WorldWideScience

Sample records for cell flow systems

  1. A novel in vitro flow system for changing flow direction on endothelial cells

    OpenAIRE

    Wang, Chong; LU, Hao; Schwartz, Martin Alexander

    2012-01-01

    Atherosclerotic plaques localize to regions of flow disturbance, i.e. bifurcations, branch points and regions of high curvature. Shear stress in these regions can be multi-directional due to complex flow patterns such as time-varying vortices. However, commonly used in vitro flow models are incapable of changing flow orientation to any direction other than the reverse. We have developed a novel in vitro flow system to enable changes in flow direction to any angle. When cells were pre-aligned ...

  2. Lateral View Flow System for Studies of Cell Adhesion and Deformation under Flow Conditions

    OpenAIRE

    Yuan, Jin; Melder, Robert J; Jain, Rakesh K.; Munn, Lance L.

    2001-01-01

    Physical interactions between circulating cells and the vascular wall play a central role in inflammation, metastasis, atherosclerosis, and therapeutic cell delivery. Unfortunately, traditional in vitro flow assays cannot be used to visualize the details of cell-surface interactions in blood flow because of inappropriate geometry and the poor penetration of light in erythrocyte solutions. To overcome these obstacles, we have developed an agarose-cast cylindrical vessel system to examine the p...

  3. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    Science.gov (United States)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  4. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    Science.gov (United States)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  5. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  6. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip

    Science.gov (United States)

    Yang, Sung-Yi; Hsiung, Suz-Kai; Hung, Yung-Ching; Chang, Chen-Min; Liao, Teh-Lu; Lee, Gwo-Bin

    2006-07-01

    Flow cytometry is a popular technique for counting and sorting individual cells. This study presents and demonstrates a new cell counting/sorting system integrated with several essential components including a micromachined flow cytometer chip device, an optical detection system and a data analysis and control system to achieve the functions of cell sample injection, optical signal detection and cell collection. By using MEMS technology, we have integrated several microfluidic components such as micro pneumatic pumps/valves onto a polymer-based chip device. Three pneumatic micropumps are used to provide the hydrodynamic driving force for both sample and sheath flows such that hydrodynamic flow focusing can be achieved, and a micro flow switch device comprising three pneumatic microvalves located downstream of the micro sample flow channel is used for cell collection. Cell samples of human lung cancer cells labelled with commercially available fluorescent dyes have been detected and collected successfully utilizing the developed device. The real-time image of dye-labelled cell samples being excited and detected can be monitored and observed through the LCD panel by a custom designed CCD/APD holder and moving stage. Finally, micro flow switch devices were used to successfully sort the cells into the desired outlet channel, and the counting results of the specific cell samples were monitored through the counting panel. The current study focuses on the setup of the overall system. The proposed flow cytometer system has several advantages such as portability, low cost and easy operation process. The size of the system is 37 cm × 16 cm × 18 cm and the weight is 3.5 kg. The error rate of counting and sorting was 1.5% and 2%, respectively. The sorting frequency of the microvalve device is calculated to be 120 cells min-1. The developed microfluidic chip device could be a promising tool for cell-based application fields such as profiling, counting and sorting.

  7. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    Science.gov (United States)

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  8. An assessment of the energetic flows in a commercial PEM fuel-cell system

    International Nuclear Information System (INIS)

    Some primary issues have not yet been fully investigated on the way towards the commercialization of fuel-cell-based systems (FCS), e.g., their actual efficiency, reliability, safety, degradation, maintainability, etc. This article deals with an estimation of the real energetic flows and the corresponding electrical efficiency of a commercial proton-exchange-membrane fuel-cell hydrogen-fed generator set (PEMFCS). The fuel-cell power system considered here is planned to be the source of both electrical and thermal energy in a mobile dwelling container unit with in-built fuel-cell-based cogeneration system, and for the design of a cogeneration unit the actual amount of disposable energy from the PEMFC unit should be estimated. The assessment of the actual energetic flows, the disposable energy and the consequent electrical efficiency of the case-study PEMFCS is carried out using commercial technical data for the PEMFCS.

  9. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    Science.gov (United States)

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health. PMID:26386206

  10. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    OpenAIRE

    Van herle, Jan; Favrat, Daniel; Maréchal, François; Bucheli, Olivier; Leuenberger, Sacha; Membrez, Yves

    2004-01-01

    A model for a 1000 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 degreesC displaying state-of- the-art electrochemical performance (0.15 W/cm(2) at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m(3)/h biogas (63% ...

  11. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  12. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  13. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    International Nuclear Information System (INIS)

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for methylnaphthalenein a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233U and 90Sr/90Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233U and 90Sr/90Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions

  14. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination

    DEFF Research Database (Denmark)

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-01-01

    In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit into the w...

  15. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-ye

  16. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    Science.gov (United States)

    Van herle, J.; Maréchal, F.; Leuenberger, S.; Membrez, Y.; Bucheli, O.; Favrat, D.

    A model for a 100 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 °C displaying state-of-the-art electrochemical performance (0.15 W/cm 2 at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m 3/h biogas (63% CH 4), equivalent to 269 kW (higher heating value, HHV), the SOFC stack was calculated to deliver 131 kW el electricity (48.7%) using a steam-to-carbon ratio of 0.5. This would allow the sewage site to more than cover its own electrical needs, hence to depollute the waste stream at negative energy cost. In its current exploitation using a low efficient gas engine (130 kW), the site is only ≈50% self-sufficient. Special attention was given to the thermal balance of the stack. The stack developed heat (143 kW) could be balanced by endothermal reforming (78 kW) and by cathode excess air λ (=3), allowing a temperature difference between stack inlet and outlet of 200 K. The case was compared to other fuel scenarios. Steam-added biogas behaves basically identically to steam-reformed methane. For partial oxidation of biogas or pure hydrogen feeding, electrical efficiency drops to under 43% while λ needs to be raised to 4.5 to maintain the 200 K thermal gradient over the stack.

  17. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  18. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien, E-mail: adrien.chauvet@epfl.ch; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Tibiletti, Tania; Caffarri, Stefano [Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille (France)

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  19. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem, E-mail: qasem.alramadan@epfl.ch [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore); Christophe, Lay; Teo, William; ShuJun, Li; Hua, Feng Han [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore)

    2010-07-12

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  20. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    International Nuclear Information System (INIS)

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  1. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    Science.gov (United States)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  2. Vega flow assurance system

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marit; Munaweera, Sampath

    2010-07-01

    Vega is a gas condensate field located at the west coast of Norway and developed as a tie-in to the Gjoea platform. Operator is Statoil, production startup is estimated to the end of 2010. Flow assurance challenges are high reservoir pressure and temperature, hydrate and wax control, liquid accumulation and monitoring the well/template production rates. The Vega Flow Assurance System (FAS) is a software that supports monitoring and operation of the field. The FAS is based FlowManagerTM designed for real time systems. This is a flexible tool with its own steady state multiphase- and flow assurance models. Due to the long flowlines lines and the dynamic behavior, the multiphase flow simulator OLGA is also integrated in the system. Vega FAS will be used as: - An online monitoring tool - An offline what-if simulation and validation tool - An advisory control system for well production allocation. (Author)

  3. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system.

    Science.gov (United States)

    Duncan, Kathleen E; Perez-Ibarra, Beatriz Monica; Jenneman, Gary; Harris, Jennifer Busch; Webb, Robert; Sublette, Kerry

    2014-01-01

    A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H₂S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC. PMID:23636692

  4. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    International Nuclear Information System (INIS)

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively

  5. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  6. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  7. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  8. Geophysical Fluid Flow Cell Simulation

    Science.gov (United States)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  9. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  10. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    Science.gov (United States)

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-01-01

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay. PMID:26861328

  11. Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Directory of Open Access Journals (Sweden)

    Díaz José

    2009-05-01

    Full Text Available Abstract Background We study root cells from the model plant Arabidopsis thaliana and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene ERF1 to the concentration of ethylene. Results The above equation is used to compute the Shannon entropy (H or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene ERF1 (Ethylene Response Factor 1 can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal. Conclusion The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB; b the rate of information transfer (0.003 bits during the transport of each new ERF1 molecule into the nucleus and c the time of synthesis of each new ERF1 molecule (~21.3 s. Finally, we demonstrate that in the case of the system of a single master gene (ERF1 and a single slave gene (HLS1, the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy

  12. Traffic Flow Management System

    Data.gov (United States)

    Department of Transportation — TFMS is a set NAS operational tools that predict demand, identify constraints, and facilitates collaboration among NAS users to support efficient traffic flow while...

  13. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  14. Improving Power Production in Acetate-Fed Microbial Fuel Cells via Enrichment of Exoelectrogenic Organisms in Flow-Through Systems

    International Nuclear Information System (INIS)

    An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.

  15. MODELLING OF MATERIAL FLOW SYSTEMS

    OpenAIRE

    PÉTER TELEK

    2012-01-01

    Material flow systems are in generally very complex processes. During design, building and operation of complex systems there are many different problems. If these complex processes can be described in a simple model, the tasks will be clearer, better adaptable and easier solvable. As the material flow systems are very different, so using models is a very important aid to create uniform methods and solutions. This paper shows the details of the application possibilities of modelling in the ma...

  16. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system

    Science.gov (United States)

    Cooper, Christy L.; Leary, James F.

    2015-03-01

    Leukemia stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in the peripheral blood of leukemia patients. Since leukemic stem cells are also resistant to standard chemotherapeutic regimens, new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial targeting studies we utilized a bioinformatics approach to design an antibodyfluorescent nanoparticle conjugate for targeting to these leukemic stem cells and to minimize targeting to normal stemprogenitor cells. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell RS4;11 (with putative immunophenotype CD133+/CD24+/-, CD34+/-, CD38+, CD10-/Flt3+) was spiked into normal hematopoietic stem-progenitor cells obtained from a "buffy coat" prep (with putative immunophenotype CD133- /CD34+/CD38-/CD10-/Flt-3-) to be used as a model human leukemia patient. To analyze the model system, digital data mixtures of the two cell types were first created and assigned classifiers in order to create truth sets. ROC (Receiver Operating Characteristic) and multidimensional cluster analyses were used to evaluate the specificity and sensitivity of the immunophenotyping panel and for automated cell population identification, respectively. Costs of misclassification (false targeting) were also accounted for by this analysis scheme. Ultimately, this analysis scheme will be applied to use of nanoparticle-antibody conjugates at therapeutic doses for targeted killing of leukemia stem cells preferentially to normal stem -progenitor cells.

  17. Moat flow system around sunspots in shallow subsurface layers

    Energy Technology Data Exchange (ETDEWEB)

    Švanda, Michal; Sobotka, Michal [Astronomical Institute, Academy of Sciences of the Czech Republic (v. v. i.), Fričova 298, CZ-25165 Ondřejov (Czech Republic); Bárta, Tomáš, E-mail: michal@astronomie.cz [Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic)

    2014-08-01

    We investigate the subsurface moat flow system around McIntosh H-type symmetrical sunspots and compare it to the flow system within supergranular cells. Representatives of both types of flows are constructed by means of the statistical averaging of flow maps obtained by time-distance helioseismic inversions. We find that moat flows around H-type sunspots replace supergranular flows but there are two principal differences between the two phenomena: the moat flow is asymmetrical, probably due to the proper motion of sunspots with respect to the local frame of rest, while the flow in the supergranular cell is highly symmetrical. Furthermore, the whole moat is a downflow region, while the supergranule contains the upflow in the center, which turns into the downflow at about 60% of the cell radius from its center. We estimate that the mass downflow rate in the moat region is at least two times larger than the mass circulation rate within the supergranular cell.

