yturriaga, S. R.; Wu, Q.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-03-01

    In this work, we investigated the performance impact of LiNi0.5Co0.2Mn0.3O2 (NMC) as an additive to activated carbon (AC) electrodes within a high-performance Li-ion capacitor (LIC) fabricated with activated carbon positive electrodes (PEs) and hard carbon negative electrodes (NEs) having lithium thin films as Li sources loaded on the surface of the negative electrodes. The NMC additive impact in initial testing showed an increase in specific energy of the LIC of nearly 50.5% with a 32% maximum specific power loss. Contrary to its typical low rate battery decay at high rate cycling the cell having a hybrid PE is still able to maintain over 90% capacity at a 0.7C rate after 11,000 cycles at rate of 18C and an additional 9000 cycles at a rate of 36C. We conclude at high rate cycling minimal impacts occurs to the NMC properties which can be seen with low rate intercepts.

  5. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; Chrisler, William B.; Gaffrey, Matthew J.; Ansong, Charles; Sussel, Lori; Orr, Galya

    2017-10-04

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted from a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.

  6. Spleen cell proliferation during and after skin myiasis by human bot fly Dermatobia hominis.

    Science.gov (United States)

    Gonçalves, Jomara Mendes; Nascimento, Maria Fernanda Alves do; Breyner, Natália Martins; Fernandes, Viviane Cristina; Góes, Alfredo Miranda de; Leite, Antonio César Rios

    2009-01-01

    Spleen cells from mice were examined at 5, 10, 15, 20 and 25 days post-infection (dpi) with Dermatobia hominis larva and at 5, 10, 15, 30 and 60 days post-larval emergence (dple). Cell proliferation in vitro assays were carried out with RPMI-1640 medium and larval secretory product (LSP) of D. hominis at 5, 10, 15, 20 and 25 days. When each group of mice was tested against each medium, significance was only seen for 25 dpi, with increasing order: LSP-10 d, -25 d, -5 d, -20 d, -15 d and RPMI. Significant results were also observed when each medium was tested against mice at each dpi or dple. Each dple group vs. each medium produced significant results only for 10 dple, with increasing order: LSP-5 d, -20 d, -25 d, -10 d, -15 d and RPMI. Comparative tests were also carried out between groups to refine certain observations. The LSPs were also analyzed using SDS-PAGE. The results prove that myiasis caused depletion of spleen cells, particularly under the effect of the LSP-10 and -15, but the cells tended to increase up to 60 dple. This in vitro assay may represent the real systemic immune response in the relationship LSP-D. hominis-host.

  7. Flying Cities

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Lasserre, Sebastien; Ciger, Jan

    2008-01-01

    Flying Cities is an artistic installation which generates imaginary cities from the speech of its visitors. Thanks to an original interactive process analyzing people's vocal input to create 3D graphics, a tangible correspondence between speech and visuals opens new possibilities of interaction. ...... and a potential application. We believe that it could become a new medium for creativity, and a way to visually perceive a vocal performance in the context of the rehabilitation of people with reduced mobility or language impairments....

  8. Nonaqueous Electrolyte Development for Electrochemical Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    K. Xu; S. P. Ding; T. R. Jow

    1999-09-01

    The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

  9. High speed capacitor-inverter based carbon nanotube full adder.

    Science.gov (United States)

    Navi, K; Rashtian, M; Khatir, A; Keshavarzian, P; Hashemipour, O

    2010-03-18

    Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  10. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  11. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  12. Some remarks on the charging capacitor problem

    Science.gov (United States)

    Papachristou, C. J.

    2018-03-01

    The charging capacitor is used as a standard paradigm for illustrating the concept of the so-called Maxwell displacement current. A certain aspect of the problem, however, is often overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law both in the interior and the exterior of the capacitor. In this article the situation is analyzed and a mathematical process is desribed for obtaining expressions for the electromagnetic field that satisfy the full set of Maxwell's equations both inside and outside the capacitor.

  13. Dispersion spectrum of acoustoelectric waves in 1D piezoelectric crystal coupled with 2D infinite network of capacitors

    Science.gov (United States)

    Kutsenko, A. A.; Shuvalov, A. L.; Poncelet, O.

    2018-01-01

    A one-dimensional piezoelectric crystal coupled through periodically embedded electrodes with a two-dimensional semi-infinite periodic network of capacitors is considered. The unit cell of the network contains two capacitors with capacitances C1 and C2 which are in parallel and in series, respectively, with the electrodes. The dispersion spectrum of the longitudinal acoustoelectric wave in the piezoelectric crystal coupled with the electric wave of potentials and charges in the network of capacitors is investigated. It is shown that when C1 and C2 are of the same sign, the dispersion spectrum consists of a discrete set of curves, for which the electric wave exponentially decays into the depth of the network of capacitors. In contrast, if C1 and C2 are of the opposite sign and |C1/C2|capacitors.

  14. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  15. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  16. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  17. Excellent scalability including self-heating phenomena of vertical-channel field-effect-diode type capacitor-less one transistor dynamic random access memory cell

    Science.gov (United States)

    Imamoto, Takuya; Endoh, Tetsuo

    2014-01-01

    The scalability study and the impact of the self-heating effect (SHE) on memory operation of the bulk vertical-channel field effect diode (FED) type capacitorless one transistor (1T) dynamic random access memory (DRAM) cell are investigated via device simulator for the first time. The vertical-channel FED type 1T-DRAM cell shows the excellent hold characteristics (100 ms at 358 K of ambient temperature) with large enough read current margin (1 µA/cell) even when silicon pillar diameter (D) is scaled down from 20 to 12 nm. It is also shown that by employing the vertical-channel FED type, maximum lattice temperature in the memory cell due to SHE (T_{\\text{L}}^{\\text{Max}}) can be suppressed to a negligible small value and only reach 300.6 from 300 K ambient temperature due to the low lateral electric field, while the vertical-channel bipolar junction transistor (BJT) type 1T-DRAM shows significant SHE (T_{\\text{L}}^{\\text{Max}} = 330.6 K). Moreover, this excellent thermal characteristic can be maintained even when D is scaled down from 20 to 12 nm.

  18. Pseudo-capacitor device for aqueous electrolytes

    Science.gov (United States)

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

    1998-11-24

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and Opower density in the pseudo-capacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity. 8 figs.

  19. Relaxors Terpolymers for Energy Storage Capacitors

    National Research Council Canada - National Science Library

    Zhang, Qiming

    2005-01-01

    In this program, Penn State, TRS Technologies, and Electronic Concepts, Inc. (ECI) worked together to perform a preliminary investigation of various issues related to the ferroelectric relaxor terpolymer for energy storage capacitors...

  20. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  1. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... With energy density in excess of 300 mJ/cc and the potential to exceed a power density of 100 W/cc, the alkaline electrochemical capacitor represents a significant advancement in technology for high power energy storage.

  2. High Energy Density Capacitors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  3. Fly Sings

    OpenAIRE

    Osmond, Matthew

    2015-01-01

    Fly Sings (winner of the Bitish Library's 2015 Michael Marks Poetry Illustration award) forms the first installment of a prequel to the deadman and hare stories. It concerns how hare first came to be ‘summoned to the world below’, to look for deadman.\\ud \\ud Strandline Books chapbooks are produced as signed and numbered editions of 48, printed in black inkjet on 90gsm off-white recycled paper. They sell at £8 + £2 p&p. If interested, please email Mat Osmond at

  4. Flying Cities

    DEFF Research Database (Denmark)

    Ciger, Jan

    2006-01-01

    of providing a tangible correspondence between the two spaces. This interaction mean has proved to suit the artistic expression well but it also aims at providing anyone with a pleasant and stimulating feedback from speech activity, a new medium for creativity and a way to visually perceive a vocal performance......The Flying Cities artistic installation brings to life imaginary cities made from the speech input of visitors. In this article we describe the original interactive process generating real time 3D graphics from spectators' vocal inputs. This example of cross-modal interaction has the nice property...

  5. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  6. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  7. Commercially Available Capacitors at Cryogenic Temperatures

    OpenAIRE

    Teyssandier, F.; Prêle, D.

    2010-01-01

    Commercially available capacitors are not specified for operation at 77 K or 4 K, and some devices showed a dramatic decrease of capacitance at cryogenic temperature. Furthermore, for voltage biasing of cryogenic low impedance sensors it is very important to know parasitic resistance. In this case, the parasitic Equivalent Series Resistance (ESR) of the capacitor used for the AC-biasing is a bottleneck of the voltage biasing. Involved in TES development and SQUID multiplexing, we have charact...

  8. High-performance planar nanoscale dielectric capacitors

    OpenAIRE

    Ciraci, S.; Özçelik, V. Ongun

    2016-01-01

    We propose a model for planar nanoscale dielectric capacitor consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene - BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from othe...

  9. Monolithic ceramic capacitors for high reliability applications

    Science.gov (United States)

    Thornley, E. B.

    1981-01-01

    Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.

  10. Some remarks on the charging capacitor problem

    OpenAIRE

    Papachristou, C. J.

    2017-01-01

    The charging capacitor is used as a standard paradigm for illustrating the concept of the so-called Maxwell displacement current. A certain aspect of the problem, however, is often overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law both in the interior and the exterior of the capacitor. In this article the situation is analyzed and a mathematical process is desribed for obtaining expressions for the electromagnetic field that satisfy the full set of Maxwell's equ...

  11. Capacitor blocks for linear transformer driver stages.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Kumpyak, E V; Smorudov, G V; Zherlitsyn, A A

    2014-01-01

    In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

  12. The myb-related gene stonewall induces both hyperplasia and cell death in Drosophila: rescue of fly lethality by coexpression of apoptosis inducers.

    Science.gov (United States)

    Brun, S; Rincheval-Arnold, A; Colin, J; Risler, Y; Mignotte, B; Guénal, I

    2006-10-01

    We carried out gain-of-function mutagenesis screening and identified a mutant in which GAL4 induction led to both hyperplasia and apoptosis. The gene involved was identified as stonewall (stwl), a myb-related gene involved in germ cell proliferation and differentiation during oogenesis. As observed with dmyb, the ectopic expression of stwl(UY823) inhibited endoreplication in salivary glands. We also found that stwl(UY823) overexpression, like overexpression of the wild-type gene, activated G1/S transition and apoptosis. The apoptosis triggered by stwl(UY823) expression is correlated to induction of the proapoptotic gene reaper. Finally, the death of flies induced by ectopic stwl(UY823) expression is efficiently prevented in vivo by triggering cell death in stwl(UY823)-expressing cells. Our results suggest that stwl(UY823) kills flies by causing inappropriate cell cycle entry, and that triggering the death of these overproliferating cells or slowing their proliferation restores viability.

  13. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  14. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    Science.gov (United States)

    Liu, David (Donghang)

    2010-01-01

    Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no

  15. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.

    Science.gov (United States)

    Shul, Galyna; Bélanger, Daniel

    2016-07-28

    The self-discharge of hybrid electrochemical capacitors based on the redox activity of electrolyte additives or grafted species to the electrode material is investigated simultaneously for the cell and each individual electrode. Electrochemical capacitors using a redox-active electrolyte consisting in hydroquinone added to the electrolyte solution and a redox-active electrode based on anthraquinone-grafted carbon as a negative electrode are investigated. The results are analyzed by using Conway kinetic models and compared to those of a common electrochemical double layer capacitor. The self-discharge investigation is complemented by charge/discharge cycling and it is shown that processes affecting galvanostatic charge/discharge cycling and the self-discharge rate occurring at each electrode of an electrochemical capacitor are different but related to each other. The electrochemical capacitor containing hydroquinone in the electrolyte exhibits a much quicker self-discharge rate than that using a negative electrode based on grafted anthraquinone with a 50% decay of the cell voltage of the fully charged device in 0.6 and 6 h, respectively. The fast self-discharge of the former is due to the diffusion of benzoquinone molecules (formed at the positive electrode during charging) to the negative electrode, where they are reduced, causing a quick depolarization. The grafting of anthraquinone molecules on the carbon material of the negative electrode led to a much slower self-discharge, which nonetheless occurred, by the reaction of the reduced form of the grafted species with electrolyte species.

  16. Fast risetime one megajoule capacitor bank

    International Nuclear Information System (INIS)

    Markins, D.; Baker, W.L.; Reinovsky, R.E.; Clark, J.G.

    1976-01-01

    A 100 kV, 1.1 MJ capacitor bank for plasma research experiments has been constructed for the Air Force Weapons Laboratory. The system consists of twenty, individual, low inductance capacitor modules, each utilizing a four element switch package approximately 2 meters wide. Each module contains twenty-four ''scyllac'' type 1.85 μF capacitors. A 100 kV output pulse is obtained by charging the top half of each module to +50 kV and the bottom half to -50 kV. A pressurized, low inductance multichannel switch package incorporating four separately triggered elements is designed to fit into the parallel plate transmission line system of the capacitor module. The bank is configured in a cross shape with twenty modules spaced uniformly around the perimeter of a parallel plate transmission line. The transmission line is constructed with 32 mil aluminum and insulated with 60 mils of mylar. The bank is designed to feed an easily replaceable central coaxial load. The entire system has been repeatedly fired at 100 kV with a dummy resistive load and has delivered 2.2 x 10 7 amperes of current with a risetime of 1.1 μsec. The total measured system inductance is 2.2 nH. This system represents a significant advance in the development of reliable, fast, high current capacitor banks

  17. BioCapacitor--a novel category of biosensor.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ferri, Stefano; Nakayama, Daisuke; Tomiyama, Masamitsu; Ikebukuro, Kazunori; Sode, Koji

    2009-03-15

    This research reports on the development of an innovative biosensor, known as BioCapacitor, in which biological recognition elements are combined with a capacitor functioning as the transducer. The analytical procedure of the BioCapacitor is based on the following principle: a biocatalyst, acting as a biological recognition element, oxidizes or reduces the analyte to generate electric power, which is then charged into a capacitor via a charge pump circuit (switched capacitor regulator) until the capacitors attains full capacity. Since the charging rate of the capacitor depends on the biocatalytic reaction of the analyte, the analyte concentration can be determined by monitoring the time/frequency required for the charge/discharge cycle of the BioCapacitor via a charge pump circuit. As a representative model, we constructed a BioCapacitor composed of FAD-dependent glucose dehydrogenase (FADGDH) as the anodic catalyst, and attempted a glucose measurement. Charge/discharge frequency of the BioCapacitor increased with the increasing glucose concentration, exhibiting good correlation with glucose concentration. We have also constructed a wireless sensing system using the BioCapacitor combined with an infrared light emitting diode (IRLED), an IR phototransistor system. In the presence of glucose, the IRLED signal was observed due to the discharge of the BioCapacitor and detected by an IR phototransistor in a wireless receiver. Therefore, a BioCapacitor employing FADGDH as its anodic catalyst can be operated as a self-powered enzyme sensor.

  18. Negative capacitance in a ferroelectric capacitor.

    Science.gov (United States)

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  19. Pseudo-capacitor device for aqueous electrolytes

    Science.gov (United States)

    Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.

    1998-01-01

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and Ocapacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity.

  20. Downhole transmission system comprising a coaxial capacitor

    Science.gov (United States)

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy; Rawle, Michael [Springville, UT

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  1. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... To determine the optimum utilization of ultra-capacitors in applications where high power density and high energy density are required, an optimized Li-Ion/Ultra-capacitor Hybrid Energy Module (HEM...

  2. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a broad...

  3. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  4. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  5. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Failure mode and effect analysis (FMEA) is an important step in the reliability assessment process of electric components. It provides knowledge of the physics of failure of a component that has been subjected to a given stress profile. This knowledge enables improvement of the component robustness...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  6. Performance of ALVAND 1. capacitor bank

    International Nuclear Information System (INIS)

    Torabi-fard, A.; Farahani, M.; Ebrani, M.; Rostami, R.; Daghighian, F.

    1978-01-01

    This report describes the specifications of the capacitor bank for the ALVAND I, Linear theta pinch experiment and the results of some tests performed on it. A one-meter-wide module includes the basic components such as capacitors, Spark gaps, and crowbar triggers. Complementary parts such as ground system, pressurised dry air system and safety system were added. With a rise-time of about three micro-seconds and a total current of six million amperes it is possible to produce ion temperature in excess of one kev for a few microseconds. Different probes were used to measure the magnetic field and the total current

  7. Design and Characterization of Vertical Mesh Capacitors in Standard CMOS

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    This paper shows how good RF capacitors can be made in a standard digital CMOS process. The capacitors which are also well suited for binary weighted switched capacitor banks show very good RF performance: Q-values of 57 at 4.0 GHz, a density of 0.27 fF/μ2, 2.2 μm wide shielded unit capacitors, 6...

  8. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate.

    Science.gov (United States)

    Sajó, Ráchel; Liliom, Károly; Muskotál, Adél; Klein, Agnes; Závodszky, Péter; Vonderviszt, Ferenc; Dobó, József

    2014-11-01

    Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    Science.gov (United States)

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  10. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Ishii, Y.; Al-zubaidi, A.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan); Rashid, M.; Syakirin, A. [Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  11. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    NARCIS (Netherlands)

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A.; Le Corre, Vincent M.; Qiu, Li; Hummelen, Jan C.; Palasantzas, George; Koster, L. Jan Anton

    2017-01-01

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the

  12. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly......, the proposed switched-capacitor cells in series with converter can be generalized in two ways, resulting in dc-dc converters of ultra-high dc conversion ratios. Theoretical analysis, simulation and experimental tests have demonstrated the superior performance of the proposed converter in terms of high dc...

  13. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    Campylobacter in flies Flies of the Muscidae family forage on all kind of faeces – various fly species have different preferences. M domestica prefer pigs, horses and cattle faeces, animals which are all known to frequently excrete Campylobacter. As a result, the insects pick up pathogenic micro...... organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... of several species of flies collected outside broiler houses, merely ~1% of the flies were found Campylobacter positive. However, the prevalence varied considerably with fly species, time of the year, and availability of Campylobacter sources. Influx of flies to broiler houses As the influx of flies...

  14. Capacitor Monitoring for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Deng, Fujin; Liu, Dong; Wang, Yanbo

    2017-01-01

    ). The capacitor monitoring in each SM of the MMC is an important issue, which would affect the performance of the MMC. This paper proposed an effective monitoring method for the capacitance in each SM of the MMC. The proposed method reveals the relationship between the arm average capacitance and the capacitance...

  15. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  16. Capacitors and Resistance-Capacitance Networks.

    Science.gov (United States)

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  17. Equal Plate Charges on Series Capacitors?

    Science.gov (United States)

    Illman, B. L.; Carlson, G. T.

