WorldWideScience

Sample records for cell flow systems

  1. Flow cell system for miscible displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.H.; Kirkham, D.

    1971-02-01

    The use of a continuous graphic recording system for flow-component measurement in miscible displacement experiments is described. This system measures and continuously records radioactive tracer concentrations of effluents of miscible displacement columns. The recordings are needed breakthrough curves. The use of the system obviates fraction collectors.

  2. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  3. Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.

    Science.gov (United States)

    Teodósio, Joana S; Silva, Filipe C; Moreira, Joana M R; Simões, Manuel; Melo, Luís F; Alves, Manuel A; Mergulhão, Filipe J

    2013-09-01

    Semi-circular flow cells are often used to simulate the formation of biofilms in industrial pipes with circular section because their planar surface allows easy sampling using coupons. Computational fluid dynamics was used to assess whether the flow in pipe systems can be emulated by the semi-circular flow cells that are used to study biofilm formation. The results show that this is the case for Reynolds numbers (Re) ranging from 10 to 1000 and 3500 to 10,000. A correspondence involving the friction factor was obtained in order to correlate any semi-circular flow cell to any circular pipe for Re between 10 and 100,000. The semi-circular flow cell was then used to assess experimentally the effect of Reynolds number (Re = 4350 and 6720) on planktonic cell concentration and biofilm formation using Escherichia coli JM109 (DE3). Lower planktonic cell concentrations and thicker biofilms (>1.2 mm) were obtained with the lower Re.

  4. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  5. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    Science.gov (United States)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  6. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  7. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process...... the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process....... with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  8. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  9. Coupled Flow-Structure-Biochemistry Simulations of Dynamic Systems of Blood Cells Using an Adaptive Surface Tracking Method

    OpenAIRE

    Hoskins, M.H.; Kunz, R.F.; Bistline, J.E.; Dong, C.

    2009-01-01

    A method for the computation of low Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of freedom motion control and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mecha...

  10. Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method

    Science.gov (United States)

    Hoskins, M. H.; Kunz, R. F.; Bistline, J. E.; Dong, C.

    2009-07-01

    A method for the computation of low-Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of-freedom motion control, and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mechanics is presented. The capabilities of the technique are demonstrated by presenting several three-dimensional cell system simulations, including the collision/interaction between a cancer cell and an endothelium adherent polymorphonuclear leukocyte (PMN) cell in a shear flow.

  11. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-ye

  12. A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows

    CERN Document Server

    Selvam, A M

    2006-01-01

    Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...

  13. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien, E-mail: adrien.chauvet@epfl.ch; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Tibiletti, Tania; Caffarri, Stefano [Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille (France)

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  14. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem, E-mail: qasem.alramadan@epfl.ch [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore); Christophe, Lay; Teo, William; ShuJun, Li; Hua, Feng Han [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore)

    2010-07-12

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  15. Vega flow assurance system

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marit; Munaweera, Sampath

    2010-07-01

    Vega is a gas condensate field located at the west coast of Norway and developed as a tie-in to the Gjoea platform. Operator is Statoil, production startup is estimated to the end of 2010. Flow assurance challenges are high reservoir pressure and temperature, hydrate and wax control, liquid accumulation and monitoring the well/template production rates. The Vega Flow Assurance System (FAS) is a software that supports monitoring and operation of the field. The FAS is based FlowManagerTM designed for real time systems. This is a flexible tool with its own steady state multiphase- and flow assurance models. Due to the long flowlines lines and the dynamic behavior, the multiphase flow simulator OLGA is also integrated in the system. Vega FAS will be used as: - An online monitoring tool - An offline what-if simulation and validation tool - An advisory control system for well production allocation. (Author)

  16. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination

    DEFF Research Database (Denmark)

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-01-01

    into the well of a NaI(Tl) detector. The radio-HPLC flow was directed from the injector to the reference cell allowing on-line detection of the total injected sample activity prior to entering the HPLC column. The radioactivity eluted from the column was then detected in the analytical cell. In this way......In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit...

  17. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system.

    Science.gov (United States)

    Duncan, Kathleen E; Perez-Ibarra, Beatriz Monica; Jenneman, Gary; Harris, Jennifer Busch; Webb, Robert; Sublette, Kerry

    2014-01-01

    A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H₂S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.

  18. Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system.

    Science.gov (United States)

    Hester, J P; Rondón, G; Huh, Y O; Lauppe, M J; Champlin, R E; Deisseroth, A B

    1995-08-01

    The application of continuous flow apheresis technology to processing bone marrow for collection of the mononuclear progenitor cell population appears to follow the same principles as collection of mononuclear cells from peripheral blood. Unlike peripheral blood, however, where mobilization of cells from extravascular sites during the procedures contributes significantly to the final cell yield, the entire quantity of progenitor cells available for recovery from marrow is present in the original marrow when it is pooled. The process then becomes one of attempting optimal recovery of the cells of interest while excluding contaminating erythrocytes and cells of the myeloid series. This study reports the development of a protocol for recovery of MNC, CD33+, CD34+, and CD34+/DR- cells from harvested marrow for autologous and allogeneic transplants using a continuous flow blood cell separator, the variables influencing the recovery of the cells of interest and the clinical response to infusion of the processed cells.

  19. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  20. Flow cytometry and cell sorting.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2007-01-01

    Flow cytometry and cell sorting are well-established technologies in clinical diagnostics and biomedical research. Heterogeneous mixtures of cells are placed in suspension and passed single file across one or more laser interrogation points. Light signals emitted from the particles are collected and correlated to entities such as cell morphology, surface and intracellular protein expression, gene expression, and cellular physiology. Based on user-defined parameters, individual cells can then be diverted from the fluid stream and collected into viable, homogeneous fractions at exceptionally high speeds and a purity that approaches 100%. As such, the cell sorter becomes the launching point for numerous downstream studies. Flow cytometry is a cornerstone in clinical diagnostics, and cheaper, more versatile machines are finding their way into widespread and varied uses. In addition, advances in computing and optics have led to a new generation of flow cytometers capable of processing cells at orders of magnitudes faster than their predecessors, and with staggering degrees of complexity, making the cytometer a powerful discovery tool in biotechnology. This chapter will begin with a discussion of basic principles of flow cytometry and cell sorting, including a technical description of factors that contribute to the performance of these instruments. The remaining sections will then be divided into clinical- and research-based applications of flow cytometry and cell sorting, highlighting salient studies that illustrate the versatility of this indispensable technology.

  1. Design of a multi-stage microfluidics system for high-speed flow cytometry and closed system cell sorting for cytomics

    Science.gov (United States)

    Grafton, Meggie; Reece, Lisa M.; Irazoqui, Pedro P.; Jung, Byunghoo; Summers, Huw D.; Bashir, Rashid; Leary, James F.

    2008-02-01

    To produce a large increase in total throughput, a multi-stage microfluidics system (US Patent pending) is being developed for flow cytometry and closed system cell sorting. The multi-stage system provides for sorting and re-sorting of cohorts of cells beginning with multiple cells per sorting unit in the initial stages of the microfluidic device and achieving single cell sorting at subsequent stages. This design theoretically promises increases of 2- or 3-orders of magnitude in total cell throughput needed for cytomics applications involving gene chip or proteomics analyses of sorted cell subpopulations. Briefly, silicon wafers and CAD software were used with SU-8 soft photolithography techniques and used as a mold to create Y-shaped, multi-stage microfluidic PDMS chips. PDMS microfluidic chips were fabricated and tested using fluorescent microspheres driven through the chip by a microprocessor-controlled syringe drive and excited on an inverted Nikon fluorescence microscope. Inter-particle spacings were measured and used as experimental data for queuing theory models of multi-stage system performance. A miniaturized electronics system is being developed for a small portable instrument. A variety of LED light sources, waveguides, and APD detectors are being tested to find optimal combinations for creating an LED-APD configuration at the entry points of the Y-junctions for the multi-stage optical PDMS microfluidic chips. The LEDs, APDs, and PDMS chips are being combined into an inexpensive, small portable, closed system sorter suitable for operation inside a standard biohazard hood for both sterility and closed system cell sorting as an alternative to large, expensive, and conventional droplet-based cell sorters.

  2. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  3. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    Science.gov (United States)

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-02-04

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay.

  4. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2016-02-01

    Full Text Available An optical sensor platform based on surface plasmon resonance (SPR in a plastic optical fiber (POF integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG/anti-IgG assay.

  5. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  6. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  7. Co-flow planar SOFC fuel cell stack

    Science.gov (United States)

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  8. A negative dielectrophoresis and gravity-driven flow-based high-throughput and high-efficiency cell-sorting system.

    Science.gov (United States)

    Lee, Dongkyu; Kim, Dowon; Kim, Youngwoong; Park, Ki-Hyun; Oh, Eun-Jee; Kim, Yonggoo; Kim, Byungkyu

    2014-02-01

    We present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed. In addition, flow regulators to precisely control the hydrodynamic force are allocated for each outlet. Because the hydrodynamic force and the n-DEP force acting on the target cell are the main determinants of the separation efficiency, we evaluate the theoretical amount of hydrodynamic force and n-DEP force acting on each target cell. Based on theoretical results, separation conditions are experimentally investigated. Finally, to demonstrate the separation performance, we performed the separation of target cells (live K562) from nontarget cells (dead K562) under conditions of low voltage (7Vp-p with 100 kHz) and a flow rate of 15 µL•min⁻¹, 6 µL•min⁻¹, and 8 µL•min⁻¹ in outlets 1, 2, and 3, respectively. The system can separate target cells with 95% separation efficiency in the case of the ratio of 5:1 (live K562:dead K562).

  9. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  10. SELECTIVE ELECTROFUSION OF CONJUGATED CELLS IN FLOW

    NARCIS (Netherlands)

    SCHUT, TCB; KRAAN, YM; BARLAG, W; DELEIJ, L; DEGROOTH, BG; GREVE, J

    1993-01-01

    Using a modified flow cytometer we have induced electrofusion of K562 and L1210 cells in flow. The two cell types are stained with two different fluorescent membrane probes, DiO and Dil, to facilitate optical recognition, and then coupled through an avidin-biotin bridge. In the flow cytometer, the h

  11. Cell disaggregation behavior in shear flow.

    Science.gov (United States)

    Snabre, P; Bitbol, M; Mills, P

    1987-05-01

    The disaggregation behavior of erythrocytes in dextran saline solution was investigated by a light reflectometry technique in a Couette flow and in a plane Poiseuille flow. Dextran concentration and mass average molecular weight of the polymer fraction strongly influence the shear stress dependence of the erythrocyte suspension reflectivity in shear flow and the critical hydrodynamic conditions (shear rate or shear stress) for near-complete cell dispersion. We investigated the influence of cell volume fraction and membrane deformability (heat treatment of the erythrocytes) on the reflectivity of the flowing suspension. This study indicates that the intercell adhesiveness and the shear stress are the only parameters that influence rouleau break-up in steady uniform shear flow, thus eliminating cell volume fraction and membrane deformability as possible factors. However, the critical cross-sectional average shear stress for near-complete cell dispersion through the flow cross-section is shown to depend on the flow pattern. The rotation of cells in a shear flow or the nonuniform shear field in Poiseuille flow indeed increases the flow resistance of cell aggregates. We give a theoretical description of the shear-induced cell disaggregation process in Couette flow and in plane Poiseuille flow. The quantitation of shear forces for cell dispersion provides a way for estimating the surface adhesive energy of the bridging membranes by fluid mechanical technique.

  12. Mirrored serpentine flow channels for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Rock, Jeffrey Allan (Rochester, NY)

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  13. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system

    Science.gov (United States)

    Cooper, Christy L.; Leary, James F.

    2015-03-01

    Leukemia stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in the peripheral blood of leukemia patients. Since leukemic stem cells are also resistant to standard chemotherapeutic regimens, new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial targeting studies we utilized a bioinformatics approach to design an antibodyfluorescent nanoparticle conjugate for targeting to these leukemic stem cells and to minimize targeting to normal stemprogenitor cells. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell RS4;11 (with putative immunophenotype CD133+/CD24+/-, CD34+/-, CD38+, CD10-/Flt3+) was spiked into normal hematopoietic stem-progenitor cells obtained from a "buffy coat" prep (with putative immunophenotype CD133- /CD34+/CD38-/CD10-/Flt-3-) to be used as a model human leukemia patient. To analyze the model system, digital data mixtures of the two cell types were first created and assigned classifiers in order to create truth sets. ROC (Receiver Operating Characteristic) and multidimensional cluster analyses were used to evaluate the specificity and sensitivity of the immunophenotyping panel and for automated cell population identification, respectively. Costs of misclassification (false targeting) were also accounted for by this analysis scheme. Ultimately, this analysis scheme will be applied to use of nanoparticle-antibody conjugates at therapeutic doses for targeted killing of leukemia stem cells preferentially to normal stem -progenitor cells.

  14. Intelligent Control for Improvements in PEM Fuel Cell Flow Performance

    Institute of Scientific and Technical Information of China (English)

    Jonathan G Williams; Guoping Liu; Senchun Chai; David Rees

    2008-01-01

    The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.

  15. Flow cytometry evaluation of cell-mediated cytotoxicity.

    Science.gov (United States)

    Zarcone, D; Tilden, A B; Cloud, G; Friedman, H M; Landay, A; Grossi, C E

    1986-11-20

    A novel flow cytometry method for the evaluation of cell-mediated cytotoxicity is described. This method uses flow cytometry analysis to distinguish target cells from effector cells by differences in volume and light scatter characteristics. Non-viable target cells, following their interaction with effector cells, are determined via propidium iodide (PI) dye exclusion and then expressed as a percentage of the total target cell population. This assay is suitable both for analysis of systems which allow recycling of cytotoxic effector cells (total cell cytotoxicity assays, TCCA), and of systems in which recycling does not occur (single cell cytotoxicity assays, SCCA). Natural killer (NK) cell-mediated cytotoxicity evaluated by flow cytometry is significantly correlated with the standard 51Cr release assay. Flow cytometry can also be used to evaluate the competitive inhibition that certain cell types exert on the cell-mediated killing of NK-sensitive targets. A prerequisite for this assay is that competitor cells and target cells are distinguishable through their volume and light scatter characteristics. Advantages and pitfalls of the flow cytometry method are discussed, in comparison with the 51Cr-release assay.

  16. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  17. An Innovative Method to Identify Autoantigens Expressed on the Endothelial Cell Surface: Serological Identification System for Autoantigens Using a Retroviral Vector and Flow Cytometry (SARF

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shirai

    2013-01-01

    Full Text Available Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF. Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2 from patients with systemic lupus erythematosus (SLE, intercellular adhesion molecule 1 (ICAM-1 from a patient with rheumatoid arthritis, and Pk (Gb3/CD77 from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases.

  18. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  19. Responses of Cells to Flow in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available The response of cells to a flow has been studied in vitro. The response of cells was examined in two types of flow channels: a circumnutating flow in a donut-shaped open channel in a culture dish, and a one-way flow in a parallelepiped rhombus flow channel. Variation was made on the material of the parallelepiped channel to study on adhesion of cells to the plates: glass and polydimethylsiloxane. Behavior of cells on the plate was observed under a flow of a medium with an inverted phase-contrast-microscope. The shear stress on the plate is calculated with an estimated parabolic distribution of the velocity between the parallel plates. The adhesion of cells was evaluated with the cumulated shear, which is a product of the shear stress and the exposure time. The experimental results show that cells are responsive to the flow, which governs orientation, exfoliation, and differentiation. The response depends on the kinds of cells: endothelial cells orient along the stream line, although myocytes orient perpendicular to the stream line. The adhesion depends on the combination between scaffold and cell: myocytes are more adhesive to glass than cartilage cells, and fibroblasts are more adhesive to oxygenated polydimethylsiloxane than glass.

  20. Wireless sap flow measurement system

    Science.gov (United States)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  1. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation.

    Science.gov (United States)

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-08-18

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second.

  2. Flow cell design for effective biosensing

    OpenAIRE

    Pike, DJ; Kapur, N; Millner, PA; Stewart, DI

    2012-01-01

    The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experime...

  3. Flow regimes in a trapped vortex cell

    Science.gov (United States)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  4. Micro Groove for Trapping of Flowing Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2015-06-01

    Full Text Available Micro grooves have been designed to trap a biological cell, which flows through a micro channel in vitro. Each micro groove of a rectangular shape (0.002 mm depth, 0.025 mm width and 0.2 mm length has been fabricated on the surface of the polydimethylsiloxane (PDMS disk with the photolithography technique. Variation has been made on the angle between the longitudinal direction of the groove and the flow direction: zero, 0.79, or 1.57 rad. A rectangular flow channel (0.1 mm depth x 5 mm width x 30 mm length has been constructed with a silicone film of 0.1 mm thick, which has been sandwiched by two transparent PDMS disks. Two types of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, or 3T3-L1 (mouse fat precursor cells. A constant flow (2.8 x 10-11 m3/s of a suspension of cells was introduced with a syringe pump. The behavior of cells moving over the micro grooves was observed with an inverted phase contrast microscope. The results show that the cell is trapped with the micro grooves under the wall shear rate of 3 s-1 for a few seconds and that the trapped interval depends on the kind of cells.

  5. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  6. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  7. Bioinspired Sensory Systems for Shear Flow Detection

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-03-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  8. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  9. Red cells and rouleaux in shear flow.

    Science.gov (United States)

    Goldsmith, H L

    1966-09-16

    The rotation and deformation of human red cells and linear aggregates (rouleaux) in dilute plasma suspension were observed in Poiseuille and Couette flow. Single lunideform-led erythrocyte. s and roluleauix rotated in orbits predicted by theory for rigid spheroids. Bending of rouleaux occurred at orientations at which compressive forces act on the particles and the degree of flexibility increased with the number of cells in linear array.

  10. A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lan; Oosthuizen, Patrick H. [Department of Mechanical and Materials Engineering, McLaughlin Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada); McAuley, Kim B. [Department of Chemical Engineering, Dupuis Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2006-10-15

    A numerical study of pressure distribution and flow cross-over through the gas diffusion layer (GDL) in a PEMFC flow plate using a serpentine channel system has been undertaken for the case where the channel has a trapezoidal cross-sectional shape. The flow has been assumed to be 3-D, steady, incompressible and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved by using the commercial CFD solver, FIDAP. The results obtained indicate that: (1) the size ratio, R, of trapezoidal cross-sectional shape has a significant effect on the flow cross-over. As R increases, the flow cross-over through GDL increases; (2) the ratio R also has a significant effect on the pressure variation in the flow field for both cross-over and no cross-over cases; (3) flow cross-over has a significant influence on the pressure variation through the channel, tending to decrease the pressure drop across the channel; (4) an increase in Re number can lead to a slight increase in the flow cross-over. (author)

  11. INTEGRATED LAYOUT DESIGN OF CELLS AND FLOW PATHS

    Institute of Scientific and Technical Information of China (English)

    Li Zhihua; Zhong Yifang; Zhou Ji

    2003-01-01

    The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.

  12. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  13. Natures of Rotating Stall Cell in a Diagonal Flow Fan

    Institute of Scientific and Technical Information of China (English)

    N. SHIOMI; K. KANEKO; T. SETOGUCHI

    2005-01-01

    In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.

  14. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...

  15. Recent advances in flow cytometric cell sorting.

    Science.gov (United States)

    Osborne, Geoffrey W

    2011-01-01

    The classification and separation of one cell type or particle from others is a fundamental task in many areas of science. Numerous techniques are available to perform this task; however, electrostatic cell sorting has gained eminence over others because, when combined with the analysis capabilities of flow cytometry it provides flexible separations based on multiple parameters. Unlike competing technologies, such as gradient or magnetic separations that offer much larger total throughput, flow cytometric cell sorting permits selections based on various levels of fluorescent reporters, rather the complete presence or absence of the reporter. As such, this technology has found application in a huge range of fields. This chapter aims to describe the utility of single-cell sorting with particular emphasis given to index sorting. This is followed by two recently developed novel techniques of sorting cells or particles. The first of these is positional sorting which is useful in cell-based studies where sorting can proceed and produce meaningful results without being inherently dependant on prior knowledge of where gates should be set. Secondly, reflective plate sorting is introduced which positionally links multiwell sample and collection plates in a convenient assay format so that cells in the collection plate "reflect" those in the sample plate.