  18. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  19. An Innovative Method to Identify Autoantigens Expressed on the Endothelial Cell Surface: Serological Identification System for Autoantigens Using a Retroviral Vector and Flow Cytometry (SARF

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shirai

    2013-01-01

    Full Text Available Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF. Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2 from patients with systemic lupus erythematosus (SLE, intercellular adhesion molecule 1 (ICAM-1 from a patient with rheumatoid arthritis, and Pk (Gb3/CD77 from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases.

  20. Method for Studying Microbial Biofilms in Flowing-Water Systems

    OpenAIRE

    Pedersen, Karsten

    1982-01-01

    A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbance...

  1. Assaying Cell Cycle Status Using Flow Cytometry.

    Science.gov (United States)

    Kim, Kang Ho; Sederstrom, Joel M

    2015-01-01

    In this unit, two protocols are described for analyzing cell cycle status using flow cytometry. The first is based on the simultaneous analysis of proliferation-specific marker (Ki-67) and cellular DNA content, which discriminate resting/quiescent cell populations (G0 cell) and quantify cell cycle distribution (G1, S, or G2/M), respectively. The second is based on differential staining of DNA and RNA through co-staining of Hoechst 33342 and Pyronin Y, which is also useful to identify G0 cells from G1 cells. Along with these methods for analyzing cell cycle status, two additional methods for cell proliferation assays with recent updates of newly developed fluorophores, which allow multiplex analysis of cell cycle status, cell proliferation, and a gene of interest using flow cytometry, are outlined. PMID:26131851

  2. A new flow co-culture system for studying mechanobiology effects of pulse flow waves

    OpenAIRE

    Scott-Drechsel, Devon; Su, Zhenbi; Hunter, Kendall; Li, Min; Shandas, Robin; Tan, Wei

    2012-01-01

    Artery stiffening is known as an important pathological change that precedes small vessel dysfunction, but underlying cellular mechanisms are still elusive. This paper reports the development of a flow co-culture system that imposes a range of arterial-like pulse flow waves, with similar mean flow rate but varied pulsatility controlled by upstream stiffness, onto a 3-D endothelial-smooth muscle cell co-culture. Computational fluid dynamics results identified a uniform flow area critical for c...

  3. Studies of Redox Equilibria at Elevated Temperatures 2. An Automatic Divided-Function Autoclave and Cell with Flowing Liquid Junction for Electrochemical Measurements on Aqueous Systems

    International Nuclear Information System (INIS)

    An apparatus is described that has been developed for electrochemical studies of aqueous systems at temperatures above 100 deg C. It consists essentially of an electrically heated experimental cell enclosed by a separate pressure-vessel the walls of which are kept cool. This construction eliminates or reduces the problems of sealing electrical connections and of the corrosion of the pressure vessel, that commonly arise with conventional, externally-heated autoclaves. Pressure is applied to the cell by means of compressed air, diaphragm valves at the electrolyte outlet automatically maintaining the pressure in the cell about 1 atm lower than that in the pressure vessel. Two independent streams of electrolyte can be pumped into the experimental cell a special form of which has been developed in which may be formed a galvanic cell with a continuously regenerated flowing-liquid junction. In this form the apparatus enables experiments with, for example, one molal chloride solutions with pH 1-10, at temperatures up to about 250 deg C and under pressures up to about 40 atm. The apparatus has been tested in experiments in which classical measurements of the conductance of some aqueous electrolytes have been repeated. Good agreement with the earlier results has been obtained

  4. Liquid Flow in Biofilm Systems

    OpenAIRE

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biof...

  5. Bursting the bubble on bacterial biofilms: a flow cell methodology

    OpenAIRE

    Shanika A. Crusz; Popat, Roman; Rybtke, Morten Theil; Cámara, Miguel; Givskov, Michael; Tolker-Nielsen, Tim; Diggle, Stephen P.; Williams, Paul

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trou...

  6. Micro Groove for Trapping of Flowing Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2015-06-01

    Full Text Available Micro grooves have been designed to trap a biological cell, which flows through a micro channel in vitro. Each micro groove of a rectangular shape (0.002 mm depth, 0.025 mm width and 0.2 mm length has been fabricated on the surface of the polydimethylsiloxane (PDMS disk with the photolithography technique. Variation has been made on the angle between the longitudinal direction of the groove and the flow direction: zero, 0.79, or 1.57 rad. A rectangular flow channel (0.1 mm depth x 5 mm width x 30 mm length has been constructed with a silicone film of 0.1 mm thick, which has been sandwiched by two transparent PDMS disks. Two types of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, or 3T3-L1 (mouse fat precursor cells. A constant flow (2.8 x 10-11 m3/s of a suspension of cells was introduced with a syringe pump. The behavior of cells moving over the micro grooves was observed with an inverted phase contrast microscope. The results show that the cell is trapped with the micro grooves under the wall shear rate of 3 s-1 for a few seconds and that the trapped interval depends on the kind of cells.

  7. Schlieren System For Flow Studies In Round Glass Pipes

    Science.gov (United States)

    Costen, Robert C.; Rhodes, David B.; Jones, Stephen B.

    1990-01-01

    In schlieren system for studying flow of gas in transparent pipe of circular cross section, cylindrical lenses placed on opposite sides of pipe compensate for refraction caused by wall of pipe. Enables direct visualization of such phenomena as laminar or turbulent flow, shock waves, vortexes, and flow separations in systems having inherently cylindrical geometry; potentially unreliable extrapolations from results in flat-sided test cells no longer necessary.

  8. Modification Of Control System For Flow On Hydraulic Rabbit System Facility

    International Nuclear Information System (INIS)

    Had been modification control system on the hydraulic rabbit system facility is installed at floor +8 m in reactor building GA. Siwabessy. On the hydraulic rabbit system is used water for media transfer and media cooling from hot cell to irradiation position or from irradiation position to hot cell. Flow water to sent capsule target about 55 liters/minute. Flow meter type RS No. 185-9926 is installed in hydraulic rabbit system. The flow meters have specification : flow rate 5 to 100 liters/minute, maximum working pressure 10 bar, temperature range 5 to 60 oC and viscosity range 10 to 200 centistokes. The flow meter is installed on the pipe line upper pump of hydraulic rabbit system facility in room no.0626 floor +8 meter reactor building. After the flow meter installed, flow rate on the hydraulic rabbit system can measure direct, flow rate can be adjusted and result same as on the monitor

  9. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  10. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system....

  11. Geophysical Fluid Flow Cell (GFFC) Simulation

    Science.gov (United States)

    1999-01-01

    These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)

  12. Micro Groove for Trapping of Flowing Cell

    OpenAIRE

    Yusuke Takahashi; Shigehiro Hashimoto; Haruka Hino; Atsushi Mizoi; Nariaki Noguchi

    2015-01-01

    Micro grooves have been designed to trap a biological cell, which flows through a micro channel in vitro. Each micro groove of a rectangular shape (0.002 mm depth, 0.025 mm width and 0.2 mm length) has been fabricated on the surface of the polydimethylsiloxane (PDMS) disk with the photolithography technique. Variation has been made on the angle between the longitudinal direction of the groove and the flow direction: zero, 0.79, or 1.57 rad. A rectangular flow channel (0.1 mm depth x 5 mm widt...

  13. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  14. Experimental investigation two phase flow in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)

  15. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    OpenAIRE

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.; Packman, Aaron I.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. ...

  16. INTEGRATED LAYOUT DESIGN OF CELLS AND FLOW PATHS

    Institute of Scientific and Technical Information of China (English)

    Li Zhihua; Zhong Yifang; Zhou Ji

    2003-01-01

    The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.

  17. Natures of Rotating Stall Cell in a Diagonal Flow Fan

    Institute of Scientific and Technical Information of China (English)

    N. SHIOMI; K. KANEKO; T. SETOGUCHI

    2005-01-01

    In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.

  18. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    OpenAIRE

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. Thi...

  19. Artificial Hair Cells for Sensing Flows

    Science.gov (United States)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  20. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  1. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    Science.gov (United States)

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  2. CD4 T-cell enumeration in a field setting: evaluation of CyFlow counter using the CD4 easy count kit-dry and Pima CD4 systems.

    Directory of Open Access Journals (Sweden)

    Djibril Wade

    Full Text Available BACKGROUND: Flow Cytometry (FCM is still considered to be the method of choice for accurate CD4 enumeration. However, the use of FCM in developing countries is problematic due to their cost and complexity. Lower-cost technologies have been introduced. We evaluated CyFlow Counter together with its lyophilized reagents, and Pima CD4 in high-temperature area, using FACSCount as reference. MATERIALS AND METHODS: Whole blood samples were consecutively collected by venipuncture from 111 HIV+ patients and 17 HIV-negative donors. CD4 T-cell enumeration was performed on CyFlow Counter, Pima CD4 and FACSCount. RESULTS: CyFlow Counter and Pima CD4 systems showed good correlation with FACSCount (slope of 0.82 and 0.90, and concordance ρc of 0.94 and 0.98, respectively. CyFlow Counter showed absolute or relative biases (LOA of -63 cells/mm(3 (-245 to 120 or -9.8% (-38.1 to 18.4 respectively, and Pima CD4 showed biases (LOA of -30 cells/mm(3 (-160 to 101 or -3.5% (-41.0 to 33.9%. CyFlow Counter and Pima CD4 showed respectively 106.7% and 105.9% of similarity with FACSCount. According to WHO-2010 ART initiation threshold of 350 cells/mm(3, CyFlow Counter and Pima CD4 showed respectively sensibility of 100% and 97%, and specificity of 91% and 93%. CyFlow Counter and Pima CD4 were strongly correlated (slope of 1.09 and ρc of 0.95. These alternative systems showed good agreement with bias of 33 cells/mm(3 (-132 to 203 or 6.3% (-31.2 to 43.8, and similarity of 104.3%. CONCLUSION: CyFlow Counter using CD4 easy count kit-dry and Pima CD4 systems can accurately provide CD4 T-cell counts with acceptable agreement to those of FACSCount.

  3. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality and...

  4. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    Science.gov (United States)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  5. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  6. FLOW CYTOMETRIC COMPARISON OF THE EFFECTS OF TRIALKYTING ON THE MURINE ERYTHROLEUKEMIC CELL

    Science.gov (United States)

    Cellular effects of exposure to tributyltin (TBT), triethyltin (TET), or trimethyltin (TMT) were investigated by flow cytometry employing the murine erythroleukemic cell (MELC) as a model cellular system. Cell viability was investigated by the carboxyfluorescein diacetate (CFDA) ...

  7. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  8. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua;

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  9. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  10. Collective flow in small systems

    International Nuclear Information System (INIS)

    The large density of matter in the interaction region of the proton–nucleus or deuteron–nucleus collisions enables the collective expansion of the fireball. Predictions of a hydrodynamic model for the asymmetric transverse flow are presented and compared to experimental data

  11. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  12. Complex flows in granular and quantum systems

    Science.gov (United States)

    Herrera, Mark Richard

    In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.

  13. Monitoring electrolyte concentrations in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  14. The Geophysical Fluid Flow Cell Experiment

    Science.gov (United States)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  15. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  16. Exhaust System Reinforced by Jet Flow

    OpenAIRE

    Pedersen, Lars Germann; Nielsen, Peter V

    1991-01-01

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for industrial ventilation purposes. With the REEXS principle it is possible to create a flow pattern in front of the exhaust opening which will have a considerable influence on the general flow in a given r...