    1994-01-01

    Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)

  18. Modeling of charge switching in ferroelectric capacitors.

    Science.gov (United States)

    Sun, Shunming; Kalkur, Thottam S

    2004-07-01

    To simulate charge switching in ferroelectric capacitors, a pair of exponential growth and decay currents is mapped to the process of polarization reversal. This is based on the fact that these exponential currents [i.e., i = I(m) e(t/tau) (t or = 0)], are completely specified by two constants I(m) and tau and each accommodates an integral charge Q = I(m) x tau. Equating this charge to the remanent spontaneous polarization allows for the modeling of switching current. For practical circuit simulations for charge switching, this modeling of switching current is simplified to an exponential decay current whose integral charge is set equal to the total reversed spontaneous polarization. This is because an exponential decay current can be conveniently implemented by charging a series resistor and capacitor (RC) circuit with a pulse-voltage source. The voltage transitions of the pulse source are associated with the polarization reversal and can be controlled with a noninverting Schmitt trigger that toggles at the positive and negative coercive voltages of a ferroelectric capacitor. The final circuit model incorporates such electrical and geometrical parameters as capacitance, remanent spontaneous polarization, coercive field, electrode area, and film thickness of a ferroelectric, thin-film capacitor.

  19. Capacitor discharge process for welding braided cable

    Science.gov (United States)

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  20. Effects of Radiation on Capacitor Dielectrics

    Science.gov (United States)

    Bouquet, F. L.; Somoano, R. B.; Frickland, P. O.

    1987-01-01

    Data gathered on key design parameters. Report discusses study of electrical and mechanical properties of irradiated polymer dielectric materials. Data compiled for use by designers of high-energy-density capacitors that operate in presence of ionizing radiation. Study focused on polycarbonates, polyetheretherketones, polymethylpentenes, polyimides (including polyetherimide), polyolefins, polysulfones (including polyethersulfone and polyphenylsulfone), and polyvinylidene fluorides.

  1. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported. Varying HClO4 dopant concentration leads to different characteristics of the capaci- tors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to ...

  2. Charge and Energy Stored in a Capacitor

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  3. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C

    2017-01-01

    The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  5. Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies.

    Directory of Open Access Journals (Sweden)

    Ronit Shaltiel-Karyo

    Full Text Available The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.

  6. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  7. Faraday Rotator 5 kV Capacitor Bank

    International Nuclear Information System (INIS)

    Fetterman, C.C.

    1975-01-01

    A Faraday rotator 5 kV capacitor bank is a pulsed output power supply used to energize Faraday rotators for optical isolation in the ''LLL kJ Glass Laser System.'' Each supply contains either one, two or three parallel 240 μF storage capacitors depending on the size of the isolator used. Generally, the ''A*''(216 μH) isolator is energized with one capacitor, the ''A''(116 μH) isolator uses two capacitors and the ''B''(87 μH) isolator requires three capacitors. All models of isolators have been tested with four capacitors under maximum voltage and 25 feet of RG-217 cable with no hazardous effects. Except for the number of capacitors in each unit, the supplies are otherwise physically identical

  8. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  9. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems.

    Science.gov (United States)

    Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia

    2011-08-01

    A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.

  10. Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors

    KAUST Repository

    Omran, Hesham

    2016-04-21

    Small metal-oxide-metal (MOM) capacitors are essential to energy-efficient mixed-signal integrated circuit design. However, only few reports discuss their matching properties based on large sets of measured data. In this paper, we report matching properties of femtofarad and sub-femtofarad MOM vertical-field parallel-plate capacitors and lateral-field fringing capacitors. We study the effect of both the finger-length and finger-spacing on the mismatch of lateral-field capacitors. In addition, we compare the matching properties and the area efficiency of vertical-field and lateral-field capacitors. We use direct mismatch measurement technique, and we illustrate its feasibility using experimental measurements and Monte Carlo simulations. The test-chips are fabricated in a 0.18 \\\\mutext{m} CMOS process. A large number of test structures is characterized (4800 test structures), which improves the statistical reliability of the extracted mismatch information. Despite conventional wisdom, extensive measurements show that vertical-field and lateral-field MOM capacitors have the same matching properties when the actual capacitor area is considered. Measurements show that the mismatch depends on the capacitor area but not on the spacing; thus, for a given mismatch specification, the lateral-field MOM capacitor can have arbitrarily small capacitance by increasing the spacing between the capacitor fingers, at the expense of increased chip area.

  11. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  12. Diagnostics and performance evaluation of multikilohertz capacitors

    International Nuclear Information System (INIS)

    McDuff, G.; Nunnally, W.C.; Rust, K.; Sarjeant, J.

    1980-01-01

    The observed performance of nanofarad polypropylene-silicone oil, mica paper, and polytetrafluoroethylene-silicone oil capacitors discharged in a 100-ns, 1-kA pulse with a pulse repetition frequency of 1 kHz is presented. The test facility circuit, diagnostic parameters, and the preliminary test schedule are outlined as a basis for discussion of the observed failure locations and proposed failure mechanisms. Most of the test data and discussion presented involves the polypropylene-silicone oil units

  13. Materials Development for Commercial Multilayer Ceramic Capacitors

    OpenAIRE

    Mikkenie, R.

    2011-01-01

    Electronic devices like notebooks, smart phones, GPS units, LED TVs and other daily life applications are produced with increased functionality and complexity from year to year. Today’s electronic devices must be equipped with new smart electronic circuitry designs to add more functionality within a single device, while not making them larger in size. As the electronic circuits are made of various components, active semiconducting chips and passive components, like resistors, capacitors and i...

  14. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  15. Capacitor performance limitations in high power converter applications

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    High voltage low inductance capacitors are used in converters as HVDC-links, snubber circuits and sub model (MMC) capacitances. They facilitate the possibility of large peak currents under high frequent or transient voltage applications. On the other hand, using capacitors with larger equivalent...... series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decided by the ability of the converter components, including the capacitors, to withstand them over...... ratings and capacitances where investigated and compared a) on a component scale, characterizing the capacitors transient performance and b) as part of different converter applications, where the series inductance plays a role. In that way, better insight is achieved on how the capacitor construction can...

  16. Thermodynamic energy exchange in a moving plate capacitor.

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.

  17. Capacitor requirements for controlled thermonuclear experiments and reactors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Hoffman, P.S.

    1975-01-01

    Future controlled thermonuclear experiments as well as controlled thermonuclear reactors will require substantial numbers of capacitors. The demands on these units are likely to be quite severe and quite different from the normal demands placed on either present energy storage capacitors or present power factor correction capacitors. It is unlikely that these two types will suffice for all necessary Controlled Thermonuclear Research (CTR) applications. The types of capacitors required for the various CTR operating conditions are enumerated. Factors that influence the life, cost and operating abilities of these types of capacitors are discussed. The problems of capacitors in a radiation environment are considered. Areas are defined where future research is needed. Some directions that this research should take are suggested. (U.S.)

  18. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  19. Performance of thin-film ferroelectric capacitors for EMC decoupling.

    Science.gov (United States)

    Li, Huadong; Subramanyam, Guru

    2008-12-01

    This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.

  20. Method of manufacturing a shapeable short-resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  1. High power density capacitor and method of fabrication

    Science.gov (United States)

    Tuncer, Enis

    2012-11-20

    A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.

  2. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  3. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism.

    Science.gov (United States)

    Jiang, N; Dreher, K L; Dye, J A; Li, Y; Richards, J H; Martin, L D; Adler, K B

    2000-03-15

    Inhalation of ambient air particulate matter (PM) is associated with pulmonary injury and inflammation. Using primary cultures of guinea pig tracheal epithelial (GPTE) cells as an in vitro model of airway epithelium, we examined effects of exposure to suspensions of six different emission and ambient air PM samples: residual oil fly ash (ROFA) from an electrical power plant; fly ash from a domestic oil burning furnace (DOFA); ambient air dust from St. Louis (STL), Ottawa (OT), and Washington, DC (WDC); and volcanic ash from the eruption of Mount Saint Helens (MSH) in 1980. Effects of these particulates on cell viability (assessed via LDH assay), secretion of mucin (measured by a monoclonal antibody-based ELISA), and steady-state mRNA levels of the mucin gene MUC2 were determined. ROFA was the most toxic of the dusts tested, as it significantly increased LDH release following a 24-h incubation with 50 microg/cm(2) ROFA. ROFA also enhanced MUC2 mRNA after 4-h exposure, and mucin secretion after 8 h. ROFA-induced mucin secretion and cytotoxicity were attenuated by the oxidant scavenger, dimethylthiourea (DMTU). ROFA exposure also depleted cells of glutathione (GSH). Relatedly, depletion of intracellular GSH by treatment of the cells with buthionine sulfoxamine (BSO) also provoked mucin secretion, as well as enhancing the secretory effect of ROFA when the two agents were added together. L-NMA, the nitric oxide synthase (NOS) inhibitor, did not affect ROFA-induced mucin secretion. Of the soluble transition metals in ROFA (nickel, iron, vanadium), only vanadium individually, or combinations of the metals containing vanadium, provoked secretion. The results suggest ROFA enhances mucin secretion and generates toxicity in vitro to airway epithelium via a mechanism(s) involving generation of oxidant stress, perhaps related to depletion of cellular antioxidant capacity. Deleterious effects of inhalation of ROFA in the respiratory tract in vivo may relate to these cellular

  4. Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758).

    Science.gov (United States)

    Torres, Lorena; Almazán, Consuelo; Ayllón, Nieves; Galindo, Ruth C; Rosario-Cruz, Rodrigo; Quiroz-Romero, Héctor; de la Fuente, José

    2011-02-10

    The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi). A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and oviposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls. These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

  5. Non-volatile MOS RAM cell with capacitor-isolated nodes that are radiation accessible for rendering a non-permanent programmed information in the cell of a non-volatile one

    NARCIS (Netherlands)

    Widdershoven, Franciscus P.; Annema, Anne J.; Storms, Maurits M.N.; Pelgrom, Marcellinus J.M.; Pelgrom, Marcel J M

    2001-01-01

    A non-volatile, random access memory cell comprises first and second inverters each having an output node cross-coupled by cross-coupling means to an input node of the other inverter for forming a MOS RAM cell. The output node of each inverter is selectively connected via the conductor paths of

  6. A MEMS capacitor with improved RF power handling capability

    OpenAIRE

    Girbau, D.; Otegi, N.; Pradell, L.; Lázaro, A.

    2005-01-01

    This paper presents a structure of MEMS capacitor providing independence of its nominal capacity and tuning range from the applied RF signal power. The capacitor includes a third parallel plate acting as an electrode to which an extra DC voltage is applied to compensate for the self-actuation effect. This means that the device can be used in many applications working under different RF power conditions, without changing its performance – nominal capacity and tuning range –. Capacitor design c...

  7. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    OpenAIRE

    Gallay, R.

    2016-01-01

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences. One of the main concerns for power electronic engineers regarding capacitors i...

  8. Design techniques for switched capacitor adaptive line equlizer

    OpenAIRE

    Nakayama, Kenji; Sato, Yayoi; Kuranishi, Yoshiaki

    1985-01-01

    This paper describes design techniques for a switched capacitor adaptive line equalizer which is applied to high speed (200 kb/s) digital transmission over analog subscriber loops. An equalizer transfer function is approximated so as to minimize intersymbol interference of an isolated pulse response. Optimum pole-zero location, which is suited to line characteristics in a wide frequency band, is also discussed. In order to attain high accuracy capacitor ratios using a small unit capacitor, ca...

  9. Fabrication of Flexible Super Capacitor Using Laser Lightscribe Technique

    OpenAIRE

    Joseph, Gladson; Kirubaraj, A. Alfred; Satheesh, U.; Devaprakasam, D.

    2014-01-01

    Super capacitors are promising energy storage devices due to their capability of delivering high peak current and storing high amount of energy in a short time with very low internal power loss. We fabricated the graphene or graphite oxide super-capacitor using laser Lightscribe technique. We prepared graphite oxide by modified hummers method and used PET film as a flexible substrate on which graphite oxide (GO) was coated. Using Lightscribe drive and software, the super-capacitor configurati...

  10. Reliability of capacitors for DC-link applications - An overview

    OpenAIRE

    Wang, Huai; Blaabjerg, Frede

    2013-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of DC-link in power electronic converters from two aspects: 1) reliability-oriented DC-link design solutions; 2) conditioning monitoring of DC-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capaci...

  11. Capacitor performance limitations in high power converter applications

    OpenAIRE

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    High voltage low inductance capacitors are used in converters as HVDC-links, snubber circuits and sub model (MMC) capacitances. They facilitate the possibility of large peak currents under high frequent or transient voltage applications. On the other hand, using capacitors with larger equivalent series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decid...

  12. Investigation of the Dissipation Process in Electrolytic Capacitors

    OpenAIRE

    Keith A. Joyner; Leconte Cathey

    1980-01-01

    An experimental study of electrolytic capacitors was conducted, with emphasis on their thermal properties. The capacitors were subjected to charge–discharge cycles with various values of peak voltage. The observed power dissipated did not agree with that which would be expected if constant capacitance and constant effective series resistance (ESR) are assumed for the capacitors. In order to explain the discrepancy, the capacitance and ESR variations were measured with respect to voltage, temp...

  13. Increasing Electric Field Strength of Polymer Capacitors (Preprint)

    Science.gov (United States)

    2017-10-31

    AFRL-RX-WP-JA-2017-0496 INCREASING ELECTRIC FIELD STRENGTH OF POLYMER CAPACITORS (PREPRINT) Fahima Ouchen KBRWyle James Grote...POLYMER CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5518 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) 1) Fahima...ABSTRACT (Maximum 200 words) Increased electric field breakdown in several polymer-based capacitor dielectrics, including biaxially oriented

  14. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  15. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  16. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  17. Design and Characterization of Vertical Mesh Capacitors in Standard CMOS

    OpenAIRE

    Christensen, Kåre Tais

    2001-01-01

    This paper shows how good RF capacitors can be made in a standard digital CMOS process. The capacitors which are also well suited for binary weighted switched capacitor banks show very good RF performance: Q-values of 57 at 4.0 GHz, a density of 0.27 fF/μ2, 2.2 μm wide shielded unit capacitors, 6% bottom plate capacitance, better than 3-5% process variation and negligible series inductance. Further, a simple yet accurate method is presented that allows hand calculation of the capacitance valu...

  18. Evaluation of Case Size 0603 BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2015-01-01

    High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.

  19. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    Science.gov (United States)

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  20. Nanostructured dielectrics for high-temperature capacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space operation places extra physical and structural demands on the power components, including capacitors. Nanostructured dielectrics offer the opportunity to...

  1. Nonmedical application of computed tomography to power capacitor quality assesment

    International Nuclear Information System (INIS)

    Kruger, R.P.

    1981-01-01

    Present research and development efforts at Los Alamos Scientific Laboratory require the design and use of high-efficiency rapid-discharge energy storage capacitors for laser isotope separation and plasma physics programs. In these applications, capacitors are subjected to electrical, mechanical, thermal, and other environmental stresses. These stresses cause the dielectric constant to change due to gasification from arcing at nonsoldering connections, which produce a chemical reduction of the dielectric material. This effectively limits the lifetime of the capacitor. The programs mentioned above require capacitors with a multikilohertz frequency response at a current of tens of kiloamperes and a voltage of at least 100 kV. The lifetime of such capacitors should exceed 10 10 charge/discharge cycles. Such capacitors do not presently exist. The exploration of new capacitor designs will require the use of both electrical functional tests and tests that show the changes in internal physical structure as the capacitor is repeatedly stressed by the charge/discharge cycle. The integration of electrical and structural tests throughout the life cycle of a candidate capacitor makes it imperative that the structural integrity tests be nondestructive. Computed tomography (CT) makes this integration possible. The work reported here is the result of a pilot project designed to show the potential use of CT for this application. This work includes visualization of material defects using both a layered sequence of conventional tomographic slices and orthogonal multiangular pseudoradiographs generated from these slices

  2. Using a Fixed and Switched-Capacitor Bank to Investigate Harmonic Resonance and Capacitor Bank Switching in a Distribution Network

    OpenAIRE

    J.C. Attachie; C.K. Amuzuvi

    2014-01-01

    Harmonic resonance often manifests as high harmonic voltages in a power system. This produces losses and affects other consumers in the grid negatively. Capacitance switching applications also involve not only interrupting capacitive currents, but also the energizing of capacitor banks, cables and overhead lines. The applications of capacitors are extensively used in power systems for voltage support and power factor correction. However, the main concern arising from the use of capacitors is ...

  3. Evaluation of a commercial vacuum fly trap for controlling flies on organic dairy farms.

    Science.gov (United States)

    Kienitz, M J; Heins, B J; Moon, R D

    2018-02-28

    The objective of this study was to evaluate the efficacy of a commercial vacuum fly trap (CowVac, Spalding Laboratories, Reno, NV) in on-farm organic dairy production systems to control horn flies, stable flies, and face flies. As cows walk through the trap, flies are brushed off the face, flank, and back with hanging flaps and blown off the belly, udder, and legs from one side, and then vacuumed from the air into a chamber from vacuum inlets opposite the blower and above the cow. The study included 8 organic dairy farms during the summer of 2015 in Minnesota, and herds ranged from 30 to 350 cows in size. The farms were divided into pairs by location; during the first period of the summer (June to July), the trap was set up on 1 farm, whereas during the second period of the summer (August to September) the trap was sent to its paired farm. Farms were visited once per week to collect and count flies from the trap as well as count and record flies on cows. Bulk tank milk, fat, and protein production and somatic cell count were collected on farms during the entire study period. Data were analyzed using the GLM procedure of SAS (version 9.3, SAS Institute Inc., Cary, NC). Independent variables for analyses were the fixed effects of farm, trap presence, housing scenario, and summer period. Horn fly numbers on cows were lower by 44% on farm in the presence of a trap (11.4 vs. 20.5 flies/cow-side) compared with the absence of a trap. Stable fly (5.4 vs. 7.1 flies/leg) and face fly (1.0 vs. 1.0 flies/cow) numbers were similar on farm whether the trap was present or absent on farms, respectively. Milk production was similar for farms with the trap (15.5 kg/d) compared to without (15.3 kg/d) the trap. Bulk tank milk, milk components, and somatic cell count were statistically similar in the presence and absence of the trap, so potential benefits of the trap for those measures were not evident at low fly populations observed during the study. The presence of a trap on farm

  4. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications

    Science.gov (United States)

    Le Comte, Annaïg; Reynier, Yvan; Vincens, Christophe; Leys, Côme; Azaïs, Philippe

    2017-09-01

    Hybrid supercapacitors, combining capacitive carbon-based positive electrode with a Li-ion battery-type negative electrode have been developed in the pursuit of increasing the energy density of conventional supercapacitor without impacting the power density. However, lithium-ion capacitors yet hardly meet the specifications of automotive sector. Herein we report for the first time the development of new hybrid potassium-ion capacitor (KIC) technology. Compared to lithium-ion capacitor (LIC) all strategic materials (lithium and copper) have been replaced. Excellent electrochemical performance have been achieved at a pouch cell scale, with cyclability superior to 55 000 cycles at high charge/discharge regime. For the same cell scale, the energy density is doubled compared to conventional supercapacitor up to high power regime (>1.5 kW kg-1). Finally, the technology was successfully scaled up to 18650 format leading to very promising prospects for transportation applications.