  16. Artificial Hair Cells for Sensing Flows

    Science.gov (United States)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  17. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    Science.gov (United States)

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  18. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  19. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  20. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  1. The structure and composition of novel electrodeposited Sn-Fe and Sn-Co-Fe alloys from a flow circulation cell system

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, M.; Chisholm, C. U., E-mail: C.Chisholm@gcal.ac.uk [Glasgow Caledonian University, School of Engineering and Computing and Research Group for Surface Technology (United Kingdom); Kuzmann, E. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Centre (Hungary); Sziraki, L. [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Stichleutner, S. [Hungarian Academy of Sciences, Institute of Isotopes (Hungary); Homonnay, Z.; Suevegh, K. [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Vertes, A. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Centre (Hungary)

    2009-07-15

    This study involved the use of a flow circulation cell, using varying circulation rates as a room temperature process (20 deg. C). Moessbauer and XRD analysis were conducted to ascertain whether amorphous or microcrystalline structures could be obtained at 20 deg. C using a range of current densities. Amorphous or microcrystalline structures of Sn-Fe and Sn-Co-Fe have potentially important industrial applications for energy efficient cells, for use as high performance electrodes in lithium batteries, as environmentally acceptable corrosion resistant materials and are derived from an energy efficient environmentally friendly electrolyte process which would be acceptable as an industrial process. {sup 57}Fe and {sup 119}Sn Moessbauer investigations supported by XRD analysis confirmed that the room temperature flow circulation cell gave rise to previously unknown non-equilibrium amorphous structures which do not occur in the corresponding thermally prepared alloys as shown in the thermal equilibrium diagrams. Moessbauer analysis shows these alloys to be both amorphous and ferromagnetic. It is shown that the flow circulation cell used at 20 deg. C based on the environmentally friendly gluconate bath reported gives amorphous based Sn-Fe and Sn-Co-Fe alloys over a useful range of current densities facilitated by using a range of circulation rates.

  2. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  3. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    Science.gov (United States)

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines.

  4. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    Science.gov (United States)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  5. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system.......In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown...

  6. Acoustic Flow Monitor System - User Manual

    Science.gov (United States)

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  7. Flow cytometer acquisition and detection system

    Energy Technology Data Exchange (ETDEWEB)

    Casstevens, Martin K.; Burzynski, Ryszard; Weibel, John; Kachynski, Alexander

    2010-05-04

    A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.

  8. Intelligent System for Radial Distribution Load Flow

    Directory of Open Access Journals (Sweden)

    Vaishali Holkar

    2012-10-01

    Full Text Available This paper shows an application of Artificial Neural Networks (ANNs to determine the bus voltages and phase angles of a radial distribution system, without executing the complicated load flow algorithm, for any given load. The performance of the conventional load flow methods such as Newtoh-Raphson load flow, Fast decoupled load flow is found to be very poor under critical conditions such as high R/X ratio, heavily loading condition etc.To overcome the limitations of these regularly used methods a simple and reliable ladder iterative technique is used for solving the power balance equations of radial distribution system (RDS. The proposed method make use of a multi-layer feed forward ANN with error back propagation learning algorithm for calculation of bus voltages and its angles. A sample IEEE 33-bus is extensively tested with the proposed ANN based approach indicating its viability for RDS load flow assessment and results are presented.

  9. Fuel cell with interdigitated porous flow-field

    Science.gov (United States)

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  10. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  11. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  12. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  13. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  14. Method of detaching adherent cells for flow cytometry

    KAUST Repository

    Kaur, Mandeep

    2015-12-24

    In one aspect, a method for detaching adherent cells can include adding a cell lifting solution to the media including a sample of adherent cells and incubating the sample of adherent cells with the cell lifting solution. No scraping or pipetting is needed to facilitate cell detachment. The method do not require inactivation of cell lifting solution and no washing of detaching cells is required to remove cell lifting solution. Detached cells can be stained with dye in the presence of cell lifting solution and are further analyzed using flow cytometer. The method has been tested using 6 different cell lines, 4 different assays, two different plate formats (96 and 384 well plates) and two different flow cytometry instruments. The method is simple to perform, less time consuming, with no cell loss and makes high throughput flow cytometry on adherent cells a reality.

  15. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  16. Resource Prospector Propulsion System Cold Flow Testing

    Science.gov (United States)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  17. Information flow in heterogeneously interacting systems.

    Science.gov (United States)

    Yamaguti, Yutaka; Tsuda, Ichiro; Takahashi, Yoichiro

    2014-02-01

    Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems.

  18. Traffic Flow Control In Automated Highway Systems

    OpenAIRE

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  19. Aqueous semi-solid flow cell: demonstration and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  20. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  1. High-throughput magnetic flow sorting of human cells selected on the basis of magnetophoretic mobility

    Science.gov (United States)

    Reece, Lisa M.; Sanders, Lehanna; Kennedy, David; Guernsey, Byron; Todd, Paul; Leary, James F.

    2010-02-01

    We have shown the potential of a new method for optimizing the separation of human stem cell subsets from peripheral blood based on a novel cell labeling technique that leverages the capabilities of a new commercially available high speed magnetic cell sorting system (IKOTECH LLC, New Albany, IN). This new system sorts cells in a continuously flowing manner using a Quadrupole Magnetic cell Sorter (QMS). The sorting mechanism is based upon the magnetophoretic mobility of the cells, a property related to the relative binding distributions of magnetic particles per cell, as determined by the utilization of a Magnetic Cell Tracking Velocimeter (MCTV). KG-1 cells were competitively labeled with anti-CD34 magnetic beads and anti-CD34 FITC to obtain an optimal level of magnetophoretic mobility as visualized by the MCTV for high throughput sort recovery in the QMS. In QMS sorting, the concept of split-flow thin channel (SPLITT) separation technology is applied by having a sample stream enter a vertical annular flow channel near the channel's interior wall followed by another sheath flow entering near the exterior wall. The two flows are initially separated by a flow splitter. They pass through the bore of a Halbach permanent quadrupole magnet assembly, which draws magnetized cells outward and deflects them into a positive outflow, while negative cells continue straight out via the inner flow lamina. QMS sorts cells based upon their magnetophoretic mobility, or the velocity of a cell per unit ponderomotive force, the counterpart of fluorescence intensity in flow cytometry. The magnetophoretic mobility distribution of a cell population, measured by automated MCTV, is used as input data for the algorithmic control of sample, sheath, and outlet flow velocities of the QMS. In this study, the relative binding distributions of magnetic particles per cell were determined by MCTV using novel sorting and sizing algorithms. The resulting mobility histograms were used to set the QMS

  2. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  3. Strategies for immunophenotyping and purifying classical Hodgkin lymphoma cells from lymph nodes by flow cytometry and flow cytometric cell sorting.

    Science.gov (United States)

    Fromm, Jonathan R; Wood, Brent L

    2012-07-01

    Flow cytometry is an established technique to immunophenotype hematopoietic neoplasms. While the diagnosis of classical Hodgkin lymphoma (CHL) has commonly been made using paraffin sections, we have recently demonstrated that the neoplastic Hodgkin and Reed-Sternberg (HRS) cells of CHL can be identified by flow cytometry. Using 6- and 9-color flow cytometric assays, CHL can be immunophenotyped with 85-90% sensitivity and nearly 100% specificity. Analysis of this data requires using established gating strategies to help in the identification of putative HRS cell populations. Interestingly, HRS cells bind to reactive T cells (HRS-T cell rosetting) and this phenomenon can be identified and utilized diagnostically by flow cytometry. In addition, the reactive T cells of CHL show characteristic immunophenotypic changes by flow cytometry and these changes can suggest a diagnosis of CHL. Finally, these principles can be employed to rapidly purify HRS cells using flow cytometric cell sorting. This manuscript provides experimental protocols for immunophenotyping CHL by flow cytometry as well as purifying the HRS cells via flow cytometric cell sorting.

  4. Traction Forces of Endothelial Cells under Slow Shear Flow

    Science.gov (United States)

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  5. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  6. Effect of channel arrangement on fluid flow in PEMFC flow field using serpentine channel system with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2005-07-01

    Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.

  7. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    Science.gov (United States)

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  8. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  9. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Science.gov (United States)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  10. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  11. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  12. Flow Induced Electrification of Liquid Insulated Systems.

    Science.gov (United States)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  13. A new DFM flow for sub-100nm standard cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    DFM (Design-For-Manufacturability) method, which aims to improve manufacturability of ICs through specific design considerations, is becoming important nowadays. In particular, standard cells now should be designed by DFM method. This paper reports a new DFM flow for sub-100 nm standard cell design with a group of technologies for process modeling, manufacturability simulation and trial RETs.Based on this flow, a set of DFM-friendly 90m standard cells were designed.

  14. Cell Radiation Experiment System

    Science.gov (United States)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  15. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  16. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose......Multilevel Flow Modeling (MFM) is a well recognized methodology for functional modeling of complex systems which primarily focuses on the representation of their goals and functions. It has been successfully used in industrial process, e.g. nuclear power plant, chemical plants etc. to facilitate...... components e.g. storage tanks, are modeled using the MFM methodology. Both the goals and functions of material and energy processes and the control functions of the heating systems are represented in the MFM models. It is found that varying the physical system setup results in only little differences among...

  17. 46 CFR 153.358 - Venting system flow capacity.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  18. Design of flow chamber with electronic cell volume capability and light detection optics for multilaser flow cytometry.

    Science.gov (United States)

    Schuette, W H; Shackney, S E; Plowman, F A; Tipton, H W; Smith, C A; MacCollum, M A

    1984-11-01

    A multibeam optical detection system has been developed with a high optical efficiency, achieved through a reduction in the number of optical interfaces employed in the system. This reduction is made possible by a combination of employing simple lenses, gluing the objective lens directly upon the face of the flow cuvette and the extraction of only one fluorescence signal from each laser beam. A modified flow chamber is also described that includes fluidic resistance elements for the elimination of most of the electric shielding normally associated with electronic cell volume measurements.

  19. VLT Data Flow System Begins Operation

    Science.gov (United States)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  20. Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.

    Science.gov (United States)

    Leslie, Laura J; Marshall, Lindsay J; Devitt, Andrew; Hilton, Andrew; Tansley, Geoff D

    2013-03-01

    Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.

  1. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  2. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  3. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  4. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  5. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    Science.gov (United States)

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  6. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    formed in flow-chamber experimental systems by genetically color-coded bacteria have provided detailed knowledge about biofilm developmental processes, cell differentiations, spatial organization, and function of laboratory-grown biofilms, in some cases down to the single cell level. In addition...

  7. Modeling the thermally governed transient flow surges in multitube condensing flow systems with thermal and flow distribution asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L.; Bhatt, B.L. (Oakland Univ., Rochester, MI (United States))

    1989-08-01

    In a tube-type condenser involving complete condensation, small changes in the inlet vapor flow rate momentarily cause very large transient surges in the outlet liquid flow rate. An equivalent single-tube model is proposed that predicts these transient flow surges for a multitube system. The model, based upon a system mean void fraction model developed earlier, includes the effects of thermal and flow distribution asymmetry associated with each individual condenser tube in the multitube system. Theoretical and experimental verification for a two-tube system is presented.

  8. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  9. Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting.

    Science.gov (United States)

    Fromm, Jonathan R; Kussick, Steven J; Wood, Brent L

    2006-11-01

    We demonstrate the feasibility of using flow cytometry (FC) to identify the Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (CHL). Initial flow cytometric studies of the HRS cell line L1236 demonstrated potentially useful antigens for identifying HRS cells. L1236 cells spontaneously bound normal T cells, analogous to the T-cell rosetting of HRS cells seen in tissue sections of CHL, but these interactions could be blocked by using a cocktail of unlabeled antibodies to 4 adhesion molecules. Among 27 lymph nodes involved by CHL, FC enabled HRS cells to be identified in 89%, whereas none of 29 non-CHL neoplasms or 23 reactive lymph nodes demonstrated HRS populations. Of the CHL cases, 82% demonstrated interactions between HRS cells and T cells that could be disrupted with blocking antibodies. Flow cytometric cell sorting experiments demonstrated typical HRS cytomorphologic features among the purified cells. FC may offer an alternative to immunohistochemical analysis in confirming the diagnosis of CHL in certain cases, and, through cell sorting, it provides a means of rapidly isolating pure HRS cells.

  10. Cell flow analysis with a two-photon fluorescence fiber probe

    Science.gov (United States)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  11. Upward swimming of a sperm cell in shear flow

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  12. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  13. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Science.gov (United States)

    Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.

  14. Electrochemical flow cell, particularly use with liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Matson, W.R.

    1983-11-08

    An amperometric cell modified for high pressure operation is described. The cell is a flow-through type cell defining a flow path and has at least one active testing electrode, at least one reference electrode and at least one counter electrode operatively disposed and electrically insulated from one another within the cell flow path. In a preferred embodiment the flow cell is encapsulated within a high impact, chemically resistant, chemically insulating material, and has a pair of high pressure resistance fittings communicating with the flow path and extending in part beyond the encapsulation. The cell has particular utility for use with a liquid chromatography separation and when placed in line upstream of sample injection, will remove selected electroactive components in the carrier fluid and thereby reduce background level of contaminents reaching the column and eluting from the column. The cell may also be placed in line following sample injection whereby it may be employed to electrochemically modify selected materials in the mobile phase whereby to change their chromatographic characteristics.

  15. Stochastic uncertainty analysis for unconfined flow systems

    Science.gov (United States)

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  16. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D. [Centenary Institute of Cancer Medicine and Cell Biology, Sydney (Australia)] [and others

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  17. Liquid flow cells having graphene on nitride for microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  18. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Adhesion to model surfaces in a flow through system

    Energy Technology Data Exchange (ETDEWEB)

    Habeger, C.F.; Linhart, R.V.; Adair, J.H. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31

    A hydrodynamic method for measuring the adhesion of particles to a surface has been designed. By using hydrodynamic flow to remove particles from a model surface, the adhesive strength of particles to the surface can be measured using a flow-through cell. The hydrodynamic force required to displace a particle is calculated using the cell dimensions and the flow rate in Poiseuille`s equation.

  20. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    OpenAIRE

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...

  1. ENERGY FLOWS IN COMPLEX ECOLOGICAL SYSTEMS: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG

    2009-01-01

    Energy flow drives the complex systems to evolve. The allometric scaling as the universal energy flow pattern has been found in different scales of ecological systems. It reflects the general power law relationship between flow and store. The underlying mechanisms of energy flow patterns are explained as the branching transportation networks which can be regarded as the result of systematic optimization of a biological target under constraints. Energy flows in the ecological system may be modelled by the food web model and population dynamics on the network. This paper reviews the latest progress on the energy flow patterns, explanatory models for the allometric scaling and modelling approach of flow and network evolution dynamics in ecology. Furthermore, the possibility of generalizing these flow patterns, modelling approaches to other complex systems is discussed.

  2. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    CERN Document Server

    Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...

  3. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    Science.gov (United States)

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  4. Understanding and modeling alternating tangential flow filtration for perfusion cell culture.

    Science.gov (United States)

    Kelly, William; Scully, Jennifer; Zhang, Di; Feng, Gang; Lavengood, Mathew; Condon, Jason; Knighton, John; Bhatia, Ravinder

    2014-01-01

    Alternating tangential flow (ATF) filtration has been used with success in the Biopharmaceutical industry as a lower shear technology for cell retention with perfusion cultures. The ATF system is different than tangential flow filtration; however, in that reverse flow is used once per cycle as a means to minimize fouling. Few studies have been reported in the literature that evaluates ATF and how key system variables affect the rate at which ATF filters foul. In this study, an experimental setup was devised that allowed for determination of the time it took for fouling to occur for given mammalian (PER.C6) cell culture cell densities and viabilities as permeate flow rate and antifoam concentration was varied. The experimental results indicate, in accordance with D'Arcy's law, that the average resistance to permeate flow (across a cycle of operation) increases as biological material deposits on the membrane. Scanning electron microscope images of the post-run filtration surface indicated that both cells and antifoam micelles deposit on the membrane. A unique mathematical model, based on the assumption that fouling was due to pore blockage from the cells and micelles in combination, was devised that allowed for estimation of sticking factors for the cells and the micelles on the membrane. This model was then used to accurately predict the increase in transmembane pressure during constant flux operation for an ATF cartridge used for perfusion cell culture.

  5. Simulation of Flow Field of Molten Salt in Neodymium Metal Electrolytic Cell Using Vortex-Flow Function Method

    Institute of Scientific and Technical Information of China (English)

    Ren Yonghong; Kong Xiangmin; Xie Liying

    2004-01-01

    With the applications of Nd-Fe-B material extending in recent years, the materials of neodymium metal and other rare earth metal alloy confront the increased demand and the high quality request at the same time.These factors stimulated greatly to perfect the producing craft of RE metals and improve the equipments.The rare earth electrolysis cell is developing towards large-scale way.Notwithstanding the present electrolysis cell of Nd metal, include 6 kA and 10 kA cell, exists some insurmountable problems during operation and these problems lead to lower electric efficiency and higher operating costs.So it is significant to study the physical fields of rare earth electrolysis cell.In this paper,a numerical flow mode is established using vortex- flowing function method and the fluid flow field of 3000A Nd electrolysis cell is computed using MATLAB.The results of the study will be important reference in theory for improving and enlarging rare earth fluoride system cell.

  6. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  7. Field-flow fractionation of cells with chemiluminescence detection.

    Science.gov (United States)

    Melucci, Dora; Roda, Barbara; Zattoni, Andrea; Casolari, Sonia; Reschiglian, Pierluigi; Roda, Aldo

    2004-11-12

    Field-flow fractionation is a separation technique characterized by a retention mechanism which makes it suitable for sorting cells over a short analysis time, with low sample carry-over and preserving cell viability. Thanks to its high sensitivity, chemiluminescence detection is suitable for the quantification of just a few cells expressing chemiluminescence or bioluminescence. In this work, different formats for coupling gravitational field-flow fractionation and chemiluminescence detection are explored to achieve ultra-sensitive cell detection in the framework of cell sorting. The study is carried out using human red blood cells as model sample. The best performance is obtained with the on-line coupling format, performed in post-column flow-injection mode. Red cells are isolated from diluted whole human blood in just a few minutes and detected using the liquid phase chemiluminescent reaction of luminol catalysed by the red blood cell heme. The limit of detection is a few hundred injected cells. This is lower than the limit of detection usually achieved by means of conventional colorimetric/turbidimetric methods, and it corresponds to a red blood cell concentration in the injected sample of five orders of magnitude lower than in whole blood.

  8. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    of the gating system causes pressure waves to form that eventually lead to defective castings. It is clear that sharp corners and dead ends in gating systems should be avoided, and that more stream lined, organic designs based on fluid dynamic principles will are necessary to design gating systems......Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...

  9. Personal Computer System for Automatic Coronary Venous Flow Measurement

    OpenAIRE

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperatur...

  10. Optimizing the Allocation of Material Flow in a Logistics System

    OpenAIRE

    Tanka Milkova

    2013-01-01

    The article is devoted to the issue of the optimum allocation of material flow in a logistics system, the author’s proposition being that the allocation and movement of the material flow in a logistics system can be rationalized, based on the use of special approaches and techniques. There is presented the economic formulation of the problem and is constructed the economic and mathematical model ensuring the movement of the material flow in a logistics system at minimum cost of its transporta...

  11. Cortical Flow-Driven Shapes of Nonadherent Cells

    Science.gov (United States)

    Callan-Jones, A. C.; Ruprecht, V.; Wieser, S.; Heisenberg, C. P.; Voituriez, R.

    2016-01-01

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  12. Single-cell tracking with a reversing flow cytometer.

    Science.gov (United States)

    Sitton, Greg; Srienc, Friedrich

    2011-01-01

    We have developed an instrument based on a flow cytometer platform that is capable of tracking individual, suspended cells over extended time periods. The instrument repeatedly moves in a capillary the same volume segment of fluid containing tens to hundreds of suspended cells through the focal point of a laser. Individual cells are then tracked based on the timing of when they cross the laser, and cell properties are measured as in a conventional flow cytometer. Because cells are repeatedly measured the single-cell rates of change can be determined. The developed instrumentation was applied to measure the variability of ABC transporter activity in a population of human cancer cells and the temperature dependence of constitutively expressed Gfp in yeast. A wide range of transport rates can be observed in the cancer cell population while the single-cell Gfp fluorescence in yeast shows pronounced oscillations in response to temperature shifts. These observations are not detectable at the population level. Therefore, such measurements are useful for investigating cell function as they reveal how variable properties of single cells change over time.

  13. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    Science.gov (United States)

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  14. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  15. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  16. Uniqueness of system response time for transient condensing flows

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L.; Bhatt, B.L. (Oakland Univ., Rochester, MI (United States)); Beck, B.T. (Kansas State Univ., Manhattan (United States)); Roslund, G.L. (General Motors Corp., Detroit, MI (United States))

    1989-11-01

    The unique characteristics under consideration in this paper are encountered in condensing flows, and have to do with a system's response time for various degrees of outlet flow quality. Specifically, the system response time for condensing flows appears to increase monotonically with decreasing outlet flow quality, reaching a maximum for systems having an outlet flow quality of between 10 and 20%. The system response time then decreases for outlet flow qualities that are less than that value. These unique characteristics are predicted theoretically by system mean void fraction model. The purpose of this paper is to develop analytically the characteristics, explain the physics of the phenomena responsible, and discuss the experimental verification efforts that have thus far been carried out.