  17. The influence on performance of co-flow and counter-flow PEM fuel cell channels

    International Nuclear Information System (INIS)

    Full text: A three-dimensional computational fluid dynamics model of a PEM fuel cell with serpentine flow field channels that combines co-flow and counter-flow configurations is presented in this paper. The PEM fuel cell performance is significantly influenced by the direction of fuel and oxidant flow. Therefore, the CFD model used in this paper accounts for the major transport phenomena that occur in PEM fuel cells with co-flow and counter-flow configuration. The results will highlight the convective and diffusive heat and mass transfer, the electrode kinetics, and the potential fields. (authors)

  18. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  19. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. High performance flow digestion systems (T5)

    International Nuclear Information System (INIS)

    Full text: Many different designs of flow digestion systems have been published, but very few meet the prerequisites for high performance sample decomposition. In principle there is the same situation as with sample digestion in open and closed vessels. For powerful sample digestion nitric acid and high temperatures are the goal. In this context only two flow digestion techniques fulfill this postulate. One is the high temperature / high pressure flow digestion system in Pt-capillaries with conductive heating from H. Berndt. Temperatures up to 360 oC are possible. The other technique has been developed in our institute. Applying a novel pressure equilibration system the digestion temperature in a Teflon tube can be risen up to 250 oC with a pressure of 40 bar. Results of off- and online analysis of different organic materials show the capability of this new instrumentation (auto flow). Refs. 3 (author)

  1. Method of detaching adherent cells for flow cytometry

    KAUST Repository

    Kaur, Mandeep

    2015-12-24

    In one aspect, a method for detaching adherent cells can include adding a cell lifting solution to the media including a sample of adherent cells and incubating the sample of adherent cells with the cell lifting solution. No scraping or pipetting is needed to facilitate cell detachment. The method do not require inactivation of cell lifting solution and no washing of detaching cells is required to remove cell lifting solution. Detached cells can be stained with dye in the presence of cell lifting solution and are further analyzed using flow cytometer. The method has been tested using 6 different cell lines, 4 different assays, two different plate formats (96 and 384 well plates) and two different flow cytometry instruments. The method is simple to perform, less time consuming, with no cell loss and makes high throughput flow cytometry on adherent cells a reality.

  2. A CLIPS expert system for clinical flow cytometry data analysis

    Science.gov (United States)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  3. Cerebral blood flow mapping in children with sickle cell disease

    International Nuclear Information System (INIS)

    A cerebral blood flow mapping system was applied to the evaluation of cerebral blood flow (CBF) in 21 patients with sickle cell cerebrovascular disease, by means of a Picker xenon computed tomographic (CT) scanner. Results indicate that (1) xenon CT is a safe and reliable procedure in children with cerebrovascular diseases; (2) CBF in the gray matter of children seems to be higher than in previously reported data obtained with use of isotopes; and (3) regional CBF can be altered significantly by changing the size of the region of interest (ROI). The term regional CBF probably has to be carefully defined in xenon CT flow mapping. Correlation with anatomy by means of CT or magnetic resonance imaging and comparison with the ROI of the contralateral side and/or adjacent sections is important

  4. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  5. CHARACTERISTIC SOLUTIONS OF MATERIAL FLOW SYSTEMS

    OpenAIRE

    Péter Telek

    2011-01-01

    There are many possibilities to create a material flow system depend on the specifications of the given process. Because of the differences they can not be designed by the same devices. To simplify the design, operate and control processes we have to use given, similar methods which can be determined for certain material flow structures. If we can define typical groups among the possible varieties the required methods can be described for these groups in a limited number. In this paper we try...

  6. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  7. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Christian; Wlokas, Irenaeus; Schulz, Christof [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); Schoot, Nadine van der; Lindken, Ralph [Center for Fuel Cell Technology ZBT GmbH, Duisburg (Germany); Kronemayer, Helmut [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); BASF SE, Ludwigshafen (Germany)

    2012-03-15

    Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed. (orig.)

  8. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  9. From Traffic Flow to Economic System

    Science.gov (United States)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  10. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  11. Aqueous semi-solid flow cell: demonstration and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  12. Dynamics of zonal flows in helical systems

    International Nuclear Information System (INIS)

    Theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for longer radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport. (author)

  13. A PEM fuel cell with metal foam as flow distributor

    International Nuclear Information System (INIS)

    Highlights: ► Metal foams are used to replace conventional flow channels as the flow distributor. ► Cell with metal foam out-performs the conventional cell with flow channel plate. ► Mass transport limitation phenomenon is not as obvious as in conventional unit cell. ► This is due to metal foam’s high porosity plus convective flow through the foam. ► Even operated at 40 °C, the current density reaches 1870 mA cm−2 at 0.6 V. - Abstract: In this work, we report our experimental results of the PEM fuel cell with metal foam as flow distributor. These experimental results show the characteristics of the PEM fuel cell with the metal foam as flow distributor and extend our understanding of the relation between cell performance and mass transport properties into a region of parameters that the conventional PEM unit cell cannot provide. The comparison in polarization curve is made between the PEM unit cell with different metal-foam properties and the PEM unit cell with graphite flow channel plate as flow distributor. The experimental results show that the PEM fuel cell with metal foam as flow distributor possesses some unique characteristics compared with the conventional PEM unit cell with flow channel plate as flow distributor. The unique characteristics are listed in this paper with our preliminary analysis. Due to the high porosity of metal-foam (as high as 95%) plus convective flow through the metal-foam, mass transport limitation phenomenon is not as pronounced as in the case of conventional PEM unit cell with flow channel plate as flow distributor. Another interesting phenomenon is that electrical conductivity of metal-foam plays a significant role in performance, which is seldom the case in the conventional PEM unit cell with flow channel plate as flow distributor. Although there are several technical challenges to be overcome for the current form of metal-foam to replace flow channel plates, the unique mass-transport properties of metal foam plus its

  14. Resource Prospector Propulsion System Cold Flow Testing

    Science.gov (United States)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  15. Information flow in heterogeneously interacting systems.

    Science.gov (United States)

    Yamaguti, Yutaka; Tsuda, Ichiro; Takahashi, Yoichiro

    2014-02-01

    Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems. PMID:24465282

  16. In vivo cell characteristic extraction and identification by photoacoustic flow cytography.

    Science.gov (United States)

    He, Guo; Xu, Dong; Qin, Huan; Yang, Sihua; Xing, Da

    2015-10-01

    We present a photoacoustic flow cytography with fast cross-sectional (B-scan) imaging to precisely identify specific cells in vivo. The B-scan imaging speed of the system is up to 200 frame/s with a lateral resolution of 1.5 μm, which allows to dynamically image the flowing cells within the microvascular. The shape, size and photoacoustic intensity of the target cells are extracted from streaming images and integrated into a standard pattern to distinguish cell types. Circulating red blood cells and melanoma cells in blood vessels are simultaneously identified on melanoma-bearing mouse model. The results demonstrate that in vivo photoacoustic flow cytography can provide cells characteristics analysis and cell type's visual identification, which will be applied for noninvasively monitoring circulating tumor cells (CTCs) and analyzing hematologic diseases. PMID:26504626

  17. Traffic Flow Control In Automated Highway Systems

    OpenAIRE

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  18. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  19. Fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  20. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Science.gov (United States)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-03-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  1. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Science.gov (United States)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  2. Lymphatic vessel development: fluid flow and valve-forming cells.

    Science.gov (United States)

    Kume, Tsutomu

    2015-08-01

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders. PMID:26214518

  3. A bio-inspired aquatic flow sensor using an artificial cell membrane

    Science.gov (United States)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  4. The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system.

    Science.gov (United States)

    Alhan, C; Westers, T M; Cremers, E M P; Cali, C; Witte, B I; Ossenkoppele, G J; van de Loosdrecht, A A

    2016-03-01

    The prognosis of myelodysplastic syndromes (MDS) is currently estimated by using the revised International Prognostic Scoring System (IPSS-R). Several studies have shown that further refinement of prognostication for MDS can be achieved by adding flow cytometric parameters. However, widespread implementation of flow cytometry for the prognosis of MDS is hampered by complexity of the analysis. Therefore, the aim of this study was to construct a robust and practical flow cytometric score that could be implemented as a routine procedure. To achieve this, bone marrow aspirates of 109 MDS patients were analyzed by flow cytometry. A second cohort consisting of 103 MDS patients was used to validate the MDS flow cytometric score (MFS). The parameters forming the MFS were sideward light scatter and CD117 expression of myeloid progenitor cells and CD13 expression on monocytes. Three MFS risk categories were formed. Patients with MDS and intermediate MFS scores had significantly better overall survival (OS) compared with the patients with high MFS scores. The MFS further refined prognostication within the IPSS-R low-risk category, by identifying patients with worse OS in case of high MFS. In conclusion, a practical three parameter flow cytometric prognostic score was constructed enabling further refinement of prognostication of MDS. PMID:26503643

  5. A new DFM flow for sub-100nm standard cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    DFM (Design-For-Manufacturability) method, which aims to improve manufacturability of ICs through specific design considerations, is becoming important nowadays. In particular, standard cells now should be designed by DFM method. This paper reports a new DFM flow for sub-100 nm standard cell design with a group of technologies for process modeling, manufacturability simulation and trial RETs.Based on this flow, a set of DFM-friendly 90m standard cells were designed.

  6. flowCL: ontology-based cell population labelling in flow cytometry

    Science.gov (United States)

    Courtot, Mélanie; Meskas, Justin; Diehl, Alexander D.; Droumeva, Radina; Gottardo, Raphael; Jalali, Adrin; Taghiyar, Mohammad Jafar; Maecker, Holden T.; McCoy, J. Philip; Ruttenberg, Alan; Scheuermann, Richard H.; Brinkman, Ryan R.

    2015-01-01

    Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. Results: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. Conclusion: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. Availability and implementation: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). Contact: rbrinkman@bccrc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25481008

  7. Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension.

    Science.gov (United States)

    Lu, Xinran; Wood, David K; Higgins, John M

    2016-06-21

    The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient

  8. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  9. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  10. Flow Induced Electrification of Liquid Insulated Systems.

    Science.gov (United States)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  11. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    OpenAIRE

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan; Hemmingsen, Mette; Dufva, Martin

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chi...

  12. Flow instabilities in two-phase flow system with and without phase change

    International Nuclear Information System (INIS)

    The gas-liquid two-phase flow of various types, such as single component or multiple components, and boiling two-phase flow or insulated two-phase flow, exist in piping systems, and the undesirable phenomena for the operation of systems such as the large scale pulsation of flow rate and the uneven distribution of flow may occur according to the condition. Generally these phenomena are called unstable flow. The author has carried out the research on unstable flow with air-water two-phase flow system, but a question arose to what extent the results in air-water system are applicable to boiling system. The unstable flow is explained with some examples. In this study, the similarity of pulsation in boiling system and insulated system was clarified, using the examples of pressure drop oscillation and flow rate distribution, and the theory to treat them in unified way was presented. The range of discussion is limited to the phenomena that do not depend on the microstructure of flow. The experimental setups were Freon boiling system, air-water capillary system and air-water vertical tube system. The characteristics of pressure drop oscillation and the fundamental mechanism, the theoretical analysis of pressure drop oscillation, the uneven distribution of flow rate in parallel tubes, the stability of flow rate distribution, and the numerical simulation are reported. (Kako, I.)

  13. Accretion Flows in Magnetic White Dwarf Systems

    Science.gov (United States)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  14. Traffic Flow Wide-Area Surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  15. Parallel flow in Hele-Shaw cells with ferrofluids

    OpenAIRE

    Miranda, J. A.; Widom, M.

    1999-01-01

    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growt...