  5. Horn Fly, (L.), Overwintering

    OpenAIRE

    Allan T. Showler; Weste L.A. Osbrink; Kimberly H. Lohmeyer

    2014-01-01

    The horn fly, Haematobia irritans irritans (L.), is an ectoparasitic blood feeder mainly on cattle. Its cosmopolitan distribution extends from boreal and grassland regions in northern and southern latitudes to the tropics. Stress and blood loss from horn flies can reduce cattle weight gain and milk production. Horn flies show substantial plasticity in their response to winter. Populations in warmer, lower latitudes have been reported to overwinter in a state of dormancy, but most overwinter a...

  6. Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor

    Science.gov (United States)

    Kaufman, David Y [Chicago, IL; Saha, Sanjib [Santa Clara, CA

    2006-08-29

    A short-resistant capacitor comprises an electrically conductive planar support substrate having a first thickness, a ceramic film deposited over the support substrate, thereby defining a ceramic surface; and a metallic film deposited over the ceramic surface, said film having a second thickness which is less than the first thickness and which is between 0.01 and 0.1 microns.

  7. Formation Flying Concept Issues

    Directory of Open Access Journals (Sweden)

    M. V. Palkin

    2015-01-01

    Full Text Available The term “formation flying” implies coordinated movement of at least two satellites on coplanar and non-coplanar orbits with a maximum distance between them being much less than the length of the orbit. Peculiarities of formation flying concept also include:- automatic coordination of satellites;- sub-group specialization of formation flying satellites;- equipment and data exchange technology unification in each specialized group or subgroup.Formation flying satellites can be classified according to the configuration stability level (order (array, cluster («swarm», intergroup specialization rules («central satellite», «leader», «slave», manoeuvrability («active» and «passive» satellites.Tasks of formation flying include:- experiments with payload, distributed in formation flying satellites;- various near-earth space and earth-surface research;- super-sized aperture antenna development;- land-based telescope calibration;- «space advertisement» (earth-surface observable satellite compositions of a logotype, word, etc.;- orbital satellite maintenance, etc.Main issues of formation flying satellite system design are:- development of an autonomous satellite group manoeuvring technology;- providing a sufficient characteristic velocity of formation flying satellites;- ballistic and navigation maintenance for satellite formation flying;- technical and economic assessment of formation flying orbital delivery and deployment;- standardization, unification, miniaturization and integration of equipment;- intergroup and intersatellite function redistribution.

  8. Simulation of capacitor charging power supplies

    Science.gov (United States)

    Newton, S. R.; Nelms, R. M.

    1990-01-01

    By neglecting losses and other nonidealities, the authors were able to derive a simple single-loop equivalent circuit for each mode of operation of the series resonant converter. From these equivalent circuits, a good approximation of the current and voltages within the converter was obtained, despite the simplified approach taken. It is pointed out that designers of capacitor charging power supplies can utilize this approach in deciding what type of control strategy is needed to obtain a desired characteristic. Once the basic topology of the power supply has been determined, a detailed simulation could be implemented using one of the general-purpose software packages available.

  9. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  10. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  11. Active Device-Less Voltage Equalization Charger Using Capacitors, Diodes, and an AC Power Source

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Conventional cell/module voltage equalizers or equalization chargers based on traditional dc-dc converters require numerous switches or transformers as the number of series connections increases; therefore, their cost and complexity tend to increase and their reliability decreases as the number of connections increases. This paper proposes a novel voltage equalization charger that consists only of passive components such as capacitors, diodes, and a transformer. The fundamental operating principle, major features, and derivation of equivalent dc circuits are presented. A symmetrical configuration is also proposed to mitigate the RMS current flowing through energy storage cells in the charging process. Simulations and experimental charging and cycle tests were performed on series-connected electric double-layer capacitor modules to demonstrate the equalization performance. The experimental and simulation results were in good agreement, and the voltage imbalances were gradually eliminated as time elapsed even during charge-discharge cycling.

  12. Eosinophil and mast cell expression in host skin during larval development of the human bot fly Dermatobia hominis

    Directory of Open Access Journals (Sweden)

    Pereira M.C.T.

    2002-12-01

    Full Text Available Eosinophils and mast cells in the skin of Wistar rats (Rattus norvegicus infested with Dermatobia hominis larvae were quantified and analysed. Eosinophils in parasitised skin increased markedly until 10 days post-infestation (dpi and then decreased up to 28 dpi, close to the point at which third stage larvae (L3 emerged from the host. In ascending order, the highest numbers of eosinophils were seen in rats at 1, 4, 28, 20, 15 and 10 dpi, corresponding to the first, (1 and 4 third (20 and 28 and second (10 and 15 instars. Except for 1 dpi, eosinophil numbers were significantly higher than those seen in control animals. Mast cell numbers were highest in early infestations (4 dpi, followed by those at 20 dpi. In increasing order, numbers of mast cells were greatest at 10, 28, 15, 1, 20 and 4 dpi, although significant differences with control animals were only seen at 10 and 28 dpi. Eosinophils and mast cells showed negative correlation only in animals with second instar larvae (10 and 15 dpi. Comparative analyses were also carried out after considering the skin into four distinct regions. The results suggest that the expression of both cell types, particularly eosinophils, is an important host response to infestation by D. hominis.

  13. Eosinophil and mast cell expression in host skin during larval development of the human bot fly Dermatobia hominis.

    Science.gov (United States)

    Pereira, M C T; Leite, A C R

    2002-12-01

    Eosinophils and mast cells in the skin of Wistar rats (Rattus norvegicus) infested with Dermatobia hominis larvae were quantified and analysed. Eosinophils in parasitised skin increased markedly until 10 days post-infestation (dpi) and then decreased up to 28 dpi, close to the point at which third stage larvae (L3) emerged from the host. In ascending order, the highest numbers of eosinophils were seen in rats at 1, 4, 28, 20, 15 and 10 dpi, corresponding to the first, (1 and 4) third (20 and 28) and second (10 and 15) instars. Except for 1 dpi, eosinophil numbers were significantly higher than those seen in control animals. Mast cell numbers were highest in early infestation (4 dpi), followed by those at 20 dpi. In increasing order, numbers of mast cells were greatest at 10, 28, 15, 1, 20 and 4 dpi, although significant differences with control animals were only seen at 10 and 28 dpi. Eosinophils and mast cells showed negative correlation only in animals with second instar larvae (10 and 15 dpi). Comparative analyses were also carried out after considering the skin into four distinct regions. The results suggest that the expression of both cell types, particularly eosinophils, is an important host response to infestation by D. hominis.

  14. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R.

    2015-06-15

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  15. Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.

    Science.gov (United States)

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2015-12-01

    This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of capacitor.

  16. Capacitors in Series: A Laboratory Activity to Promote Critical Thinking.

    Science.gov (United States)

    Noll, Ellis D.; Kowalski, Ludwik

    1996-01-01

    Describes experiments designed to explore the distribution of potential difference between two uncharged capacitors when they are suddenly connected to a source of constant voltage. Enables students to explore the evolution of a system in which initial voltage distribution depends on capacitor values, and the final voltage distribution depends on…

  17. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    K S GOPALAKRISHNAN

    current in either case can be obtained through repeated digital simulations of the converter under various operating condi- tions. However, it would be elegant to determine the worst- case capacitor RMS current through an analytical expression, relating the capacitor current to the operating conditions such as modulation ...

  18. Trench capacitor and method for producing the same

    NARCIS (Netherlands)

    Liu, J.; Roest, A.L.; Roozeboom, F.; Shabro, V.

    2013-01-01

    A method of fabricating a trench capacitor, and a trench capacitor fabricated thereby, are disclosed. The method involves the use of a vacuum impregnation process for a sol-gel film, to facilitate effective deposition of high-permittivity materials within a trench in a semiconductor substrate, to

  19. DC-to-DC converter comprising a reconfigurable capacitor unit

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; Roozeboom, F.; Reefman, D.; Ruigrok, J.

    2013-01-01

    The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A

  20. Two-Capacitor Problem: A More Realistic View.

    Science.gov (United States)

    Powell, R. A.

    1979-01-01

    Discusses the two-capacitor problem by considering the self-inductance of the circuit used and by determining how well the usual series RC circuit approximates the two-capacitor problem when realistic values of L, C, and R are chosen. (GA)

  1. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    K S GOPALAKRISHNAN

    Abstract. The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor.

  2. Optimal capacitor sizing and placement based on real time analysis ...

    African Journals Online (AJOL)

    In this paper, optimal capacitor sizing and placement method was used to improve energy efficiency. It involves the placement of capacitors in a specific location with suitable sizing based on the current load of the electrical system. The optimization is done in real time scenario where the sizing and placement of the ...

  3. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  4. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor. Analytical ...

  5. Impedance Characteristics Modeling of a Two-Terminal Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Lu, Minghui

    2017-01-01

    to overcome the above issues. In this paper, the modeling of the active capacitor is investigated and a voltage feed-forward compensation scheme is proposed for overshoot reduction. Therefore, the impedance, equivalent capacitance, ESR, and ESL, of the active capacitor can be specified. A case study based...

  6. Direct Mismatch Characterization of femto-Farad Capacitors

    KAUST Repository

    Omran, Hesham

    2015-08-17

    Reducing the capacitance of programmable capacitor arrays, commonly used in analog integrated circuits, is necessary for low-energy applications. However, limited mismatch data is available for small capacitors. We report mismatch measurement for a 2fF poly-insulator-poly (PIP) capacitor, which is the smallest reported PIP capacitor to the best of the authors’ knowledge. Instead of using complicated custom onchip circuitry, direct mismatch measurement is demonstrated and verified using Monte Carlo Simulations and experimental measurements. Capacitive test structures composed of 9 bit programmable capacitor arrays (PCAs) are implemented in a low-cost 0:35m CMOS process. Measured data is compared to mismatch of large PIP capacitors, theoretical models, and recently published data. Measurement results indicate an estimated average relative standard deviation of 0.43% for the 2fF unit capacitor, which is better than the reported mismatch of metal-oxide-metal (MOM) fringing capacitors implemented in an advanced 32nm CMOS process.

  7. A switched capacitor array based system for high-speed calorimetry

    International Nuclear Information System (INIS)

    Levi, M.; Bebek, C.; Ely, R.; Jared, R.; Kipnis, I.; Kirsten, F.; Kleinfelder, S.; Merrick, T.; Milgrome, O.

    1991-12-01

    A sixteen channel analog transient recorder with 256 cells per channel has been fabricated as an integrated circuit. The circuit uses switched capacitor array technology to achieve simultaneous read/write capability and twelve bit dynamic range. Combined with highly parallel analog-to-digital converter and readout control circuitry being developed this system should satisfy the demanding electronics requirements for calorimeter detectors at the SSC. The system design and test results are presented

  8. The Fly Printer - Extended

    DEFF Research Database (Denmark)

    Beloff, Laura; Klaus, Malena

    2016-01-01

    points to a divide between the engineered and the organic and shows a human aspiration for control of information and of biological species. Frustratingly, the work does not allow control over the flies and the printing surface; the flies decide whether it is suitable to print on the paper...

  9. Horn Fly, (L., Overwintering

    Directory of Open Access Journals (Sweden)

    Allan T. Showler

    2014-01-01

    Full Text Available The horn fly, Haematobia irritans irritans (L., is an ectoparasitic blood feeder mainly on cattle. Its cosmopolitan distribution extends from boreal and grassland regions in northern and southern latitudes to the tropics. Stress and blood loss from horn flies can reduce cattle weight gain and milk production. Horn flies show substantial plasticity in their response to winter. Populations in warmer, lower latitudes have been reported to overwinter in a state of dormancy, but most overwinter as active adults in normal or reduced numbers. As latitudes increase, winters are generally colder, and correspondingly, larger percentages of horn fly populations become dormant as pharate adults (a post-pupal, pre-emergent stage or die. Reports on the effect of elevation on horn fly dormancy at high elevations were contradictory. When it occurs, dormancy takes place beneath cattle dung pats and in the underlying soil. The horn fly's mode of dormancy is commonly called diapause, but the collective research on horn fly diapause (behavioral and biochemical is not conclusive. Understanding the horn fly's overwintering behaviors can lead to development of pre-dormancy insecticide spray strategies in colder latitudes while other strategies must be determined for warmer regions.

  10. Reliability of capacitors for DC-link applications - An overview

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2013-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of DC-link in power electronic converters...... from two aspects: 1) reliability-oriented DC-link design solutions; 2) conditioning monitoring of DC-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their DC-link applications....

  11. Evaluation of Commercial Automotive-Grade BME Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life.

  12. Electric Field Simulation of Surge Capacitors with Typical Defects

    Science.gov (United States)

    Zhang, Chenmeng; Mao, Yuxiang; Xie, Shijun; Zhang, Yu

    2018-03-01

    The electric field of power capacitors with different typical defects in DC working condition and impulse oscillation working condition is studied in this paper. According to the type and location of defects and considering the influence of space charge, two-dimensional models of surge capacitors with different typical defects are simulated based on ANSYS. The distribution of the electric field inside the capacitor is analyzed, and the concentration of electric field and its influence on the insulation performance are obtained. The results show that the type of defects, the location of defects and the space charge all affect the electric field distribution inside the capacitor in varying degrees. Especially the electric field distortion in the local area such as sharp corners and burrs is relatively larger, which increases the probability of partial discharge inside the surge capacitor.

  13. New series half-bridge converters with the balance input split capacitor voltages

    Science.gov (United States)

    Lin, Bor-Ren; Chiang, Huann-Keng; Wang, Shang-Lun

    2016-03-01

    This article presents a new dc/dc converter to perform the main functions of zero voltage switching (ZWS), low converter size, high switching frequency and low-voltage stress. Metal-oxide-semiconductor field-effect transistors (MOSFETs) with high switching frequency are used to reduce the converter size and increase circuit efficiency. To overcome low-voltage stress and high turn-on resistance of MOSFETs, the series half-bridge topology is adopted in the proposed converter. Hence, the low-voltage stress MOSFETs can be used for medium-input voltage applications. The asymmetric pulse-width modulation is used to generate the gating signals and achieve the ZWS. On the secondary side, the parallel connection of two diode rectifiers is adopted to reduce the current rating of passive components. On the primary side, the series connection of two transformers is used to balance two output inductor currents. Two flying capacitors are used to automatically balance the input split capacitor voltages. Finally, experiments with 1000 W rated power are performed to verify the theoretical analysis and the effectiveness of proposed converter.

  14. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M

    2014-12-11

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  15. Mineralogy of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Young; Park, Suk Whan [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Lee, Moo Seung [Chonbuk National University, Chonju (Korea, Republic of)

    1995-12-01

    This study is focused on mineralogical and chemical characteristics of coal fly ash collected from Boreong, Honam, Samcheonpo, Gunsan, Seocheon power plants. Mineralogical and chemical characters of fly ashes are clarified by experimental studies, using x-ray diffractometer, scanning electron microscope, differential thermal analyzer, grain size analyzer and chemical analysis. The results of this study can be summarized as follows; The coal fly ashes from the all power plants are mainly consisted with mullite and quartz, and minor quantity of hematite. In particular, fly ash from the Honam power plant is converted into the anorthite under the 1200 degree. According to the result grain size analysis, most of the fly ashes are under the 200 mesh except 66% of fly ashes from the Boreong and Honam, 54% from Seocheon, 83% from Gunsan and 31% from Samcheonpo power plants. The unburned carbon contents are decreased in the small grain size of fly ashes. Under the 200 mesh grain size of Honam fly ashes shows particularly less than 1% content of unburned carbon. Chemical components of fly ashes are found to be 49-80% of SiO{sub 2} and Al{sub 2}O{sub 3} contents in the bituminous and anthracite coal ash are 49-69% and 75-80%, respectively. The Fe{sub 2}O{sub 3} and CaO concentrations in the bituminous coal ash are higher than anthracite coal ash. The trace elements such as Pb and Zn are higher anthracite coal ash than bituminous coal ash, which is mainly due to the grain size characteristic. The fly ash from Honam power plant with high CaO content can be used potassium silicate fertilizer and raw materials for cements after separation of 200 mesh. Anorthite are formed after 1200 degree heating of bituminous coal ash, which can be utilized as aggregate and bricks. (author). 21 refs., 32 figs., 7 tabs.

  16. The plasma membrane as a capacitor for energy and metabolism

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  17. Breakdown properties of irradiated MOS capacitors

    International Nuclear Information System (INIS)

    Paccagnella, A.; Candelori, A.; Pellizzer, F.; Fuochi, P.G.; Lavale, M.

    1996-01-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co 60 gamma and 10 14 neutrons/cm 2 only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested

  18. Carbon Film Electrodes For Super Capacitor Applications

    Science.gov (United States)

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  19. Design definition of a mechanical capacitor

    Science.gov (United States)

    Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.

    1977-01-01

    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.

  20. Chemical sensitivity of Mo gate Mos capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, R.M.; Aragon, R. [Laboratorio de Peliculas delgadas, Facultad de Ingenieria, Paseo Colon 850, 1063, Buenos Aires (Argentina)

    2006-07-01

    Mo gate Mos capacitors exhibit a negative shift of their C-V characteristic by up to 240 mV, at 125 C, in response to 1000 ppm hydrogen, in controlled nitrogen atmospheres. The experimental methods for obtaining capacitance and conductance, as a function of polarisation voltage, as well as the relevant equivalent circuits are reviewed. The single-state interface state density, at the semiconductor-dielectric interface, decreases from 2.66 x 10{sup 11} cm{sup -2} e-v{sup -1}, in pure nitrogen, to 2.5 x 10{sup 11} cm{sup -2} e-v{sup -1} in 1000 ppm hydrogen in nitrogen mixtures, at this temperature. (Author)

  1. Voltage Balancer for Electric Double Layer Capacitors

    Science.gov (United States)

    Mori, Kazuya; Takahashi, Shingo; Hasebe, Akio; Seki, Sumiko; Itoh, Takahiko

    Decrease in energy density of the storage system with several electric double layer capacitors (EDLCs) is caused by imbalance of voltage for each EDLC. In case of low power applications, conventional voltage balancer with constant voltage circuits is useful. However, it has some problems for high power applications such as electric vehicle. We have developed a new system to balance the voltage of EDLCs by removing a little energy. In any case, the system can store the energy in each EDLC equally. In the present research, a prototype of voltage balancer is produced for making use of a number of EDLCs and evaluated. The results confirm that the system is effective and suitable for high power applications.