  17. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  18. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  19. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;

    2011-01-01

    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  20. Flow-enhanced solution printing of all-polymer solar cells.

    Science.gov (United States)

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C K; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F; Mannsfeld, Stefan C B; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  1. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  2. Influence of Flow Behavior of Alginate-Cell Suspensions on Cell Viability and Proliferation.

    Science.gov (United States)

    Ning, Liqun; Guillemot, Arthur; Zhao, Jingxuan; Kipouros, Georges; Chen, Xiongbiao

    2016-07-01

    Tissue scaffolds with living cells fabricated by three-dimensional bioprinting/plotting techniques are becoming more prevalent in tissue repair and regeneration. In the bioprinting process, cells are subject to process-induced forces (such as shear force) that can result in cell damage and loss of cell function. The flow behavior of the biomaterial solutions that encapsulate living cells in this process plays an important role. This study used a rheometer to examine the flow behavior of alginate solution and alginate-Schwann cell (RSC96), alginate-fibroblast cell (NIH-3T3), and alginate-skeletal muscle cell (L8) suspensions during shearing with respect to effects on cell viability and proliferation. The flow behavior of all the alginate-cell suspensions varied with alginate concentration and cell density and had a significant influence on the viability and proliferation of the cells once sheared as well as on the recovery of the sheared cells. These findings provide a mean to preserve cell viability and/or retain cell proliferation function in the bioprinting process by regulating the flow behavior of cell-biomaterial suspensions and process parameters.

  3. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  4. Hyperlayer hollow-fiber flow field-flow fractionation of cells.

    Science.gov (United States)

    Reschiglian, Pierluigi; Zattoni, Andrea; Roda, Barbara; Cinque, Leonardo; Melucci, Dora; Min, Byung Ryul; Moon, Myeong Hee

    2003-01-24

    Interest in low-cost, analytical-scale, highly efficient and sensitive separation methods for cells, among which bacteria, is increasing. Particle separation in hollow-fiber flow field-flow fractionation (HF FlFFF) has been recently improved by the optimization of the HF FIFFF channel design. The intrinsic simplicity and low cost of this HF FlFFF channel allows for its disposable usage. which is particularly appealing for analytical bio-applications. Here, for the first time, we present a feasibility study on high-performance, hyperlayer HF FIFFF of micrometer-sized bacteria (Escherichia coli) and of different types of cells (human red blood cells, wine-making yeast from Saccharomyces cerevisiae). Fractionation performance is shown to be at least comparable to that obtained with conventional, flat-channel hyperlayer FIFFF of cells, at superior size-based selectivity and reduced analysis time.

  5. Reduction of Europium in a Redox Flow Cell

    Science.gov (United States)

    Lu, Daluh; Horng, Jiin-Shiung; Tung, Chia-Pao

    1988-05-01

    An electrolytic cell similar to the iron I chromium redox flow cell was used to investigate the reduction of europium. The cell contains two compartments partitioned by an anion exchange membrane, which is permeable to chloride ions. The anolyte is ferrous chloride which is oxidized to ferric form at the anode. Rare-earth chloride prepared from Taiwan black monazite is fed as the catholyte. The reduction of europium was tested in two connected cells at 20 and 45°C. All of Eu3+ can be reduced at 45°C, and 72% of the europium can be recovered in sulfate form. In oxide form, purity is about 84%.

  6. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress......In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  7. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan

    2017-02-01

    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  8. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition

    Science.gov (United States)

    Goulet, Marc-Antoni; Ibrahim, Omar A.; Kim, Will H. J.; Kjeang, Erik

    2017-01-01

    To transition toward sustainable energy systems, next generation power sources must provide high power density at minimum cost. Using inexpensive and environmentally friendly fabrication methods, this work describes a room temperature electrochemical flow cell with a maximum power density of 2.01 W cm-2 or 13.4 W cm-3. In part, this is achieved by minimizing ohmic resistance through decreased electrode spacing, implementation of current collectors and improvement of electrolyte conductivity. The majority of the performance gain is provided by a novel in operando dynamic flowing deposition method for which the cell design has been optimized. Carbon nanotubes (CNTs) are deposited dynamically at the entrance of and within the carbon paper electrodes during operation of the cell. A natural equilibrium is reached between deposition and detachment of CNTs at which the electrochemical surface area and pore size distribution of the flow-through porous electrodes are greatly enhanced. In this way, the novel deposition method more than doubles the power density of the cell and sets a new performance benchmark for what is practically attainable with aqueous electrochemical flow cells. Overall, it is expected that the design and operation methods illustrated here will enable a wide range of electrochemical flow cell technologies to achieve optimal performance.

  9. Flow induced pulsations in pipe systems

    Science.gov (United States)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  10. Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content

    Energy Technology Data Exchange (ETDEWEB)

    Pellicciari, C.; Mangiarotti, R.; Bottone, M.G.; Danova, M. [Univ. of Pavia (Italy); Wang, E. [Jewish General Hospital, Montreal, Quebec (Canada)

    1995-12-01

    Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G{sub 0}) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G{sub 0} cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G{sub 0} (statin positive) cells can be discriminated from the potentially cycling (statin negative) G{sub 1} cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G{sub 0}-G{sub 1} transition in unperturbed and drug-treated cell populations. 48 refs., 5 figs., 1 tab.

  11. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  12. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  13. Modelling the damage potential of fluid flows for animal cells undergoing cultivation in bioreactors.

    Science.gov (United States)

    Stanford Keen, Giles

    1996-11-01

    Mechanical disruption and injury sustained by animal cells undergoing cultivation in bioreactors is an important problem in biotechnology. Damage to cells is thought to be caused primarily by bubbles bursting at the free surface of the culture medium. Here we present computational studies applying a mathematical model for the cell damage rates experienced by cells in laminar flow. Two fluid dynamical systems are considered - namely a converging channel and a single bursting bubble. The flows are calculated using a fourth-order finite difference technique on a stretched grid, and a boundary integral method respectively. It is possible to obtain an estimate for the number of cells in a particular population which are likely to be disrupted by the forces they experience in the flow. This is done by calculating the maximum rate of strain experienced by fluid particles, and combining this with experimental data on the strength and size of cells, obtained by micromanipulation techniques. The resulting information is then used together with the cell damage model to produce a cell damage prediction. The computational results are compared with experimental measurements of cell death, to validate the model for cell damage.

  14. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    Science.gov (United States)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  15. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or near-dip

  16. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  17. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  18. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  19. Cell-cooling in flow cytometry by Peltier elements.

    Science.gov (United States)

    Göttlinger, C; Meyer, K L; Weichel, W; Müller, W; Raftery, B; Radbruch, A

    1986-05-01

    We have built a cooling device for cell suspensions in flow cytometry that makes use of the Peltier effect (Barnard RD, Thermo electricity in Metals and Alloys, Taylor and Francis, London; Siemens-Z 34:383-88, 1963). The prototype described here is used for cooling collection tubes during long-duration cell sorting and is capable of maintaining a temperature of 2-5 degrees C in a cell suspension of up to 3 ml. In general, Peltier element-based cooling is useful for equilibrating the temperature of small volumes of fluids. Furthermore, Peltier element-based cooling devices are easy to build and handle.

  20. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  1. Continuous, pulsed and stopped flow in a μ-flow injection system (numerical vs experimental)

    NARCIS (Netherlands)

    Akker, van E.B.; Bos, M.; Linden, van der W.E.

    1999-01-01

    The effects of continuous, pulsed and stopped flow on the dispersion of a sample injected into a μ-flow injection system were studied. A channel with a volume of 1 μl was used to compare experimental results with numerical results. The injection was 0.067 μl of bromocresolgreen solution into a borax

  2. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel;

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...

  3. Viable cell sorting of dinoflagellates by multiparametric flow cytometry.

    Science.gov (United States)

    Sinigalliano, Christopher D; Winshell, Jamie; Guerrero, Maria A; Scorzetti, Gloria; Fell, Jack W; Eaton, Richard W; Brand, Larry; Rein, Kathleen S

    2009-07-01

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor, as fragile dinoflagellates, such as Karenia brevis (Dinophyceae), survived electronic cell sorting to yield viable cells. The rate of successful isolation of large-scale (> 4 litres) cultures was higher for manual picking than for electronic cell sorting (2% vs 0.5%, respectively). However, manual picking of cells is more labor intensive and time consuming. Most manually isolated cells required repicking, as the cultures were determined not to be unialgal after a single round of isolation; whereas, no cultures obtained in this study from electronic single-cell sorting required resorting. A broad flow cytometric gating logic was employed to enhance species diversity. The percentages of unique genotypes produced by manual picking or electronic cell sorting were similar (57% vs 54%, respectively), and each approach produced a variety of dinoflagellate or raphidophyte genera. Alternatively, a highly restrictive gating logic was successfully used to target K. brevis from a natural bloom sample. Direct electronic single-cell sorting was more successful than utilizing a pre-enrichment sort followed by electronic single-cell sorting. The appropriate recovery medium may enhance the rate of successful isolations. Seventy percent of isolated cells were recovered in a new medium (RE) reported here, which was optimized for axenic dinoflagellate cultures. The greatest limiting factor to the throughput of electronic cell sorting is the need for manual postsort culture maintenance and assessment of the large number of isolated cells. However, when combined with newly developed automated methods for growth screening, electronic single-cell sorting has the potential to accelerate the discovery of new algal strains.

  4. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested.

  5. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  6. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  7. Employment of synchronized cells and flow microfluorometry in investigations on the JB-1 ascites tumour chalones.

    Science.gov (United States)

    Bichel, P; Barfod, N M; Jakobsen, A

    1975-11-01

    In most experimental ascites tumours the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of non-cycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumour in the plateau phase of growth lowmolecular-weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. The present paper describes an in-vitro model for testing the effect of the humoral growth inhibitors contained in the ascitic fluid. The test system is based on synchronized JB-1 cells analysed by flow-through cytofluorometry. Addition to the synchronous cells of a ultrafiltrate (less than 50000 Daltons) of the JB-1 ascitic fluid was found to induce a complete, but temporary arrest of the cells at the G1-S border.

  8. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  9. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Zongzheng Chen; Cheng Xiang; Bo Liu; Handi Xie; Kairong Qin

    2016-01-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the rela-tionship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the tra-ditional ones, which have been only based upon either stag-nation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addi-tion, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and con-veniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  10. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  11. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  12. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling.

    Science.gov (United States)

    Elliott, Winston; Scott-Drechsel, Devon; Tan, Wei

    2015-11-03

    Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.

  13. Systems and Sensors for Debris-flow Monitoring and Warning.

    Science.gov (United States)

    Arattano, Massimo; Marchi, Lorenzo

    2008-04-04

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells

  14. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  15. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  16. Hyperbolic contraction measuring systems for extensional flow

    Science.gov (United States)

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.

    2017-02-01

    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  17. Design flow factors for sewerage systems in small arid communities

    Directory of Open Access Journals (Sweden)

    Emad H. Imam

    2014-09-01

    Full Text Available Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc. and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  18. Pulsed photoacoustic flow imaging with a handheld system.

    Science.gov (United States)

    van den Berg, Pim J; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  19. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  20. Micro Flow Cytometer Chip Integrated with Micro-Pumps/Micro-Valves for Multi-Wavelength Cell Counting and Sorting

    Science.gov (United States)

    Chang, Chen-Min; Hsiung, Suz-Kai; Lee, Gwo-Bin

    2007-05-01

    Flow cytometry is a popular technique for counting and sorting of individual cells. This study presents a new chip-based flow cytometer capable of cell injection, counting and switching in an automatic format. The new microfluidic system is also capable of multi-wavelength detection of fluorescence-labeled cells by integrating multiple buried optical fibers within the chip. Instead of using large-scale syringe pumps, this study integrates micro-pumps and micro-valves to automate the entire cell injection and sorting process. By using pneumatic serpentine-shape (S-shape) micro-pumps to drive sample and sheath flows, the developed chip can generate hydrodynamic focusing to allow cells to pass detection regions in sequence. Two pairs of optical fibers are buried and aligned with the microchannels, which can transmit laser light sources with different wavelengths and can collect induced fluorescence signals. The cells labeled with different fluorescent dyes can be excited by the corresponding light source at different wavelengths. The fluorescence signals are then collected by avalanche photodiode (APD) sensors. Finally, a flow switching device composed of three pneumatic micro-valves is used for cell sorting function. Experimental data show that the developed flow cytometer can distinguish specific cells with different dye-labeling from mixed cell samples in one single process. The target cell samples can be also switched into appropriate outlet channels utilizing the proposed microvalve device. The developed microfluidic system is promising for miniature cell-based biomedical applications.

  1. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    Science.gov (United States)

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.

  2. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  3. Convective flows of colloidal suspension in an inclined closed cell

    Science.gov (United States)

    Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey

    2016-12-01

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).

  4. An Architecture for Context-Aware Knowledge Flow Management Systems

    CERN Document Server

    Jarrahi, Ali

    2012-01-01

    The organizational knowledge is one of the most important and valuable assets of organizations. In such environment, organizations with broad, specialized and up-to-date knowledge, adequately using knowledge resources, will be more successful than their competitors. For effective use of knowledge, dynamic knowledge flow from the sources to destinations is essential. In this regard, a novel complex concept in knowledge management is the analysis, design and implementation of knowledge flow management systems. One of the major challenges in such systems is to explore the knowledge flow from the source to the recipient and control the flow for quality improvements concerning the users' needs as possible. Therefore, the purpose of this paper is to provide an architecture in order to solve this challenge. For this purpose, in addition to the architecture for knowledge flow management systems, a new node selection strategy is provided with higher success rate compared to previous strategies.

  5. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  6. The closed circuit and the low flow systems

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2013-01-01

    Full Text Available A breathing system is defined as an assembly of components, which delivers gases from the anesthesia machine to the patients′ airways. When the components are arranged as a circle, it is termed a circle system. The flow of exhaled gases is unidirectional in the system. The system contains a component (absorber, which absorbs exhaled carbon dioxide and it is not necessary to give high fresh gas flows as in Mapleson systems. When the adjustable pressure limiting (APL valve is closed and all the exhaled gases without carbon dioxide are returned to the patient, the system becomes a totally closed one. Such a circle system can be used with flows as low as 250 to 500 mL and clinically can be termed as low-flow systems. The components of the circle system can be arranged in different ways with adherence to basic rules: (1 Unidirectional valve must be present between the reservoir bag and the patient on both inspiratory and expiratory sides; (2 fresh gas must not enter the system between the expiratory unidirectional valve and the patient; and (3 the APL valve must not be placed between the patient and the inspiratory unidirectional valve. The functional analysis is explained in detail. During the function, the arrangement of components is significant only at higher fresh gas flows. With the introduction of low resistance valves, improved soda lime canisters and low dead space connectors, the use of less complicated pediatric circle systems is gaining popularity to anesthetize children. There are bidirectional flow systems with carbon dioxide absorption. The Waters to and fro system, a classic example of bidirectional flow systems with a canister to absorb carbon dioxide, is valveless and portable. It was widely used in the past and now is only of historical importance.

  7. System proportions fluid-flow in response to demand signals

    Science.gov (United States)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  8. Integrated thermal and micro Coriolis flow sensing system with a dynamic flow range of more than 4 decades

    NARCIS (Netherlands)

    Lötters, J.C.; Lammerink, T.S.J.; Groenesteijn, J.; Haneveld, J.; Wiegerink, R.J.

    2011-01-01

    We have realized a micromachined single chip flow sensing system with an unprecedented ultra-wide dynamic flow range of more than 4 decades, from less than 0.1 up to more than 1000 μl/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges. Oper

  9. Integrated Thermal and Microcoriolis Flow Sensing System with a Dynamic Flow Range of More Than Five Decades

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-03-01

    Full Text Available We have realized a micromachined single chip flow sensing system with an ultra-wide dynamic flow range of more than five decades, from 100 nL/h up to more than 10 mL/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges.

  10. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    Science.gov (United States)

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-06-09

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.

  11. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  12. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  13. Holomorphic Embedded Load Flow for autonomous spacecraft power systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...

  14. Bifurcation and catastrophe of seepage flow system in broken rock

    Institute of Scientific and Technical Information of China (English)

    MIAO Xie-xing; LI Shun-cai; CHEN Zhan-qing

    2009-01-01

    The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo-tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.

  15. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    Science.gov (United States)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  16. Measuring information flow in cellular networks by the systems biology method through microarray data.

    Science.gov (United States)

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  17. Flow electrification characteristics of transformer oil by rotating electrode systems

    Energy Technology Data Exchange (ETDEWEB)

    Jagadish, R.; Poovamma, P.K. [Central Power Research Inst., Bangalore (India)

    1995-07-01

    Flow electrification has been found to be the principal cause of a number of failures of forced oil cooled power transformers. Flow charging characteristics of oil/cellulose system with factors like electrode configuration, electrode material, presence of Benzotriazole (BTA), metallic contaminants and Copper coils were investigated for paraffinic oil by employing rotating electrode system. A few hydrodynamic parameters viz. Reynolds number, boundary layer thickness and friction factor were correlated with flow charging characteristics of oil for varying temperatures and concentrations of BTA. With lower concentrations of BTA in oil viz. 10 ppm and 25 ppm a marginal reduction in flow charging of oil was noticed, but about 40% reduction was observed with 150 ppm of BTA. A significant reduction in the flow charging characteristics of untreated and BTA treated oils was also observed in the presence of Copper coils and metallic particle contaminants.

  18. Multisensor Acquirement System of Electrokinetic in Multiphase Flow

    Directory of Open Access Journals (Sweden)

    Yahui Bu

    2013-09-01

    Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow

  19. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  20. DistFlow Extensions for AC Transmission Systems

    OpenAIRE

    Coffrin, Carleton; Hijazi, Hassan L.; Van Hentenryck, Pascal

    2015-01-01

    Convex relaxations of the power flow equations and, in particular, the Semi-Definite Programming (SDP), Second-Order Cone (SOC), and Convex DistFlow (CDF) relaxations, have attracted significant interest in recent years. Thus far, studies of the CDF model and its connection to the other relaxations have been limited to power distribution systems, which omit several parameters necessary for modeling transmission systems. To increase the applicability of the CDF relaxation, this paper develops ...

  1. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis.

    Science.gov (United States)

    Koopman, G; Reutelingsperger, C P; Kuijten, G A; Keehnen, R M; Pals, S T; van Oers, M H

    1994-09-01

    Apoptosis, or programmed cell death, is a general mechanism for removal of unwanted cells from the immune system. It is characterized by chromatin condensation, a reduction in cell volume, and endonuclease cleavage of DNA into oligonucleosomal length fragments. Apoptosis is also accompanied by a loss of membrane phospholipid asymmetry, resulting in the exposure of phosphatidylserine at the surface of the cell. Expression of phosphatidylserine at the cell surface plays an important role in the recognition and removal of apoptotic cells by macrophages. Here we describe a new method for the detection of apoptotic cells by flow cytometry, using the binding of fluorescein isothiocyanate-labeled annexin V to phosphatidylserine. When Burkitt lymphoma cell lines and freshly isolated germinal center B cells are cultured under apoptosis inducing conditions, all cells showing chromatin condensation strongly stain with annexin V, whereas normal cells are annexin V negative. Moreover, DNA fragmentation is only found in the annexin V-positive cells. The nonvital dye ethidium bromide was found to stain a subpopulation of the annexin V-positive apoptotic cells, increasing with time. Our results indicate that the phase in apoptosis that is characterized by chromatin condensation coincides with phosphatidylserine exposure. Importantly, it precedes membrane damage that might lead to release from the cells of enzymes that are harmful to the surrounding tissues. Annexin V may prove important in further unravelling the regulation of apoptosis.

  2. NOAA-USGS Debris-Flow Warning System - Final Report

    Science.gov (United States)

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  3. Membrane-less micro fuel cell based on two-phase flow

    Science.gov (United States)

    Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.

    2017-04-01

    Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.

  4. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  5. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...... radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promising results, and show large potentials, exploiting the existing water infrastructure in future climate...

  6. A congestion line flow control in deregulated power system

    Directory of Open Access Journals (Sweden)

    Venkatarajan Shanmuga Sundaram

    2011-01-01

    Full Text Available Under open access, market-driven transactions have become the new independent decision variables defining the behavior of the power system. The possibility of transmission lines getting over-loaded is relatively more under deregulated operation because different parts of the system are owned by separate companies and in part operated under varying service charges. This paper discusses a two-tier algorithm for correcting the lone overloads in conjunction with the conventional power-flow methods. The method uses line flow sensitivities, which are computed by the East Decoupled Power-flow algorithm and can be adapted for on-line implementation.

  7. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  8. Improved method for bacterial cell capture after flow cytometry cell sorting.

    Science.gov (United States)

    Guillebault, D; Laghdass, M; Catala, P; Obernosterer, I; Lebaron, P

    2010-11-01

    Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification.