  16. Water injected fuel cell system compressor

    Science.gov (United States)

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  17. Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Highlights: • 3D numerical works to study the effect of cross flow on the PEMFC performance. • The cross flow ensure more evenly distributed water and oxygen in the CL. • The optimal net power output can be identified by controlling the back pressure. • Results confirm that present design is effective in improving performance. - Abstract: The cross flow in proton exchange membrane fuel cells (PEMFCs) plays an important role in changing the transport pattern and performance. In this study, three-dimensional numerical simulations are carried out to investigate the effect of induced cross flow on the flow pattern and performance of a PEMFC with a previously proposed and experimentally studied novel parallel flow channel design. The numerical results indicate that the liquid water and oxygen become more evenly distributed in the catalyst layer (CL) as the pressure difference between the low-pressure and high-pressure flow channels increases. It has been found that, in the low-pressure channels, the cross flow drives a convective flow from the CL to the flow channel resulting in improved liquid water removal. The optimal net power output can be identified by controlling the back pressure on the high-pressure flow channels. The numerical results confirm that this novel parallel flow channel design is effective in improving PEMFC performance

  18. Quantification of bacterial invasion into adherent cells by flow cytometry

    OpenAIRE

    Pils, Stefan; Schmitter, Tim; Neske, Florian; Hauck, Christof R.

    2006-01-01

    Quantification of invasive, intracellular bacteria is critical in many areas of cellular microbiology and immunology. We describe a novel and fast approach to determine invasion of bacterial pathogens in adherent cell types such as epithelial cells or fibroblasts based on flow cytometry. Using the CEACAM-mediated uptake of Opa-expressing Neisseria gonorrhoeae as a well-characterized model of bacterial invasion, we demonstrate that the flow cytometry-based method yields results comparable to a...

  19. Adaptive energy flow management in hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, P.; Fitzpatrick, N.; Zettel, A.; Bouchon, N.; Inglis, A.; Strange, M. [Azure Dynamics Inc., Vancouver, BC (Canada)

    2000-07-01

    The use of adaptive energy management strategies for hybrid electric-powered vehicles was discussed with reference to the emission standards that must be met at the 100,000 mile point. The approach offers efficiency improvement and a cost reduction for simple series systems for medium duty vehicles. It also provides for improved battery management for parallel systems. The overall efficiency, durability and battery life in both series and parallel hybrid propulsion systems are strongly affected by the energy flow pattern between the primary energy source, battery and traction motor. The adaptive approach to energy management system aims for the dynamic optimisation of the system based on measured vehicle operating data. The approach uses computer tools to analyse driving patterns and to determine the most efficient control approach. It has a built-in learning ability to monitor the condition of the components and update the control strategy depending on the system's parameters. The system makes it possible to maintain maximum efficiency under any operating conditions while reducing the component load. The system was tested in a delivery vehicle and can successfully project fuel consumption. It was suggested that the method can be used to project greenhouse gas reduction figures for future fleets. refs., tabs., figs.

  20. Flow cytometric immunofluorescence of rat anterior pituitary cells

    Science.gov (United States)

    Hatfield, J. Michael; Hymer, W. C.

    1985-01-01

    A flow cytometric immunofluorescence technique was developed for the quantification of growth hormone, prolactin, and luteinizing hormone producing cells. The procedure is based on indirect-immunofluorescence of intracellular hormone using an EPICS V cell sorter and can objectively count 50,000 cells in about 3 minutes. It can be used to study the dynamics of pituitary cell populations under various physiological and pharmacological conditions.

  1. Upward swimming of a sperm cell in shear flow

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  2. A flow boiling microchannel thermosyphon for fuel cell thermal management

    Science.gov (United States)

    Garrity, Patrick Thomas

    To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the

  3. VLT Data Flow System Begins Operation

    Science.gov (United States)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  4. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  5. flowCL: ontology-based cell population labelling in flow cytometry

    OpenAIRE

    Courtot, Mélanie; Meskas, Justin; Diehl, Alexander D.; Droumeva, Radina; Gottardo, Raphael; Jalali, Adrin; Taghiyar, Mohammad Jafar; Maecker, Holden T; McCoy, J. Philip; Ruttenberg, Alan; Scheuermann, Richard H.; Brinkman, Ryan R

    2014-01-01

    Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources.

  6. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  7. A microelectrochemical scanning flow cell with downstream analytics

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Sebastian Oliver [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Schauer, Janine-Christina; Schuhmacher, Bernd [Dortmunder OberflaechenCentrum, Eberhardstr. 12, 44145 Dortmund (Germany); Hassel, Achim Walter, E-mail: hassel@elchem.d [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria)

    2011-04-15

    Research highlights: A flow type scanning droplet cell with in situ detection via UV-vis to investigate corrosion was constructed. Dependency of OCP of Zn on pH between 6.6 and 9.0 was studied with passive active transition between pH 7.1 and 7.4. Zinc concentration profiles revealed a steady etching process that is diffusion controlled at all pH values. Sulfate ions interfere with the passivity of zinc and increase the etching rate, they also influence the pitting potential. - Abstract: The combination of a capillary based microelectrochemical flow cell system and downstream UV-vis analytics allows obtaining synchronized electrochemical and spectroscopic data in a fully automated mode. This method combination can be generally applied to microelectrochemical studies in which an electrochemical species is released or consumed during the electrochemical reaction. For the example of pure zinc surfaces, the characterization of the integrated spectroscopic system is presented with a Zn{sup 2+} detection limit below 0.1 {mu}mol l{sup -1} using Zincon as complexing agent. A parameter screening of the effect of pH in the range of 6.6-9.0 in borate buffer reveals a linear increase in zinc dissolution with proton concentration but a distinct step in the open circuit potential from the active state (around -700 mV SHE, pH 6.6-7.1) to the passive state (around -300 mV SHE, pH 7.4-9.0) indicating the formation of a closed passive layer. This mechanism is strongly influenced by sulfate anions which increase the dissolution rate of the passive film and promote the active state as monitored by the dissolution profile and OCP (open circuit potential) values. Within the scope of this parameter variation, the congruency between OCP transients, potentiodynamic sweeps and time resolved dissolution profiles is discussed.

  8. A microelectrochemical scanning flow cell with downstream analytics

    International Nuclear Information System (INIS)

    Research highlights: → A flow type scanning droplet cell with in situ detection via UV-vis to investigate corrosion was constructed. → Dependency of OCP of Zn on pH between 6.6 and 9.0 was studied with passive active transition between pH 7.1 and 7.4. → Zinc concentration profiles revealed a steady etching process that is diffusion controlled at all pH values → Sulfate ions interfere with the passivity of zinc and increase the etching rate, they also influence the pitting potential. - Abstract: The combination of a capillary based microelectrochemical flow cell system and downstream UV-vis analytics allows obtaining synchronized electrochemical and spectroscopic data in a fully automated mode. This method combination can be generally applied to microelectrochemical studies in which an electrochemical species is released or consumed during the electrochemical reaction. For the example of pure zinc surfaces, the characterization of the integrated spectroscopic system is presented with a Zn2+ detection limit below 0.1 μmol l-1 using Zincon as complexing agent. A parameter screening of the effect of pH in the range of 6.6-9.0 in borate buffer reveals a linear increase in zinc dissolution with proton concentration but a distinct step in the open circuit potential from the active state (around -700 mV SHE, pH 6.6-7.1) to the passive state (around -300 mV SHE, pH 7.4-9.0) indicating the formation of a closed passive layer. This mechanism is strongly influenced by sulfate anions which increase the dissolution rate of the passive film and promote the active state as monitored by the dissolution profile and OCP (open circuit potential) values. Within the scope of this parameter variation, the congruency between OCP transients, potentiodynamic sweeps and time resolved dissolution profiles is discussed.

  9. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  10. Microfluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Møinichen, Christine

    2012-01-01

    In this project the main goal was to establish a routine for making a microfluidic flow cell (MFFC) using soft lithography methods, and test the flow cell with different electrolytes, sulphuric acid and a ruthenium red-ox couple, and eventually use the established routine to make a microfluidic fuel cell and test it. A routine was established using the negative photoresist ma-N405. The photoresist was overdeveloped to make sure an undercut profile was reached, which proved to be necessary for...

  11. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    Science.gov (United States)

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  12. Deterministic sequential isolation of floating cancer cells under continuous flow.

    Science.gov (United States)

    Tran, Quang D; Kong, Tian Fook; Hu, Dinglong; Marcos; Lam, Raymond H W

    2016-08-01

    Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types. PMID:27387093

  13. A laser flow aggregometer for measurement of white blood cell and platelet aggregation

    International Nuclear Information System (INIS)

    The measurement of aggregation of white blood cells and platelets is important in understanding cardiovascular disease. A new aggregometer has been developed, based on a laser flow cytometer. Pulses detected using a high speed photodiode are acquired to a computer and analysed. Tests based on separated white cells, platelets and whole blood samples have been carried out to evaluate this system. Results show that the laser flow cytometer system has a much better resolution and wider dynamic range than existing electronic flow cytometer instruments. As a result, more details of platelet and white blood cell aggregation profiles can be obtained. The new aggregometer is now being used in clinical trials on patients with vascular disease, for comparison with commercial systems. (author)

  14. DNA content analysis of insect cell lines by flow cytometry

    OpenAIRE

    Léry, Xavier; Charpentier, Guy; Belloncik, Serge

    1999-01-01

    The DNA content of insect cell lines (6 lepidoptera, 1 coleoptera and 1 diptera) was determined by flow cytometry. The DNA profiles of the 8 cell lines tested were different. They were characterized by the presence of several peaks (2 to 7) corresponding to different ploidy levels, by differences in the fluorescence intensity of each peak and by the proportion of cells in each peak. Two cell lines (Cf124 and BmN) were constituted of 2 distinct populations of cells. The DNA profiles of the cel...

  15. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  16. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi;

    2012-01-01

    Multilevel Flow Modeling (MFM) is a well recognized methodology for functional modeling of complex systems which primarily focuses on the representation of their goals and functions. It has been successfully used in industrial process, e.g. nuclear power plant, chemical plants etc. to facilitate ...... the MFM models. The ‘role’ concept is used to associate the relation between physical structures and functions in all MFM models. This study contributes to MFM library expansion and provides a significant test of the expressivity of MFM....... the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose...... of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...

  17. ENERGY FLOWS IN COMPLEX ECOLOGICAL SYSTEMS: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG

    2009-01-01

    Energy flow drives the complex systems to evolve. The allometric scaling as the universal energy flow pattern has been found in different scales of ecological systems. It reflects the general power law relationship between flow and store. The underlying mechanisms of energy flow patterns are explained as the branching transportation networks which can be regarded as the result of systematic optimization of a biological target under constraints. Energy flows in the ecological system may be modelled by the food web model and population dynamics on the network. This paper reviews the latest progress on the energy flow patterns, explanatory models for the allometric scaling and modelling approach of flow and network evolution dynamics in ecology. Furthermore, the possibility of generalizing these flow patterns, modelling approaches to other complex systems is discussed.

  18. Dynamic Modes of Red Blood Cells in Oscillatory Shear Flow

    OpenAIRE

    Noguchi, Hiroshi

    2009-01-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle $\\theta$, and phase angle $\\phi$ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. i) tank-treading (TT): $\\phi$ rotates while the shape and $\\theta$ oscillate. ii) tumbling (TB): $\\theta$ rotates while the shape and $\\phi$ oscillate. iii) intermediate ...

  19. Circulation times of cancer cells by in vivo flow cytometry

    Science.gov (United States)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  20. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  1. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.

    Science.gov (United States)

    Schneider, Matthias F; Guttenberg, Zeno; Schneider, Stefan W; Sritharan, Kumudesh; Myles, Vanessa M; Pamukci, Umut; Wixforth, Achim

    2008-03-14

    A novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few mul and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.g. curvatures, bifurcations and stenosis). Addition of polymer walls to the planar fluidic track enables cell culturing on the chip surface and the investigation of cell-cell adhesion dynamics under flow. We demonstrate the flexibility of the system for application in many areas of microfluidic investigations including blood clotting phenomena under various flow conditions and the investigation of different stages of cell adhesion. PMID:18306189

  2. Fuel cell based hybrid systems

    OpenAIRE

    Davat, B.; Astier, S.; Bethoux, O.; CANDUSSO,D; Coquery, G.; DE-BERNARDINIS, A; DRUART, F; Francois, M; GARCIA ARREGUI, F; Harel, F.