  2. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... period was rather short, as even high doses of Campylobacter remained viable for less than 24 hours in flies, when they were incubated at temperatures from 20 ºC and higher. Lower temperatures are less- or irrelevant, as flies become slow or immobile below 15-20 ºC....

  3. A Novel Approach to Inspect Abnormalities on the Deep Trench Capacitors in DRAM

    Science.gov (United States)

    Liu, H. W.; Cheng, E.; Lin, Y. M.; Fan, S.; Pan, K.; Lue, J. L.

    2005-09-01

    A novel method has been developed using Focused Ion Beam (FIB) system to create the likely three-dimensional (3D) image of a deep trench (DT) capacitor in a DRAM cell for process evaluation and failure analysis. The abnormalities in the structures of DT capacitors, especially "DT striation" and "DT-DT short", result in the functional failures or retention problems detected in the electrical test, which are very common failures in a DT capacitor DRAM cell. The common method to examine failed DTs is to use FIB milling with its slice-and-view capability for both planar and cross-sectional observations. However, the areas containing the defects in the specific DTs are probably milled away during FIB milling, so that the failure causes could not be found. The new method uses XeF2 etching gas to reveal the likely 3D appearance of the desired DTs, instead of the traditional FIB slice-and-view method. The abnormalities on the structures of the specific DTs can then be inspected using Scanning Electron Microscopy (SEM). The innovation of this technique not only provides more information on the desired DTs, but also provides a quick way to identify the possible causes for the failures. In summary, this method will provide an effective way to improve the success rate and turnaround time for the inspection of failed DTs.

  4. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  5. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  6. A light-powered bio-capacitor with nanochannel modulation.

    Science.gov (United States)

    Rao, Siyuan; Lu, Shanfu; Guo, Zhibin; Li, Yuan; Chen, Deliang; Xiang, Yan

    2014-09-03

    An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures

    Science.gov (United States)

    Babu, Binson; Shaijumon, M. M.

    2017-06-01

    Hybrid Na-ion capacitors bridge the performance gap between Na-ion batteries and supercapacitors and offer excellent energy and power characteristics. However, designing efficient anode and cathode materials with improved kinetics and long cycle life is essential for practical implementation of this technology. Herein, layered sodium titanium oxide hydroxide, Na2Ti2O4(OH)2, synthesized through hydrothermal technique, is studied as efficient anode material for hybrid Na-ion capacitor. Half-cell electrochemical studies vs. Na/Na+ showed excellent performance for Na2Ti2O4(OH)2 electrode, with ∼57.2% of the total capacity (323.3 C g-1 at 1.0 mV s-1) dominated by capacitive behavior and the remaining due to Na-intercalation. The obtained values are in good agreement with Trasatti plots indicating the potential of this material as efficient anode for hybrid Na-ion capacitor. Further, a full cell Na-ion capacitor is fabricated with Na2Ti2O4(OH)2 as anode and chemically activated Rice Husk Derived Porous Carbon (RHDPC-KOH) as cathode by using organic electrolyte. The hybrid device, operated at a maximum cell voltage of 4 V, exhibits stable electrochemical performance with a maximum energy density of ∼65 Wh kg-1 (at 500 W kg-1, 0.20 A g-1) and with more than ∼ 93% capacitive retention after 3000 cycles.

  8. Autonomous Martian flying rover

    Science.gov (United States)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  9. Fruit fly eradication: Argentina

    International Nuclear Information System (INIS)

    2003-01-01

    Fruit exports account for 9% of Argentina's total agricultural exports and generate annually close to $450 million. This could be increased but for fruit flies that cause damage equivalent to 15% to 20% of present production value of fruit and also deny export access to countries imposing quarantine barriers. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Joint FAO/IAEA Division, to eradicate the Mediterranean fruit fly using the Sterile Insect Technique (SIT). (IAEA)

  10. Sensitizing pigment in the fly

    International Nuclear Information System (INIS)

    Vogt, K.; Kirschfeld, K.

    1983-01-01

    The sensitizing pigment hypothesis for the high UV sensitivity in fly photoreceptors (R1-6) is further substantiated by measurements of the polarisation sensitivity in the UV. The quantum yield of the energy transfer from sensitizing pigment to rhodopsin was estimated by electrophysiological measurements of the UV sensitivity and the rhabdomeric absorptance (at 490 nm) in individual receptor cells. The transfer efficiency is >=0.75 in receptors with an absorptance in the rhabdomeres of 0.55-0.95. This result suggests that the sensitizing pigment is bound in some way to the rhodopsin. A ratio of two molecules of sensitizing pigment per one rhodopsin is proposed. (orig.)

  11. Electrochemical capacitors based on nitrogen-enriched cobalt (II) phthalocyanine/multi-walled carbon nanotube nanocomposites

    CSIR Research Space (South Africa)

    Lekitima, JN

    2013-11-01

    Full Text Available shown to be desirable ESD as compared to batteries and conventional capacitors for application in high power demand technology. ECs have higher specific power than batteries and higher specific energy than conventional capacitors (1). ECs have... superior cycle life performance as compared to batteries and greater energy density than conventional capacitors (2). ECs which are commonly referred to as supercapacitors, double layer capacitors, supercapacitors or ultra capacitors store charge through...

  12. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link

    OpenAIRE

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-01-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of ...

  13. Electrochemical Capacitor Development for Pulsed Power Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase II SBIR Project, we will continue the development of graphitic nanosheets (GNS) for electrochemical capacitor (EC) electrode materials. In the...

  14. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    Ultra-capacitors in multi kilo-farad ranges are now starting to be considered as alternatives or complimentary to batteries for products ranging from toys to hybrid vehicles as well as for space applications...

  15. Scaling issues in ferroelectric barium strontium titanate tunable planar capacitors.

    Science.gov (United States)

    Lam, Peter G; Haridasan, Vrinda; Feng, Zhiping; Steer, Michael B; Kingon, Angus I; Maria, Jon-Paul

    2012-02-01

    We report on the geometric limits associated with tunability of interdigitated capacitors, specifically regarding the impact of a parasitic non-tunable component that necessarily accompanies a ferroelectric surface capacitor, and can dominate the voltage-dependent response as capacitor dimensions are reduced to achieve the small capacitance values required for impedance matching in the X band. We present a case study of simple gap capacitors prepared and characterized as a function of gap width (i.e., the distance between electrodes) and gap length (i.e., the edge-to-edge gap distance). Our series of measurements reveals that for gap widths in the micrometer range, as gap lengths are reduced to meet sub-picofarad capacitance values, the non-tunable parasitic elements limit the effective tunability. These experimental measurements are supported by a companion set of microwave models that clarify the existence of parallel parasitic elements.

  16. Fringe Capacitance of a Parallel-Plate Capacitor.

    Science.gov (United States)

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  17. A 3-MJ capacitor bank for the SNL electroexplosive facility

    Science.gov (United States)

    Chare, E. C.; Dobbie, C. B.

    1983-05-01

    A 3-MJ capacitor bank was added to the Electroexplosive Facility for injecting the initial magnetic energy into large explosive generators. It consists of two 800-(SIGMA)F modules that are first charged to +60 kV and -60 kV, respectively, and then discharged in series by explosive detonator switches to provide 400 (SIGMA)F at 120 kV. The bank was designed to deliver priming currents up to 2 MA and to have an energy transfer efficiency of 0.7 to 0.84 for generator inductance of approximately 10 (SIGMA)H. Type 17/14 coaxial cable will be used to interconnect the capacitor modules, detonator switches, and load. All generators primed by this bank will be crowbarred at peak current to limit capacitor voltage reversal and extend the life of the capacitors. The major components of the system are described.

  18. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  19. Optimal capacitor placement and sizing using combined fuzzy ...

    African Journals Online (AJOL)

    user

    , Hybrid Particle Swarm Optimization. 1. Introduction. Shunt capacitors are installed at suitable locations in large distribution system for the improvement of voltage profile and to reduce power losses in the distribution system. The studies have ...

  20. Compact 20-kiloampere pulse-forming-network capacitor bank

    Science.gov (United States)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    Bank uses commercially available high-energy-density capacitors for energy storage and silicon-controlled rectifiers for switching. Low voltage design employing solid-state switching is utilized in lieu of conventional gas discharge switching.

  1. Prognostic Techniques for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses our initial efforts in constructing physics of failure models for electrolytic capacitors subjected to electrical stressors in DC-DC power...

  2. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    Science.gov (United States)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  3. CAPMIX -Deploying Capacitors for Salt Gradient Power Extraction

    OpenAIRE

    Bijmans, M.F.M.; Burheim, O.S.; Bryjak, M.; Delgado, A.; Hack, P.; Mantegazza, F.; Tenisson, S.; Hamelers, H.V.M.

    2012-01-01

    The process of mixing sea and river water can be utilised as a power source. At present, three groups of technology are established for doing so; i) mechanical; Pressure Retarded Osmosis PRO, ii) electrochemical reactions; Reverse ElectroDialysis (RED) and Nano Battery Electrodes (NBE) and iii) ultra capacitors; Capacitive Double Layer Expansion (CDLE) and Capacitors charge by the Donnan Potentials (CDP). The chemical potential for salt gradient power systems is only limited by th...

  4. Performance of Novel Randomly Oriented High Graphene Carbon in Lithium Ion Capacitors

    Directory of Open Access Journals (Sweden)

    Rahul S. Kadam

    2018-01-01

    Full Text Available The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2 compared to graphite (338.1 × 10−3 S·s(1/2. The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.

  5. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  6. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  7. Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Quiroz-Romero Héctor

    2011-02-01

    Full Text Available Abstract Background The horn fly, Haematobia irritans (Linnaeus, 1758 (Diptera: Muscidae is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST analysis and RNA interference (RNAi. Results A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160 were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group, reduced oviposition (vitellogenin, ferritin and vATPase groups or both (immune response and 5'-NUC groups when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls. Conclusions These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.

  8. Large heat flux in electrocaloric multilayer capacitors

    Science.gov (United States)

    Faye, Romain; Strozyk, Hervé; Dkhil, Brahim; Defay, Emmanuel

    2017-11-01

    Multi layer capacitors (MLCs) are considered the most promising refrigerant elements for the design and development of electrocaloric cooling devices. Recently, the heat transfer of these MLCs has been considered. However, the heat exchange with the surrounding environment has been poorly addressed. In this work, we measure by infrared thermography the temperature change versus time in four different heat exchange configurations. Depending on the configurations, Newtonian and non-Newtonian regimes with their corresponding Biot number are determined, providing useful thermal characteristics. Indeed, in the case of large area thermal pad contacts, heat transfer coefficients up to 3400 W · m‑2 · K‑1 were obtained, showing that the standard (non-optimised) MLCs already reach the needs for designing efficient prototypes. We also determined the ideal Brayton cooling power in case of thick wires contact that varied between 3.4 mW and 9.8 mW for operating frequencies varying from 0.25 Hz to 1 Hz. While only heat conduction was considered here, our work provides some design rules for improving heat exchanges in future devices.

  9. Electrochemical Double Layered Capacitor Development and Implementation System

    Science.gov (United States)

    Strunk, Gavin P.

    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design

  10. Can E. coli fly?

    DEFF Research Database (Denmark)

    Lindeberg, Yrja Lisa; Egedal, Karen; Hossain, Zenat Zebin

    2018-01-01

    OBJECTIVE: To investigate the transmission of fecal bacteria by flies to food under natural settings. METHODS: Over a period of two months paired (exposed and non-exposed) containers with cooked rice were placed on the ground in kitchen areas in an urban slum area in Dhaka, Bangladesh, and the nu......OBJECTIVE: To investigate the transmission of fecal bacteria by flies to food under natural settings. METHODS: Over a period of two months paired (exposed and non-exposed) containers with cooked rice were placed on the ground in kitchen areas in an urban slum area in Dhaka, Bangladesh...

  11. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    International Nuclear Information System (INIS)

    Laszczyk, Karolina U; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-01-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit. (paper)

  12. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    Science.gov (United States)

    Laszczyk, Karolina U.; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2015-12-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit.

  13. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    Science.gov (United States)

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Radomska

    2017-06-01

    Full Text Available Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC. This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.

  15. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    cluding section. What Makes Flight Possible. It is obvious to most of us today that a body in flight must obey. Newton's laws of motion. Leonardo da Vinci in the early 1500's had already realised that "a bird flies according to mathematical .... Here x is the distance from the leading edge along the wing surface. In a majority of ...

  17. Optimal capacitor placement and sizing in radial electric powe

    Directory of Open Access Journals (Sweden)

    Ahmed Elsheikh

    2014-12-01

    Full Text Available The use of capacitors in power systems has many well-known benefits that include improvement of the system power factor, improvement of the system voltage profile, increasing the maximum flow through cables and transformers and reduction of losses due to the compensation of the reactive component of power flow. By decreasing the flow through cables, the systems’ loads can be increased without adding any new cables or overloading the existing cables. These benefits depend greatly on how capacitors are placed in the system. In this paper, the problem of how to optimally determine the locations to install capacitors and the sizes of capacitors to be installed in the buses of radial distribution systems is addressed. The proposed methodology uses loss sensitivity factors to identify the buses requiring compensation and then a discrete particle swarm optimization algorithm (PSO is used to determine the sizes of the capacitors to be installed. The proposed algorithm deals directly with discrete nature of the design variables. The results obtained are superior to those reported in Prakash and Sydulu (2007.

  18. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    Science.gov (United States)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  19. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  20. Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.

    Science.gov (United States)

    Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas

    2014-11-26

    Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.

  1. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  2. Study of electric capacitors using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Alina Neamț

    2012-12-01

    Full Text Available A capacitor is made of two armatures and a dielectric between the two armatures. In this paper, we are going to study the plane capacitor , which is made of two equal metal armatures, plane and parallel, having the S surface, situated at a distance d much shorter than the armatures dimensions, between which there is a liniar, homogenous and isotropic dielectric having a constant electrical permittivity.The purpose of studying the plane capacitor, through MEF, presented in this paper,is to establish the stress to which the dielectrics may be subject to, in daily practice, and the influence that their superposition in an electric field has, on each of them. The study of the plane capacitor , finalised with observations on the raise of the dependence of the electric field intensity in air on the size of the air layer and having as parameter the type of dielectric material introduced between the armatures, is an example of confirmation or invalidation of the possibility and utility of using layers of dielectrics between the armatures of the capacitors.

  3. Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

    Science.gov (United States)

    Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador

    2015-01-01

    We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563

  4. Charging a capacitor from an external fluctuating potential using a single conical nanopore.

    Science.gov (United States)

    Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador

    2015-04-01

    We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5-3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes.

  5. Verification test for an electric vehicle using capacitor-battery series connection for battery load levelling; Denchi no fuka heijunka no tame no kyapashita to denchi no chokuretsu setsuzoku hoshiki wo saiyoshita denki jidosha no jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaoka, K.; Takehara, J.; Kato, S. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1998-03-25

    For the prolongation of the distance that an electric vehicle (EV) can cover on a single charge and of the service life of the EV battery unit, a system is developed, in which the battery unit and the capacitor unit are connected in series for the levelling-off of battery peak loads, and the system is tested aboard a running real vehicle. Installed on the real vehicle is a battery unit that is a series connection of 20 12V-38Ah seal-type lead-acid batteries, each battery consisting of two cells connected in parallel. Driving the vehicle is a DC brushless motor capable of a maximum operation of 9000rpm. Also installed is a capacitor unit that is a parallel connection of 40 2.3V-1800F capacitors, each capacitor consisting of two capacitors connected in parallel. Findings are described below. In a 0-400m acceleration test, 22.5 seconds is recorded with the capacitor unit in operation, meaning an improvement of 0.7 seconds. The maximum speed remains unchanged at 110km/h, which agrees with the pre-calculated value. Although the battery peak load reduction rate in a 15-mode drive pattern marks 23%, the distances covered on a single charge in this drive pattern turn out to be almost the same whether the capacitor unit is in operation or not. 3 refs., 15 figs., 3 tabs.

  6. A pulsed magnetic stress applied to Drosophila melanogaster flies

    International Nuclear Information System (INIS)

    Delle Side, D; Giuffreda, E; Nassisi, V; Velardi, L; Bozzetti, M P; Friscini, A; Specchia, V

    2014-01-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  7. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  8. Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2007-01-01

    The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.

  9. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  10. Low Temperature Characterization of Ceramic and Film Power Capacitors

    Science.gov (United States)

    Hammoud, Ahmad; Overton, Eric

    1996-01-01

    Among the key requirements for advanced electronic systems is the ability to withstand harsh environments while maintaining reliable and efficient operation. Exposures to low temperature as well as high temperature constitute such stresses. Applications where low temperatures are encountered include deep space missions, medical imaging equipment, and cryogenic instrumentation. Efforts were taken to design and develop power capacitors capable of wide temperature operation. In this work, ceramic and film power capacitors were developed and characterized as a function of temperature from 20 C to -185 C in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The manuscript presents the results that indicate good operational characteristic behavior and stability of the components tested at low temperatures.

  11. Characterization system for research on energy storage capacitors.

    Science.gov (United States)

    Noriega, J R; Iyore, O D; Budime, C; Gnade, B; Vasselli, J

    2013-05-01

    In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  13. Optimizing Transient Behavior of Wind Farm Equipped by Switching Capacitors

    Science.gov (United States)

    Tarafdar hagh, M.; Roshan Milani, A.; Lafzi, A.

    2009-08-01

    In recent years, induction generators used in wind farms have found a great importance. Self exciting induction generators main problem is its requirement to a reactive power in order to generate output voltage. In order to provide the mentioned reactive power, using fixed capacitors connected to generator terminals is one of the usual methods. Using variable and switchable capacitor banks is one of the methods to generate reactive power for induction generators and to keep voltage stability since induction generators requirement to reactive power varies by load changes and wind speed. In this paper transient condition accrue by capacitor banks switching in wind farm are simulated by MATLAB and methods are suggested to optimize mentioned conditions.

  14. Time-resolved energy transduction in a quantum capacitor.

    Science.gov (United States)

    Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan

    2011-08-23

    The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices.

  15. PLZT capacitor and method to increase the dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  16. Characterization system for research on energy storage capacitors

    Science.gov (United States)

    Noriega, J. R.; Iyore, O. D.; Budime, C.; Gnade, B.; Vasselli, J.

    2013-05-01

    In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.

  17. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Science.gov (United States)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  18. Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Long Li

    2017-12-01

    Full Text Available The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene (P(VDF-TrFE films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE copolymer ultrathin film.