  9. Synchronization trigger control system for flow visualization

    Science.gov (United States)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  10. Flow cytometric data analysis of circulating progenitor cell stability.

    Science.gov (United States)

    Mahar, Ernestine A; Mou, Liping; Hayek, Salim S; Quyyumi, Arshed A; Waller, Edmund K

    2017-02-01

    A recent publication by Mekonnen et al. demonstrated that among women with non-obstructive coronary artery disease, higher levels of circulating progenitor cells in the blood (CPC), were associated with impaired coronary flow reserve [1]. We performed a quality control assessment of the stability of circulating blood progenitor cells in blood samples stored at 4 °C, to determine the time period during which blood samples can be analyzed and yield consistent data for progenitor cell content. Healthy volunteers (n=6) were recruited and underwent phlebotomy, and blood was stored in EDTA tubes at 4 °C. Flow cytometry was performed to quantitate progenitor cell subsets at 0-4 h, 24 h, and 48 h post phlebotomy. All processed samples were fixed with 1% Paraformaldehyde and 1,000,000 total data events were collected. We found no significant differences in PC data for both CD34+ (P=0.68 for one-way ANOVA) and CD34+/CD133+ (P=0.74 for one-way ANOVA).

  11. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  12. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... is challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  13. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  14. Tracking epithelial cell junctions in C. elegans embryogenesis with active contours guided by SIFT flow.

    Science.gov (United States)

    Kang, Sukryool; Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D; Cosman, Pamela C

    2015-04-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semi-automated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure.

  15. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  16. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min.

  17. Flow cytometric data analysis of circulating progenitor cell stability

    Directory of Open Access Journals (Sweden)

    Ernestine A. Mahar

    2017-02-01

    We performed a quality control assessment of the stability of circulating blood progenitor cells in blood samples stored at 4 °C, to determine the time period during which blood samples can be analyzed and yield consistent data for progenitor cell content. Healthy volunteers (n=6 were recruited and underwent phlebotomy, and blood was stored in EDTA tubes at 4 °C. Flow cytometry was performed to quantitate progenitor cell subsets at 0–4 h, 24 h, and 48 h post phlebotomy. All processed samples were fixed with 1% Paraformaldehyde and 1,000,000 total data events were collected. We found no significant differences in PC data for both CD34+ (P=0.68 for one-way ANOVA and CD34+/CD133+ (P=0.74 for one-way ANOVA.

  18. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  19. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  20. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  1. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  2. Digital Schlieren System for Flow Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is an SBIR proposal to develop a revolutionary digital schlieren imaging system that will greatly improve a widely used aerodynamics tool and render it so...

  3. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  4. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  5. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Raquel B.R. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); Ferreira, M. Teresa S.O.B. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Toth, Ildiko V. [REQUIMTE, Departamento de Quimica, Faculdade de Farmacia, Universidade de Porto, Rua Anibal Cunha, 164, 4050-047 Porto (Portugal); Bordalo, Adriano A. [Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); McKelvie, Ian D. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Rangel, Antonio O.S.S., E-mail: aorangel@esb.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2011-09-02

    Highlights: {yields} Sequential injection determination of phosphate in estuarine and freshwaters. {yields} Alternative spectrophotometric flow cells are compared. {yields} Minimization of schlieren effect was assessed. {yields} Proposed method can cope with wide salinity ranges. {yields} Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 {mu}M PO{sub 4}{sup 3-}) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 {mu}M) was achieved using both detection systems.

  6. MAG-GATE System for Molten metal Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  7. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-07

    was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.

  8. Stochastic modeling of a lava-flow aquifer system

    Science.gov (United States)

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  9. On the Flow Behavior in Rotor-Stator System with Superposed Flow

    Directory of Open Access Journals (Sweden)

    Roger Debuchy

    2008-01-01

    Full Text Available The flow between a rotor and a stator at high Reynolds number and small Ekman number is divided into three domains, two boundary layers adjacent to the discs separated by a central core. In the present work, a simple theoretical approach provides analytical solutions for the radial distribution of the core swirl ratio valid for a rotor-stator system with a superposed radial inflow rate. At first, the flow in the rotor boundary layer is assumed to behave as expressed by Owen and Rogers (1989 in the case of a turbulent flow on a rotating single disc. On the stator side, a necessary compensation flow rate must take place according to the conservation of mass. It is found that this compensation flow rate cannot be estimated with a good accuracy using the hypotheses of a stationary disc in a rotating fluid by Owen and Rogers (1989. Thus, two innovative weighting functions are tested, leading to new analytical laws relating the core swirl ratio K to the coefficient of flow rate Cqr introduced by Poncet et al. (2005. The adequacy between the theoretical solutions and numerous results of the literature is clearly improved and the discussion allows a better understanding of the flow behavior.

  10. Power System Stability Enhancement Using Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: The enhancement of transient stability of the power system is one of the most challenging research areas in power engineer. Approach: This study presents the method to enhance transient stability of power system by Unified Power Flow Controller (UPFC. The mathematical model of power system equipped with a UPFC is systematically derived. The parameters of UPFC are modeled into power flow equation and thus it is used to determine control strategy. The swing curves of the three phase faulted power system without and with a UPFC are tested and compared in various cases. Results: The swing curve of system without a UPFC gets increases monotonically and thus the system can be considered as unstable whereas the swing curves of system with a UPFC can return to stable equilibrium point. Conclusion: From the simulation results, the UPFC can enhance transient stability of power system.

  11. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  12. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    Science.gov (United States)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  13. Dynamical-systems approach to localised turbulence in pipe flow

    CERN Document Server

    Ritter, Paul; Avila, Marc

    2015-01-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.

  14. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  15. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    Science.gov (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  16. Effects of uniform rotational flow on predator-prey system

    Science.gov (United States)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  17. Mechanism and estimation of negative entropy flow in terrestrial system

    Institute of Scientific and Technical Information of China (English)

    LI Shaoxin; HUA Ben; HAN Guangze; WEN Dehua

    2005-01-01

    The origin, existence and evolution of life on the earth depend on the negative entropy flow in the terrestrial system (TS). In this paper, we investigate the mechanisms of different negative entropy flows caused by the vertical heat transfer of water phase transition and the gravitational field effect, and the vertical atmospheric heat transfer and the gravitational field effect, under the influences of the sun's radiation, the photosynthesis of the plants, and the earth's rotation. The magnitude orders and the mechanisms of the abovementioned negative entropy flow are also discussed.

  18. A multi-agent system for monitoring patient flow.

    Science.gov (United States)

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow.

  19. Peculiarities of the Accretion Flow in the System HL CMa

    CERN Document Server

    Semena, Andrey; Buckley, David; Lutovinov, Alexander; Breytenbach, Hannes

    2016-01-01

    The properties of the aperiodic brightness variability for the dwarf nova HL CMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above $7\\times10^{-3}$Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and X-ray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system, the flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics i...

  20. Numerical simulation of transient flow in horizontal drainage systems

    Institute of Scientific and Technical Information of China (English)

    Ze-yu MAO; Han XIAO; Ying LIU; Ying-jun HU

    2009-01-01

    A numerical simulation model based on the characteristic-based finite-difference method with a time-line interpolation scheme was developed for predicting transient free surface flow in horizontal drainage systems. The fundamental accuracy of the numerical model was first clarified by comparison with the experimental results for a single drainage pipe. Boundary conditions for junctions and bends, which are often encountered in drainage systems, were studied both experimentally and numerically. The numerical model was applied to an actual drainage system. Comparison with a full-scale model experiment indicates that the model can be used to accurately predict flow characteristics in actual drainage networks.

  1. A contribution about ferrofluid based flow manipulation and locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K; Zeidis, I; Bohm, V; Popp, J [TU Ilmenau, Fak. f. Maschinenbau, FG Technische Mechanik, Max-Planck-Ring 12, 98693 Ilmenau (Germany)], E-mail: klaus.zimmermann@tu-ilmenau.de, E-mail: jana.popp@tu-ilmenau.de

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  2. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    Science.gov (United States)

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  3. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  4. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  5. A Support System to Tie Apron Strings to Debris Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the Chengdubased CAS Institute of Mountain Hazards and Environment (IMHE) recently worked out a decision-making support system for disaster mitigation on debris fans in mountainous regions.As a domestic vanguard, the system plays a key role in the fight against debris flow and helping to reduce casualties.

  6. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Science.gov (United States)

    Wang, Xiao-Dong; Duan, Yuan-Yuan; Yan, Wei-Mon

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.

  7. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)

    2007-10-11

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)

  8. Minimizing ultraviolet noise due to mis-matches between detector flow cell and post column mobile phase temperatures in supercritical fluid chromatography: effect of flow cell design.

    Science.gov (United States)

    Berger, Terry A

    2014-10-17

    A mis-match between the post-column mobile phase temperature and the UV detector flow cell temperature can cause significant UV noise in supercritical fluid chromatography (SFC). Deviations as little as 5 °C can increase noise as much as 5 times, making the detector unsuited for trace analysis. Two approaches were used to minimize this noise. When a flow cell was in direct thermal contact (metal on metal) with the detector optical bench, the mobile phase temperature was actively controlled to the measured flow cell temperature, by using one of the heat exchangers (HX) in the column compartment. However, with some older, but still widely used flow cell designs, this required repeated, hourly monitoring of the flow cell temperature and repeated manual adjustment of the heat exchanger temperature, due to thermal drift. Flow cell design had a strong influence on susceptibility to this thermally induced noise. Thermally insulating the flow cell from the optical bench made some cells much less susceptible to such thermally induced noise. Five different flow cells, some insulated, some un-insulated, were evaluated. Most had a truncated conical flow path, but one had a cylindrical flow path. Using either approach, the ASTM noise, with a 10mm, 13 μL conical flow cell, could be optimized to ≈0.007 mAU at 2.5 Hz, in SFC, which is very near the 0.006 mAU manufacturer's specification for HPLC. The insulated version of this flow cell required far less optimization, compared to the un-insulated version. At 150 bar, an experimental 3mm, 2 μL flow cell, with only one side insulated, yielded noise slightly too high (≈0.16-0.18 mAU) for trace analysis, at 80 Hz. However, at 200 bar, noise at 80 Hz was noise ratio (S/N) >10. Even partially un-insulated, this flow cell design was much less susceptible to thermally induced noise. Further insulating this flow cell design failed to improve performance.

  9. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  10. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T

    2013-01-01

    Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable...... assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients...... on their surface. Polyclonal antibodies against defined peptides in the Env- and Gag-regions of the HERVs were raised in rabbits and used in antibody-dependent cell-mediated cytotoxicity (ADCC) -assays. Rituximab® (Roche), a chimeric monoclonal antibody against CD20 expressed primarily on B cells, was used...

  11. Analysis on Issues of Variable Flow Water System

    Directory of Open Access Journals (Sweden)

    Jinming Yang

    2013-09-01

    Full Text Available Variable flow water system has played an important role in the field of energy saving with the Electronic Variable Frequency Drive (VFD widely used in practical projects. How to control the frequency converter to work properly is an essential issue which we must first emphatically solve. The control technology of frequency converter is closely related to characteristics of pumps. Based on the mathmatical a model of pumps with or without inverters, the article discusses some issues in detail, such as inverters configuration, flow rate regulation and overload. These are key issues of control technology of variable flow water system. For those multiple-pump water systems, the engineers may select synchronous frequency conversion control technology or Add-Sub pumps control technology to achieve the maximum energy-saving benefits.  

  12. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  13. A zero-flow microfluidics for long-term cell culture and detection

    Science.gov (United States)

    Sang, Shengbo; Tang, Xiaoliang; Feng, Qiliang; Jian, Aoqun; Zhang, Wendong

    2015-04-01

    A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM) was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells' normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS) will provide a research foundation for microfluidic technology.

  14. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    Science.gov (United States)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  15. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    Science.gov (United States)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  16. Magnetically insulated electron flows in pulsed power systems

    Science.gov (United States)

    Lawconnell, Robert I.

    1989-08-01

    Magnetic insulation is crucial in the operation of large pulsed power systems. Particular attention will be paid to describing magnetic insulation in realistic pulsed power systems. A theoretical model is developed that allows the production of self consistent magnetically insulated laminar flows in perturbed cylindrical systems given only the electron density profile. The theory is checked and justified by detailed comparisons with results from a 2-dimensional electromagnetic code, MASK. The procedure followed in the theoretical development is to use the relativistic Vlasov equation, Ampere's law and Gauss' law, to obtain a relation between the density profile and the velocity profile for insulated flows. Given the density profile and the corresponding derived velocity profile, a self consistent flow solution is obtained by means of Maxwell's equations. It is checked by taking a special case (corresponding to no perturbations) which results in the well known Brillouin flow theory. Emphasis is placed on determining the magnetic insulation threshold of a pulsed power system employing a plasma erosion opening switch. The procedure employed in the computational study is to vary critical aspects of the pulsed power system and then note whether magnetic insulation breaks down. The point at which magnetic insulation breaks down (as a function of geometry, load impedance, and applied voltage) is the magnetic insulation threshold for the system.

  17. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    Science.gov (United States)

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  18. Cerebral blood flow in sickle cell cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  19. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  20. Shock-induced turbulent flow in baffle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L. [Lawrence Livermore National Lab., CA (United States); Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany)

    1993-07-01

    Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

  1. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  2. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  3. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  4. Comparison of plateletpheresis on three continuous flow cell separators

    Directory of Open Access Journals (Sweden)

    Tendulkar Anita

    2009-01-01

    Full Text Available Introduction: Platelet concentrate (PC remains one of the most important support measures in thrombocytopenic patients. An efficient cell separator is a prerequisite for an optimally functioning apheresis setup. Donor blood count may undergo a temporary reduction after the procedure. Aim: The aim was to find the extent of reduction in donor blood count (hemoglobin, hematocrit, white blood cell, and platelet after plateletpheresis and to evaluate the cell separator for collection efficiency, processing time, and leukoreduction. Study Design and Methods: Two hundred and thirty seven procedures performed on the Amicus (N = 121, Fenwal CS-3000 Plus (N = 50 and Cobe spectra (N = 66 in a one year period were evaluated. The procedures performed on the continuous flow centrifugation (CFC cell separators and donor blood counts (pre and post donation done were included in the study. Results: The percent reduction in hemoglobin (HB, hematocrit (HCT, white blood cell (WBC and platelet count ((PLT ct was 2.9, 3.1, 9, 30.7 (Mean, N = 237 respectively after the procedure. The post donation PLT ct reduced to < 100x109/L (range 80-100 in five donors (N = 5/237, Amicus. The pre donation PLT ct in them was 150-200x109/L. Collection efficiency (percent of Amicus (79.3 was better as compared to the other two machines (CS: 62.5, Cobe: 57.5. PC collected on Cobe spectra had < 1x106 WBC. The donor pre donation PLT levels had a positive correlation to the product PLT yield (r = 0.30, P = 0.000. Conclusion: Monitoring donor blood counts helps to avoid pheresis induced adverse events. A cautious approach is necessary in donors whose pre donation PLT ct is 150-200x109/L. The main variable in PLT yield is donor PLT ct (pre donation. High collection efficiency is a direct measure of an optimally functioning cell separator.

  5. Three-Phase Load Flow for Unbalanced Systems.

    Science.gov (United States)

    Chang, Yih-Ping

    Traditionally, transmission systems are assumed to be balanced in power system analysis. A single phase positive sequence circuit is used in transmission system load flow analysis to simplify the study. However, when untransposed transmission lines are used in a power system due to economic considerations, space limitation; or when large unbalanced load is on the system; or when an unbalance contingency occurs on the system, this assumption may not hold true. The unbalance condition in some isolated systems are so precarious that disaster can result. One such incident occurred on a generator unit of the third nuclear power plant of Taipower in 1985. In that particular case, the turbine blades were broken and a spark ignited the liquid hydrogen when the blade vibration resonated with the 120.5 Hz rotor current. One cause of this rotor current generation is system unbalance. The unbalanced three-phase load flow program is needed in today's power system analysis. An advanced three-phase unbalanced transmission load flow program, capable of locating the unbalanced problem of large electric network systems, was proposed to be developed and tested in this research. Features of this program include simultaneous power flow of multiple voltage levels on an individual phase basis; PV bus generator, cogenerator, transformer simulation, and load modeling. It is found that delta-grounded wye step-up transformer reduces the convergence speed greatly. When too many delta-grounded wye step-up transformers exist in a large scale system and a quick approximate result of the unbalance conditions is needed, these step-up transformers can be substituted by grounded-wye to grounded-wye type transformers. This is tested on a Taipower system case which included 345KV, 161KV and 69KV feeders, network transformers, 34 PV bus generators and 188 three-phase buses. Impending unbalance problems in Taipower system were located. When not too many delta-grounded wye type transformers are in the

  6. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  7. Controlled Logic Gates-Switch Gate and Fredkin Gate Based on Enzyme-Biocatalyzed Reactions Realized in Flow Cells.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2016-04-04

    Controlled logic gates, where the logic operations on the Data inputs are performed in the way determined by the Control signal, were designed in a chemical fashion. Specifically, the systems where the Data output signals directed to various output channels depending on the logic value of the Control input signal have been designed based on enzyme biocatalyzed reactions performed in a multi-cell flow system. In the Switch gate one Data signal was directed to one of two possible output channels depending on the logic value of the Control input signal. In the reversible Fredkin gate the routing of two Data signals between two output channels is controlled by the third Control signal. The flow devices were created using a network of flow cells, each modified with one enzyme that biocatalyzed one chemical reaction. The enzymatic cascade was realized by moving the solution from one reacting cell to another which were organized in a specific network. The modular design of the enzyme-based systems realized in the flow device allowed easy reconfiguration of the logic system, thus allowing simple extension of the logic operation from the 2-input/3-output channels in the Switch gate to the 3-input/3-output channels in the Fredkin gate. Further increase of the system complexity for realization of various logic processes is feasible with the use of the flow cell modular design.

  8. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  9. Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    CERN Document Server

    Yamada, H; Ito, M

    1998-01-01

    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critic...

  10. Modeling of D-STATCOM in distribution systems load flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents modeling of Distribution STATCOM (D-STATCOM) in load flow calculations for the steadystate voltage compensation. An accurate model for D-STATCOM is derived to use in load flow calculations. The rating of this device as well as the direction of required reactive power injection for voltage compensation in the desired value (1 p.u.) is derived and discussed analytically and mathematically by the phasor diagram method. Furthermore, an efficient method for node and line identification used in load flow calculations is presented. The validity of the proposed model is examined by using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of D-STATCOM for under voltage problem mitigation approach in the distribution networks is determined. The results validate the proposed model for DSTATCOM in large distribution systems.

  11. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories.

    Science.gov (United States)

    Kumar, Niraj; Borth, Nicole

    2012-03-01

    The performance of cell lines used for the production of biotherapeutic proteins typically depends on the number of cells in culture, their specific growth rate, their viability and the cell specific productivity (qP). Therefore both cell line development and process development are trying to (a) improve cell proliferation to reduce lag-phase and achieve high number of cells; (b) delay cell death to prolong the production phase and improve culture longevity; (c) and finally, increase qP. All of these factors, when combined in an optimised process, concur to increase the final titre and yield of the recombinant protein. As cellular performance is at the centre of any improvement, analysis methods that enable the characterisation of individual cells in their entirety can help in identifying cell types and culture conditions that perform exceptionally well. This observation of cells and their complexity is reflected by the term "cytomics" and flow cytometry is one of the methods used for this purpose. With its ability to analyse the distribution of physiological properties within a population and to isolate rare outliers with exceptional properties, flow cytometry ideally complements other methods used for optimisation, including media design and cell engineering. In the present review we describe approaches that could be used, directly or indirectly, to analyse and sort cellular phenotypes characterised by improved growth behaviour, reduced cell death or high qP and outline their potential use for cell line and process optimisation.

  12. Particle-in-cell method in multiphase flow simulations

    Science.gov (United States)

    Zhang, Duan; Zou, Qisu; Vanderheyden, Brian

    2004-11-01

    In many disperse multiphase flows there is of great interest to know the deformations and the possibility of break up of the grains of the disperse phase. Some examples are the pneumatic transport of agriculture grains and the fragment-gas-structure interaction in an explosion. In these examples one needs to consider the stress states in both the disperse phase and the continuous phase. The use of Eulerian method encounters significant difficulties associated with numerical diffusion. The use of Lagrangian method encounters mesh-tangling problem. Expensive re-meshing procedures need to be done frequently. The particle-in-cell method possesses advantages of both methods while avoids their difficulties. A grain of the disperse phase is represented by particles. A particle in the method is not only a Lagrangian marker; it carries mass, momentum, energy and other quantities associated with the grain. Although the particle-in-cell method was invented in the sixties, its recent developments significantly enhanced its capabilities. In this presentation, we outline basic principles and numerical schemes of the particle-in-cell method and then provide examples of its applications. This work is supported by the U.S. Department of Energy. (LA-UR-04-4177)

  13. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  14. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi

    2014-01-01

    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  15. From Flow Logic to Static Type Systems in Coordination Languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, René Rydhof;

    2008-01-01

    ; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper we show how to combine these two approaches to obtain a static type system for describing secure access to tuple spaces...