    2009-01-01

    This paper presents different works which are currently developed in the field of fuel cell hybrid systems indifferent public laboratories in France. These works are presented in three sections corresponding to: 1. Hybrid fuel cell/battery or supercapacitor power sources; 2. Fuel cell multistack power sources; 3. Fuel cell in hybrid power systems for distributed generation. The presented works combine simulation and experimental results.

  3. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  4. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  5. Flow-enhanced solution printing of all-polymer solar cells

    Science.gov (United States)

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-08-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ~90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  6. Designing piping systems for two-phase flow

    International Nuclear Information System (INIS)

    A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns

  7. Performance on ETL 1 kW redox flow cell

    Science.gov (United States)

    Nozaki, K.; Kaneko, H.; Negishi, A.; Ozawa, T.

    A 1 kW - 3 kWh redox flow cell, in which 96 bipolar cells with the apparent electrode area of 432 sq cm are involved, has been developed and tested in Electrotechnical Laboratory. The rated output current and voltage are 26 A and 43 V. To elucidate fundamental aspects of the anolyte, polarography and spectroscopy were applied as well as observations with a miniaturized redox flow cell, and influence of the complex species in the anolyte on the cell performance has been recognized. During the charge and discharge cycles the anolyte was continuously monitored by the spectroscopy or controlled potential coulometry, while a voltammetric detector was applied for monitoring the catholyte. Further screening of carbon fiber electrode materials has been continued after the previous presentation, and among more than 70 varieties were found a few kinds of carbon fiber, with which the target performance can be achieved.

  8. Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content

    Energy Technology Data Exchange (ETDEWEB)

    Pellicciari, C.; Mangiarotti, R.; Bottone, M.G.; Danova, M. [Univ. of Pavia (Italy); Wang, E. [Jewish General Hospital, Montreal, Quebec (Canada)

    1995-12-01

    Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G{sub 0}) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G{sub 0} cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G{sub 0} (statin positive) cells can be discriminated from the potentially cycling (statin negative) G{sub 1} cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G{sub 0}-G{sub 1} transition in unperturbed and drug-treated cell populations. 48 refs., 5 figs., 1 tab.

  9. Support system for process flow scheduling

    OpenAIRE

    Salomone, Enrique; Chiotti, Omar Juan Alfredo; Lerch, Juan

    2001-01-01

    Process flow scheduling is a concept that refers to the scheduling of flow shop process plants, whose scheduling calculations are guided by the process structure. In a wide variety of high-volume process industries, the process flow scheduling concept implies an integrated structure for planning and scheduling. This integrated vision of the planning function and the very particular characteristics of the process industry production environment challenge the application of the most traditio...

  10. Micro-fluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Ingdal, Mats

    2014-01-01

    Micro fluidic flow cells (MFFCs) are a relatively new technique for characterization of electrochemical reactions. This work includes both techniques for manufacturing the cells and electrochemical characterization of them.Improvements to a previously established procedure for the manufacturing MFFCs included change of template for PDMS-masters from glass slides to silicon wafers and the change from electrodes consisting of titanium gold and platinum to only titanium and platinum. The changes...

  11. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  12. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (PFlow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  13. Co-laminar flow cells for electrochemical energy conversion

    Science.gov (United States)

    Goulet, Marc-Antoni; Kjeang, Erik

    2014-08-01

    In this review, we present the major developments in the evolution of 'membraneless' microfluidic electrochemical cells which utilize co-laminar flow to minimize reactant mixing while producing electrical power in a compact form. Categorization of devices according to reactant phases is suggested, with further differentiation being subject to fabrication method and function, namely multi-layer sandwich structures for medium-power cell stacks and single-layer monolithic cells for low-power on-chip applications. Power density metrics reveal that recent co-laminar flow cells compare favourably with conventional membrane-based electrochemical cells and that further optimization of device architecture could be expedited through standardized testing. Current research trends indicate that co-laminar flow cell technology for power generation is growing rapidly and finding additional use as an analytical and education tool. Practical directions and recommendations for further research are provided, with the intention to guide scientific advances and technology development toward ultimate pairing with commercial applications.

  14. Paper-based flow fractionation system for preconcentration and field-flow fractionation.

    Science.gov (United States)

    Hong, Seokbin; Kwak, Rhokyun; Kim, Wonjung

    2015-11-01

    We present a novel paper-based flow fractionation system for preconcentration and field-flow fractionation. The paper fluidic system consisting of a straight channel connected with expansion regions can generate a fluid flow with a constant flow rate for 10 min without any external pumping devices. The flow bifurcates with a fraction ratio of up to 30 depending on the control parameters of the channel geometry. Utilizing this simple paper-based bifurcation system, we developed a continuous-flow preconcentrator and a field-flow fractionator on a paper platform. Our experimental results show that the continuous-flow preconcentrator can produce a 33-fold enrichment of the ion concentration and that the flow fractionation system successfully separates the charged dyes. Our study suggests simple, cheap ways to construct preconcentration and field-flow fractionation systems for paper-based microfluidic diagnostic devices. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-2015R1A2A2A04006181).

  15. Obtaining Internet Flow Statistics by Volunteer-Based System

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Bujlow, Tomasz

    2012-01-01

    and groups of users, and as such be useful also for segmentation of users intro groups. We present results with data collected from real users over several months; in particular we demonstrate how the system can be used for studying flow characteristics - the amount of TCP and UDP flows, average flow lengths...

  16. Power flow analysis of a power system in the presence of interline power flow controller (IPFC)

    OpenAIRE

    T. Ramana; Ch. Padmanabharaju; S.Sivanagaraju; A. V. Naresh Babu

    2010-01-01

    One of the latest generation flexible AC transmission systems (FACTS) controllers is interline power flow controller (IPFC). In general, it is connected in multiple transmission lines of a power system network. This paper presents power injection model (PIM) of IPFC. This model is incorporated in Newton-Raphson (NR) power flow algorithm to study the effect of IPFC parameters in power flow analysis. A program in MATLAB has been written in order to extend conventional NR algorithm based on this...

  17. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  18. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  19. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  20. Design flow factors for sewerage systems in small arid communities

    OpenAIRE

    Imam, Emad H.; Haitham Y. Elnakar

    2014-01-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are cl...

  1. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.; Schaarup-Jensen, Kjeld

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  2. Comparative testing of various flow-cell detectors fabricated using CaF{sub 2} solid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, T. [National Institute for Fusion Science, Toki-city (Japan); Ohashi, H.; Hamada, Y.; Jamsranjav, E. [ATOX Co., Chuo-ku, Tokyo (Japan)

    2015-03-15

    A monitoring system based on a flow-cell detector was developed for measuring the tritium concentration in water. The flow-cell detector was fabricated using a granular CaF{sub 2} solid scintillator. This system does not use a liquid scintillation counting system and does not generate radioactive organic liquid waste. Moreover, continuous real-time measurements are possible, in contrast to a liquid scintillation counting system, which requires batch measurements. For further development of the system, four flow-cell detectors were fabricated. They included a single 3-mm-diameter cell, three 3-mm-diameter cells in series, a single 5-mm-diameter cell, and three 5-mm-diameter cells in series. Continuously flowing water containing tritium at various concentrations was passed through the flow cells, and tritium count were measured for 600 and 10000 s. Investigating the relation between the count rate and concentration, the three 5-mm-diameter cells were most sensitive, with a linear relation maintained down to approximately 2 Bq/ml and 10 Bq/ml for 10000- and 600-s measurements, respectively. (authors)

  3. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems.

    Science.gov (United States)

    Saias, Laure; Autebert, Julien; Malaquin, Laurent; Viovy, Jean-Louis

    2011-03-01

    We propose a strategy for optimizing distribution of flow in a microfluidic chamber for microreactor, lateral flow assay and immunocapture applications. It is aimed at maximizing flow throughput, while keeping footprint, cell thickness, and shear stress in the distribution channels at a minimum, and offering a uniform flow field along the whole analysis chamber. In order to minimize footprint, the traditional tree-like or "rhombus" design, in which distribution microchannels undergo a series of splittings into two subchannels with equal lengths and widths, was replaced by a design in which subchannel lengths are unequal, and widths are analytically adapted within the Hele-Shaw approximation, in order to keep the flow resistance uniform along all flow paths. The design was validated by hydrodynamic flow simulation using COMSOL finite element software. Simulations show that, if the channel is too narrow, the Hele-Shaw approximation loses accuracy, and the flow velocity in the chamber can fluctuate by up to 20%. We thus used COMSOL simulation to fine-tune the channel parameters, and obtained a fluctuation of flow velocity across the whole chamber below 10%. The design was then implemented into a PDMS device, and flow profiles were measured experimentally using particle tracking. Finally, we show that this system can be applied to cell sorting in self-assembling magnetic arrays, increasing flow throughput by a factor 100 as compared to earlier reported designs. PMID:21240403

  4. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  5. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  6. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Zongzheng Chen; Cheng Xiang; Bo Liu; Handi Xie; Kairong Qin

    2016-01-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the rela-tionship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the tra-ditional ones, which have been only based upon either stag-nation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addi-tion, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and con-veniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  7. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. PMID:25778455

  8. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells.

    Science.gov (United States)

    Lee, Jason; Baker, Aaron B

    2015-05-01

    In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5-2.0 Hz and 1-10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses. PMID:25611013

  9. Modeling and simulation of circulating tumor cells in flow

    Science.gov (United States)

    Lee, Angela Meeyoun

    In this thesis, we mathematically model and computationally simulate several aspects associated with the dynamics of circulating tumor cells in the bloodstream. We focus on physical processes that initiate cancer metastasis, such as intravasation and the subsequent diffusion of thrombin by the expression of tissue factor (TF) on the surface of the circulating tumor cells that are of epithelial origin. In Part I, we develop a low-dimensional parametric deformation model of a cancer cell under shear flow. The surface deformation of MDA-MB-213 cells is imaged using DIC microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an Active Shape Model (ASM) to obtain the principal components of deformation, which are then used as parameters in an empirical constitutive equation to model the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface with three active parameters: height, x-width, and y-width. Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that Active Shape Models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting. In Part II, we describe a mathematical and computational model for diffusion-limited procoagulant circulating tumor cells (CTCs) in flow. We first build a model based on an exact formulation of Green's function solutions for domains with a blood vessel wall and for closed domains. Time-dependent gradient trackers are used to highlight

  10. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.

    Science.gov (United States)

    Rodrigues, Raquel O; Pinho, Diana; Faustino, Vera; Lima, Rui

    2015-12-01

    Blood flow presents several interesting phenomena in microcirculation that can be used to develop microfluidic devices capable to promote blood cells separation and analysis in continuous flow. In the last decade there have been numerous microfluidic studies focused on the deformation of red blood cells (RBCs) flowing through geometries mimicking microvessels. In contrast, studies focusing on the deformation of white blood cells (WBCs) are scarce despite this phenomenon often happens in the microcirculation. In this work, we present a novel integrative microfluidic device able to perform continuous separation of a desired amount of blood cells, without clogging or jamming, and at the same time, capable to assess the deformation index (DI) of both WBCs and RBCs. To determine the DI of both WBCs and RBCs, a hyperbolic converging microchannel was used, as well as a suitable image analysis technique to measure the DIs of these blood cells along the regions of interest. The results show that the WBCs have a much lower deformability than RBCs when subjected to the same in vitro flow conditions, which is directly related to their cytoskeleton and nucleus contents. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to simultaneously separate and assess blood cells deformability. PMID:26482154

  11. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  12. Parallel flow in hele-shaw cells with ferrofluids

    Science.gov (United States)

    Miranda; Widom

    2000-02-01

    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of wave propogation for a given wave number. We note that the magnetic field creates an effective interaction between the solitons. PMID:11046508

  13. Alternative experiments using the geophysical fluid flow cell

    Science.gov (United States)

    Hart, J. E.