  19. Current Status and Future Research Opportunities for Electrochemical Capacitors: Relevance for Naval and Civilian Applications

    National Research Council Canada - National Science Library

    Long, Jeffrey W

    2008-01-01

    Electrochemical capacitors (ECs) are a class of energy-storage devices that offer significant promise in bridging the performance gap that exists between the high power density derived from electrostatic capacitors and the high...

  20. Integrated Diagnostic/Prognostic Experimental Setup for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes the experiments and setups for studying diagnosis and prognosis of electrolytic capacitors in DC-DC power converters. Electrolytic capacitors and...

  1. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  2. WAYS OF ACQUIRING FLYING PHOBIA.

    Science.gov (United States)

    Schindler, Bettina; Vriends, Noortje; Margraf, Jürgen; Stieglitz, Rolf-Dieter

    2016-02-01

    The few studies that have explored how flying phobia is acquired have produced contradictory results. We hypothesized that classical conditioning plays a role in acquiring flying phobia and investigated if vicarious (model) learning, informational learning through media, and experiencing stressful life events at the time of onset of phobia also play a role. Thirty patients with flying phobia and thirty healthy controls matched on age, sex, and education were interviewed with the Mini-DIPS, the short German version of the Anxiety Disorders Interview Schedule (DSM-IV diagnostic criteria) and the Fear-of-Flying History Interview. Fifty Percent of patients with flying phobia and 53% of healthy controls reported frightening events in the air. There was no significant difference between the two samples. Thus there were not more classical conditioning events for patients with flying phobia. There also was no significant difference between the two samples for vicarious (model) learning: 37% of flying phobia patients and 23% of healthy controls felt influenced by model learning. The influence of informational learning through media was significantly higher for the clinical sample (70%) than for the control group (37%). Patients with flying phobia experienced significantly more stressful life events in the period of their frightening flight experience (60%) than healthy controls (19%). Frightening experiences while flying are quite common, but not everybody develops a flying phobia. Stressful life events and other factors might enhance conditionability. Informational learning through negative media reports probably reinforces the development of flying phobia. Clinical implications are discussed. © 2015 Wiley Periodicals, Inc.

  3. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  4. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  5. Online MOS Capacitor Characterization in LabVIEW Environment

    Directory of Open Access Journals (Sweden)

    Chinmay K Maiti

    2009-08-01

    Full Text Available We present an automated evaluation procedure to characterize MOS capacitors involving high-k gate dielectrics. Suitability of LabVIEW environment for online web-based semiconductor device characterization is demonstrated. Developed algorithms have been successfully applied to automate the MOS capacitor measurements for Capacitance-Voltage, Conductance-Voltage and Current-Voltage characteristics. Implementation of the algorithm for use as a remote internet-based characterization tool where the client and server communicate with each other via web services is also shown.

  6. Reliability Evaluation of Base-Metal-Electrode Multilayer Ceramic Capacitors for Potential Space Applications

    Science.gov (United States)

    Liu, David (Donhang); Sampson, Michael J.

    2011-01-01

    Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the

  7. Differential evolutionary algorithm for distribution capacitor allocation considering varying load conditions

    OpenAIRE

    Karimi, Mohammad

    2011-01-01

    Many loads in power systems are inductive loads then consume reactive power, this fact lead to drop voltage and in worst case blackout and collapse voltage. Best option in distribution networks for avoid of this problem is installation of capacitor bank. In capacitor installation, finding optimal location and size of capacitor have special importance. In this paper, Differential Evolutionary (DE) algorithm is proposed for optimal placement and sizing of capacitor. Our objective funct...

  8. Failure Modes in Capacitors When Tested Under a Time-Varying Stress

    Science.gov (United States)

    Liu, David (Donhang)

    2011-01-01

    Steady step surge testing (SSST) is widely applied to screen out potential power-on failures in solid tantalum capacitors. The test simulates the power supply's on and off characteristics. Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors for decoupling applications. On the other hand, the SSST can also be reviewed as an electrically destructive test under a time-varying stress. It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. Highly accelerated life testing (HALT) is usually a time-efficient method for determining the failure mechanism in capacitors; however, a destructive test under a time-varying stress like SSST is even more effective. It normally takes days to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating specific time-varying stress into a statistical model is significant in providing an alternative life test method for quickly revealing the failure modes in capacitors. In this paper, a time-varying stress has been incorporated into the Weibull model to characterize the failure modes. The SSST circuit and transient conditions to correctly test the capacitors is discussed. Finally, the SSST was applied for testing polymer aluminum capacitors (PA capacitors), Ta capacitors, and multi-layer ceramic capacitors with both precious metal electrode (PME) and base-metal-electrodes (BME). It appears that testing results are directly associated to the dielectric layer breakdown in PA and Ta capacitors and are independent on the capacitor values, the way the capacitors being built, and the manufactures. The testing results also reveal that ceramic capacitors exhibit breakdown voltages more than 20 times the rated voltage, and the breakdown voltages are inverse proportional to the dielectric layer thickness. The possibility of

  9. Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

    International Nuclear Information System (INIS)

    Schlottmann, Silke; Erkizan, Hayriye V.; Barber-Rotenberg, Julie S.; Knights, Chad; Cheema, Amrita; Üren, Aykut; Avantaggiati, Maria L.; Toretsky, Jeffrey A.

    2012-01-01

    Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  10. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    CERN Document Server

    AUTHOR|(SzGeCERN)679542; Genton, Charles-Mathieu

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  11. Integration substrate with a ultra-high-density capacitor and a through-substrate via

    NARCIS (Netherlands)

    Klootwijk, J.H.; Roozeboom, F.; Ruigrok, J.J.M.; Reefman, D.

    2014-01-01

    An integration substrate for a system in package comprises a through-substrate via and a trench capacitor wherein with a trench filling that includes at least four electrically conductive capacitor-electrode layers in an alternating arrangement with dielectric layers. --The capacitor-electrode

  12. Pre-charging of module capacitors of MMC when the module ...

    Indian Academy of Sciences (India)

    Shamkant D Joshi

    linear regulator. It was observed experimentally in [9] that the capacitor voltage stabilizes for two modules in series. Figure 8 shows capacitors of two modules charging through a resistor R and an inductor L. The resistor R is included to limit the initial current. The load across the module capacitor is represented by negative- ...

  13. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    Science.gov (United States)

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  14. A quick method to determine the capacitance characteristics of thin layer X5R multilayer capacitors

    NARCIS (Netherlands)

    Mikkenie, R.; Steigelmann, O.; Groen, W.A.; Elshof, J.E. ten

    2012-01-01

    The effect of Y2O3 concentration on the dielectric properties of ceramic disc capacitors and multilayer capacitors containing 50 dielectric layers with an approximate thickness of 3µm were investigated. The relative permittivity and temperature coefficient of capacity of multilayer capacitors at low

  15. Reliability Evaluation of Base-Metal-Electrode (BME) Multilayer Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, David (Donghang)

    2011-01-01

    This paper reports reliability evaluation of BME ceramic capacitors for possible high reliability space-level applications. The study is focused on the construction and microstructure of BME capacitors and their impacts on the capacitor life reliability. First, the examinations of the construction and microstructure of commercial-off-the-shelf (COTS) BME capacitors show great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and approximately 0.5 micrometers, which is much less than that of most PME capacitors. The primary reasons that a BME capacitor can be fabricated with more internal electrode layers and less dielectric layer thickness is that it has a fine-grained microstructure and does not shrink much during ceramic sintering. This results in the BME capacitors a very high volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT) and regular life testing as per MIL-PRF-123. Most BME capacitors were found to fail· with an early dielectric wearout, followed by a rapid wearout failure mode during the HALT test. When most of the early wearout failures were removed, BME capacitors exhibited a minimum mean time-to-failure of more than 10(exp 5) years. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically between 10 and 20. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life

  16. Digital multimeter-based immunosensing strategy for sensitive monitoring of biomarker by coupling an external capacitor with an enzymatic catalysis.

    Science.gov (United States)

    Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua

    2014-05-15

    A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Reliability and Characterization of High Voltage Power Capacitors

    Science.gov (United States)

    2014-03-01

    which shows the excessive signal distortion due to thermal noise present during characterization testing...traps pA pico-amps PCB printed circuit board PP polypropylene q charge of an electron QTFL excess carrier charge density R resistor R2 coefficient...work. The first investigation proposes a different method to characterize thin film capacitor degradation , using the principles developed for

  18. DYNAMIC REGIMES OF ASYNCHRONOUS MOTORS WITH CONCATENATED CAPACITORS

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2015-04-01

    Full Text Available Purpose. Development of mathematical model for calculation of starting modes of asynchronous motor connected in series with capacitors. Method. Mathematical modeling of dynamic modes of asynchronous motors with lateral capacitor compensation of reactive power. Results. The calculation algorithm and results of mathematic modeling of processes during starting modes of asynchronous motor feeding from the network through capacitors connected in series are presented. It is shown that for some values of capacitance the self-excitation processes and subharmonic oscillations can appear. Scientific novelty. Mathematic modeling and research of processes in asynchronous motor under its feeding through capacitors is carried out for the first time. The calculation algorithm is based on the mathematical model of asynchronous motor with high level of adequacy, which takes into account the magnetic core saturation and the current displacement in limbs of the rotor. Practical implication. Developed mathematical model makes it possible to investigate the possibility of self-excitation modes appearing in condition of their feeding from line with lateral compensation of reactance in order to avoid the negative effects typical for them.

  19. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    Science.gov (United States)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  20. Linear variable voltage diode capacitor and adaptive matching networks

    NARCIS (Netherlands)

    Larson, L.E.; De Vreede, L.C.N.

    2006-01-01

    An integrated variable voltage diode capacitor topology applied to a circuit providing a variable voltage load for controlling variable capacitance. The topology includes a first pair of anti-series varactor diodes, wherein the diode power-law exponent n for the first pair of anti-series varactor

  1. Static and dynamic aspects of an air gap capacitor

    NARCIS (Netherlands)

    IJntema, D.J.; IJntema, Dominicus J.; Tilmans, Harrie A.C.; Tilmans, H.A.C.

    1992-01-01

    This paper deals with the theory of an air-gap capacitor used as a micromechanical resonator. Both static and dynamic aspects are discussed. A single-element approach for the electrostatic excitation and capacitive detection of the vibrational motion of the resonators is described. The non-linear

  2. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  3. Performance and Safety of Lithium-ion Capacitors

    Science.gov (United States)

    Jeevarajan, Judith A.; Martinez, Martin D.

    2014-01-01

    Lithium-ion capacitors (LIC) are a recent innovation in the area of supercapacitors and ultracapacitors. With an operating voltage range similar to that of lithium-ion batteries and a very low selfdischarge rate, these can be readily used in the place of batteries especially when large currents are required to be stored safely for use at a later time.

  4. Study of surge current effects on solid tantalum capacitors

    Science.gov (United States)

    1980-01-01

    Results are presented of a 2,000 hour cycled life test program conducted to determine the effect of short term surge current screening on approximately 47 micron f/volt solid tantalum capacitors. The format provides average values and standard deviations of the parameters, capacitance, dissipation factor, and equivalent series resistance at 120 Hz, 1KHz, abd 40 KHz.

  5. Switchable capacitor and method of making the same

    NARCIS (Netherlands)

    Rottenberg, Xavier; Jansen, Henricus V.; Tilmans, Hendrikus; De Raedt, Walter

    2006-01-01

    A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom electrode, a dielectric layer deposited on at least part of said bottom electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to

  6. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  7. Mismatch-shaping switching for two-capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, U.; Temes, G.C.

    1998-01-01

    A mismatch-shaping scheme is proposed for a two-capacitor digital-to-analogue converter (DAC). It uses a delta-sigma loop for finding the optimal switching sequence for each input word. Simulations indicate that the scheme can be used for the realisation of DACs with 16 bit linearity and SNR...

  8. Switchable capacitor and method of making the same

    NARCIS (Netherlands)

    Rottenberg, Xavier; Jansen, Henricus V.; Tilmans, Hendrikus; De Raedt, Walter

    2003-01-01

    A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom electrode, a dielectric layer deposited on at least part of said bottom electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to

  9. Operation of a capacitor bank for plasma metal forming

    Indian Academy of Sciences (India)

    pulse@svel.plasma.ernet.in (Pulse Expt.)

    Abstract. Previously metal forming has been done using electromagnet in pulsed power mode, better known as magneform [1]. Here we will be presenting a different technique for metal forming. We are using water as a medium for this process. By discharging the stored electrical energy of the capacitor bank in water, we ...

  10. Operation of a capacitor bank for plasma metal forming

    Indian Academy of Sciences (India)

    pulse@svel.plasma.ernet.in (Pulse Expt.)

    range of workpiece to the desired shapes. The advantage of this method over conventional method is that it uses low power (negligible running cost). It does not require any post assembly cleaning degreasing and is hence environmentally 'friendly'. Keywords. Metal forming; capacitor bank; spark gap. PACS Nos 84.60.

  11. Development of a High Energy Density Capacitor for Plasma Thrusters.

    Science.gov (United States)

    1980-10-01

    Kureha Corporation of Japan is the sole supplier. Under contracts with the Air Force, Maxwell and other laboratories have studied the application of...by the a peak current of 35 kA, reversal of 25%, Kureha Corp. These windings are installed and rep-rate below I Hz. The capacitors in steel cases and

  12. Optimal capacitor placement in smart distribution systems to improve ...

    African Journals Online (AJOL)

    An energy efficient power distribution network can provide cost-effective and collaborative platform for supporting present and future smart distribution system requirements. Energy efficiency in distribution systems is achieved through reconfiguration of distributed generation and optimal capacitor placement. Though several ...

  13. Optimal capacitor placement and sizing using combined fuzzy ...

    African Journals Online (AJOL)

    Then the sizing of the capacitors is modeled as an optimization problem and the objective function (loss minimization) is solved using Hybrid Particle Swarm Optimization (HPSO) technique. A case study with an IEEE 34 bus distribution feeder is presented to illustrate the applicability of the algorithm. A comparison is made ...

  14. Pulsed current signals in capacitor type particle detectors

    International Nuclear Information System (INIS)

    Gaubas, E; Ceponis, T; Pavlov, J

    2015-01-01

    The problem of pulsed current signals in capacitor type sensors, due to drifting surface charge domain is considered for the analysis of the operational characteristics in photo- and particle-detectors. In this article, the models of the formation of the pulsed currents have been analyzed in vacuum and dielectric filled capacitor-like detectors. Injected charge drift regimes such as Shockley-Ramo's-type (large charge drift) and free flight within Coulomb's force field (small charge drift) are discussed. It has been shown that solutions of the injected charge drift in the vacuum gap capacitor can be employed to emulate charge drift over free path in dynamic solution of the problem with scattering. Pulsed current signals and charge drift in the detectors of the capacitor filled with dielectric type have been analyzed, where the bipolar charge injection and various drift regimes appear. The bipolar carrier drift transformation to a monopolar one is considered, after either electrons or holes, injected within the material, reach the external electrode. The impact of the dynamic capacitance and load resistance in the formation of drift current transients is highlighted. It has been illustrated that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms

  15. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  16. Capacitor charging FET switcher with controller to adjust pulse width

    Science.gov (United States)

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  17. All-printed capacitors with continuous solution dispensing technology

    Science.gov (United States)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.

  18. Plasma Processes: Operation of a capacitor bank for plasma metal ...

    Indian Academy of Sciences (India)

    Previously metal forming has been done using electromagnet in pulsed power mode, better known as magneform [1]. Here we will be presenting a different technique for metal forming. We are using water as a medium for this process. By discharging the stored electrical energy of the capacitor bank in water, we are getting ...

  19. Effects of ion insertion on cycling performance of miniaturized electrochemical capacitor of carbon nanotubes array.

    Science.gov (United States)

    Tsai, Dah-Shyang; Chang, Chuan-hua; Chiang, Wei-Wen; Lee, Kuei-Yi; Huang, Ying-Sheng

    2014-10-24

    Capacity degradation and ion insertion of a miniaturized electrochemical capacitor are studied using ionic liquid [EMI] [TFSI] as the electrolyte. This capacitor is featured with two comb-like electrodes of vertical carbon nanotubes, ∼70 μm in height and 20 μm in interelectrode gap. We quantify the levels of ion insertion damage with Raman spectroscopy after the electrode experiences 120 consecutive voltammetric cycles to various potential limits. Distinct structural damage emerges due to [EMI] when the negative potential reaches -1.7 V, and those due to [TFSI] arise when the positive potential reaches 1.7 V vs. RHE. Judging from the peak broadenings, [EMI] is more detrimental than [TFSI]. When the voltage window ΔU is set as less than or equal to 2.8 V, both electrode potentials are within the two intercalation limits, little or no decay is observed in 10(4) charge/discharge cycles. When ΔU is 3.4 V, the positive potential exceeds the upper limit, but the negative potential stays within the lower limit, the cell capacitance decreases moderately. When ΔU increases to 3.8 V, both electrodes suffer from damages because of exceeding the intercalation limits. And the cell capacitance decreases substantially, even leading to a premature failure.

  20. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.

    Science.gov (United States)

    Wang, Xingfeng; Chandrabose, Raghu S; Chun, Sang-Eun; Zhang, Tianqi; Evanko, Brian; Jian, Zelang; Boettcher, Shannon W; Stucky, Galen D; Ji, Xiulei

    2015-09-16

    We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte of IOx-/I- couple and a redox couple of H2O/Had, respectively. Here, we, for the first time, report utilizing IOx-/I- redox couple for the positive electrode, which pins the positive electrode potential to be 0.4-0.5 V vs Ag/AgCl. With the positive electrode potential pinned, we can polarize the cell to 1.6 V without breaking down the aqueous electrolyte so that the negative electrode potential could reach -1.1 V vs Ag/AgCl in the basic electrolyte, greatly enhancing energy storage. Both mass spectroscopy and Raman spectrometry confirm the formation of IO3- ions (+5) from I- (-1) after charging. Based on the total mass of electrodes and electrolyte in a practically relevant cell configuration, the device exhibits a maximum specific energy of 7.1 Wh/kg, operates between -20 and 50 °C, provides a maximum specific power of 6222 W/kg, and has a stable cycling life with 93% retention of the peak specific energy after 14,000 cycles.

  1. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  2. Activity of Proteus mirabilis FliL is viscosity dependent and requires extragenic DNA.