  16. Numerical analysis of complex fluid-flow systems

    Science.gov (United States)

    Holland, R. L.

    1980-01-01

    Very flexible computer-assisted numerical analysis is used to solve dynamic fluid-flow equations characterizing computer-controlled heat dissipation system developed for Space lab. Losses caused by bends, ties, fittings, valves, and like are easily included, and analysis can solve both steady-state and transient cases. It can also interact with parallel thermal analysis.

  17. Flow induced noise modelling for industrial piping systems

    NARCIS (Netherlands)

    Gijrath, H.; Ǎbom, M.

    2003-01-01

    Noise from e.g. gas-transport piping systems becomes more and more a problem for plants located close to urban areas. Too high noise levels are unacceptable and will put limitations on the plant capacity. Flow-induced noise of valves, orifices and headers installed in the installation plays a domina

  18. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.;

    2016-01-01

    ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  19. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  20. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    OpenAIRE

    Hong eLiu; Peiwen eLi; Daniel eJuarez-Robles; Kai eWang; Abel eHernandez-Guerrero

    2014-01-01

    In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the b...

  1. Quantitative assessment of immune cells in the injured spinal cord tissue by flow cytometry: a novel use for a cell purification method.

    Science.gov (United States)

    Nguyen, Hal X; Beck, Kevin D; Anderson, Aileen J

    2011-04-09

    Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both

  2. The Distributed Workflow Management System--FlowAgent

    Institute of Scientific and Technical Information of China (English)

    王文军; 仲萃豪

    2000-01-01

    While mainframe or 2-tier client/server system have serious problems in flexibility and scalability for the large-scale business processes, 3-tier client/server architecture and object-oriented system modeling which construct business process on service components seem to bring software system some scalability. As enabling infrastructure for object-oriented methodology, distributed WFMS (Work-flow Management System) can flexibly describe business rules among autonomous 'service tasks', and support scalability of large-scale business process. But current distributed WFMS still have difficulty to manage a large number of distributed tasks, the 'multi-TaskDomain' architecture of FlowAgent will try to solve this problem, and bring a dynamic and distributed environment for task-scheduling.

  3. Vision System for Relative Motion Estimation from Optical Flow

    Directory of Open Access Journals (Sweden)

    Sergey M. Sokolov

    2010-08-01

    Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.

  4. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device.

    Science.gov (United States)

    Moura Rosa, Patrícia; Gopalakrishnan, Nimi; Ibrahim, Hany; Haug, Markus; Halaas, Øyvind

    2016-10-01

    T cells play a central role in immunity towards cancer and infectious diseases. T cell responses are initiated in the T cell zone of the lymph node (LN), where resident antigen-bearing dendritic cells (DCs) prime and activate antigen-specific T cells passing by. In the present study, we investigated the T cell : DC interaction in a microfluidic device to understand the intercellular dynamics and physiological conditions in the LN. We show random migration of antigen-specific T cells onto the antigen-presenting DC monolayer independent of the flow direction with a mean T cell : DC dwell time of 12.8 min and a mean velocity of 6 μm min(-1). Furthermore, we investigated the antigen specific vs. unspecific attachment and detachment of CD8(+) and CD4(+) T cells to DCs under varying shear stress. In our system, CD4(+) T cells showed long stable contacts with APCs, whereas CD8(+) T cells presented transient interactions with DCs. By varying the shear stress from 0.01 to 100 Dyn cm(-2), it was also evident that there was a much stronger attachment of antigen-specific than unspecific T cells to stationary DCs up to 1-12 Dyn cm(-2). The mechanical force of the cell : cell interaction associated with the pMHC-TCR match under controlled tangential shear force was estimated to be in the range of 0.25-4.8 nN. Finally, upon performing attachment & detachment tests, there was a steady accumulation of antigen specific CD8(+) T cells and CD4(+) T cells on DCs at low shear stresses, which were released at a stress of 12 Dyn cm(-2). This microphysiological model provides new possibilities to recreate a controlled mechanical force threshold of pMHC-TCR binding, allowing the investigation of intercellular signalling of immune synapses and therapeutic targets for immunotherapy.

  5. A file of red blood cells in tube flow: A three-dimensional numerical study

    Science.gov (United States)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-09-01

    The rheology of a file of red blood cells (RBCs) in a tube flow is investigated based on a three-dimensional (3D) computational model using the dissipative particle dynamics (DPD) method. The 3D model consists of a discrete RBC model to describe the RBC deformation, a Morse potential model to characterize the cell-cell interaction, and a DPD model to provide all the relevant information on the suspension flow. Three important features of the suspension flow are simulated and analyzed, (i) the effect of the tube hematocrit, (ii) the effect of the cell spacing, and (iii) the effect of the flow velocity. We first study the cell deformation and the rheology of suspension at different tube hematocrit. The results show that the cell deformation decreases with increasing tube hematocrit, and a good agreement between the simulation and available experiments is found for the discharge hematocrit and relative apparent viscosity of RBC suspension. We then analyze the effect of non-uniform cell spacing, where the cell-cell interaction goes into effect, showing that a non-uniform cell spacing has a slight effect on the cell deformation, and almost has no effect on the rheology of suspension. We finally study the effect of the flow velocity and show that a typical plug-flow velocity profile is observed. The results also show that the cell deformation increases with increasing flow velocity, as expected. The discharge hematocrit also increases, but the relative apparent viscosity decreases, with increasing flow velocity.

  6. Obtaining Internet Flow Statistics by Volunteer-Based System

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Bujlow, Tomasz

    2012-01-01

    In this paper we demonstrate how the Volunteer Based System for Research on the Internet, developed at Aalborg University, can be used for creating statistics of Internet usage. Since the data is collected on individual machines, the statistics can be made on the basis of both individual users......, and average flow durations. The paper is concluded with a discussion on what further statistics can be made, and the further development of the system....

  7. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  8. Clinical utility of flow cytometry in the study of erythropoiesis and nonclonal red cell disorders.

    Science.gov (United States)

    Chesney, Alden; Good, David; Reis, Marciano

    2011-01-01

    Erythropoiesis involves proliferation and differentiation of small population of hematopoietic stem cells resident in the bone marrow into mature red blood cells. The determination of the cellular composition of the blood is a valuable tool in the diagnosis of diseases and monitoring of therapy. Flow cytometric analysis is increasingly being used to characterize the heterogeneous cell populations present in the blood and the hematopoietic cell differentiation and maturation pathways of the bone marrow. Here we discuss the role of flow cytometry in the study of erythropoiesis and nonclonal red blood cell disorders. First, we discuss flow cytometric analysis of reticulocytes. Next, we review salient quantitative methods that can be used for detection of fetal-maternal hemorrhage (FMH). We also discuss flow cytometric analysis of high hemoglobin F (HbF) in Sickle Cell Disease (SCD), hereditary spherocytosis (HS), red cell survival and red cell volume. We conclude by discussing cell cycle of erythroid cells.

  9. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  10. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  11. An annotation system for 3D fluid flow visualization

    Science.gov (United States)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  12. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  13. Model of Integration of Material Flow Control System with MES/ERP System via Cloud Computing

    Directory of Open Access Journals (Sweden)

    Peter Peniak

    2014-05-01

    Full Text Available This article deals with a model of application gateway for integration of Material Flow Control System with ERP/MES systems, which are provided by Cloud Computing and Software as Service delivery model. The developed gateway interface is supposed to cover fundamental requirements of production systems for customization and real-time control of material flow within manufacturing processes. Designed solution has been tested and evaluated for High Bay Storage system in a real production environment

  14. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  15. Continuous-flow free acid monitoring method and system

    Science.gov (United States)

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  16. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  17. Interstitial fluid flow:simulation of mechanical environment of cells in the interosseous membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Yao; Guang-Hong Ding

    2011-01-01

    In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues,while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array,we set up a porous media model simulating the flow field with FLUENT software,studied the shear stress on interstitial cells' surface due to the interstitial fluid flow,and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells,up to 30 Pa or so,which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries,blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion,numerical simulation provides an effective way for in vivo dynamic interstitial velocity research,helps to set up the vivid subtle interstitial flow environment of cells,and is beneficial to understanding the physiological functions of interstitial fluid flow.

  18. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    Science.gov (United States)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  19. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  20. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  1. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    Science.gov (United States)

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  2. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  3. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...

  4. Development of Saline Flow Systems in Closed Basins

    Science.gov (United States)

    Huntington, J. M.; Halford, K. J.; Garcia, C.

    2011-12-01

    Saline playas frequently occur in closed basins, such as the Humboldt Salt Marsh in Dixie Valley, in west-central Nevada. This playa is the terminus of a local groundwater flow system, is comprised of dense clay, and has shallow groundwater salinities more than 5 times the salinity of sea water (TDS concentrations of 172,000 to 311,900 mg/L). The saline system has developed and continues to expand as surface runoff and groundwater evaporates from the playa surface and dissolved solutes remain. Negligible discharge of fresh groundwater occurs where the saline system is present, because the fresh-water / saltwater interface that abuts the playa is analogous hydraulically to interfaces in coastal aquifers. The period of time necessary to develop a relatively isolated saline flow system was quantified by simulating a hypothetical cross-section with a variable-density groundwater flow and transport model (SEAWAT). Preliminary analysis suggests that the perimeter of saline system expands between 10 and 100 m every 10,000 years.

  5. Induction of mammalian cell death by simple shear and extensional flows.

    Science.gov (United States)

    Tanzeglock, Timm; Soos, Miroslav; Stephanopoulos, Gregory; Morbidelli, Massimo

    2009-10-01

    In this work we investigated whether the type of shear flow, to which cells are exposed, influences the initiation of cell death. It is shown that mammalian cells, indeed, distinguish between discrete types of flow and respond differently. Two flow devices were employed to impose accurate hydrodynamic flow fields: uniform steady simple shear flow and oscillating extensional flow. To distinguish between necrotic and apoptotic cell death, fluorescence activated cell sorting and the release of DNA in the culture supernatant was used. Results show that Chinese Hamster Ovaries and Human Embryonic Kidney cells will enter the apoptotic pathway when subjected to low levels of hydrodynamic stress (around 2.0 Pa) in oscillating, extensional flow. In contrast, necrotic death prevails when the cells are exposed to hydrodynamic stresses around 1.0 Pa in simple shear flow or around 500 Pa in extensional flow. These threshold values at which cells enter the respective death pathway should be avoided when culturing cells for recombinant protein production to enhance culture longevity and productivity.

  6. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  7. Theory to predict shear stress on cells in turbulent blood flow.

    Science.gov (United States)

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  8. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    Science.gov (United States)

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-06

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences.

  9. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

    Directory of Open Access Journals (Sweden)

    Alexander M. Sailon

    2009-01-01

    Full Text Available Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm. A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67%±5.0%, while in the core it was 0.3%±0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94%±8.3% and core density of 76%±3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  10. A Multiphase Flow Measurement System Comprising an Impedance Cross Correlation (ICC) Device and an Imaging Electromagnetic Flow Meter (IEF).

    OpenAIRE

    Meng, Yiqing; Lucas, Gary

    2012-01-01

    Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...

  11. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Science.gov (United States)

    Yan, Wei-Mon; Mei, Sheng-Chin; Soong, Chyi-Yeou; Liu, Zhong-Sheng; Song, Datong

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%.

  12. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Mei, Sheng-Chin [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, Chyi-Yeou [Department of Aerospace and System Engineering, Feng Chia University, Seatwen, Taichung 40724, Taiwan (ROC); Liu, Zhong-Sheng; Song, Datong [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-09-29

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%. (author)

  13. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  14. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  15. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...... of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...... response, which requires more detailed modeling....

  16. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  17. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    Science.gov (United States)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  18. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  19. System and method for detecting cells or components thereof

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Marc D. (Ames, IA); Lipert, Robert J. (Ames, IA); Doyle, Robert T. (Ames, IA); Grubisha, Desiree S. (Corona, CA); Rahman, Salma (Ames, IA)

    2009-01-06

    A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

  20. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  1. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  2. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  3. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes

    Science.gov (United States)

    Long, Maureen D.; Wirth, Erin A.

    2013-02-01

    The mantle wedge above subducting slabs is associated with many important processes, including the transport of melt and volatiles. Our understanding of mantle wedge dynamics is incomplete, as the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, measurements of shear wave splitting can constrain the geometry of mantle flow. In order to identify processes that make first-order contributions to the pattern of wedge flow, we have compiled a data set of local S splitting measurements from mantle wedges worldwide. There is a large amount of variability in splitting parameters, with average delay times ranging from ~0.1 to 0.3 s up to ~1.0-1.5 s and large variations in fast directions. We tested for relationships between splitting parameters and a variety of parameters related to subduction processes. We also explicitly tested the predictions made by 10 different models that have been proposed to explain splitting patterns in the mantle wedge. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  4. Numerical simulation of hemodynamic interactions of red blood cells in micro-capillary flow

    Institute of Scientific and Technical Information of China (English)

    石兴; 张帅; 王双连

    2014-01-01

    The hemodynamic interactions of red blood cells (RBCs) in a microcapillary flow are investigated in this paper. This kind of interaction is considered as the non-contact mutual interaction of cells, which is important in the suspension flow of blood, but not sufficiently understood. The distributed Lagrange multiplier/fictitious domain method in the lattice Boltzmann framework is used to solve the suspension of the RBCs. The modification of the flow due to the cells, the dependence of the cell deformation on the flow and the cell-cell interaction via the fluid are discussed. It is revealed that the long-range hydrodynamic interaction with a long interacting distance, more than about 5 times of the RBC equivalent radius, mainly has effect on the rheology properties of the suspension, such as the mean velocity, and the short-range interaction is sensitive to the shape of the cell in the microcapillary flow. The flow velocity around the cell plays a key role in the cell deformation. In the current configuration of the flow and cells, the cells repel each other along the capillary.

  5. The aerodynamic performance of several flow control devices for internal flow systems

    Science.gov (United States)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  6. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  7. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays.

    Science.gov (United States)

    Thangawng, Abel L; Kim, Jason S; Golden, Joel P; Anderson, George P; Robertson, Kelly L; Low, Vyechi; Ligler, Frances S

    2010-11-01

    With a view toward developing a rugged microflow cytometer, a sheath flow system was micromachined in hard plastic (polymethylmethacrylate) for analysis of particles and cells using optical detection. Six optical fibers were incorporated into the interrogation region of the chip, in which hydrodynamic focusing narrowed the core stream to ~35 μm × 40 μm. The use of a relatively large channel at the inlet as well as in the interrogation region (375 μm × 125 μm) successfully minimized the risk of clogging. The device could withstand pressures greater than 100 psi without leaking. Assays using both coded microparticles and cells were demonstrated using the microflow cytometer. Multiplexed immunoassays detected nine different bacteria and toxins using a single mixture of coded microspheres. A549 cancer cells processed with locked nucleic acid probes were evaluated using fluorescence in situ hybridization.

  8. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  9. Reaction kinetics of fluorite in flow systems and surface chemistry

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏

    1996-01-01

    The kinetic experiments of fluorite in water-HCl solution in an open-flow system at the temperatures ≤100℃ reveal that the variation of flow rate (U) can change the reaction rate orders from 0 to 2 or higher. In the far from equilibrium systems, the dissolution rates of fluorite in aqueous solutions have a zero order.The reaction rates are controlled by pH values of input solutions. In fact, the reaction rates are related to the concentrations of the active sites occupied by H+ on fluorite surface [SOH]. X-ray photospectroscopy observations on fluorite surface before and after reaction indicate that surface chemical processes control the reaction rates: Cl- cations attach on and enter into surface of fluorite besides H+ when fluorites react with HCl solutions, which affect the reaction rates.

  10. Optimal Power Flow for Distribution Systems under Uncertain Forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-29

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  11. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  12. Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.; Bruckner-Lea, Cindy J.; Warner, Marvin G.; Miller, Keith D.; Antolick, Kathryn C.; Marks, James D.; Lou, Jianlong; Grate, Jay W.

    2009-07-15

    A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (~50 pg/mL for BoNT/A-HC-fragment) for the 15 minute fluidic assay.

  13. Far from equilibrium energy flow in quantum critical systems

    CERN Document Server

    Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad

    2013-01-01

    We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.

  14. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  15. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different m...... pumps connected to the microfluidic system. © 2013 by the authors; licensee MDPI, Basel, Switzerland....

  16. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    DeVol, T.A.; Fjeld, R.A. [Clemson Univ., Clemson, SC (United States)

    1995-10-01

    The use of ion chromatography (IC) for radiochemical separations is a well established technique. IC is commonly used in routine environmental monitoring applications as well as in specialized research applications. Typical usage involves the separation of a single radionuclide from the non-radioactive constituents. During the past decade, a limited amount of research has been conducted using automated IC systems in actinide separation applications (e.g.). More recently, separation procedures for common non-gamma emitting activation and fission products were developed utilizing a high performance liquid chromatography (HPLC) system. In addition, a separation procedure for six common actinides has been developed using a HPLC system. These latter systems used on-line flow-cell detectors for quantification of the radioactive constituents of the effluent stream.

  17. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  18. Laser flow microphotometry for rapid analysis and sorting of mammalian cells. [X and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation. (HLW)

  19. Using machine vision and data mining techniques to identify cell properties via microfluidic flow analysis

    Science.gov (United States)

    Horowitz, Geoffrey; Bowie, Samuel; Liu, Anna; Stone, Nicholas; Sulchek, Todd; Alexeev, Alexander

    2016-11-01

    In order to quickly identify the wide range of mechanistic properties that are seen in cell populations, a coupled machine vision and data mining analysis is developed to examine high speed videos of cells flowing through a microfluidic device. The microfluidic device contains a microchannel decorated with a periodical array of diagonal ridges. The ridges compress flowing cells that results in complex cell trajectory and induces cell cross-channel drift, both depend on the cell intrinsic mechanical properties that can be used to characterize specific cell lines. Thus, the cell trajectory analysis can yield a parameter set that can serve as a unique identifier of a cell's membership to a specific cell population. By using the correlations between the cell populations and measured cell trajectories in the ridged microchannel, mechanical properties of individual cells and their specific populations can be identified via only information captured using video analysis. Financial support provided by National Science Foundation (NSF) Grant No. CMMI 1538161.

  20. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  1. Flow Transport in Microtubes Inspired by Insect Respiratory Systems

    Science.gov (United States)

    Aboelkaasem, Yasser; Staples, Anne

    2010-11-01

    The mechanics of insect respiration and tracheal ventilation generally follow either highly discontinuous, or cyclic gas exchange patterns. In the former, gases are exchanged by diffusion, while in the latter, recent imaging of internal respiratory flow dynamics in insects performed at the x-ray synchrotron imaging facility at Argonne indicates that convective gas exchange is accomplished by changes in internal pressure due to rhythmic compressions of the tracheal tubes that comprise the respiratory network. These localized tracheal compressions are induced by global body movements and are used to enhance the oxygen transport to the tissue. Inspired by the dynamics of insect respiratory networks in the cyclic gas exchange regime, we study fluid transport in a mixed rigid/elastic microtube that undergoes localized single and multiple periodic collapses. The latter induces a streaming of flows and therefore enhances convection and flow transport in the tube downstream of the collapse site. The shape of the microtube, the material properties, and the compression and reinflation spatial and temporal profiles are selected to mimic those observed in insect tracheal tubes. A low Reynolds number assumption and lubrication theory are used to develop a mathematical model for the system. The effects of tube shape, collapse amplitude, collapse-to-collapse distance, and collapse phase lags on the net flow rate, pressure gradient, wall shear stress, velocity are investigated.

  2. Continuous-Flow System Produces Medical-Grade Water

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R.

    2009-01-01

    A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.

  3. VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM

    OpenAIRE

    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi

    1983-01-01

    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  4. Uncertainty in prediction and simulation of flow in sewer systems

    DEFF Research Database (Denmark)

    Breinholt, Anders

    included flow from downstream the catchment, rain measured at two rain gauges and monthly evaporation. The data period covered subperiods of 2007-2010. The catchment area consists of both combined and separated drainage systems and significant infiltration inflow enters the system through permeable surface...... outputs and observations will often remain and should hence be quantified, especially when used for model predictive control. The objective with this thesis has been to quantify and qualify the modelled output uncertainty. For this purpose a catchment in Ballerup (1,320 hectares) was selected and data...