    1984-01-01

    This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.

  14. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  15. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  16. Numerical analysis of optimal performance of planar electrode supported solid oxide fuel cell at various syngas flow rates

    International Nuclear Information System (INIS)

    Highlights: • At constant total current, output voltage enhances with syngas flow rate. • The possible optional current density is enlarged with syngas flow rate. • The output power density increases with syngas flow rate. • The relevant fuel utilization and energy efficiency reduce with syngas flow rate. • The function of fuel utilization to syngas flow rate was obtained. - Abstract: With the gradual scarcity of fossil fuels and the emergency demand of greenhouse gas emission reduction, coal, as the major energy source of China for a long time in the future, should be used efficiently and cleanly. The integrated gasification fuel cell (IGFC) hybrid power generation system is a promising clean coal utilization technology. In order to improve the performance of IGFC hybrid power generation system, the optimal performance of SOFC at different flow rate of syngas were numerically studied in this work. The performance curves of SOFC at various syngas flow rates were obtained. The results show that the temperature in the channel of SOFC cell is decreasing linearly with the increase of the syngas flow rate, when the average current density is constant. With the increase of syngas flow rate, the output voltage is reduced, but the optimal output power and the possible optional range of current density will increase. Under different mass flow rates, the fuel utilization at the optimal output power density decreases with increase of syngas flow rate. The polynomial function between the fuel utilization at optimal output power density and the mass flow rate of syngas was obtained

  17. Flow of red blood cells in capillary networks

    OpenAIRE

    Couto, Ana; Teixeira, Lúcia; Leble, Vladimir; Lima, R.; Ribeiro, António E.; Dias, Ricardo

    2011-01-01

    In the present work we have studied the flow of red blood cells through a column packed with soda lime glass spheres with diameter of 337.5 micron (pore diameter 150 micron). The ratio between the average velocity of the RBCs and the average velocity of the carrying fluid (physiological saline) was close to 0.9. The RBCs migrated faster through the column than the carrying fluid mainly due to a hydrodynamic chromatographic effect.

  18. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    Science.gov (United States)

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-01

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  19. Modeling and simulation of procoagulant circulating tumor cells in flow

    Directory of Open Access Journals (Sweden)

    PaulKennethNewton

    2012-09-01

    Full Text Available We describe a mathematical/computational model for thrombin concentration gradients generated by procoagulant circulating tumor cells (CTCs in flow. We examine how CTCs enhance blood coagulation as they diffuse tissue factor (TF-dependent coagulation enzymes in a flow environment with vessel walls. Concentration fields of various enzymes, such as prothrombin and thrombin, diffuse to and from CTCs, respectively, as they propagate through the bloodstream. The diffusion-dependent generation of these enzymes sets up complex time-dependent concentration fields. The CTCs are modeled as diffusing point particles in an incompressible fluid, and we exploit exact analytical solutions based on three-dimensional Green’s functions for unbounded domains with one wall for high-resolution numerical simulations. Time-dependent gradient trackers are used to highlight that concentration fields build up (i near boundaries (vessel walls, (ii in regions surrounding the diffusing particles, and (iii in complex time-dependent regions of the flow where fields associated with different particles overlap. Two flow conditions are modeled: no flow, and unidirectional constant flow. Our results indicate that the CTC-generated thrombin diffuses to and persists at the blood vessel wall, and that the spatial distribution of CTCs in flow determines local thrombin concentration. The magnitude of the diffusion gradient and local thrombin concentration is dependent upon bulk solution concentrations of coagulation factors within normal reported concentration ranges. Therefore, our model highlights the potential to determine patient-specific risks for CTC-induced hypercoagulability as a function of CTC number and individual patient concentration of coagulation factors.

  20. PEM fuel cell systems performance optimisation using the mathematical modeling

    International Nuclear Information System (INIS)

    PEM fuel cell systems and technologies have emerged as viable energy conversion devices for terrestrial applications (stationary and mobile). They offer huge economical and environmental potentials in the next generation power systems, but they are still more expensive than most conventional power conversion devices. Therefore, there is a need to optimize these technologies from the performance and costs point of view. Mathematical modeling proved to be the most important tool for PEM fuel cell optimization, providing the best solution for design, operating condition, experimentation and exploitation. This paper proposes a study for fluid flow channels optimization in order to improve the performance of PEM fuel cell systems. Thus, we run simulations using 3 types of geometries for the flowing channels: serpentine, parallel and spiral channel in order to find the optimum flowing geometry. Concluding, we can consider the modeling like an important alternative for fuel cell optimization and for exploitation/experimentation costs reduction. (authors)

  1. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  2. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  3. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U.; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is...

  4. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  5. Determinants of resting cerebral blood flow in sickle cell disease.

    Science.gov (United States)

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  6. Surfactant micelles: model systems for flow instabilities of complex fluids

    OpenAIRE

    Perge, Christophe; Fardin, Marc-Antoine; Manneville, Sebastien

    2013-01-01

    Complex fluids such as emulsions, colloidal gels, polymer or surfactant solutions are all characterized by the existence of a "microstructure" which may couple to an external flow on timescales that are easily probed in experiments. Such a coupling between flow and microstructure usually leads to instabilities under relatively weak shear flows that correspond to vanishingly small Reynolds numbers. Wormlike micellar surfactant solutions appear as model systems to study two examples of such ins...

  7. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  8. Design flow factors for sewerage systems in small arid communities

    Directory of Open Access Journals (Sweden)

    Emad H. Imam

    2014-09-01

    Full Text Available Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc. and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  9. Design flow factors for sewerage systems in small arid communities.

    Science.gov (United States)

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  10. Methods and systems of monitoring traffic flow

    OpenAIRE

    Billington, Peter E.; Barnes, Christopher M.; Wakefield, Jonathan P.

    2001-01-01

    A method of monitoring traffic flow comprises reading registration plates of the vehicles of a multiplicity of series of vehicles passing respective locations on a road network, if necessary selecting samples of readings from the readings relating to the vehicles of the series, and determining whether readings of the samples are deemed to contain matching readings. The samples are used as probes or targets to measure average journey times which are compared with reference journey times. The s...

  11. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells.

    Science.gov (United States)

    Singer, Benjamin D; Mock, Jason R; D'Alessio, Franco R; Aggarwal, Neil R; Mandke, Pooja; Johnston, Laura; Damarla, Mahendra

    2016-05-01

    Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis. PMID:26944088

  12. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette;

    2011-01-01

    study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static...... μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured...... scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation and on osteogenic differentiation, and the data presented warrant careful selection of in vitro culture settings to meet the specific...

  13. An Architecture for Context-Aware Knowledge Flow Management Systems

    CERN Document Server

    Jarrahi, Ali

    2012-01-01

    The organizational knowledge is one of the most important and valuable assets of organizations. In such environment, organizations with broad, specialized and up-to-date knowledge, adequately using knowledge resources, will be more successful than their competitors. For effective use of knowledge, dynamic knowledge flow from the sources to destinations is essential. In this regard, a novel complex concept in knowledge management is the analysis, design and implementation of knowledge flow management systems. One of the major challenges in such systems is to explore the knowledge flow from the source to the recipient and control the flow for quality improvements concerning the users' needs as possible. Therefore, the purpose of this paper is to provide an architecture in order to solve this challenge. For this purpose, in addition to the architecture for knowledge flow management systems, a new node selection strategy is provided with higher success rate compared to previous strategies.

  14. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  15. The closed circuit and the low flow systems

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2013-01-01

    Full Text Available A breathing system is defined as an assembly of components, which delivers gases from the anesthesia machine to the patients′ airways. When the components are arranged as a circle, it is termed a circle system. The flow of exhaled gases is unidirectional in the system. The system contains a component (absorber, which absorbs exhaled carbon dioxide and it is not necessary to give high fresh gas flows as in Mapleson systems. When the adjustable pressure limiting (APL valve is closed and all the exhaled gases without carbon dioxide are returned to the patient, the system becomes a totally closed one. Such a circle system can be used with flows as low as 250 to 500 mL and clinically can be termed as low-flow systems. The components of the circle system can be arranged in different ways with adherence to basic rules: (1 Unidirectional valve must be present between the reservoir bag and the patient on both inspiratory and expiratory sides; (2 fresh gas must not enter the system between the expiratory unidirectional valve and the patient; and (3 the APL valve must not be placed between the patient and the inspiratory unidirectional valve. The functional analysis is explained in detail. During the function, the arrangement of components is significant only at higher fresh gas flows. With the introduction of low resistance valves, improved soda lime canisters and low dead space connectors, the use of less complicated pediatric circle systems is gaining popularity to anesthetize children. There are bidirectional flow systems with carbon dioxide absorption. The Waters to and fro system, a classic example of bidirectional flow systems with a canister to absorb carbon dioxide, is valveless and portable. It was widely used in the past and now is only of historical importance.

  16. THE CONTINUOUS FLOW ANALYZER AUTOMATION SYSTEM. PART III -- PROGRAM DOCUMENTATION

    Science.gov (United States)

    This report contains complete documentation for the 21 programs and eight data files of the EPA Continuous Flow Analyzer Automation System. This system can receive lists of samples from the Sample File Control System and return the measured concentrations to that system. It is ca...

  17. A Computational Model of Deformable Cell Rolling in Shear Flow

    Science.gov (United States)

    Eggleton, Charles; Jadhav, Sameer

    2005-03-01

    Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. The cell rolling velocity is influenced by bond interactions on the molecular scale that oppose hydrodynamic forces at the mesoscale. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for these differences, we developed a 3-D computational model which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The average bond lifetime, number of receptor-ligand bonds and the cell-substrate contact area decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.

  18. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow in...... the geometry of the gating system causes pressure waves to form that eventually lead to defective castings. It is clear that sharp corners and dead ends in gating systems should be avoided, and that more stream lined, organic designs based on fluid dynamic principles will are necessary to design...

  19. Modelling of uncertainness for a flow and level system

    Science.gov (United States)

    Hernández, C.; Angel, L.; Viola, J.

    2016-07-01

    This paper presents the identification of uncertainness that affects the dynamics of a flow and level system. Initially, flow a level system is descripted. Then, family of plants is determined from the identification of dynamic model for different operating conditions. The uncertain model reflects the changes for different operating conditions when the output flow and storage tank dimensions are varied. Finally, the maximum multiplicative uncertain is calculated to define the desired controller specifications to achieve a robust stability and performance of the closed loop system.

  20. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  1. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  2. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    Science.gov (United States)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  3. Unitized regenerative fuel cell system

    Science.gov (United States)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  4. C++ based design flow for reconfigurable image processing systems

    NARCIS (Netherlands)

    Beun, R.; Karkowski, I.; Ditzel, M.

    2007-01-01

    In this paper a new hardware-software co-design flow for FPGA based image processing systems is described. This flow is fully C++ based and allows specification, verification and semi-automatic generation of all necessary software and hardware components. It allows the involvement of algorithm devel

  5. Probabilistic load flow in systems with high wind power penetration

    OpenAIRE

    Usaola, Julio

    2008-01-01

    This paper proposes a method for solving a probabilistic load flows that takes into account the uncertainties of wind generation, but also of load and conventional systems. The method uses a combination of methods including cumulant, point estimate and convolution. Cornish Fisher expansion series are also used to find the CDF. The method is of especial application to estimate active power flows through lines.

  6. PARALLEL EVALUATION OF CONSTANT AND DIURNAL FLOW TREATMENT SYSTEMS

    Science.gov (United States)

    Pilot plant studies were performed to evaluate the effects of an imposed diurnal flow pattern on a conventional activated sludge treatment plant. These results were compared against data generated on a similar system treating a constant flow. Effects on primary clarifier and fina...