    Science.gov (United States)

    Lee, Yi-Ying; Patellis, Julius; Belas, Robert

    2013-02-01

    Proteus mirabilis is a urinary tract pathogen and well known for its ability to move over agar surfaces by flagellum-dependent swarming motility. When P. mirabilis encounters a highly viscous environment, e.g., an agar surface, it differentiates from short rods with few flagella to elongated, highly flagellated cells that lack septa and contain multiple nucleoids. The bacteria detect a surface by monitoring the rotation of their flagellar motors. This process involves an enigmatic flagellar protein called FliL, the first gene in an operon (fliLMNOPQR) that encodes proteins of the flagellar rotor switch complex and flagellar export apparatus. We used a fliL knockout mutant to gain further insight into the function of FliL. Loss of FliL results in cells that cannot swarm (Swr(-)) but do swim (Swm(+)) and produces cells that look like wild-type swarmer cells, termed "pseudoswarmer cells," that are elongated, contain multiple nucleoids, and lack septa. Unlike swarmer cells, pseudoswarmer cells are not hyperflagellated due to reduced expression of flaA (the gene encoding flagellin), despite an increased transcription of both flhD and fliA, two positive regulators of flagellar gene expression. We found that defects in fliL prevent viscosity-dependent sensing of a surface and viscosity-dependent induction of flaA transcription. Studies with fliL cells unexpectedly revealed that the fliL promoter, fliL coding region, and a portion of fliM DNA are needed to complement the Swr(-) phenotype. The data support a dual role for FliL as a critical link in sensing a surface and in the maintenance of flagellar rod integrity.

  3. FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology.

    Science.gov (United States)

    Vo, Karen K; Jarocha, Danuta J; Lyde, Randolph B; Hayes, Vincent; Thom, Christopher S; Sullivan, Spencer K; French, Deborah L; Poncz, Mortimer

    2017-06-29

    Friend leukemia virus integration 1 (FLI1), a critical transcription factor (TF) during megakaryocyte differentiation, is among genes hemizygously deleted in Jacobsen syndrome, resulting in a macrothrombocytopenia termed Paris-Trousseau syndrome (PTSx). Recently, heterozygote human FLI1 mutations have been ascribed to cause thrombocytopenia. We studied induced-pluripotent stem cell (iPSC)-derived megakaryocytes (iMegs) to better understand these clinical disorders, beginning with iPSCs generated from a patient with PTSx and iPSCs from a control line with a targeted heterozygous FLI1 knockout (FLI1 +/- ). PTSx and FLI1 +/- iMegs replicate many of the described megakaryocyte/platelet features, including a decrease in iMeg yield and fewer platelets released per iMeg. Platelets released in vivo from infusion of these iMegs had poor half-lives and functionality. We noted that the closely linked E26 transformation-specific proto-oncogene 1 (ETS1) is overexpressed in these FLI1-deficient iMegs, suggesting FLI1 negatively regulates ETS1 in megakaryopoiesis. Finally, we examined whether FLI1 overexpression would affect megakaryopoiesis and thrombopoiesis. We found increased yield of noninjured, in vitro iMeg yield and increased in vivo yield, half-life, and functionality of released platelets. These studies confirm FLI1 heterozygosity results in pleiotropic defects similar to those noted with other critical megakaryocyte-specific TFs; however, unlike those TFs, FLI1 overexpression improved yield and functionality. © 2017 by The American Society of Hematology.

  4. Pest Control on the "Fly"

    Science.gov (United States)

    2002-01-01

    FlyCracker(R), a non-toxic and environmentally safe pesticide, can be used to treat and control fly problems in closed environments such as milking sheds, cattle barns and hutches, equine stables, swine pens, poultry plants, food-packing plants, and even restaurants, as well as in some outdoor animal husbandry environments. The product can be applied safely in the presence of animals and humans, and was recently permitted for use on organic farms as livestock production aids. FlyCracker's carbohydrate technology kills fly larvae within 24 hours. By killing larvae before they reach the adult stages, FlyCracker eradicates another potential breeding population. Because the process is physical-not chemical-flies and other insects never develop resistance to the treatment, giving way to unlimited use of product, while still keeping the same powerful effect.

  5. Reliability-oriented Design of a Cost-effective Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This paper presents the reliability-oriented design of a two-terminal active capacitor proposed recently. The two-terminal active capacitor has the same level of convenience as a passive capacitor with reduced requirement of overall energy storage. In order to fully explore the potential...... of the proposed concept, a comprehensive design procedure is necessary to optimally sizing the key components of the active capacitor in terms of cost and reliability. Moreover, the inherent condition monitoring capability of the active capacitor is discussed by utilizing the existing feedback signals. A 500 W...

  6. Highly Accurate Derivatives for LCL-Filtered Grid Converter with Capacitor Voltage Active Damping

    DEFF Research Database (Denmark)

    Xin, Zhen; Loh, Poh Chiang; Wang, Xiongfei

    2016-01-01

    The middle capacitor voltage of an LCL-filter, if fed back for synchronization, can be used for active damping. An extra sensor for measuring the capacitor current is then avoided. Relating the capacitor voltage to existing popular damping techniques designed with capacitor current feedback would...... are then proposed, based on either second-order or non-ideal generalized integrator. Performances of these derivatives have been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately. Experimental results presented have verified...

  7. Sand fly-borne viruses

    OpenAIRE

    Nedvědová Cvanová, Lucie

    2015-01-01

    Sand flies (Diptera: Psychodidae) are important vectors of protozoan, bacterial and viral patogens causing diseases in humans and domestic animals. This thesis summarizes the current knowledge on sand fly-born viruses, their distribution in the World, infection symptoms and life cycle in the nature. These viruses are transmitted by sand flies of genera Phlebotomus, Lutzomyia and Sergentomyia and they can be found on every continent except for Antarctica. They belong into four families, Bunyav...

  8. Utilization of Coal Fly Ash

    Science.gov (United States)

    1992-01-01

    T1 Thallium Br Bromine U Uranium C Carbon V Vanadium Ca Calcium W Tungsten Cd Cadmium Zn Zinc Ce Cerium Cl Chlorine Co Cobalt Cr Chromium Cu Copper...2933 (1987). £ 46 I A 3 Christensen, J., L. Kryger, and N. Pind, "The Determination of Traces of Cadmium, Lead, and Thallium in Fly Ash by...Elements and Radioactivity in Fly Ashes, Adsorption of Elements by Cabbage Grown in Fly Ash-Soil Mixtures," Environmental Science and Technology, v.11

  9. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters.

    Science.gov (United States)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm(2) and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  10. Modelling and control of three-phase grid-connected power supply with small DC-link capacitor for electrolysers

    DEFF Research Database (Denmark)

    Török, Lajos; Máthé, Lászlo; Nielsen, Carsten Karup

    2016-01-01

    These days electrolyzers are becoming more and more interesting due to the high demand for energy storage in form of hydrogen for renewable power generation using fuel cells. The design of a power supply for such a system is complex especially when the DC-link capacitance is reduced....... By substituting the complex switching model of the power supply with a simplified one, the system dynamics can be better observed. The resonances caused by the small DC link capacitor and grid side inductance can be easier analyzed. A feed forward compensation method is proposed based on the simplified model......-forward compensation signal is created, canceling in such a way the resonance introduced by the grid inductance and the DC-link capacitor from the feed-forward loop. The theoretical work has been validated through experiments on a 5 kW DC power supply used for electrolyser application....

  11. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  12. Mass rearing methods for fruit fly

    International Nuclear Information System (INIS)

    Dominguez Gordillo, J.C.

    1999-01-01

    The most common rearing methods used for mass rearing of fruit flies, with emphasis on those of economic importance in Mexico such as Anastrepha ludens (the Mexican fruit fly). Anastrepha obliqua (the mango and plum fruit fly) and the exotic fruit fly Ceratitis capitata (the Mediterranean fruit fly) are described here. (author)

  13. Practical Considerations of the Start-up Procedure for an Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Qian; Geng, Tao

    2017-01-01

    replace conventional passive capacitors in DC links, with reduced cost or size for a given application. The active capacitor has the same level of convenience with two power terminals only as a passive capacitor. This paper proposes two start-up schemes for the active capacitor to overcome the drawbacks...... of existing methods previously widely used for passive capacitors. One scheme is based on a trade-off design between the start-up performance and the component sizing of the active capacitor. The other scheme is based on either an additional bypass switch together with the existing soft-start circuit......Capacitive DC links provide the only low-impedance current path connected with an input source during the start-up of many voltage source converters. A soft-start circuit is usually implemented to limit the inrush current. A two-terminal active capacitor is recently proposed which can directly...

  14. Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a “No Fly Zone”

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Qiao-Qiao; Xu, Qing-Yong; Allen, Pamela K.; Rebueno, Neal; Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Balter, Peter [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mehran, Reza; Swisher, Stephen G.; Roth, Jack A. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-04-01

    Purpose: We extended our previous experience with stereotactic ablative radiation therapy (SABR; 50 Gy in 4 fractions) for centrally located non-small cell lung cancer (NSCLC); explored the use of 70 Gy in 10 fractions for cases in which dose-volume constraints could not be met with the previous regimen; and suggested modified dose-volume constraints. Methods and Materials: Four-dimensional computed tomography (4DCT)-based volumetric image-guided SABR was used for 100 patients with biopsy-proven, central T1-T2N0M0 (n=81) or isolated parenchymal recurrence of NSCLC (n=19). All disease was staged with positron emission tomography/CT; all tumors were within 2 cm of the bronchial tree, trachea, major vessels, esophagus, heart, pericardium, brachial plexus, or vertebral body. Endpoints were toxicity, overall survival (OS), local and regional control, and distant metastasis. Results: At a median follow-up time of 30.6 months, median OS time was 55.6 months, and the 3-year OS rate was 70.5%. Three-year cumulative actuarial local, regional, and distant control rates were 96.5%, 87.9%, and 77.2%, respectively. The most common toxicities were chest-wall pain (18% grade 1, 13% grade 2) and radiation pneumonitis (11% grade 2 and 1% grade 3). No patient experienced grade 4 or 5 toxicity. Among the 82 patients receiving 50 Gy in 4 fractions, multivariate analyses showed mean total lung dose >6 Gy, V{sub 20} >12%, or ipsilateral lung V{sub 30} >15% to independently predict radiation pneumonitis; and 3 of 9 patients with brachial plexus D{sub max} >35 Gy experienced brachial neuropathy versus none of 73 patients with brachial D{sub max} <35 Gy (P=.001). Other toxicities were analyzed and new dose-volume constraints are proposed. Conclusions: SABR for centrally located lesions produces clinical outcomes similar to those for peripheral lesions when normal tissue constraints are respected.

  15. Research into the use of pyrolytic oxides and polymers for the fabrication of thin film high energy capacitors

    Science.gov (United States)

    Nevin, J. H.

    1983-01-01

    Construction, capacitance and dissipation factor, and electrode materials for single layer capacitors are discussed. Basic construction, phosphosilicate glass, ten layer capacitors, twenty layer capacitors, stress measurements, buffered oxide layers, and 30 layer capacitors are also discussed. Spin-on phosphosilicate glass is addressed. Polymers as dielectric materials are also considered.

  16. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  17. The Flying University

    Science.gov (United States)

    Friesen, Catherine

    The Flying University is solo theater performance framed as an academic lecture about Marie Curie and her discovery of radium, delivered to a group of women who have gathered in secret to further their education. As the lecture proceeds, the professor brings in her own research based on a study of Esther Horsch (1905-1991) who lived on a farm in central Illinois. She introduces data from Esther's journals, personal memories, and dreams about Esther's life. The professor's investigation of radium plays at the intersections of magical and mundane, decay and the transformation of life, and the place of ambition in these two women's lives. The intention of this piece is to explore these themes, which are full of mystery, through the traces of the daily lives of Mme. Curie and Esther. Their words and photos are used as roots from which to imagine the things that echo beyond their familiar work; elemental and also fantastically radiant. The Flying University was written and performed by Catherine Friesen April 27-29, 2012 in the Center for Performance Experiment at Hamilton College as part of the University of South Carolina MFA Acting Class of 2013 showcase, Pieces of Eight.

  18. Physics of flying

    Science.gov (United States)

    Vetrone, Jim

    2015-05-01

    Column editor's note: As the school year comes to a close, it is important to start thinking about next year. One area that you want to consider is field trips. Many institutions require that teachers plan for a field trip well in advance. Keeping that in mind, I asked Jim Vetrone to write an article about the fantastic field trip he takes his AP Physics students on. I had the awesome opportunity to attend a professional development day that Jim arranged at iFLY in the Chicago suburbs. The experience of "flying" in a wind tunnel was fabulous. Equally fun was watching the other physics teachers come up with experiments to have the professional "flyers" perform in the tube. I could envision my students being similarly excited about the experience and about the development of their own experiments. After I returned to school, I immediately began the process of trying to get this field trip approved for the 2015-16 school year. I suggest that you start your process as well if you hope to try a new field trip next year. The key to getting the approval, in my experience, is submitting a proposal early that includes supporting documentation from sources. Often I use NGSS or state standards as justifications for my field trips. I have also quoted College Board expectations for AP Physics 1 and 2 in my documents when requesting an unusual field trip.

  19. Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage

    Science.gov (United States)

    Li, Siwei; Wang, Xiaohong

    2015-05-01

    This paper presents an asymmetric micro Li-ion capacitor which is the integration of a supercapacitor electrode and a Li-ion battery electrode. It exploits the power of supercapacitor and the capacity of Li-ion battery, together with an extended cell potential. Activated carbon (AC) of the supercapacitor material is used to construct the positive electrode, graphite of the anode material in Li-ion battery is adopted in the negative electrode, and an electrolyte used in Li-ion battery, 1 M LiPF6 in organic solvent serves as the electrolyte in the device. The micro three-dimensional (3D) electrodes with separator are fabricated by using micro electro mechanical systems (MEMS) fabrication technology. A pre-lithiation of graphite electrode is then carried out to reduce the electrolyte needed when packaging the prototype and improve its performance. Measurements show that the Li-ion capacitor prototype with 100-μm-thick interdigital electrodes has a capacity of 180 μA h/cm2 and an energy density of about 1750 mJ/cm2 at a charge/discharge current of 0.5 mA/cm2. The energy density is much higher than the symmetric AC supercapacitor at the same size.

  20. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    Science.gov (United States)

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  1. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  2. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Science.gov (United States)

    Yuan, Wei; Han, Gaoyi; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-01

    In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H3PO4/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH2PO4·2H2O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  3. Learning from the Fruit Fly

    Science.gov (United States)

    Bierema, Andrea; Schwartz, Renee

    2016-01-01

    The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…

  4. Method of making super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2016-08-23

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  5. Anomalous high capacitance in a coaxial single nanowire capacitor.

    Science.gov (United States)

    Liu, Zheng; Zhan, Yongjie; Shi, Gang; Moldovan, Simona; Gharbi, Mohamed; Song, Li; Ma, Lulu; Gao, Wei; Huang, Jiaqi; Vajtai, Robert; Banhart, Florian; Sharma, Pradeep; Lou, Jun; Ajayan, Pulickel M

    2012-06-06

    Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.

  6. Water-absorbing capacitor system for measuring relative humidity

    Science.gov (United States)

    Laue, Eric G. (Inventor)

    1987-01-01

    A method and apparatus using a known water-absorbent polymer as a capacitor which is operated at a dc voltage for measuring relative humidity is presented. When formed as a layer between porous electrically-conductive electrodes and operated in an RC oscillator circuit, the oscillator frequency varies inversely with the partial pressure of the moisture to be measured. In a preferred embodiment, the capacitor is formed from Nafion and is operated at a low dc voltage with a resistor as an RC circuit in an RC oscillator. At the low voltage, the leakage current is proper for oscillation over a satisfactory range. The frequency of oscillation varies in an essentially linear fashion with relative humidity which is represented by the moisture being absorbed into the Nafion. The oscillation frequency is detected by a frequency detector.

  7. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  8. A wireless implantable switched-capacitor based optogenetic stimulating system.

    Science.gov (United States)

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen; Ghovanloo, Maysam

    2014-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments.

  9. A resonant biaxial Helmholtz coil employing a fractal capacitor bank.

    Science.gov (United States)

    Martin, James E

    2013-09-01

    The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples.

  10. Discharging a DC bus capacitor of an electrical converter system

    Science.gov (United States)

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  11. A Novel Interdigital Capacitor Pressure Sensor Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-01-01

    Full Text Available A novel passive wireless pressure sensor is proposed based on LTCC (low temperature cofired ceramic technology. The sensor employs a passive LC circuit, which is composed of a variable interdigital capacitor and a constant inductor. The inductor and capacitor were fabricated by screen-printing. Pressure measurement is tested using a wireless mutual inductance coupling method. The experimental sensitivity of the sensor is about 273.95 kHz/bar below 2 bar. Experimental results show that the sensor can be read out wirelessly by external antenna at 600°C. The max readout distance is 3 cm at room temperature. The sensors described can be applied for monitoring of gas pressure in harsh environments, such as environment with high temperature and chemical corrosion.

  12. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    Science.gov (United States)

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  13. High energy storage capacitor by embedding tunneling nano-structures

    Science.gov (United States)

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  14. Insitu-Impregnated Capacitor for Pulse-Discharge Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, R.A.; Harris, J.O.; Pollard, J.R.

    1999-01-15

    Capacitor designs for DOE and/or DoD applications are now driven by two major factors; first, the need to reduce component volumes (attain higher energy density) to permit inclusion of additional components and/ or sensors in systems and second, the continuing budget constraints. The reduced volume and cost must be achieved with no sacrifices in functionality, reliability and safety. Since this study was initiated, we have seen a general, continuous increase in resulting short-time breakdown (STB) values, with particular improvements noted on thermal cycled capacitors. Process and results support our prediction that a 50Y0-650A volume reduction can be achieved with no reduction in performance and reliability.

  15. Optimal capacitor placement and sizing in radial electric powe

    OpenAIRE

    Ahmed Elsheikh; Yahya Helmy; Yasmine Abouelseoud; Ahmed Elsherif

    2014-01-01

    The use of capacitors in power systems has many well-known benefits that include improvement of the system power factor, improvement of the system voltage profile, increasing the maximum flow through cables and transformers and reduction of losses due to the compensation of the reactive component of power flow. By decreasing the flow through cables, the systems’ loads can be increased without adding any new cables or overloading the existing cables. These benefits depend greatly on how capaci...

  16. Self-Adaptive Switched Architecture for Ultra-Capacitors Storage

    OpenAIRE

    El Mahboubi, Firdaous; Bafleur, Marise; Boitier, Vincent; Dilhac, Jean-Marie

    2016-01-01

    National audience; Energy autonomy is a major barrier to the deployment of wireless sensors networks in many applications. Ambient energy harvesting and storage is a way to enhance this autonomy. Moreover, in some applications with harsh environment (extreme temperatures) or when a long service liftime is required, the use of batteries for storage is prohibited. Ultra-capacitor provide in this case a good alternative for a energy storage. This type of storage must comply with the following re...