  5. Sequential feasible optimal power flow in power systems

    Institute of Scientific and Technical Information of China (English)

    HAN ZhenXiang; JIANG QuanYuan; CAO YiJia

    2009-01-01

    A sequential feasible optimal power flow (OPF) method is developed for large-scale power systems. One of the outstanding features of this method is that it can maintain feasibility for both equality and inequality constraints during iterations. In sequential feasible OPF, every iteration consists of two stages: Objective improving stage and feasibility enforcing stage. Analytical basis for each stage is provided. Numerical studies on various power systems up to 2383 buses indicate that the proposed feasible approach is promising. Compared with the conventional OPF algorithms, such as interior point method, the proposed sequential feasible OPF approach can be terminated at any iteration and yield a feasible operating point simultaneously.

  6. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  7. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ interdigitated flow field design and using completely dry inlet gases. A case study...

  8. Particle seeding flow system for horizontal shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Stephen [Los Alamos National Laboratory; Garcia, Nicolas J. [Los Alamos National Laboratory; Martinez, Adam A. [Los Alamos National Laboratory; Orlicz, Gregory C. [Los Alamos National Laboratory; Prestridge, Katherine P. [Los Alamos National Laboratory

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  9. A flow channel design procedure for PEM fuel cells with effective water removal

    Science.gov (United States)

    Li, Xianguo; Sabir, Imran; Park, Jaewan

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm 2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.

  10. A flow channel design procedure for PEM fuel cells with effective water removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianguo; Sabir, Imran; Park, Jaewan [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2007-01-01

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441cm{sup 2}. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure. (author)

  11. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes.

    Science.gov (United States)

    Nakagawa, Yosuke; Nakamura, Sou; Nakajima, Masahiro; Endo, Hiroshi; Dohda, Takeaki; Takayama, Naoya; Nakauchi, Hiromitsu; Arai, Fumihito; Fukuda, Toshio; Eto, Koji

    2013-08-01

    Induced pluripotent stem cell (iPSC) technology enables us to investigate various potential iPSC-based therapies. Although the safety of iPSC derivation has not been completely validated, anucleate cells, such as platelets or erythrocytes, derived from iPSCs are promising targets. However, the efficiency of in vitro platelet generation from megakaryocytes (MKs) under static culture conditions is lower than is seen in vivo. In this study, we demonstrate the proof of concept by a two-dimensional flow culture system that enabled us to increase platelet yield from human embryonic stem cell or iPSC-derived MKs using a biomimetic artificial blood vessel system. The bioreactor was composed of biodegradable scaffolds with ordered arrays of pores made to mimic in vivo bone marrow through salt leaching. Within the system, two flows in different directions in which the angle between the directions of flow is 60 degrees but not 90 degrees contributed to suitable pressure and shear stress applied to MKs to promote platelet generation. Generated platelets derived from human embryonic stem cells or human induced pluripotent stem cells through the bioreactor with a 60-degree angle revealed intact integrin αIIbβ3 activation after agonist stimulation. Collectively, our findings indicate that two flows in different directions of two-dimensional flow culture may be a feasible system for in vitro generation of platelets from pluripotent stem cells (i.e., iPSC-derived MKs) in numbers sufficient for transfusion therapy.

  12. A model of blood flow in the mesenteric arterial system

    Directory of Open Access Journals (Sweden)

    Cheng Leo K

    2007-05-01

    Full Text Available Abstract Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg and 14.6 kPa (110 mmHg at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An

  13. Dynamical Modes of Deformed Red Blood Cells and Lipid Vesicles in Flows

    Science.gov (United States)

    Noguchi, H.

    Red blood cells and lipid vesicles exhibit rich behaivor in flows.Their dynamics were studied using a particle-based hydrodynamic simulation method, multi-particle collision dynamics. Rupture of lipid vesicles in simple shear flow was simulated by meshless membrane model. Several shape transitions of lipid vesicles and red blood cells are induced by flows. Transition of a lipid vesicle from budded to prolate shapes with increasing shear rate and ordered alignments of deformed elastic vesicles in high density are presented.

  14. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer-Jones

    Full Text Available BACKGROUND: Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available. METHODOLOGY/PRINCIPAL FINDINGS: Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error and a precision (CV<25% down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL. CONCLUSIONS/SIGNIFICANCE: The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens

  15. Energy Flows in Low-Entropy Complex Systems

    CERN Document Server

    Chaisson, Eric J

    2015-01-01

    Nature's many complex systems--physical, biological, and cultural--are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence--relating neither entropy nor information, rather energy--suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density--the rate of energy flow per unit mass--can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy t...

  16. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  17. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  18. CyNC - a method for Real Time Analysis of Systems with Cyclic Data Flows

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens F. Dalsgaard; Larsen, Kim Guldstrand

    2005-01-01

    The paper addresses a novel method for realtime analysis of systems with cyclic data flows. The presented method is based on Network Calculus principles, where upper and lower flow and service constraint are used to bound data flows and processing resources. In acyclic systems flow constraints may...

  19. Analysis of system trustworthiness based on information flow noninterference theory

    Institute of Scientific and Technical Information of China (English)

    Xiangying Kong; Yanhui Chen; Yi Zhuang

    2015-01-01

    The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer-ence (NI) theory of the information flow is studied. Firstly, existing methods cannot analyze the impact of the system states on the trustworthiness of software during the process of trust chain trans-fer. To solve this problem, the impact of the system state on trust-worthiness of software is investigated, the run-time mutual interfer-ence behavior of software entities is described and an interference model of the access control automaton of a system is established. Secondly, based on the intransitive noninterference (INI) theory, a formal analytic method of trustworthiness for trust chain transfer is proposed, providing a theoretical basis for the analysis of dynamic trustworthiness of software during the trust chain transfer process. Thirdly, a prototype system with dynamic trustworthiness on a plat-form with dual core architecture is constructed and a verification algorithm of the system trustworthiness is provided. Final y, the monitor hypothesis is extended to the dynamic monitor hypothe-sis, a theorem of static judgment rule of system trustworthiness is provided, which is useful to prove dynamic trustworthiness of a system at the beginning of system construction. Compared with previous work in this field, this research proposes not only a formal analytic method for the determination of system trustworthiness, but also a modeling method and an analysis algorithm that are feasible for practical implementation.

  20. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  1. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.

    Science.gov (United States)

    Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L

    2015-05-21

    We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation

  2. Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2017-01-01

    We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field.

  3. OPTIMIZATION OF MATERIAL FLOW IN FLEXIBLE MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    J.V.S. BHASKAR,

    2010-12-01

    Full Text Available Flexible manufacturing systems have evolved as a solution to efficient mid-volume production of a variety of part types with low setup time, low work-in-process, low inventory, short manufacturing lead time, high machine utilization and high quality. Flexible manufacturing system (FMS is a computer controlled manufacturing system composed of separate workstations that are inter-connected by automatic material handling system. FMS can produce a number of different parts concurrently. Each part requires different operations in a certain sequence and workstations can typically perform a variety of operations. In this work, a material and information flow analysis as well as an analysis of the department and machines layout is made using genetic algorithm and Tabu search. This method reduces the manufacturing lead-time to produce the components and in-turn gives monetary benefits to the industry.

  4. GAS FLOW CONTROL SYSTEM IN REACTIVE MAGNETRON SPUTTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. M. Klimovich

    2015-01-01

    Full Text Available  It is known that the discharge parameters and the chemical composition of the particles flux impinging onto the substrate during a reactive magnetron sputtering are unstable. As a result spontaneous transitions between the «metal» mode of the target surface and the «poisoned» mode of the target surface have been observed. This leads to nonrepeatability of the coating compositions from process to process. The aim of this work is to design a gas flow control system for reactive sputtering processes. The control system allows to maintain a steady nonequilibrium state of the magnetron discharge in transition mode where the chemical state of the target surface is unstable. The intensities of spectral lines of the discharge spectrum are proposed as control parameters. Photodiode detectors were used for registration of intensities of spectral lines. A gas flow control system regulates argon and reactive gas flow automatically, using feedback signals from photodiode detectors on the intensities of the spectral lines, vacuum gauge, ion current sensor, sensors of discharge current and voltage. As an example, the process of reactive magnetron Ti-Al-N deposition is considered. The following discharge parameters are controlled during sputtering a composite target based on Ti with Al cylindrical inserts: current, voltage, total pressure of a gas mixture, substrate temperature, bias voltage and current of the substrate. Nitrogen flow was controlled by the spectral line intensity of titanium TiI 506,5 nm. The value of the line intensity is connected with the value of reactivity. Elemental composition and structure of the Ti-Al-N coatings were studied using Rutherford backscattering spectroscopy, scanning electron microscopy and X-ray diffraction. It was found, that stoichiometric Ti-Al-N coatings have a globular structure, enhanced hardness and low friction coefficient in contrast to Ti-Al-N coatings with nonstoichiometric composition, which have a

  5. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  6. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    Science.gov (United States)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  7. Characterization of Fluid Flow in Paper-Based Microfluidic Systems

    Science.gov (United States)

    Walji, Noosheen; MacDonald, Brendan

    2014-11-01

    Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.

  8. In-vitro laser anemometry blood flow systems

    Science.gov (United States)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  9. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  10. Study on flow stability margin by method of system identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Youjie; Jiang Shengyao [Tsinghua Univ., Beijing, BJ (China). Inst. of Nuclear Energy Technology

    1999-11-01

    The main objective of the investigation is to develop a practical technology and method in engineering, based on general control theory, for distinguishing two-phase flow stability and identifying the safety margin by using the system identification method. By combining the two-phase flow stability theory in the thermo-physics field with the system stability theory and the system identification method in the field of information science, a thermo-hydraulic experiment technology with a new concept was developed. The experiment was carried out on the thermo-hydraulic test system HRTL-5 which serves as simulator to the primary circulation of the nuclear heating reactor NHR-5 and was used for investigation on its thermo-physical behavior. Reverse repeat pseudo-random sequences which were added to the steady heat flux as input signal sources and measured flow rates as response function were used in the test. The two-phase flow stability and the stability margin of the natural circulation system were investigated by analyzing the system pulse response function, the decay ratio and the stability boundary under different operational conditions. The results are compared with those obtained by using conventional methods. The test method and typical results obtained are presented in this paper. (orig.) [German] Das Hauptziel der Untersuchung ist die Entwicklung einer Technik und eines Verfahrens um - basierend auf allgemeiner Regelungstheorie - die Stabilitaet einer Zweiphasenstroemung zu bestimmen und unter Verwendung von Methoden zur Systemidentifikation Sicherheitsreserven zu ermitteln. Durch Kombination der Theorie der Zweiphasenstroemungsstabilitaet im Bereich der Thermophysik mit der Systemstabilitaetstheorie und der informationstheoretischen Systemidentifikationsmethode wurde eine thermohydraulische Experimentiertechnik neuartigen Konzepts entwickelt. Die Versuche wurden auf dem Thermohydraulikteststand HRTL-5 ausgefuehrt, der dem Primaeranlauf des Heizreaktors HHR-5

  11. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    CERN Document Server

    Borsche, Raul

    2014-01-01

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  12. Energy Flows in Low-Entropy Complex Systems

    Directory of Open Access Journals (Sweden)

    Eric J. Chaisson

    2015-12-01

    Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.

  13. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics

    OpenAIRE

    Ramji, Ramesh; WANG, MING; Bhagat, Ali Asgar S.; Tan Shao Weng, Daniel; Thakor, Nitish V.; Teck Lim, Chwee; Chen, Chia-Hung

    2014-01-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel...

  14. Determination of Free and Total Sulfites in Wine using an Automatic Flow Injection Analysis System with Voltammetric Detection

    OpenAIRE

    Gonçalves, Luís Moreira; Pacheco, João Grosso; Magalhães, Paulo Jorge; Rodrigues, José António; Barros, Aquiles Araújo

    2009-01-01

    Abstract An automated Flow Injection Analysis (FIA) system based on a initial analyte separation by gas-diffusion and subsequent determination by square-wave voltammetry (SWV) in a flow cell is proposed for the determination of total and free content of sulphur dioxide (SO2) in wine. The proposed method was compared with two iodometric methodologies (the Ripper method and the simplified method commonly used by the wine industry). The developed method shown repeatability (RSD lower ...

  15. MODELLING AND FUZZY LOGIC CONTROL OF PEM FUEL CELL SYSTEM POWER GENERATION FOR RESIDENTIAL APPLICATION

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2010-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...

  16. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    Science.gov (United States)

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW.

  17. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    Science.gov (United States)

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  18. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Bocsi, Jozsef; Di Berardino, Marco; Tarnok, Attila

    2012-11-07

    Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.

  19. Overview of the New Flow Cytometry RG and Proposed Cell Sorting (FACS) Microarray study

    OpenAIRE

    2013-01-01

    The Flow Cytometry Research Group (FCRG) is the latest addition to the ABRF RG family. The RG is currently in its first year and has 9 members; many of whom are flow cytometrists new to the ABRF. The initial goal of the FCRG is to describe a method for the evaluation of cell stress or other deleterious perturbations caused by cell sorting across a wide range of cell types.

  20. Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems

    Institute of Scientific and Technical Information of China (English)

    BINKOU Alhabib; YU Yixin

    2008-01-01

    The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

  1. The ATLAS Data Flow System for LHC Run II

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  2. The ATLAS Data Flow System for Run 2

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  3. Decomposing the Unsteady Flow Routing in River Systems

    Science.gov (United States)

    Gomez Cunya, L. A.; Leon, A.; Gibson, N. L.; Vasylkivska, V.

    2014-12-01

    This work presents an optimization-based domain decomposition strategy for unsteady flow routing in complex river systems. This strategy couples the domain decomposition technique with a Precomputed Channel Hydraulics Ensemble approach, known also as HydraulicPerformance Graph (HPG), which utilizes precomputed solutions along reaches on a river system. These solutions are stored in a database. While efficient and robust, HPGs requires extensive memory allocation, especially for high resolution simulations. Decomposing the river system into subdomains reduces computer memory constraints as each sub-domain is solved independently. Further, an optimization method is used to couple the sub-domains using the stored precomputed solution. In turn, the computational efficiency of the HPG approach allows the optimization-based scheme to be competitive with a whole domain methodology. The combined strategy is expected to reduce the overall computational time for large-scale problems. This work discusses the results of the application to the Columbia River (Northwest USA).

  4. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities.

    Science.gov (United States)

    Müller, Susann; Nebe-von-Caron, Gerhard

    2010-07-01

    The still poorly explored world of microbial functioning is about to be uncovered by a combined application of old and new technologies. Bacteria, especially, are still in the dark with respect to their phylogenetic affiliations as well as their metabolic capabilities and functions. However, with the advent of sophisticated flow cytometric and cell sorting technologies in microbiological labs, there is now the possibility to gain this knowledge at the single-cell level without cumbersome cultivation approaches. Cytometry also facilitates the understanding of physiological diversity in seemingly likewise acting populations. Both individuality and diversity lead to the complex and concerted actions of microbial consortia. This review provides an overview of the state of the art in the field. It deals with the handling of microorganisms from the very beginning (i.e. sampling, and detachment and fixation procedures) and goes on to discuss the pitfalls and problems in analysing cells without any further treatment. If information cannot be gained by specific staining procedures, phylogenetic technologies, transcriptomic and proteomic approaches may be options for achieving advanced insights. All in all, flow cytometry will be a mediator technology to gain a deeper insight into the heterogeneity of populations and the functioning of microbial communities.

  5. Flow Instability and Its Control in Compression Systems

    Institute of Scientific and Technical Information of China (English)

    Jingyi Chen

    2003-01-01

    This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.

  6. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  7. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Nativ, R. [Hebrew Univ., Jerusalem (IL); Hunley, A.E. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small.

  8. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  9. Development of an electrochemically integrated SR-GIXRD flow cell to study FeCO3 formation kinetics

    Science.gov (United States)

    Burkle, D.; De Motte, R.; Taleb, W.; Kleppe, A.; Comyn, T.; Vargas, S. M.; Neville, A.; Barker, R.

    2016-10-01

    An electrochemically integrated Synchrotron Radiation-Grazing Incidence X-Ray Diffraction (SR-GIXRD) flow cell for studying corrosion product formation on carbon steel in carbon dioxide (CO2)-containing brines typical of oil and gas production has been developed. The system is capable of generating flow velocities of up to 2 m/s at temperatures in excess of 80 °C during SR-GIXRD measurements of the steel surface, enabling flow to be maintained over the course of the experiment while diffraction patterns are being collected. The design of the flow cell is presented, along with electrochemical and diffraction pattern transients collected from an initial experiment which examined the precipitation of FeCO3 onto X65 carbon steel in a CO2-saturated 3.5 wt. % NaCl brine at 80 °C and 0.1 m/s. The flow cell is used to follow the nucleation and growth kinetics of FeCO3 using SR-GIXRD linked to the simultaneous electrochemical response of the steel surface which were collected in the form of linear polarisation resistance measurements to decipher in situ corrosion rates. The results show that FeCO3 nucleation could be detected consistently and well before its inhibitive effect on the general corrosion rate of the system. In situ measurements are compared with ex situ scanning electron microscopy (SEM) observations showing the development of an FeCO3 layer on the corroding steel surface over time confirming the in situ interpretations. The results presented demonstrate that under the specific conditions evaluated, FeCO3 was the only crystalline phase to form in the system, with no crystalline precursors being apparent. The numerous capabilities of the flow cell are highlighted and presented in this paper.

  10. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  11. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    Science.gov (United States)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  12. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods

    OpenAIRE

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-s...

  13. Orientation of Cells Cultured in Vortex Flow with Swinging Plate in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2011-06-01

    Full Text Available An effect of flow on cell culture has been studied in vitro. A silicone disk was placed in the center of culture dish of 52 mm internal diameter to make a doughnut-shaped canal. The dish was placed on a tilted plate, which rotates to make a vortex flow around the silicone disk with a swing motion. Variations were made on the diameter (20 mm, 30 mm, and 40 mm of the silicone disk and the rotational speed (2.1 rad/sec, 5.2 rad/sec of the swinging plate, which tilts with 0.1 rad from the horizontal plane. Five kinds of cells were cultured in the vortex flow of Dulbecco’s Modified Eagle’s Medium for seven days: C2C12 (mouse myoblast, L6 (rat skeletal muscle cell, A7r5 (rat aortic smooth muscle cell, CS-2P2-C75 (primary normal porcine aortic endothelial cell, and L929 (mouse fibroblast. The experiments show the following results. The orientation of cells depends on flow and on kinds of cells. A7r5 and CS-2P2-C75 line along the streamline of the flow. C2C12 and L6 adhere along the direction of the flow in the first stage, and tilt to the perpendicular direction to the flow differentiating to myotubes with fusion in the second stage.

  14. Laminar flow in radial flow cell with small aspect ratios: Numerical and experimental study

    DEFF Research Database (Denmark)

    Detry, J. G.; Deroanne, C.; Sindic, M.

    2009-01-01

    Studies on the effect of wall shear stress on soil and biofilm attachment and removal from a surface are one of the many applications of radial axisymmetrical flow. The particular nature of this flow allows taking advantage of a wide range of wall shear Stress applied at the analyzed surface...... in a single experiment. This type of experiments provides a critical radius up to which soil removal occurs. Good models are, however, still needed to convert the experimental data into critical wall shear stress. Analytical models are already available for creeping flow but Computational Fluid Dynamics must...... be applied for experiments performed at higher Reynolds numbers. The present study is a numerical analysis of the radial axisymmetrical flow for aspect ratios of 0.125, 0.25, 0.5 and 1 with inlet pipe Reynolds numbers varying from 0 to 2000, aiming at computing the wall shear stress distribution at any...

  15. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.

    Science.gov (United States)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette; Kassem, Moustapha; Mygind, Tina

    2011-06-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation

  16. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  17. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  18. White blood cell differentiation using a solid state flow cytometer

    OpenAIRE

    Doornbos, R.M.P.; Hennink, E J; Putman, C.A.J.; Grooth, de, Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche photodiode, which was used to detect the weak scattered light in the orthogonal direction. The new flow cytometer set-up is very small, relatively cheap and yields similar results as a standard flow c...

  19. Flow and Pressure Distribution in Fuel Cell Manifolds

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Bang, Mads; Kær, Søren Knudsen

    2010-01-01

    The manifold is an essential part of the fuel cell stack. Evidently, evenly distributed reactants are a prerequisite for an efficient fuel cell stack. In this study, the cathode manifold ability to distribute air to the cells of a 70 cell stack is investigated experimentally. By means of 20...