  7. The Energy Transformation Limit Theorem for Gas Flow Systems

    CERN Document Server

    Volov, V T

    2011-01-01

    The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

  8. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel;

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...... up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions....

  9. Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell

    Science.gov (United States)

    Wilson, Wilbur; Fanguy, Joseph; Holman, Steven; Guo, Bin

    2008-01-01

    An improved apparatus has been invented for use in determining the osmotic second virial coefficient of macromolecules in solution. In a typical intended application, the macromolecules would be, more specifically, protein molecules, and the protein solution would be pumped through a flow cell to investigate the physical and chemical conditions that affect crystallization of the protein in question. Some background information is prerequisite to a meaningful description of the novel aspects of this apparatus. A method of determining B22 from simultaneous measurements of the static transmittance (taken as an indication of concentration) and static scattering of light from the same location in a flowing protein solution was published in 2004. The apparatus used to implement the method at that time included a dual-detector flow cell, which had two drawbacks: a) The amount of protein required for analysis of each solution condition was of the order of a milligram - far too large a quantity for a high-throughput analysis system, for which microgram or even nanogram quantities of protein per analysis are desirable. b) The design of flow cell was such that two light sources were used to probe different regions of the flowing solution. Consequently, the apparatus did not afford simultaneous measurements at the same location in the solution and, hence, did not guarantee an accurate determination of B22.

  10. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

    Science.gov (United States)

    Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

    2015-11-01

    We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

  11. Integrated Thermal and Microcoriolis Flow Sensing System with a Dynamic Flow Range of More Than Five Decades

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-03-01

    Full Text Available We have realized a micromachined single chip flow sensing system with an ultra-wide dynamic flow range of more than five decades, from 100 nL/h up to more than 10 mL/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges.

  12. Flow cytometric immunophenotypic characteristics of plasma cell leukemia

    Directory of Open Access Journals (Sweden)

    Barbara Kruk

    2011-04-01

    Full Text Available The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI. Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01. Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively. However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1 or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54

  13. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min.

  14. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  15. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  16. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  17. Holomorphic Embedded Load Flow for autonomous spacecraft power systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...

  18. Axisymmetric Predictions of Fluid Flow inside a Rotating Cavity System

    Directory of Open Access Journals (Sweden)

    Mujeebuddin Memon

    2013-07-01

    Full Text Available Accurate prediction of fluid flow in the rotating cavity system is of practical interest as it is most commonly used in the gas turbine engines and compressors. This paper presents the numerical predictions of a rotating cavity flow system for Reynolds numbers of the range 1x105 < Re? < 4x105 and two different mass flow rates Cw=1092 and 2184. A finite-difference technique is employed for a Steady-state solution in the axisymmetric cylindrical polar coordinate frame of reference. The two low Reynolds number turbulence models, the low Reynolds number k-? model and the low Reynolds number second moment closure have been used to compute the basic characteristics of the flow inside the rotating cavity flow system. Different flow regions have been identified by computing flow structures and dimensions of those regions have also been studied under different flow rates. A comparison of the computed variation of moment coefficient of both the turbulence models are presented for the above mentioned parameters and the parametric effects on the moment coefficients have been discussed

  19. Bifurcation and catastrophe of seepage flow system in broken rock

    Institute of Scientific and Technical Information of China (English)

    MIAO Xie-xing; LI Shun-cai; CHEN Zhan-qing

    2009-01-01

    The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo-tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.

  20. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  1. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-01

    was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health. PMID:24995370

  2. Multisensor Acquirement System of Electrokinetic in Multiphase Flow

    Directory of Open Access Journals (Sweden)

    Yahui Bu

    2013-09-01

    Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow

  3. Load flow computations in hybrid transmission - distributed power systems

    OpenAIRE

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting of 5003 nodes. For this model, the Newton load flow model converges in seven iterations. Future work in this direction should allow to build even larger networks.

  4. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    International Nuclear Information System (INIS)

    Highlights: → Sequential injection determination of phosphate in estuarine and freshwaters. → Alternative spectrophotometric flow cells are compared. → Minimization of schlieren effect was assessed. → Proposed method can cope with wide salinity ranges. → Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 μM PO43-) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 μM) was achieved using both detection systems.

  5. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Raquel B.R. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); Ferreira, M. Teresa S.O.B. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Toth, Ildiko V. [REQUIMTE, Departamento de Quimica, Faculdade de Farmacia, Universidade de Porto, Rua Anibal Cunha, 164, 4050-047 Porto (Portugal); Bordalo, Adriano A. [Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); McKelvie, Ian D. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Rangel, Antonio O.S.S., E-mail: aorangel@esb.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2011-09-02

    Highlights: {yields} Sequential injection determination of phosphate in estuarine and freshwaters. {yields} Alternative spectrophotometric flow cells are compared. {yields} Minimization of schlieren effect was assessed. {yields} Proposed method can cope with wide salinity ranges. {yields} Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 {mu}M PO{sub 4}{sup 3-}) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 {mu}M) was achieved using both detection systems.

  6. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.;

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...... radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promising results, and show large potentials, exploiting the existing water infrastructure in future climate...

  7. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  8. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    OpenAIRE

    Prechanon Kumkratug

    2010-01-01

    Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into ...

  9. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  10. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  11. Forestry Crane with Electrohydraulic Flow-on-Demand System

    OpenAIRE

    Scherer, Martin; Geimer, Marcus; Weiß, Björn

    2013-01-01

    The major issue developing sophisticated hydraulic systems is to significantly improve the energy efficiency without sacrificing the ease of control and operability. The present paper illustrates the upgrade of a mobile forestry crane from a hydraulic-mechanical Load-Sensing system to an innovative electrohydraulical Flow-on-Demand system.

  12. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  13. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  14. Proteomic analysis of barley cell nuclei purified by flow sorting

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Jeřábková, Hana; Chamrád, I.; Vrána, Jan; Lenobel, R.; Uřinovská, J.; Šebela, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 143, 1-3 (2014), s. 78-86. ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell cycle * Chromatin * Flow cytometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.561, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25059295

  15. Use of acoustic monitoring system for debris flow discharge evaluation

    Science.gov (United States)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  16. Integration and Validation of Flow Image Quantification (Flow-IQ) System

    OpenAIRE

    Carneal, Jason Bradley

    2004-01-01

    The first aim of this work was to integrate, validate, and document, a digital particle image quantification (Flow-IQ) software package developed in conjunction with and supported by Aeroprobe Corporation. The system is tailored towards experimental fluid mechanics applications. The second aim of this work was to test the performance of DPIV algorithms in wall shear flows, and to test the performance of several particle sizing algorithms for use in spray sizing and average diameter calculati...

  17. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  18. Investigation of hydrate formation and transportability in multiphase flow systems

    Science.gov (United States)

    Grasso, Giovanny A.

    cohesion force (3.32 mN/m). These measurements prove the importance of natural surfactants in crude oil for particle dispersion. An experimental methodology was provided to determine the effectiveness of asphaltenes as a dispersant. Even though hydrate deposition was inferred from the flowloop tests, it could not be verified from these measurements. Custom-made experimental set-ups (a recirculation liquid system, a rocking cell and a lab-scale mini-loop) were used to isolate the hydrate deposi- tion investigation. Besides water, mineral oil 70T and King Ranch condensate were used in combination with water for the deposition investigation. One of the most important deliverables of this thesis was the construction of a lab-scale flowloop that provides insight on deposition phenomenon in multiphase flow, representing the only set-up, reported in the literature, suitable for this investigation. The miniloop can handle gas-liquid flow (maximum flow rates of 10 Nm3/m for gas and 22 GPM for liquid) through a 10 ft. long straight section (2 in. standard tubing). The testing section (30 in. long) was designed to observe hydrate deposition on the wall. Three mechanisms of hydrate deposition were identified: film growth, particles adhering and particle bedding. The maximum water conversions were: 27.5 ml in the rocking cell, 2400 ml in the miniloop with 100 % WC and 250 ml in the miniloop for dispersed water in mineral oil 70T. The measured DP across to the testing section ranged from 0 to 8 in. H2O. Deposits were obtained for different flow regimes, including 100 % LL, stratified, stratified- wavy and slug flow. The maximum deposit thickness was 1.5 in., obtained in the gas flowing section. When deposits form from particle cohesion, they were easy to slough. From all the experimental worked in this thesis, hydrates accumulated depending on the degrees of subcooling of the bulk fluid, film growth (between 3 to 5 F), deposition from a combination of film growth and particle cohesion

  19. Digital Schlieren System for Flow Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is an SBIR proposal to develop a revolutionary digital schlieren imaging system that will greatly improve a widely used aerodynamics tool and render it so...

  20. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  1. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  2. CFD characterization of flow regimes inside open cell foam substrates

    International Nuclear Information System (INIS)

    Highlights: • We investigated the pressure drop in open-cell foams. • The study is based on a combination of micro-CT, image-based modeling and CFD tools. • Detailed CFD simulations were applied for the investigation of turbulent flow regimes. • The effects of geometrical parameters are studied by means of RANS CFD simulations. • Results are analyzed in terms of non-dimensional parameters. - Abstract: In this work a combination of micro-CT, image-based modeling and CFD has been applied to investigate the pressure drop in open-cell foams. The analysis covers a range of flow regimes and is aimed at determining the effects of important morphological parameters on the pressure drop. The adoption of micro-CT technology along with detailed CFD modeling allows the investigation of phenomena occurring in real foam micro-structures. Moreover, by means of image processing tools, the geometry can be artificially modified in order to investigate the effects of mathematical transformation of the geometrical parameters of a real foam, one parameter at a time, e.g. varying pore size without affecting the porosity. Non-dimensional coefficients have been defined for the analysis of the results, with the purpose of describing the pressure drop as a function of the Reynolds number. The proposed formulation allows us to relate the permeability properties of an open-cell foam to its morphology alone, without any dependence on the properties of the fluid adopted or on the effective characteristic dimension of the foam micro-structure (pore or cell size). Comparison with experimental results available in the literature is also provided for one of the cases studied

  3. A cell-centered ICE method for multiphase flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwa, B.A.; Padial, N.T. [Los Alamos National Lab., NM (United States); Rauenzahn, R.M. [Molten Metals Technology, Inc., Waltham, MA (United States); VanderHeyden, W.B. [Amoco Oil Co., Naperville, IL (United States)

    1993-12-01

    The Implicit Continuous-fluid Eulerian (ICE) method is a finite-volume scheme that is stable for any value of the Courant number based on the sound speed. In the incompressible limit, the ICE method becomes essentially identical to the Marker and Cell (MAC) method, so the two schemes are closely related. In this article, the classical ICE method is extended to multiple interpenetrating phases, and employed with a single control volume (nonstaggered) mesh framework. The incompressible limit is preserved, so that problems involving equations of state, or those exhibiting constant material densities, can be addressed with the same computer code. The scheme reduces properly to a single-fluid method, enabling benchmarking using well-known test cases. Thus, the numerical issues focus only on those aspects unique to problems having multiple density, velocity and temperature fields. The discussion begins with a derivation of the exact, ensemble-averaged equations. Examples of the most basic closures axe given, and the well-posedness of the equations is demonstrated. The numerical method is described in operator notation, and the discretization is sketched. The flow patterns in a bubble column are computed as an incompressible flow example. For a compressible flow example, the expansion and compression of a bubble formed by high-explosive gases under water is shown. In each case, comparison to experimental data is made.

  4. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  5. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  6. Method, apparatus and system for controlling fluid flow

    Science.gov (United States)

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  7. MAG-GATE System for Molten metal Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  8. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    OpenAIRE

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, which accommodates electrochemical, thermal, feed flow and water crossover models in addition to two-phase calculatio...