  17. Clock Jitter Effect on Switched-Capacitor Filter Design

    OpenAIRE

    El Oualkadi, Ahmed; Paillot, Jean-Marie; Flandre, Denis

    2006-01-01

    International audience; This paper proposes the study of clock jitter effect on high-Q switched-capacitor filter behavior. A command circuit made up by a ring voltage controlled oscillator (VCO) with XOR gates is used to generate the command signals. According to the correlation of these signals the jitter effect on the signal constellation has been studied. A good agreement between measured and simulation results has been achieved which validate our design methodology.

  18. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  19. Comparison of topologies suitable for Capacitor Charging Systems

    CERN Document Server

    Maestri, S; Uicich, G; Benedetti, M; Cravero, JM

    2014-01-01

    This paper presents a comparison between topologies suitable for capacitor charging systems. The topologies under evaluation are a flyback converter, a half-bridge series resonant converter and a full-bridge phase-shifted converter. The main features of these topologies are highlighted, which allows the proper topology selection according to the application requirements. Moreover, the performed analysis permits to characterize the operational range of the main components thus allowing their appropriate sizing and selection. Simulation results are provided.

  20. Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam

    Directory of Open Access Journals (Sweden)

    Szabó R.

    2017-06-01

    Full Text Available Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid. Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

  1. The influence of capacitor banks on transformer load current

    Directory of Open Access Journals (Sweden)

    Jović Aleksandar S.

    2017-01-01

    Full Text Available This paper deals with the influence of capacitor banks used for reactive energy compensation on total load current of 10/0,4 kV/kV distribution transformers. The analysis regards distribution area of Leskovac which comprehends town Leskovac and nearby settlements. Differently from previously published references that treat excessively reactive energy consumption, the value of reactive power on low voltage side of transformer taking into account the presence of capacitor banks is observed primarily in this paper. Both theoretically possible cases are restated on the basis of measurements: the compensation is adequate or inadequate. The cases of insufficient compensation and overcompensation are regarded to be inadequate compensation. The adequate compensation is achieved when reactive power oscillates around 0 kvar. The special case of adequate compensation, called conditionally adequate compensation, is introduced. For all four cases that describe reactive energy compensation, the calculation results of relative change of low voltage transformer current in the presence of capacitor banks, in comparison to the current without installed banks are presented.

  2. Assessment of capacitor electrodes for intracortical neural stimulation.

    Science.gov (United States)

    Rose, T L; Kelliher, E M; Robblee, L S

    1985-01-01

    Capacitor electrodes offer the potential for the safest method of stimulation of neural tissue because they operate without any faradaic process occurring at the electrode-electrolyte interface. Their use eliminates problems associated with metal dissolution or water electrolysis which may occur with electrodes of noble metals. This paper reviews recent work aimed at increasing the charge storage density of capacitor electrodes to allow their application with the small areas of 10(-4) mm2 required for intracortical stimulation of single neurons. Increased charge storage with electrodes using anodic films such as TiO2 and Ta2O5 has been obtained by increasing the real surface area of microelectrodes. Experiments have also been done with BaTiO3 films which have a much higher dielectric constant than the anodic film dielectrics. State-of-the-art electrodes made with these materials, however, have a charge storage density which at best is comparable to that obtained with Pt and is considerably lower than electrochemically safe charge densities that have been reported for activated Ir. It is concluded that for very small intracortical electrodes, capacitor electrodes will not be competitive with electrodes which operate using surface localized faradaic reactions.

  3. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.

    Science.gov (United States)

    Wang, Huanwen; Zhu, Changrong; Chao, Dongliang; Yan, Qingyu; Fan, Hong Jin

    2017-12-01

    Hybrid metal-ion capacitors (MICs) (M stands for Li or Na) are designed to deliver high energy density, rapid energy delivery, and long lifespan. The devices are composed of a battery anode and a supercapacitor cathode, and thus become a tradeoff between batteries and supercapacitors. In the past two decades, tremendous efforts have been put into the search for suitable electrode materials to overcome the kinetic imbalance between the battery-type anode and the capacitor-type cathode. Recently, some transition-metal compounds have been found to show pseudocapacitive characteristics in a nonaqueous electrolyte, which makes them interesting high-rate candidates for hybrid MIC anodes. Here, the material design strategies in Li-ion and Na-ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb 2 O 5 , MoO 3 , etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices. The application of Mxene as an anode material of MICs is also discussed. A perspective to the future research of MICs toward practical applications is proposed to close. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reliability Estimation of High Voltage Ceramic Capacitor by Failure Analysis

    International Nuclear Information System (INIS)

    Yang, Seok Jun; Kim, Jin Woo; Shin, Seung Woo; Lee, Hee Jin; Shin, Seung Hun; Ryu, Dong Su; Chang, Seog Weon

    2001-01-01

    This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure modes and failure mechanisms were studied in two ways in order to estimate component life and failure rate. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective root cause failure analysis. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal cycling test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which might cause electrical short in underlying circuitry, can occur during curing or thermal cycle. The results can be conveniently used to quickly identify defective lots, determine B 10 life estimation each lot at the level of inspection, and detect major changes in the vendors processes. Also, the condition for dielectric breakdown was investigated for the estimation of failure rate with load-strength interference model

  5. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  6. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  7. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    Science.gov (United States)

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed.

  8. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  9. A Powerful Capacitor Bank for Dense Z-Pinch Investigations

    Science.gov (United States)

    Mokeev, A. N.; Prut, V. V.

    1994-03-01

    A powerful capacitor bank was designed and built to investigate the possibility of increasing the neutron yield up to the 1013-1014 DD neutrons per pulse and to generate ultrahigh magnetic fields up to 1GG. The bank consists of 60 independent 20 kJ modules. The module contains four 5 kJ, 40 kV capacitors and a gaseous spark gap. Each module is connected to the load by means of four low inductive coaxial cables, each about 11 m long. The inductance of module and output cables is 100 nH. The spark gaps are fired by a generator wich consists of a capacitor, a water pulse-forming line and an untriggered gaseous spark gap. The bank has a stored energy of 1.2MJ, capacitance of 1.5 mF, inductance of 3 nH, operates at voltages up to 40kV, and provides I ˜ 13 MA, 5 mks risetime current pulse to a 4 nH load.

  10. A Humidity-Dependent Lifetime Derating Factor for DC Film Capacitors

    DEFF Research Database (Denmark)

    Wang, Huai; Reigosa, Paula Diaz; Blaabjerg, Frede

    2015-01-01

    accelerated testing of film capacitors under different humidity conditions, enabling a more justified lifetime prediction of film capacitors for DC-link applications under specific climatic environments. The analysis of the testing results and the detailed discussion on the derating factor with different......Film capacitors are widely assumed to have superior reliability performance than Aluminum electrolytic capacitors in DC-link design of power electronic converters. However, the assumption needs to be critically judged especially for applications under high humidity environments. This paper proposes...... a humidity-dependent lifetime derating factor for a type of plastic-boxed metallized DC film capacitors. It overcomes the limitation that the humidity impact is not considered in the state-of-the-art DC film capacitor lifetime models. The lifetime derating factor is obtained based on a total of 8,700 hours...

  11. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed

    2012-10-06

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  12. On Enlarging Unit Capacity due to Loss Reduction of Power Capacitor

    Science.gov (United States)

    Muraoka, Takashi; Matsubara, Yoshio

    As the generated heat mainly limits the maximum unit capacity of tank-type power capacitor, it is important to use low loss capacitor elements. This paper describes the developed wide-width element with folded and extended foil electrodes largely improves capacitor loss, and could make possible for cooling design to perform much larger unit capacitors without cooling apparatus such as radiators. The capacitor loss characteristics of three types of element were examined, which became clear the loss reduction of the developed one caused by less current on the electrode foils and by less electrode edge effect. Next, the temperature rise test results of actual large tank-type capacitors drew the empirical equations, which were considered based on the heat transfer engineering. Calculating the temperature rise of tank and inside oil, the bounds of maximum unit capacity could be estimated on the same design policy as the examined.

  13. Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.

  14. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    , instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more......Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  15. Africa and the tsetse fly

    International Nuclear Information System (INIS)

    1985-01-01

    Trypanosomiasis, an infection transmitted by the tsetse fly and causing sleeping sickness in man and Nagana disease in animals, is widespread in Africa. It affects 37 countries (an area as large as the United States) and leads to great losses in the national economy. It can be fought effectively by programmes to eradicate the tsetse fly with the sterile insect technique. The film shows the tsetse habitats and biology and demonstrates how its reproduction circle can be interrupted by sterilization of male flies with gamma rays. This method has proven an effective alternative to the use of pesticides because its efficiency increases with each generation and it causes no environmental pollution problems

  16. Roll Control in Fruit Flies

    OpenAIRE

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2014-01-01

    Due to aerodynamic instabilities, stabilizing flapping flight requires ever-present fast corrective actions. Here we investigate how flies control body roll angle, their most susceptible degree of freedom. We glue a magnet to each fly, apply a short magnetic pulse that rolls it in mid-air, and film the corrective maneuver. Flies correct perturbations of up to $100^{\\circ}$ within $30\\pm7\\mathrm{ms}$ by applying a stroke-amplitude asymmetry that is well described by a linear PI controller. The...

  17. Performance and Stability Analysis of Negative Capacitor in OLED Driving Circuit

    OpenAIRE

    Shim, Chang-Hoon; Hattori, Reiji

    2009-01-01

    We have demonstrated in the previous work that the negative capacitor can effectively prevent the signal delay due to the parasitic capacitance in the current programmed OLED display. However, there were some problems in the real panel application. Therefore, we discussed the difference between the simulation and measurement results and proposed the methods to improve the negative capacitor performance. We also analyzed the stability of negative capacitor considering the parasitic resistance ...

  18. Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits

    Directory of Open Access Journals (Sweden)

    Mukul Dixit

    2017-04-01

    The various costs such as purchase active power from grid, DG installation, capacitor installation, DG Operation and Maintenance (O&M are evaluated at two different load scenarios. In addition to that, technical and economical analyses are examined for various combinations of DGs and shunt capacitors. The proposed methodology is successfully demonstrated on 33-bus and 85-bus radial networks and the obtained numerical outcomes validate the suitability, importance and effectiveness to identify locations as well as sizes of DGs and shunt capacitors.

  19. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters:An Overview

    OpenAIRE

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capaci...

  20. Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors.

    Science.gov (United States)

    Yuan, C Z; Gao, B; Shen, L F; Yang, S D; Hao, L; Lu, X J; Zhang, F; Zhang, L J; Zhang, X G

    2011-02-01

    This feature article provides an overview of the recent research progress on the hierarchically structured carbon-based composites for electrochemical capacitors. The basic principles of electrochemical capacitors, and the design, construction and performance of hierarchically structured carbon-based composites electrode materials with good ions and electron transportation and large specific surface area are discussed. The trend of future development of high-power and large-energy electrochemical capacitors is proposed.

  1. Neural network for optimal capacitor placement and its impact on power quality in electric distribution systems

    International Nuclear Information System (INIS)

    Mohamed, A.A.E.S.

    2013-01-01

    Capacitors are widely installed in distribution systems for reactive power compensation to achieve power and energy loss reduction, voltage regulation and system capacity release. The extent of these benefits depends greatly on how the capacitors are placed on the system. The problem of how to place capacitors on the system such that these benefits are achieved and maximized against the cost associated with the capacitor placement is termed the general capacitor placement problem. The capacitor placement problem has been formulated as the maximization of the savings resulted from reduction in both peak power and energy losses considering capacitor installation cost and maintaining the buses voltage within acceptable limits. After an appropriate analysis, the optimization problem was formulated in a quadratic form. For solving capacitor placement a new combinatorial heuristic and quadratic programming technique has been presented and applied in the MATLAB software. The proposed strategy was applied on two different radial distribution feeders. The results have been compared with previous works. The comparison showed the validity and the effectiveness of this strategy. Secondly, two artificial intelligence techniques for predicting the capacitor switching state in radial distribution feeders have been investigated; one is based on basis Radial Basis Neural Network (RBNN) and the other is based on Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS technique gives better results with a minimum total error compared to RBNN. The learning duration of ANFIS was very short than the neural network case. It implied that ANFIS reaches to the target faster than neural network. Thirdly, an artificial intelligence (RBNN) approach for estimation of transient overvoltage during capacitor switching has been studied. The artificial intelligence approach estimated the transient overvoltages with a minimum error in a short computational time. Finally, a capacitor switching

  2. A zero voltage switching, variable frequency capacitor charging power supply using series resonant topology

    International Nuclear Information System (INIS)

    Kelkar, Y.; Raikwar, Y.

    2005-01-01

    Power supplies used in repetitive capacitor charging from zero voltage (near short circuit) to maximum voltage. A power supply using series resonant topology has been assembled in laboratory. The capacitor charging power supply (CCPS) will charge a 90 mF energy storage capacitor from 0 V to 700 V in 35 ms exhibiting charging power of 630 J /s at a repetition rate of 25 pps. (author)

  3. Measurements and studies of harmonics and switching transients in large HV shunt capacitor banks

    OpenAIRE

    Issouribehere, Pedro; Issouribehere, Fernando; Barbera, Gustavo Ariel; Gomez, D.

    2007-01-01

    Adding capacitors to an electric power system provides well known benefits, including power factor correction, voltage support and increase of active power transfer capacity. However, the capacitor banks modify the harmonic voltages and currents in the network and give rise to current and voltage transients, stressing switching devices and sensitive loads. The first part of the paper describes measurements and studies performed before the installation of 2x50 MVAr capacitor banks in a 5...

  4. Safe Distances From a High-Energy Capacitor Bank for Ear and Lung Protection

    Science.gov (United States)

    2014-06-01

    Safe Distances From a High-Energy Capacitor Bank for Ear and Lung Protection by Charles R. Hummer, Richard J. Pearson, and Donald H. Porschet...ARL-TN-608 June 2014 Safe Distances From a High-Energy Capacitor Bank for Ear and Lung Protection Charles R. Hummer, Richard J. Pearson...June 2014 2. REPORT TYPE Final 3. DATES COVERED (From - To) April 2014 4. TITLE AND SUBTITLE Safe Distances From a High-Energy Capacitor Bank for

  5. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  6. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  7. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics...

  8. Capacitor Mismatch Error Cancellation Technique for a Successive Approximation A/D Converter

    DEFF Research Database (Denmark)

    Zheng, Zhiliang; Moon, Un-Ku; Steensgaard-Madsen, Jesper

    1999-01-01

    An error cancellation technique is described for suppressing capacitor mismatch in a successive approximation A/D converter. At the cost of a 50% increase in conversion time, the first-order capacitor mismatch error is cancelled. Methods for achieving top-plate parasitic insensitive operation...... are described, and the use of a gain- and offset-compensated opamp is explained. SWITCAP simulation results show that the proposed 16-bit SAR ADC can achieve an SNDR of over 91 dB under non-ideal conditions, including 1% 3 sigma nominal capacitor mismatch, 10-20% randomized parasitic capacitors, 66 dB opamp...

  9. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    Science.gov (United States)

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  10. Digital Realization of Capacitor-Voltage Feedback Active Damping for LCL-Filtered Grid Converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    The capacitor voltage of an LCL-filter can also be used for active damping, if it is fed back for synchronization. By this way, an extra current sensor can be avoided. Compared with the existing active damping techniques designed with capacitor current feedback, the capacitor voltage feedback....... To overcome their drawbacks, a new derivative method is then proposed, based on the non-ideal generalized integrator. The performance of the proposed derivative has been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately...

  11. An Active Capacitor with Self-Power and Internal Feedback Control Signals

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This paper proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. A control strategy that does not require any external feedback...... signal is proposed and a self-power scheme for gate drivers and the controller is applied to achieve the two-terminal active capacitor. The concept, control method, self-power scheme, efficiency, and impedance characteristics of the active capacitor are presented. A case study of the proposed active...

  12. SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... damping control. However, in digital systems, the discrete implementation of the derivative suffers from noise amplification and accuracy issues. To overcome these drawbacks, this paper proposes a new derivative method based on Second-Order Generalized Integrator. Theoretical study shows that the proposed...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....

  13. Design of constant current charging power supply for J-TEXT ohmic field capacitor banks

    International Nuclear Information System (INIS)

    Lv Shudong; Zhang Ming; Rao Bo; Yu Kexun; Yang Cheng

    2014-01-01

    The charging characteristic of the capacitor charging power supply was analyzed with practical series resonant topology. The method that setting two current taps and regulating PWM switching frequency was putted forward with close loop controlling algorithm to charge the multi-group capacitor banks with constant current. A capacitor charging power supply with the max output current 6.5 A and the max output voltage 2000 V is designed. Experimental results show that, this power supply can charge the four capacitor banks to any four different voltages in 1 minute with charging accuracy less than 1%, and meet the requirements of J-TEXT ohmic field power system. (authors)

  14. Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Malekie, Shahryar [Nuclear Science and Technology Research Institute, Karaj (Iran, Islamic Republic of). Radiation Application Research School; Salehpour, Behrooz [Tabriz Univ. (Iran, Islamic Republic of). Faculty of Physics

    2017-09-01

    In this experimental work, the effect of gamma irradiation on the capacitance and impedance of some commercial capacitors namely electrolytic, MKP, and MKT capacitors in different radiation doses up to 120 kGy and a wide range of frequencies between 42 Hz and 5 MHz were studied. Results showed that the capacitances of the electrolytic capacitors exhibited a linear decrease by increasing the radiation dose and frequencies, which can be used for high dosimetry purposes, but non-ceramic capacitors as MKP and MKT showed much higher radiation resistance, particularly for the frequencies less than ∝1 MHz.

  15. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.

    Science.gov (United States)

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-10-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35- μ m 4-metal 2-poly standard CMOS process in 2.1 mm 2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μ F capacitors up to ±2 V in 420 μ s, achieving a high measured charging efficiency of 82%.

  16. Thermal instability of electrolytic capacitor bank used for gas puff valve

    OpenAIRE

    Bellan, P. M.

    2002-01-01

    It is shown that self-heating of electrolytic capacitors causes the output current of a capacitor bank to increase with successive shots even though the charge voltage is held constant. Self heating of only 10 °C can cause a near tripling in the gas output of the gas puffing valves commonly used in spheromak research. By using metallized polypropylene film capacitors instead of electrolytic capacitors the reproducibility is substantially improved (the shot-to-shot variation in gas output is r...

  17. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  18. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Evolution, Fruit Flies and Gerontology Evolutionary Biology Helps Unravel the Mysteries of Ageing. Amitabh Joshi. General Article Volume 1 Issue 11 November 1996 pp 51-63 ...

  19. Integrated management of fruit flies

    International Nuclear Information System (INIS)

    1983-01-01

    This film introduces species of fruit-flies and their reproduction cycle and suggests various methods for controlling insect pests (insect traps, treatment of infested fruits, chemical, legal, and biological control -sterile male technique

  20. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae).