  20. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  1. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  2. Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Pratsinis, Harris; Nebe-von-Caron, Gerhard; Kletsas, Dimitris; Tsakalidou, Effie

    2007-01-01

    An in situ flow cytometric viability assay employing carboxyfluorescein diacetate and propidium iodide was used to identify Streptococcus macedonicus acid tolerance phenotypes. The logarithmic-phase acid tolerance response (L-ATR) was evident when cells were (i) left to autoacidify unbuffered medium, (ii) transiently exposed to nonlethal acidic pH, or (iii) systematically grown under suboptimal acidic conditions (acid habituation). Stationary-phase ATR was also detected; this phenotype was gradually degenerated while cells resided at this phase. Single-cell analysis of S. macedonicus during induction of L-ATR revealed heterogeneity in both the ability and the rate of tolerance acquisition within clonal populations. L-ATR was found to be partially dependent on de novo protein synthesis and compositional changes of the cell envelope. Interestingly, acid-habituated cells were interlaced in lengthier chains and exhibited an irregular pattern of active peptidoglycan biosynthesis sites when probed with BODIPY FL vancomycin. L-ATR caused cells to retain their membrane potential after lethal challenge, as judged by ratiometric analysis with oxonol [DiBAC(4)(3)]. Furthermore, F-ATPase was important during the induction of L-ATR, but in the case of a fully launched response, inhibition of F-ATPase affected acid resistance only partially. Activities of both F-ATPase and the glucose-specific phosphoenolpyruvate-dependent phosphotransferase system were increased after L-ATR induction, distinguishing S. macedonicus from oral streptococci. Finally, the in situ viability assessment was compared to medium-based recovery after single-cell sorting, revealing that the culturability of subpopulations with identical fluorescence characteristics is dependent on the treatments imposed to the cells prior to acid challenge.

  3. Development of bipolar plates with different flow channel configurations for fuel cells

    Science.gov (United States)

    Boddu, Rajesh; Marupakula, Uday Kumar; Summers, Benjamin; Majumdar, Pradip

    Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.

  4. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.

    Science.gov (United States)

    Yao, Bo; Luo, Guo-an; Feng, Xue; Wang, Wei; Chen, Ling-xin; Wang, Yi-ming

    2004-12-01

    A novel method based on gravity and electric force driving of cells was developed for flow cytometry and fluorescence activated cell sorting in a microfluidic chip system. In the experiments cells flowed spontaneously under their own gravity in a upright microchip, passed through the detection region and then entered into the sorting electric field one by one at an average velocity of 0.55 mm s(-1) and were fluorescence activated cell sorted (FACS) by a switch-off activation program. In order to study the dynamical and kinematic characteristics of single cells in gravity and electric field of microchannels a physical and numerical module based on Newton's Law of motion was established and optimized. Hydroxylpropylmethyl cellulose (HPMC) was used to minimize cell assembling, sedimentation and adsorption to microchannels. This system was applied to estimate the necrotic and apoptotic effects of ultraviolet (UV) light on HeLa cells by exposing them to UV radiation for 10, 20 or 40 min and the results showed that UV radiation induced membrane damage contributed to the apoptosis and necrosis of HeLa cells.

  5. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  6. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    CERN Document Server

    Doss, C E; Swisdak, M

    2016-01-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary...

  7. Verification of Information Flow in Agent-Based Systems

    Science.gov (United States)

    Sabri, Khair Eddin; Khedri, Ridha; Jaskolka, Jason

    Analyzing information flow is beneficial for ensuring the satisfiability of security policies during the exchange of information between the agents of a system. In the literature, models such as Bell-LaPadula model and the Chinese Wall model are proposed to capture and govern the exchange of information among agents. Also, we find several verification techniques for analyzing information flow within programs or multi-agent systems. However, these models and techniques assume the atomicity of the exchanged information, which means that the information cannot be decomposed or combined with other pieces of information. Also, the policies of their models prohibit any transfer of information from a high level agent to a low level agent. In this paper, we propose a technique that relaxes these assumptions. Indeed, the proposed technique allows classifying information into frames and articulating finer granularity policies that involve information, its elements, or its frames. Also, it allows for information manipulation through several operations such as focusing and combining information. Relaxing the atomicity of information assumption permits an analysis that takes into account the ability of an agent to link elements of information in order to evolve its knowledge.

  8. Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; ZHANG Youtong; ASIF Malik

    2015-01-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine’s operating conditions. That will lead to low NOX conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between–8%and 10%to–4%and 2%and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms . The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NOX emission remains almost unchanged. The trade-off between NOX conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine’s operating conditions quickly.

  9. Broadband measuring system for unsteady flow investigation in wind tunnel

    Science.gov (United States)

    Biriukov, V. I.; Garifullin, M. F.; Korneeva, D. B.; Slitinskaya, A. Ju.

    2016-10-01

    Due to increasingly tough requirements to the accuracy and informativity of the wind tunnel experiments, the urgency has grown of the unsteady flows research. A distinctive feature of such studies is synchronous multichannel measurements of rapidly changing in time process parameters (with a broadband spectrum and characteristic frequencies of 0 Hz to 1000 Hz and above) and also the need for fast processing and storage of large volumes of the data received. To solve these problems and to meet the requirements, TsAGI has developed a measuring system (MS) and the corresponding software. The basic purpose of MS is to conduct transonic buffeting research in T-128 wind tunnel. Besides, it can be used to study separated flow regimes, aeroelastic vibrations, including: classic flutter, stall flutter, limit cycle oscillations, etc. The MS can be used also to study a variety of transient regimes. It is possible to expand the system further on to enhance its performance without introducing any fundamental changes in its structure and software, and without breaking its operability for the period of modernization.

  10. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    Science.gov (United States)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  11. NUMERICAL INVESTIGATION OF FLOW PATTERNS IN DIFFERENT PUMP INTAKE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jie-min; WANG Ben-cheng; YU Ling-hui; LI Yok-sheung; TANG Ling

    2012-01-01

    A 3-D numerical model for pump intake is established based on the Navier-Stokes equations with the RNG k-εturbulence model and the VOF method to simulate the free surface.The applicability of the proposed model is validated by a test case of non-symmetric pump-intake bay.The predicted locations,structures and shapes of all vortices are in good agreement with those observed in experiments,though with some differences in vorticity strengths.The flow pattern and the efficiency of five types of pump intake systems are studied.The discharge and the velocity uniformity of the intake system are used as indices to evaluate its performance.

  12. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  13. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...

  14. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom;

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  15. Linear system identification of a cold flow circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Panday, R [West Virginia Univ., Morgantown, WV (United States); Woerner, B D [West Virginia Univ., Morgantown, WV (United States); Ludlow, J C [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shadle, L J [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Boyle, E J [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  16. Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity

    Science.gov (United States)

    Grote, Jan-Philipp; Zeradjanin, Aleksandar R.; Cherevko, Serhiy; Mayrhofer, Karl J. J.

    2014-10-01

    In this work the online coupling of a miniaturized electrochemical scanning flow cell (SFC) to a mass spectrometer is introduced. The system is designed for the determination of reaction products in dependence of the applied potential and/or current regime as well as fast and automated change of the sample. The reaction products evaporate through a hydrophobic PTFE membrane into a small vacuum probe, which is positioned only 50-100 μm away from the electrode surface. The probe is implemented into the SFC and directly connected to the mass spectrometer. This unique configuration enables fast parameter screening for complex electrochemical reactions, including investigation of operation conditions, composition of electrolyte, and material composition. The technical developments of the system are validated by initial measurements of hydrogen evolution during water electrolysis and electrochemical reduction of CO2 to various products, showcasing the high potential for systematic combinatorial screening by this approach.

  17. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  18. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    Science.gov (United States)

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  19. Theory of margination and cell-free layer thickness in blood flow

    Science.gov (United States)

    Graham, Michael

    2016-11-01

    A mechanistic model is developed to describe segregation in confined multicomponent suspensions such as blood during Couette or plane Poiseuille flow. We focus attention on the case of a binary suspension with a deformable primary component (e.g. red blood cells) that completely dominates the collision dynamics in the system. The model captures the phenomena of depletion layer formation and margination observed in confined multicomponent suspensions of deformable particles. The depletion layer thickness of the primary component is predicted to follow a master curve relating it in a specific way to confinement ratio and volume fraction. Results from experiments and detailed simulations with different parameters (flexibility, viscosity ratio, confinement) collapse onto this curve with only one adjustable parameter. In a binary suspension, several regimes of segregation arise, depending on the value of a "margination parameter" M. Most importantly, in both Couette and Poiseuille flows there is a critical value of M below which a sharp "drainage transition" occurs: one component is completely depleted from the bulk flow to the vicinity of the walls. Direct simulations also exhibit this transition as the size or flexibility ratio of the components changes.

  20. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  1. System identification and robust control of a portable proton exchange membrane full-cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Yang, Yee-Pien; Huang, Chi-Wei; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D (Taiwan)

    2007-02-10

    This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell system. The fuel-cell system's dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition and temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a two-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current. On the other hand, the system's non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are treated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model the system's transfer functions. Second, the H{sub {infinity}} robust control strategies were applied to stabilise the system. Finally, the system's stability and performance were compromised by introducing weighting functions to the controller's design. From the experimental results, the designed H{sub {infinity}} robust controllers were deemed effective. (author)

  2. The influence of venous blood flow on the retinal ganglion cell complex in patients with primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2014-07-01

    Full Text Available Purpose: To study the influence of venous blood flow on the ganglion cell complex (GCC in patients with preperimetric and perimetric open angle glaucoma.Methods: 74 patients were included in the research. 59 eyes and 62 eyes were diagnosed with preperimetric and perimetric open angle glaucoma respectively. The mean age was 56.5±10.5 years. 22 (12 female and 10 male healthy individuals constituted the control group. The ganglion cell complex and retinal nerve fibre layer were evaluated with the help of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA. Ocular blood flow was measured by Color Doppler Imaging (multifunctional VOLUSON 730 ProSystem. The statistical analysis included correlation between GCC and RNFL thickness in both glaucoma groups.Results: The results showed a statistically significant reduction of venous blood flow velocity in both glaucoma groups compared to the control group. No difference in venous blood flow parameters between two glaucoma groups was found, except resistance index, which was higher in perimetric group in comparison to preperimetric group. A correlation was also obtained between venous blood flow parameters and GCC and RNFL thickness in both glaucoma groups.Conclusion: Early GCC damage in glaucoma might occur due to venous blood flow reduction. This fact may be of great value in understanding glaucoma pathogenesis and search for novel treatment options.

  3. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells.

    Science.gov (United States)

    Buschmann, M H; Dieterich, P; Adams, N A; Schnittler, H-J

    2005-03-01

    Endothelial cells, covering the inner surface of vessels and the heart, are permanently exposed to fluid flow, which affects the endothelial structure and the function. The response of endothelial cells to fluid shear stress is frequently investigated in cone-plate systems. For this type of device, we performed an analytical and numerical analysis of the steady, laminar, three-dimensional flow of a Newtonian fluid at low Reynolds numbers. Unsteady oscillating and pulsating flow was studied numerically by taking the geometry of a corresponding experimental setup into account. Our investigation provides detailed information with regard to shear-stress distribution at the plate as well as secondary flow. We show that: (i) there is a region on the plate where shear stress is almost constant and an analytical approach can be applied with high accuracy; (ii) detailed information about the flow in a real cone-plate device can only be obtained by numerical simulations; (iii) the pulsating flow is quasi-stationary; and (iv) there is a time lag on the order of 10(-3) s between cone rotation and shear stress generated on the plate.

  4. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability.

  5. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  6. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  7. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    OpenAIRE

    Yue-Tzu Yang; Kuo-Teng Tsai; Cha’o-Kuang Chen

    2013-01-01

    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced...

  8. Cell-fluid Interaction: Coupling Between the Deformation of an Adherent Leukocyte and the Shear Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionLeukocyte adhesion is a natural physiopathological phenomenon and the balance between the hemodynamic forces and adhesion forces (molecular bonds) plays a key role. According to hemodynamic theories, blood flow induces the change of the shape and the spatial arrangement of leukocytes. These changes may in turn induce the redistribution of blood flow around the cell. Therefore there exist interaction of the adherent leukocyte with blood flow, which is called as the coupling between the hemodyna...

  9. Flow rate and humidification effects on a PEM fuel cell performance and operation

    Science.gov (United States)

    Guvelioglu, Galip H.; Stenger, Harvey G.

    A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.

  10. Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics.

    Science.gov (United States)

    Jing, Tengyang; Lai, Zhangxing; Wu, Lidan; Han, Jongyoon; Lim, Chwee Teck; Chen, Chia-Hung

    2016-12-06

    Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.

  11. The interaction of human endothelial cells with chemical gradient surfaces during exposure to flow

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; Van der Meer, J; Van der Mei, HC; Busscher, HJ; Olij, WJV; Anderson, HR

    1998-01-01

    In this study, the position bound shape, spreading, detachment and migration of adhering HUVEC endothelial cells on dichlorodimethylsilane (DDS) chemical gradient surfaces was investigated during exposure to flow in a parallel plate flow chamber in the presence of` serum proteins. Gradient surfaces

  12. Predication of Plastic Flow Characteristics in Ferrite/Pearlite Steel Using a Fern Unit Cell Method

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han; Jing Liu; Lv Zhang

    2004-01-01

    The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.

  13. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig;

    2016-01-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...

  14. GIS-based cell model for simulating debris flow runout on a fan

    Science.gov (United States)

    Gregoretti, Carlo; Degetto, Massimo; Boreggio, Mauro

    2016-03-01

    A GIS-based cell model, based on a kinematic approach is proposed to simulate debris flow routing on a fan. The sediment-water mixture is modeled as a monophasic continuum, and the flow pattern is discretized by square cells, 1 m in size, that coincide with the DEM cells. Flow occurs from cells with a higher mixture free surface to those with a lower mixture free surface. A uniform-flow law is used if the elevation of the former cell is higher than that of the latter; otherwise, the flow is simulated using the broad-crested weir law. Erosion and deposition are simulated using an empirical law that is adjusted for a monophasic continuum. The sediment concentration in the routing volume is computed at each time step and controls both erosion and deposition. The cell model is used to simulate a debris flow that occurred on the Rio Lazer (Dolomites, North-Eastern Italian Alps) on November 4th, 1966. Furthermore, the hydrologic and the hydraulic conditions for the initiation of debris flow are simulated, providing the solid-liquid hydrograph of the resulting debris flow. A number of simulations has been carried out with physically reasonable parameters. The results are compared with the extension of the debris-flow deposition area and the map of observed depths of deposited sediments. This comparison shows that the proposed model provides good performance. The analysis of sensitivity carried out by systematically varying the model parameters shows that lower performances are associated with parameter values that are not physically reasonable. The same event is also simulated using a cellular automata model and a finite volume two-dimensional model. The results show that the two models provide a sediment deposition pattern less accurate than that provided by the present cell model.

  15. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  16. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2006-10-01

    Full Text Available This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i the design of novel matrices for enzymeimmobilisation, (ii new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH or parathion hydrolase (PH and (v thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations.

  17. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

    Science.gov (United States)

    Li, Xiang; Chen, Weiqiang; Liu, Guangyu; Lu, Wei; Fu, Jianping

    2014-07-21

    White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.

  18. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  19. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.

    Science.gov (United States)

    1981-03-01

    Kunii and Levenspiel Model ----------------- 66 C. FLUIDIZED BED VARIABLES THAT AFFECT HEAT TRANSFER ---------------------------------- 69 5 1...and Levenspiel Model -------------------------- 68 25. Heat transfer coefficient vs. mass velocity --------- 72 26. Contact geometry of surface-particle...becomes a very important factor. According to Kunii and Levenspiel [34], distributors should have a sufficient pressure drop to achieve equal flow

  20. Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System

    Science.gov (United States)

    Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng

    2010-02-01

    Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

  1. The nucleus of endothelial cell as a sensor of blood flow direction

    Directory of Open Access Journals (Sweden)

    Eugene Tkachenko

    2013-08-01

    Hemodynamic shear stresses cause endothelial cells (ECs to polarize in the plane of the flow. Paradoxically, under strong shear flows, ECs disassemble their primary cilia, common sensors of shear, and thus must use an alternative mechanism of sensing the strength and direction of flow. In our experiments in microfluidic perfusion chambers, confluent ECs developed planar cell polarity at a rate proportional to the shear stress. The location of Golgi apparatus and microtubule organizing center was biased to the upstream side of the nucleus, i.e. the ECs polarized against the flow. These in vitro results agreed with observations in murine blood vessels, where EC polarization against the flow was stronger in high flow arteries than in veins. Once established, flow-induced polarization persisted over long time intervals without external shear. Transient destabilization of acto-myosin cytoskeleton by inhibition of myosin II or depolymerization of actin promoted polarization of EC against the flow, indicating that an intact acto-myosin cytoskeleton resists flow-induced polarization. These results suggested that polarization was induced by mechanical displacement of EC nuclei downstream under the hydrodynamic drag. This hypothesis was confirmed by the observation that acute application of a large hydrodynamic force to ECs resulted in an immediate downstream displacement of nuclei and was sufficient to induce persistent polarization. Taken together, our data indicate that ECs can sense the direction and strength of blood flow through the hydrodynamic drag applied to their nuclei.

  2. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  3. Analytical solutions of actin-retrograde-flow in a circular stationary cell: a mechanical point of view.

    Science.gov (United States)

    Ghasemi, V A; Firoozabadi, B; Saidi, M S

    2014-03-01

    The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

  4. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  5. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  6. Exergy Flows inside a One Phase Ejector for Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2016-03-01

    Full Text Available The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.

  7. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  8. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  9. Multi-Use Non-Intrusive Flow Characterization System (FCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  10. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  11. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia.

    Science.gov (United States)

    Volden, T A; Reyelts, C D; Hoke, T A; Arikkath, J; Bonasera, S J

    2015-12-01

    Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

  12. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  13. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system.

    Science.gov (United States)

    Yan, Jian; Guo, Cheng-Gang; Liu, Xiao-Ping; Kong, Fan-Zhi; Shen, Qiao-Yi; Yang, Cheng-Zhang; Li, Jun; Cao, Cheng-Xi; Jin, Xin-Qiao

    2013-12-20

    Complex assembly, inconvenient operations, poor control of Joule heating and leakage of solution are still fundamental issues greatly hindering application of free-flow electrophoresis (FFE) for preparative purpose in bio-separation. To address these issues, a novel FFE device was developed based on our previous work. Firstly, a new mechanical structure was designed for compact assembly of separation chamber, fast removal of air bubble, and good anti-leakage performance. Secondly, a highly efficient thermoelectric cooling system was used for dispersing Joule heating for the first time. The systemic experiments revealed the three merits: (i) 3min assembly without any liquid leakage, 80 times faster than pervious FFE device designed by us or commercial device (4h); (ii) 5s removing of air bubble in chamber, 1000-fold faster than a normal one (2h or more) and (iii) good control of Joule heating by the cooling system. These merits endowed the device high stable thermo- and hydro-dynamic flow for long-term separation even under high electric field of 63V/cm. Finally, the developed device was used for up to 8h continuous separation of 5mg/mL fuchsin acid and purification of three model proteins of phycocyanin, myoglobin and cytochrome C, demonstrating the applicability of FFE. The developed FFE device has evident significance to the studies on stem cell, cell or organelle proteomics, and protein complex as well as micro- or nano-particles.

  14. White blood cell differentiation using a solid state flow cytometer

    NARCIS (Netherlands)

    Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Grooth, de Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche pho

  15. The ATLAS Data Flow system for the Second LHC Run

    CERN Document Server

    Hauser, Reiner; The ATLAS collaboration

    2015-01-01

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the Readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, the f...

  16. A Raman Flow Cytometer: An Innovative Microfluidic Approach for Continuous Label-Free Analysis of Cells via Raman Spectroscopy

    KAUST Repository

    De Grazia, Antonio

    2015-05-05

    In this work a Raman flow cytometer is presented. It is a whole new microfluidic device that takes advantage of basic principles of Raman spectroscopy and fluorescent flow cytometry mixed together in a system of particularly shaped channels. These are indeed composed by specific shape and sizes – thanks to which cells can flow one-by-one – and a trap by means of which cells are trapped in order to perform Raman analysis on single ones in a constant and passive way. In this sense the microfluidic device promotes a fast method to look for single cells in a whole multicellular sample. It is a label-free analysis and this means that, on the contrary of what happens with fluorescent flow cytometry, the sample does not need to undergo any particular time-consuming pretreatment before being analyzed. Moreover it gives a complete information about the biochemical content of the sample thanks to the involvement of Raman spectroscopy as method of analysis. Many thought about a device like this, but eventually it is the first one being designed, fabricated and tested. The materials involved in the production of the Raman flow cytometer are chosen wisely. In particular the chip – the most important component of the device – is multilayered, being composed by a slide of calcium fluoride (which gives a negligible signal in Raman analyses), a photosensitive resist containing a pattern with channels and another slide of calcium fluoride in order for the channels to be sealed on both sides. The chip is, in turn, connected to gaskets and external frames. Several fabrication processes are followed to ultimately get the complete Raman flow cytometer and experiments on red blood cells demonstrate its validity in this field.

  17. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  18. Cluster of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction

    CERN Document Server

    Clavería, Viviana; Thiébaud, Marine; Abkarian, Manouk; Coupier, Gwennou; Misbah, Chaouqi; John, Thomas; Wagner, Christian

    2016-01-01

    We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters form along the capillaries and macromolecule-induced adhesion contribute to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes the only predominant mechanism. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles captures the transition between adhesive and non-adhesive clusters at different flow velocities.