    Science.gov (United States)

    Doud, C W; Taylor, D B; Zurek, L

    2012-03-01

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas were evaluated. Emergence traps were deployed 19 May through 20 October 2009 (22 wk) and 27 May through 18 November 2010 (25 wk). In total, 11,349 muscoid flies were collected emerging from the biosolid cake. Stable flies (Stomoxys calcitrans (L.)) and house flies (Musca domestica (L.)), represented 80 and 18% of the muscoid flies, respectively. An estimated 550 stable flies and 220 house flies per square-meter of surface area developed in the biosolid cake annually producing 450,000 stable flies and 175,000 house flies. Stable fly emergence was seasonally bimodal with a primary peak in mid-July and a secondary peak in late August. House fly emergence peaked with the first stable fly emergence peak and then declined gradually for the remainder of the year. House flies tended to emerge from the biosolid cake sooner after its deposition than did stable flies. In addition, house fly emergence was concentrated around midsummer whereas stable fly emergence began earlier in the spring and continued later into the fall. Biosolid age and temperature were the most important parameters affecting emergence for house flies and stable flies, whereas precipitation was not important for either species. This study highlights the importance of biosolid cake as a larval developmental habitat for stable flies and house flies.

  1. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  2. Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells

    Czech Academy of Sciences Publication Activity Database

    Taslerová, R.; Kozubek, Stanislav; Lukášová, Emilie; Jirsová, Pavla; Bártová, Eva; Kozubek, Michal

    2003-01-01

    Roč. 112, č. 2 (2003), s. 143-155 ISSN 0340-6717 R&D Projects: GA MZd NC5955; GA AV ČR IBS5004010; GA ČR GA301/01/0186 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * human leukemic cells * Ewing sarcoma cells Subject RIV: BO - Biophysics Impact factor: 4.022, year: 2003

  3. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  4. Harmonic Analysis of Radial Distribution Systems Embedded Shunt Capacitors

    Directory of Open Access Journals (Sweden)

    Abdallah Elsherif

    2017-03-01

    Full Text Available Harmonic analysis is an important application for analysis and design of distribution systems. It is used to quantify the distortion in voltage and current waveforms at various buses for a distribution system. However such analysis has become more and more important since the presence of harmonic-producing equipment is increasing. As harmonics propagate through a system, they result in increased power losses and possible equipment loss-of-life. Further equipments might be damaged by overloads resulting from resonant amplifications. There are a large number of harmonic analysis methods that are in widespread use. The most popular of these are frequency scans, harmonic penetration and harmonic power flow. Current source (or current injection methods are the most popular forms of such harmonic analyses. These methods make use of the admittance matrix inverse which computationally demand and may be a singular in some cases of radial distributors. Therefore, in this paper, a new fast harmonic load flow method is introduced. The introduced method is designed to save computational time required for the admittance matrix formation used in current injection methods. Also, the introduced method can overcome the singularity problems that appear in the conventional methods. Applying the introduced harmonic load flow method to harmonic polluted distribution systems embedded shunt capacitors which commonly used for losses minimization and voltage enhancement, it is found that the shunt capacitor can maximize or minimize system total harmonic distortion (THD according to its size and connection point. Therefore, in this paper, a new proposed multi-objective particle swarm optimization "MOPSO" for optimal capacitors placement on harmonic polluted distribution systems has been introduced. The obtained results verify the effectiveness of the introduced MOPSO algorithm for voltage THD minimization, power losses minimization and voltage enhancement of radial

  5. The fly eye: Through the looking glass.

    Science.gov (United States)

    Kumar, Justin P

    2018-01-01

    The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Experiment of weak grid stabilization by super capacitor

    International Nuclear Information System (INIS)

    Jung, Hoon

    2008-01-01

    Power balancing in isolated weak grid like a small islands is becoming critical these days because of passive generation system like wind or solar power. In these generation system, we can't control the output power, so other generation system like diesel engine should balance between power demand and supply. But quick and frequent power change of internal combustion engine cause decrease of efficiency and shortage of life. So, various technologies to absorb this impact have been tried. In this paper, M-G set with super capacitor was used and tested to verify the possibility of adopting

  7. Mismatch-Shaped Pseudo-Passive Two-Capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, Un-Ku; Temes, Gabor C.

    1999-01-01

    interpolation filter, but arbitrary properties of the overall interpolation characteristic can be assured.Simulations indicate that the scheme can be used for the realization of DACs with 16-bit linearity and SNR performance, with only 0.1% capacitance accuracy. The DAC is pseudo-passive, i.e. an active element......A simple mismatch-shaping scheme is proposed for a two-capacitor DAC. Unlike in other mismatch-shaping systems, the shaped error is generated by direct filtering of a well-defined bounded signal, which can be generated as white noise. The operation is closely related to a specific digital...

  8. CMOS RF switched capacitor bandpass filter tuned by ring VCO

    OpenAIRE

    El Oualkadi, Ahmed; Paillot, Jean-Marie; Guegnaud, Hervé; Allam, Rachid

    2005-01-01

    International audience; A new RF switched capacitor bandpass filter and its command circuit made up of a ring voltage controlled oscillator with 'XOR' gates are proposed. Implemented in a standard 0.35 m CMOS technology, this circuit is intended to be used in a subset of professional mobile phone applications [380-520 MHz]. Experiments carried out on a prototype show a tunable center frequency range of 260MHz [240-500 MHz], with a quality factor that can be as high as 300.

  9. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  10. Nanostructured metal oxides as electrode materials for electrochemical capacitors.

    Science.gov (United States)

    Konstantinov, Konstantin; Wang, Guoxiu; Lao, Zhuo Jin; Liu, Hua Kun; Devers, T

    2009-02-01

    In this study, nanostructured transition metal oxides, such as Co3O4, NiO and MnO2 were comprehensively studied and reported as promising electrode materials for electrochemical capacitors. The materials have been obtained by solution or spray solution techniques, which are cost-effective and promising for industry application. All materials feature a large specific surface area, which can reach up to 270 m2/g. The high surface area is a compulsory condition for high capacitance. The best MnO2 materials yielded up to 406 F/g.

  11. Repetitively pulsed capacitor bank for the dense-plasma focus

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1976-01-01

    This report describes a 1 pulse per second capacitor bank designed to energize a dense-plasma focus (DPF). The DPF is a neutron source capable (with moderate scaling) of delivering a minimum of 10 15 neutrons per pulse or neutron flux of 2 x 10 13 N/cm 2 . s. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. This small source size high flux neutron source could be extremely useful to qualify fission reactor material irradiation results for fusion reactor design

  12. The quantum to classical crossover for a weak link capacitor

    International Nuclear Information System (INIS)

    Spiller, T.P.; Clark, T.D.; Prance, H.; Prance, R.J.

    1995-01-01

    We consider a model weak link, an ultra-small capacitor subject to tunnelling, to ohmic dissipation and fed with an external displacement current. The framework we employ is the new approach of quantum state diffusion, which treats individual open quantum systems as well as being able to generate the conventional ensemble averages. We show how evidence, for archetypal quantum behaviour (coherent oscillations) and archetypal classical behaviour (chaos) arises, for weak links whose parameters are related by a rather modest scaling. Interestingly, the quantum behaviour can arise for a weak link with intrinsic parameter values such that it could exhibit chaos, if it were a purely classical device

  13. High energy density, long life energy storage capacitor dielectric system

    International Nuclear Information System (INIS)

    Nichols, D.H.; Wilson, S.R.

    1977-01-01

    The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order

  14. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...... this paper proposes a fourth-order resonant controller in the stationary frame, which guarantees a zero steady-state current tracking error for the grid converters with series LC filter. This method is then implemented in a three-phase experimental system for verification, where the current harmonics below...

  15. Electronic inverter assembly with an integral snubber capacitor

    Science.gov (United States)

    Singh, Brij N.; Schmit, Christopher J.

    2017-08-01

    A coaxial bus connector has a first end and a second end opposite the first end. The first end has a first positive terminal and a first negative terminal coupled to a primary direct current bus of a primary inverter. The second end has a second positive terminal and a second negative terminal coupled to the secondary direct current bus of a secondary inverter, wherein the coaxial bus connector comprises a dielectric material between a center conductor and a coaxial sleeve to form a snubber capacitor to absorb electrical energy or to absorb voltage spikes.

  16. On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    DEFF Research Database (Denmark)

    Ienasescu, Hans-Ioan; Li, Kang; Andersson, Robin

    2016-01-01

    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present Slide......Base, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds...... for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human...

  17. Mitochondrial dysfunction in NnaD mutant flies and Purkinje cell degeneration (pcd) mice reveals a role for Nna proteins in neuronal bioenergetics

    OpenAIRE

    Chakrabarti, Lisa; Zahra, Rabaab; Jackson, Stephen M.; Kazemi-Esfarjani, Parsa; Sopher, Bryce L.; Mason, Amanda G.; Toneff, Thomas; Ryu, Soyoung; Shaffer, Scott; Kansy, Janice W.; Eng, Jeremiah; Merrihew, Gennifer; MacCoss, Michael J.; Murphy, Anne; Goodlett, David R.

    2010-01-01

    The Purkinje cell degeneration (pcd) mouse is a recessive model of neurodegeneration, involving cerebellum and retina. Purkinje cell death in pcd is dramatic, as >99% of Purkinje neurons are lost in three weeks. Loss-of-function of Nna1 causes pcd, and Nna1 is a highly conserved zinc carboxypeptidase. To determine the basis of pcd, we implemented a two-pronged approach, combining characterization of loss-of-function phenotypes of the Drosophila Nna1 orthologue (NnaD) with proteomics analysis ...

  18. Cell cycle arrest as a hallmark of insect diapause: Changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Šimůnková, P.; Kobelková, Alena; Shimada, K.

    2009-01-01

    Roč. 39, č. 12 (2009), s. 875-883 ISSN 0965-1748 R&D Projects: GA MŠk LC07032 Institutional research plan: CEZ:AV0Z50070508 Keywords : Drosophila * cell cycle arrest * diapause Subject RIV: ED - Physiology Impact factor: 3.117, year: 2009

  19. Efficient Recreation of t(11;22 EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Raul Torres-Ruiz

    2017-05-01

    Full Text Available Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22 translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1 using end-joining DNA processing factors involved in repair mechanisms, or (2 ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3 all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22 is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22 in human stem cells opens up new avenues in modeling Ewing sarcoma.

  20. Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.

  1. Spike-compensated Low-Voltage Unity-Gain-Reset Switched-Capacitor Algorithmic Digital-to-Analog Converters

    OpenAIRE

    大野, 憲司; 松本, 寛樹

    2009-01-01

    In this paper, they shows two Low-Voltage Switched-Capacitor (SC) cyclic DACs. They are proposed which consists of a switch, capacitor, MOSFET and operational amplifier (op-amp). Circuit operation is evaluated on SIMetrix.

  2. Capacitor voltage ripple reduction and arm energy balancing in MMC-HVDC

    DEFF Research Database (Denmark)

    Parikh, Harsh; Martin-Loeches, Ruben Sánches; Tsolaridis, Georgios

    2016-01-01

    variations is utilized in order to achieve better performance. By injecting a second order harmonic component into the circulating current, the energy variation and consequently the capacitor voltage ripple is reduced allowing for a capacitor size reduction. At the same time, an arm energy balancing...

  3. The Most Energy Efficient Way to Charge the Capacitor in an RC Circuit

    Science.gov (United States)

    Wang, Dake

    2017-01-01

    The voltage waveform that minimizes the energy loss in the resistance when charging the capacitor in a resistor-capacitor circuit is investigated using the calculus of variation. A linear voltage ramp gives the best efficiency, which means a constant current source should be used for charging. Comparison between constant current source and…

  4. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Piromalis, Dimitrios D.; Arvanitis, Konstantinos G.; Dounis, Anastasios I.; Papadakis, George

    2015-01-01

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  5. A 800 kV compact peaking capacitor for nanosecond generator.

    Science.gov (United States)

    Jia, Wei; Chen, Zhiqiang; Tang, Junping; Chen, Weiqing; Guo, Fan; Sun, Fengrong; Li, Junna; Qiu, Aici

    2014-09-01

    An extremely compact high voltage peaking capacitor is developed. The capacitor has a pancake structure with a diameter of 315 mm, a thickness of 59 mm, and a mass of 6.1 kg. The novel structural design endows the capacitor with a better mechanical stability and reliability under hundreds of kilovolts pulse voltage and an inner gas pressure of more than 1.5 MPa. The theoretical value of the capacitor self-inductance is near to 17 nH. Proved by series of electrical experiments, the capacitor can endure a high-voltage pulse with a rise time of about 20 ns, a half-width duration of around 25 ns, and an amplitude of up to 800 kV in a single shot model. When the capacitor was used in an electromagnetic pulse simulator as a peaking capacitor, the rise time of the voltage pulse can be reduced from 20 ns to less than 3 ns. The practical value of the capacitor's inductance deduced from the experimental date is no more than 25 nH.

  6. Thin film barium strontium titanate capacitors for tunable RF front-end applications

    NARCIS (Netherlands)

    Tiggelman, M.P.J.

    2009-01-01

    In this thesis, the results of intensive electrical characterization, modeling and the design of hardware with thin film tunable capacitors, i.e., dielectric varactors, has been presented and discussed. Especially the quality factor Q and the tuning ratio of the tunable capacitors have been studied,

  7. Design and modeling of inductors, capacitors and coplanar waveguides at tens of GHz frequencies

    CERN Document Server

    Aryan, Naser Pour

    2015-01-01

    This book describes the basic principles of designing and modelling inductors, MIM capacitors and coplanar waveguides at frequencies of several tens of GHz. The author explains the design and modelling of key, passive elements, such as capacitors, inductors and transmission lines that enable high frequency MEMS operating at frequencies in the orders of tens of GHz.

  8. A Different Approach to Studying the Charge and Discharge of a Capacitor without an Oscilloscope

    Science.gov (United States)

    Ladino, L. A.

    2013-01-01

    A different method to study the charging and discharging processes of a capacitor is presented. The method only requires a high impedance voltmeter. The charging and discharging processes of a capacitor are usually studied experimentally using an oscilloscope and, therefore, both processes are studied as a function of time. The approach presented…

  9. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  10. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Alberdi, J.; Asenso, L.; Sanz, J. A.

    1990-01-01

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  11. Microcomputer based system to control the load of a capacitor array in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Asenjo, L.; Sanz, J.A.

    1990-01-01

    The power to create the magnetic field in the TJ-1 TOKAMAK is provide by an array of 16 capacitor sets. The total capacity of this array is 8.1F. This work describes a computer system based on the Motorola M-6800 microprocessor which controls the load of the capacitor set-and establishes the conditions for the reactor trigger. (author)

  12. Microstrip Resonator for High Field MRI with Capacitor-Segmented Strip and Ground Plane

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2017-01-01

    ) segmenting stripe and ground plane of the resonator with series capacitors. The design equations for capacitors providing symmetric current distribution are derived. The performance of two types of segmented resonators are investigated experimentally. To authors’ knowledge, a microstrip resonator, where both...

  13. Simulation and analysis of transient over voltages due to capacitor banks switching

    International Nuclear Information System (INIS)

    Jadid, Sh.; Yazdanpanah, D.

    2002-01-01

    The switching of any capacitor bank produces over voltages. Transient overvoltage will always occur in the switching device, the switching of shunt capacitor bank has become the most common source of transient voltage on power systems. Transient over voltages due to switching the capacitor bands hurt not only to the capacitor banks, but also to other equipment, such as circuit breakers and transformers. Several methods are available for reducing energising transients. These devices include pre-insertion resistors, pre-insertion inductors,synchronous closing, and MOV arresters. However, not all are practical or economical. The other important problem is existence of capacitor banks in presence of harmonics.Capacitors do not produce harmonics;however,the addition of capacitors to the electrical system will change the frequency response characteristics of the system will change the frequency response characteristics of the system, and in some cases can result in magnification of the voltage and current distortion in the system. In other word in presence of harmonic-producing loads,the capacitors used for power factor correction,may cause parallel resonance with the system inductance, so they increase the total harmonic distortion of voltage and current waveforms

  14. Investigation on Capacitor Switching Transient Limiter with a Three phase Variable Resistance

    DEFF Research Database (Denmark)

    Naderi, Seyed Behzad; Jafari, Mehdi; Zandnia, Amir

    2017-01-01

    In this paper, a capacitor switching transient limiter based on a three phase variable resistance is proposed. The proposed structure eliminates the capacitor switching transient current and over-voltage by introducing a variable resistance to the current path with its special switching pattern. ...

  15. Implications of Capacitor Voltage Imbalance on the Operation of the Semi-Full-Bridge Submodule

    OpenAIRE

    Heinig, Stefanie; Jacobs, Keijo; Ilves, Kalle; Norrga, Staffan; Nee, Hans-Peter

    2017-01-01

    An investigation of the voltage imbalance of the two capacitors of the semi-full-bridge submodule is performed. Since the capacitances are not exactly the same, there may be a difference between the capacitor voltages. The resulting current-spike when they are connected in parallel has been analyzed in a full-scale laboratory experiment. QC 20180109

  16. The influences of operating conditions and design configurations on the performance of symmetric electrochemical capacitors.

    Science.gov (United States)

    Ike, Innocent S; Sigalas, Iakovos; Iyuke, Sunny E

    2016-10-19

    The influence of different charging current densities, charging times and several structural designs on symmetric electrochemical capacitor (EC) performance, including capacitance, energy density and power density, has been investigated via modelling and simulation. Understanding the effects of different operating conditions and structural design variables on a capacitor's performance will guide in the optimal design and fabrication of high performance ECs. The operating conditions and design configurations examined were charging current density, charging times, electrode and electrolyte effective conductivity, electrode thickness and electrode porosity. The results reveal that ECs with low electrode and electrolyte effective conductivities can only be effectively charged at low current density for long times. ECs with a high concentration of impurity ions or redox species exhibit high self-discharge rates, and fast charging of the ECs greatly reduces the self-discharge rate, compared to slow charging, provided that the effective conductivities of the electrode and electrolyte are high enough. The simulation showed the typical electrode length scale over which the liquid potential drop occurs and electrode utilization can be employed as a design parameter to optimize electrode thickness (effective thickness) for ECs designed to operate under a specific current density range. The expression for electrode utilization (u) and the guidelines that can also be used to determine optimum electrode thickness/effective thickness (100% electrode utilization), optimum charging time and optimum current density in a cell of a given voltage and effective conductivity of electrode and electrolyte, were derived. The energy and power density of ECs were increased when the electrode thickness was reduced in the given charging conditions. The Ragone plots can be used to select optimum electrode dimensions to attain given energy and power density specifications.

  17. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  18. Soft capacitor fibers using conductive polymers for electronic textiles

    International Nuclear Information System (INIS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60–100 nF m −1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L −1 , which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  19. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  20. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.