  19. Improvement of performance of gas flow channel in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2008-10-15

    This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)

  20. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yuji Ishii; Ryota Saito; Hideki Marushima; Ryusuke Ito; Taro Sakamoto; Katsuhiko Yanaga

    2008-01-01

    AIM:To examine the efficacy of the radial flow bioreactor (RFB) as an extracorporeal bioartificial liver (BAL) and the reconstruction of liver organoids using embryonic pig liver cells.METHODS:We reconstructed the liver organoids using embryonic porcine liver cells in the RFB.We also determined the gestational time window for the optimum growth of embryonic porcine liver cells.Five weeks of gestation was designated as embryonic day (E) 35 and 8 wk of gestation was designated as E56.These cells were cultured for one week before morphological and functional examinations.Moreover,the efficacy of pulsed administration of a high concentration hepatocyte growth factor (HGF) was examined.RESULTS:Both cell growth and function were excellent after harvesting on E3S.The pulsed administration of a high concentration of HGF promoted the differentiation and maturation of these fetal hepatic cells.Microscopic examination of organoids in the RFB revealed palisading and showed that bile duct-like structures were well developed,indicating that the organoids were mini livers.Transmission electron microscopy revealed microvilli on the luminal surfaces of bile duct-like structures and junctional complexes,which form the basis of the cytoskeleton of epithelial tissues.Furthermore,strong expression of connexin (Cx) 32,which is the mainprotein of hepatocyte gap junctions,was observed.With respect to liver function,ammonia detoxification and urea synthesis were shown to be performed effectively.CONCLUSION:Our system can potentially be applied in the fields of BAL and transplantation medicine.

  1. Water behavior in a u-shaped flow channel of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Liu, Z.S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    A study was conducted to find a practical approach for predicting liquid water distribution in the U-shaped flow channels of a proton exchange membrane (PEM) fuel cell. Computational fluid dynamics modeling with the FLUENT software package was used to demonstrate the two-phase flow of the air-water transport process inside the channel. It was noted that no chemical reaction occurs inside the flow channels and the liquid water is formed either on the surfaces of the flow channels or inside the flow channels. The problem can therefore be simplified as a fluid mechanics problem with water sources inside its physical domain or on its boundaries. The volume-of-fluid (VOF) model was used to track dynamic air-water interactions. Three cases with a range of initial water phase distributions corresponding to different fuel cell operating conditions were simulated numerically to gain a better understanding of water behaviour inside the serpentine channel. It was concluded that the bend area in the serpentine flow field affects the fuel cell performance. This is because it influences the flow field which in turn influences the air-water flow and water liquid distribution inside the channel or along the inside channel surfaces. 15 refs., 1 tab., 11 figs.

  2. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    Science.gov (United States)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  3. Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.

    Science.gov (United States)

    Smaldone, Gregory T; Jin, Yujie; Whitfield, Damion L; Mu, Andrew Y; Wong, Edward C; Wuertz, Stefan; Singer, Mitchell

    2014-04-01

    Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.

  4. Convection of tin in a Bridgman system. II - An electrochemical method for detecting flow regimes

    Science.gov (United States)

    Sears, B.; Fripp, A. L.; Debnam, W. J., Jr.; Woodell, G. A.; Anderson, T. J.; Narayanan, R.

    1992-01-01

    An ampoule was designed in order to obtain local flow behavior of the flow fields for convection of tin in a vertical Bridgman configuration. Multiple electrochemical cells were located along the periphery of the ampoule. Oxygen was titrated into the ampoule at one of the cell locations using a potentiostat and the concentration of oxygen was monitored at the other cell locations by operating the cells in a galvanic mode. Onset of oscillations were detected by means of thermocouples. We conclude that the flows are generally three dimensional for an aspect ratio of 5. Results on oscillations concurred with those of earlier workers. Suggestions for improved designs were made.

  5. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    Science.gov (United States)

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental

  6. Fluid Dynamic Modeling to Support the Development of Flow-based Hepatocyte Culture Systems for Metabolism Studies

    Directory of Open Access Journals (Sweden)

    Jenny M Pedersen

    2016-09-01

    Full Text Available Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics (CFD to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were 1 minimization of shear stress experienced by the cells to maximize viability, 2 rapid establishment of a uniform distribution of test compound in the chamber, and 3 delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices — RealBio® (RB and QuasiVivo® (QV — and a custom developed fluidized bed (FB bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results.Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able

  7. Load flow solutions of large systems on small computers using novel piecewise fast decoupled load flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, T.; Bijwe, P.R.; Kothari, D.P.

    1982-10-01

    This paper presents the development of a highly effective piecewise fast developed load flow algorithm which has a promising potential for practical application. The algorithm requires minimal storage which is almost independent of the sytem size thus enabling power flow solutions of large systems being accomplished on available small size computers and microprocessors. The potential of the suggested algorithm for practical application has been demonstrated by obtaining the load flow results for a few sample systems. It is envisaged that the algorithm would immensely appeal to the utility engineers, since the engineer not only needs the minimum memory for solving the problem but also can develop the program with utmost care and confidence since the algorithm is devoid of such programming complexities like sparsity exploitation and optimal ordering inherent with modern load flow programs. It is believed that the algorithm would find great popularity with the utilities.

  8. Flow visualization using a computerized data acquisition system

    Science.gov (United States)

    Gallington, R.; Sisson, G.

    1981-01-01

    A computer-driven traversing mechanism combined with mass data storage, data reduction programs, and general-purpose graphics programs permits a visualization of complex flows. A unique seven-hole probe is used which permits reasonably accurate measurements of all average flow properties if the local flow angle does not exceed 80 degrees. A description is given of the wake of a lifting canard surface as this wake passes over a wing. The flow includes concentrated and dissipating vortices, large regions of reduced total pressure, and local flow angles up to 60 deg. All these features can be clearly seen and accurately located in the graphical output.

  9. Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE−/− mice with partial carotid ligation

    OpenAIRE

    Go, Young-Mi; Kim, Chan Woo; Walker, Douglas I; Kang, Dong Won; Kumar, Sandeep; Orr, Michael; Uppal, Karan; Quyyumi, Arshed A.; Jo, Hanjoong; Jones, Dean P

    2014-01-01

    Disturbed blood flow (d-flow) occurring in branched and curved arteries promotes endothelial dysfunction and atherosclerosis, in part, by altering gene expression and epigenomic profiles in endothelial cells. While a systemic metabolic change is known to play a role in atherosclerosis, it is unclear whether it can be regulated by local d-flow. Here, we tested this hypothesis by carrying out a metabolomics study using blood plasma samples obtained from ApoE−/− mice that underwent a partial car...

  10. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  11. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  12. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    Science.gov (United States)

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  13. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  14. Flow cytometry in environmental microbiology: a rapid approach for the isolation of single cells for advanced molecular biology analysis.

    Science.gov (United States)

    Ferrari, Belinda C; Winsley, Tristrom J; Bergquist, Peter L; Van Dorst, Josie

    2012-01-01

    The isolation and subsequent characterization of microbial cells from within environmental samples is a difficult process. Flow cytometry and cell sorting, when combined with the application of fluorescent probes, have the capability for the detection and separation of diverse microbial populations from within complex mixtures. The isolation of single cells allows for downstream investigations towards system-level characterization of unknown Bacterial Phyla to occur. We describe here the combination of fluorescent in situ hybridization and cell sorting for the detection and isolation of Candidate Division TM7 bacteria from an enriched soil sample. The result is the isolation of rare cells suitable for advanced molecular analysis including whole genome amplification and high-throughput pyrosequencing.

  15. Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Directory of Open Access Journals (Sweden)

    López-Carro Beatriz

    2009-01-01

    Full Text Available Abstract Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson. This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use.

  16. Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Casuriaga Rosana

    2009-03-01

    Full Text Available Abstract Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson. This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use.

  17. A compact miniaturized continuous flow system for the determination of urea content in milk.

    Science.gov (United States)

    Suarez, Willian Toito; Pessoa-Neto, Osmundo Dantas; Dos Santos, Vagner Bezerra; de Araujo Nogueira, Ana Rita; Faria, Ronaldo Censi; Fatibello-Filho, Orlando; Puyol, Mar; Alonso, Julián

    2010-10-01

    A multicommutation-based flow system with photometric detection was developed, employing an analytical microsystem constructed with low temperature co-fired ceramics (LTCC) technology, a solid-phase reactor containing particles of Canavalia ensiformis DC (urease source) immobilized with glutaraldehyde, and a mini-photometer coupled directly to the microsystem which monolithically integrates a continuous flow cell. The determination of urea in milk was based on the hydrolysis of urea in the solid-phase reactor and the ammonium ions produced were monitored using the Berthelot reaction. The analytical curve was linear in the urea concentration range from 1.0 x 10(-4) to 5.0 x 10(-3) mol L(-1) with a limit of detection of 8.0 x 10(-6) mol L(-1). The relative standard deviation (RSD) for a 2.0 x 10(-3) mol L(-1) urea solution was lower than 0.4% (n = 10) and the sample throughput was 13 h(-1). To check the reproducibility of the flow system, calibration curves were obtained with freshly prepared solutions on different days and the RSD obtained was 4.7% (n = 6). Accuracy was assessed by comparing the results of the proposed method with those from the official procedure and the data are in close agreement, at a 95% confidence level.

  18. Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Dilgin, Yusuf, E-mail: ydilgin@yahoo.co [Canakkale Onsekiz Mart University, Science and Art Faculty, Department of Chemistry, TR-17100 Canakkale (Turkey); Dilgin, Didem Giray [Canakkale Onsekiz Mart University, Biga Vocational College, TR-17200 Biga Canakkale (Turkey); Ege University, Science Faculty, Department of Chemistry, TR-35100 Bornova/Izmir (Turkey); Dursun, Zekerya; Goekcel, H. Ismet [Ege University, Science Faculty, Department of Chemistry, TR-35100 Bornova/Izmir (Turkey); Gligor, Delia [Department of Environmental Physics, Chemistry and Engineering, ' Babes-Bolyai' University, 30 Fantanele St., 400294 Cluj-Napoca (Romania); Bayrak, Burcu; Ertek, Bensu [Canakkale Onsekiz Mart University, Science and Art Faculty, Department of Chemistry, TR-17100 Canakkale (Turkey)

    2011-01-01

    It was firstly described that a glassy carbon electrode electropolymerized with methylene blue shows an efficient photoelectrocatalytic activity towards NADH oxidation in a phosphate buffer solution (pH 7.0). In order to perform the photoelectrocatalytic determination of NADH in a flow injection analysis (FIA) system, a home-made flow electrochemical cell with a suitable transparent window for the irradiation of the electrode surface was constructed. The currents obtained from the photoamperometric measurements in the FIA system at optimum conditions (flow rate of carrier solution, 1.3 mL min{sup -1}; transmission tubing length, 10 cm; injection volume, 100 {mu}L; and constant applied potential, +150 mV vs. Ag/AgCl) were linearly dependent on the NADH concentration and linear calibration curves were obtained in the range of 1.0 x 10{sup -7}-2.0 x 10{sup -4} M. The detection limit was found to be 4.0 x 10{sup -8} M for photoamperometric determination of NADH.

  19. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.

    Science.gov (United States)

    Pedersen, John A; Lichter, Seth; Swartz, Melody A

    2010-03-22

    Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman-Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.

  20. Clogging transition of many-particle systems flowing through bottlenecks.

    Science.gov (United States)

    Zuriguel, Iker; Parisi, Daniel Ricardo; Hidalgo, Raúl Cruz; Lozano, Celia; Janda, Alvaro; Gago, Paula Alejandra; Peralta, Juan Pablo; Ferrer, Luis Miguel; Pugnaloni, Luis Ariel; Clément, Eric; Maza, Diego; Pagonabarraga, Ignacio; Garcimartín, Angel

    2014-12-04

    When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.

  1. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  2. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  3. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply

    Science.gov (United States)

    Gößling, Sönke; Klages, Merle; Haußmann, Jan; Beckhaus, Peter; Messerschmidt, Matthias; Arlt, Tobias; Kardjilov, Nikolay; Manke, Ingo; Scholta, Joachim; Heinzel, Angelika

    2016-02-01

    PEM fuel cells can be operated within a wide range of different operating conditions. In this paper, the special case of operating a PEM fuel cell with a dry cathode supply and without external humidification of the cathode, is considered. A deeper understanding of the water management in the cells is essential for choosing the optimal operation strategy for a specific system. In this study a theoretical model is presented which aims to predict the location in the flow field at which liquid water forms at the cathode. It is validated with neutron images of a PEM fuel cell visualizing the locations at which liquid water forms in the fuel cell flow field channels. It is shown that the inclusion of the GDL diffusion resistance in the model is essential to describe the liquid water formation process inside the fuel cell. Good agreement of model predictions and measurement results has been achieved. While the model has been developed and validated especially for the operation with a dry cathode supply, the model is also applicable to fuel cells with a humidified cathode stream.

  4. Determination of the temperature-dependent cell membrane permeabilities using microfluidics with integrated flow and temperature control.

    Science.gov (United States)

    Fang, Cifeng; Ji, Fujun; Shu, Zhiquan; Gao, Dayong

    2017-02-28

    We developed an integrated microfluidic platform for instantaneous flow and localized temperature control. The platform consisted of a flow-focusing region for sample delivery and a cross-junction region embedded with a microheater for cell trapping and localized temperature control by using an active feedback control system. We further used it to measure the membrane transport properties of Jurkat cells, including the osmotically inactive cell volume (Vb) and cell membrane permeabilities to water (Lp) and to cryoprotective agent (CPA) solutions (dimethyl sulfoxide (DMSO) in this study) (PS) at various temperatures (room temperature, 30 °C, and 37 °C). Such characteristics of cells are of great importance in many applications, especially in optimal cryopreservation. With the results, the corresponding activation energy for water and CPA transport was calculated. The comparison of the results from the current study with reference data indicates that the developed platform is a reliable tool for temperature-dependent cell behavior study, which provides valuable tools for general cell manipulation applications with precise temperature control.

  5. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels.

    Science.gov (United States)

    Lülsdorf, Nina; Pitzler, Christian; Biggel, Michael; Martinez, Ronny; Vojcic, Ljubica; Schwaneberg, Ulrich

    2015-05-21

    A high throughput whole cell flow cytometer screening toolbox was developed and validated by identifying improved variants (1.3-7-fold) for three hydrolases (esterase, lipase, cellulase). The screening principle is based on coupled enzymatic reaction using glucose derivatives which yield upon hydrolysis a fluorescent-hydrogel-layer on the surface of E. coli cells.

  6. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  7. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  8. Acoustic module of the Acquabona (Italy debris flow monitoring system

    Directory of Open Access Journals (Sweden)

    A. Galgaro

    2005-01-01

    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  9. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  10. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.

    Science.gov (United States)

    Manti, Anita; Boi, Paola; Amalfitano, Stefano; Puddu, Alberto; Papa, Stefano

    2011-12-01

    Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.

  11. Numerical simulation of turbulent flow around a forced moving circular cylinder on cut cells

    Institute of Scientific and Technical Information of China (English)

    BAI Wei

    2013-01-01

    Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a mode- rate Reynolds number,Re=3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbu- lent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vor- tex induced vibration.

  12. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    Science.gov (United States)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy / energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependant. In addition, flow back water-transformed BEAS-2B cells show a better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  13. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  14. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  15. Direct demonstration of tubular fluid flow sensing by macula densa cells.

    Science.gov (United States)

    Sipos, Arnold; Vargas, Sarah; Peti-Peterdi, János

    2010-11-01

    Macula densa (MD) cells in the cortical thick ascending limb (cTAL) detect variations in tubular fluid composition and transmit signals to the afferent arteriole (AA) that control glomerular filtration rate [tubuloglomerular feedback (TGF)]. Increases in tubular salt at the MD that normally parallel elevations in tubular fluid flow rate are well accepted as the trigger of TGF. The present study aimed to test whether MD cells can detect variations in tubular fluid flow rate per se. Calcium imaging of the in vitro microperfused isolated JGA-glomerulus complex dissected from mice was performed using fluo-4 and fluorescence microscopy. Increasing cTAL flow from 2 to 20 nl/min (80 mM [NaCl]) rapidly produced significant elevations in cytosolic Ca(2+) concentration ([Ca(2+)](i)) in AA smooth muscle cells [evidenced by changes in fluo-4 intensity (F); F/F(0) = 1.45 ± 0.11] and AA vasoconstriction. Complete removal of the cTAL around the MD plaque and application of laminar flow through a perfusion pipette directly to the MD apical surface essentially produced the same results even when low (10 mM) or zero NaCl solutions were used. Acetylated α-tubulin immunohistochemistry identified the presence of primary cilia in mouse MD cells. Under no flow conditions, bending MD cilia directly with a micropipette rapidly caused significant [Ca(2+)](i) elevations in AA smooth muscle cells (fluo-4 F/F(0): 1.60 ± 0.12) and vasoconstriction. P2 receptor blockade with suramin significantly reduced the flow-induced TGF, whereas scavenging superoxide with tempol did not. In conclusion, MD cells are equipped with a tubular flow-sensing mechanism that may contribute to MD cell function and TGF.

  16. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells

    Science.gov (United States)

    Li, Zaoyang; Liu, Lijun; Ma, Wencheng; Kakimoto, Koichi

    2011-03-01

    A global simulation including coupled oxygen and carbon transport was carried out to study the argon flow effects on the impurities transport in a directional solidification furnace for silicon solar cells. The simulation is based on a fully coupled calculation of the thermal and flow fields in a furnace including argon gas flow and melt convection. Five chemical reactions are considered in the impurity transport model. The effects of both the argon flow rate and the furnace pressure were examined. It was found that the argon flow has an important effect on the silicon melt convection, which will further influence the evaporation characteristic of SiO at the melt free surface. The amount of SiO carried away by the argon flow increases with increase in the argon flow rate while the CO gas can be prevented from being transported to the melt free surface. There exists a peak value for the concentration of impurities in the furnace chamber regarding argon flow rate due to the correlation among SiO evaporated, reacted and taken away. The pressure also influences the impurity transport in the furnace by modifying the pattern of argon flow. The numerical results demonstrate a method to control the oxygen and carbon transport in a directional solidification furnace by adjusting the argon flow rate and the furnace pressure.

  17. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.

    Science.gov (United States)

    Gambaruto, Alberto M

    2016-07-26

    Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes. The bulk motion of the red blood cells reproduces well-known effects, including the presence of a cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid mechanics interactions and the deformability properties of the cells. The secondary flow field induces a vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express different residence times, orientation and shape. The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress patters are observed, especially for the 'circular' vessel. The 'star-shaped' vessel bears considerable stress at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging endothelial cells hence regularise the transmission of stresses on the vessel wall.

  18. Cell kinetics in a model of artificial skin. An immunohistochemical and flow cytometric analysis

    Directory of Open Access Journals (Sweden)

    A Casasco

    2009-12-01

    Full Text Available Bioengineered organs raised in vitro are candidate substitutes for natural organs in biological, pharmacological and clinical applications. We have studied cell kinetics in a human skin equivalent (HSE using a combined immunohistochemical and flow cytometric approach. Morphological analysis has shown that, relative to unstimulated natural skin, cell proliferation mainly occurs in the basal layer of the epidermal equivalent. Immunohistochemical and flow cytometric measurements of the growth fraction suggested a cell turnover comparable to that of natural skin. Immunohistochemical labelling indices matched well with flow cytometric data. These observations are consistent with morphological and histochemical data demonstrating normal cell differentiation and tissue architecture in HSE and suggest that such HSE may be a usefull substitute for human skin.

  19. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  20. Disaster Reduction Decision Support System Against Debris Flows and Landslides Along Highway in Mountainous Area

    Institute of Scientific and Technical Information of China (English)

    LiFa-bin; WeiFang-qiang; CuiPeng; ZhouWan-cun

    2003-01-01

    Highways in mountainous areas are easy to be damaged by such natural disasters as debris flows and landslides and disaster reduction decision support system (DRDSS) is one of the important means to mitigate these disasters. Guided by the theories and technologies of debris flow and landslide reduction and supported by geographical information system (GIS), remote sensing and database techniques, a DRDSS against debris flow and landslide along highways in mountainous areas has been established on the basis of such principles as pertinence, systematicness, effectiveness, easy to use, open and expandability. The system consists of database, disaster analysis models and decisions on reduction of debris flows and landslides, mainly functioning to zone disaster dangerous degree, analyze debris flow activity,simulate debris flow deposition and diffusion, analyze landslide stability, select optimal highway renovation scheme and plan disaster prevention and control engineering. This system has been applied successfully to the debris flow and landslide treatment works along Palongzangbu Section of Siehuan-Tibet Highway.