  9. Transport processes in biological systems: Tumoral cells and human brain

    Science.gov (United States)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  10. Stochastic modeling of a lava-flow aquifer system

    Science.gov (United States)

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  11. Cerebral blood flow in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF) has been studied by the xenon-133 (133Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the 133Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The 133Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke

  12. Power System Stability Enhancement Using Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: The enhancement of transient stability of the power system is one of the most challenging research areas in power engineer. Approach: This study presents the method to enhance transient stability of power system by Unified Power Flow Controller (UPFC. The mathematical model of power system equipped with a UPFC is systematically derived. The parameters of UPFC are modeled into power flow equation and thus it is used to determine control strategy. The swing curves of the three phase faulted power system without and with a UPFC are tested and compared in various cases. Results: The swing curve of system without a UPFC gets increases monotonically and thus the system can be considered as unstable whereas the swing curves of system with a UPFC can return to stable equilibrium point. Conclusion: From the simulation results, the UPFC can enhance transient stability of power system.

  13. Comparison of plateletpheresis on three continuous flow cell separators

    Directory of Open Access Journals (Sweden)

    Tendulkar Anita

    2009-01-01

    Full Text Available Introduction: Platelet concentrate (PC remains one of the most important support measures in thrombocytopenic patients. An efficient cell separator is a prerequisite for an optimally functioning apheresis setup. Donor blood count may undergo a temporary reduction after the procedure. Aim: The aim was to find the extent of reduction in donor blood count (hemoglobin, hematocrit, white blood cell, and platelet after plateletpheresis and to evaluate the cell separator for collection efficiency, processing time, and leukoreduction. Study Design and Methods: Two hundred and thirty seven procedures performed on the Amicus (N = 121, Fenwal CS-3000 Plus (N = 50 and Cobe spectra (N = 66 in a one year period were evaluated. The procedures performed on the continuous flow centrifugation (CFC cell separators and donor blood counts (pre and post donation done were included in the study. Results: The percent reduction in hemoglobin (HB, hematocrit (HCT, white blood cell (WBC and platelet count ((PLT ct was 2.9, 3.1, 9, 30.7 (Mean, N = 237 respectively after the procedure. The post donation PLT ct reduced to < 100x109/L (range 80-100 in five donors (N = 5/237, Amicus. The pre donation PLT ct in them was 150-200x109/L. Collection efficiency (percent of Amicus (79.3 was better as compared to the other two machines (CS: 62.5, Cobe: 57.5. PC collected on Cobe spectra had < 1x106 WBC. The donor pre donation PLT levels had a positive correlation to the product PLT yield (r = 0.30, P = 0.000. Conclusion: Monitoring donor blood counts helps to avoid pheresis induced adverse events. A cautious approach is necessary in donors whose pre donation PLT ct is 150-200x109/L. The main variable in PLT yield is donor PLT ct (pre donation. High collection efficiency is a direct measure of an optimally functioning cell separator.

  14. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  15. Dynamical-systems approach to localised turbulence in pipe flow

    CERN Document Server

    Ritter, Paul; Avila, Marc

    2015-01-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.

  16. Active flow control systems architectures for civil transport aircraft

    OpenAIRE

    Jabbal, M; Liddle, SC; Crowther, WJ

    2010-01-01

    Copyright @ 2010 American Institute of Aeronautics and Astronautics This paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study applicatio...

  17. Mechanism and estimation of negative entropy flow in terrestrial system

    Institute of Scientific and Technical Information of China (English)

    LI Shaoxin; HUA Ben; HAN Guangze; WEN Dehua

    2005-01-01

    The origin, existence and evolution of life on the earth depend on the negative entropy flow in the terrestrial system (TS). In this paper, we investigate the mechanisms of different negative entropy flows caused by the vertical heat transfer of water phase transition and the gravitational field effect, and the vertical atmospheric heat transfer and the gravitational field effect, under the influences of the sun's radiation, the photosynthesis of the plants, and the earth's rotation. The magnitude orders and the mechanisms of the abovementioned negative entropy flow are also discussed.

  18. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author)

  19. A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels

    International Nuclear Information System (INIS)

    Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.

  20. A multi-agent system for monitoring patient flow.

    Science.gov (United States)

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow. PMID:23920718

  1. A contribution about ferrofluid based flow manipulation and locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K; Zeidis, I; Bohm, V; Popp, J [TU Ilmenau, Fak. f. Maschinenbau, FG Technische Mechanik, Max-Planck-Ring 12, 98693 Ilmenau (Germany)], E-mail: klaus.zimmermann@tu-ilmenau.de, E-mail: jana.popp@tu-ilmenau.de

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  2. A contribution about ferrofluid based flow manipulation and locomotion systems

    International Nuclear Information System (INIS)

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  3. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations with the...... programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed that a...

  4. Simulation of fluid flow system in process industries

    OpenAIRE

    Khamkham, Nasser E

    2000-01-01

    A comprehensive and integrated suite of computer software has been developed to simulate the steady, one-dimensional, incompressible fluid flow in pipeline networks. The computer program accommodates Newtonian liquids, but does not generally apply to gas flow unless the assumption of constant density is acceptable. The computer program is written in C language, to solve the basic pipe system equations using the linear theory method. This computer program is written to analyse steady state...

  5. On model of information system for management of information flows

    OpenAIRE

    Kraleva, Radoslva; Kralev, Velin

    2016-01-01

    In this article are discussed some problems in developing software related to the management of information flows. We presented the basic stages in their development. We bold a methodology for conceptual modeling and design of information systems of this type. In order to demonstrate the effectiveness of the proposed model is an information system for administrative services of graduate students in the university.

  6. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, Hao

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologie

  7. Regularized image system for Stokes flow outside a solid sphere

    Science.gov (United States)

    Wróbel, Jacek K.; Cortez, Ricardo; Varela, Douglas; Fauci, Lisa

    2016-07-01

    The image system for a three-dimensional flow generated by regularized forces outside a solid sphere is formulated and implemented as an extension of the method of regularized Stokeslets. The method is based on replacing a point force given by a delta distribution with a smooth localized function and deriving the exact velocity field produced by the forcing. In order to satisfy zero-flow boundary conditions at a solid sphere, the image system for singular Stokeslets is generalized to give exact cancellation of the regularized flow at the surface of the sphere. The regularized image system contains the same elements as the singular counterpart but with coefficients that depend on a regularization parameter. As this parameter vanishes, the expressions reduce to the image system of the singular Stokeslet. The expression relating force and velocity can be inverted to compute the forces that generate a given velocity boundary condition elsewhere in the flow. We present several examples within the context of biological flows at the microscale in order to validate and highlight the usefulness of the image system in computations.

  8. Preliminary design of an intermittent smoke flow visualization system

    Science.gov (United States)

    Ward, Donald T.; Myatt, James H.

    1993-01-01

    A prototype intermittent flow visualization system that was designed to study vortex flow field dynamics has been constructed and tested through its ground test phase. It produces discrete pulses of dense white smoke consisting of particles of terephthalic acid by the pulsing action of a fast-acting three-way valve. The trajectories of the smoke pulses can be tracked by a video imaging system without intruding in the flow around in flight. Two methods of pulsing the smoke were examined. The simplest and safest approach is to simply divert the smoke between the two outlet ports on the valve; this approach should be particularly effective if it were desired to inject smoke at two locations during the same test event. The second approach involves closing off one of the outlet ports to momentarily block the flow. The second approach requires careful control of valve dwell times to avoid excessive pressure buildup within the cartridge container. This method also increases the velocity of the smoke injected into the flow. The flow of the smoke has been blocked for periods ranging from 30 to 80 milliseconds, depending on the system volume and the length of time the valve is allowed to remain open between valve closings.

  9. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  10. Controlled Logic Gates-Switch Gate and Fredkin Gate Based on Enzyme-Biocatalyzed Reactions Realized in Flow Cells.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2016-04-01

    Controlled logic gates, where the logic operations on the Data inputs are performed in the way determined by the Control signal, were designed in a chemical fashion. Specifically, the systems where the Data output signals directed to various output channels depending on the logic value of the Control input signal have been designed based on enzyme biocatalyzed reactions performed in a multi-cell flow system. In the Switch gate one Data signal was directed to one of two possible output channels depending on the logic value of the Control input signal. In the reversible Fredkin gate the routing of two Data signals between two output channels is controlled by the third Control signal. The flow devices were created using a network of flow cells, each modified with one enzyme that biocatalyzed one chemical reaction. The enzymatic cascade was realized by moving the solution from one reacting cell to another which were organized in a specific network. The modular design of the enzyme-based systems realized in the flow device allowed easy reconfiguration of the logic system, thus allowing simple extension of the logic operation from the 2-input/3-output channels in the Switch gate to the 3-input/3-output channels in the Fredkin gate. Further increase of the system complexity for realization of various logic processes is feasible with the use of the flow cell modular design. PMID:26748763

  11. Quantification of CD59 - mutants in human-hamster hybrid (AL) cells by flow cytometry

    International Nuclear Information System (INIS)

    Mutation assay is an important approach in evaluating the genotoxic risk of potentially harmful environmental chemicals. The human-hamster hybrid (AL) cell mutagenesis system, based on the complement/antibody-mediated cytotoxicity principle, has been used successfully to evaluate the mutagenic potential of a variety of environmental toxicants. The AL cells contain a standard set of CHO chromosomes and a single human chromosome 11, which expresses several cell surface proteins including CD59 encoded by the CD59 gene at 11p13.5. A modified mutation assay by flow cytometry was developed to determine the yield of CD59 - mutants after either radiation or chemical treatment. After incubation with phycoerythrin-conjugated mouse monoclonal anti-CD59 antibody, the CD59 - mutant yields were determined by quantifying the fluorescence of the cells using flow cytometry. This method is faster and eliminates the commonly encountered toxicity problems of the complements with the traditional complement/antibody assay. By comparing the mutant fractions of radiation or chemically treated AL cultures using the two methods, we show here that the flow cytometry assay is an excellent substitute in providing an efficient and highly sensitive method in mutant detection for the traditional complement/antibody assay

  12. High density cell culture system

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  13. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    PeiwenLi

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  14. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    Science.gov (United States)

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  15. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  16. Sensor Development for PEM Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  17. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    Science.gov (United States)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  18. Collisionless damping of zonal flows in helical systems

    International Nuclear Information System (INIS)

    Collisionless time evolution of zonal flows in helical systems are investigated. An analytical expression describing the collisionless response of the zonal-flow potential to the initial potential and a given turbulence source is derived from the gyrokinetic equations combined with the quasineutrality condition. The dispersion relation for the geodesic acoustic mode (GAM) in helical systems is derived from the short-time response kernel for the zonal-flow potential. It is found that helical ripples in the magnetic field strength as well as finite orbit widths of passing ions enhance the GAM damping. The radial drift motions of particles trapped in helical ripples cause the residual zonal-flow level in the collisionless long-time limit to be lower for longer radial wave lengths and deeper helical ripples. On the other hand, a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport. The validity of our analytical results is verified by gyrokinetic Vlasov simulation. (author)

  19. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    Science.gov (United States)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  20. Shock-induced turbulent flow in baffle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L. [Lawrence Livermore National Lab., CA (United States); Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany)

    1993-07-01

    Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

  1. Lockheed laminar-flow control systems development and applications

    Science.gov (United States)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  2. Resonant optical schlieren system for plasma flow studies

    International Nuclear Information System (INIS)

    A dye laser, pumped by ruby second harmonic radiation at 3471 A, emitting approx.5-mJ, 20-nsec pulses with a bandwidth of 0.3 A, has been developed as a light source in a schlieren optical system which utilizes enhanced refractivity to examine plasma flow phenomena. When the dye laser is tuned adjacent to the BaII ion resonance line at 4554 A, the sensitivity of the system to density gradients in a barium plasma becomes 100--1000 times greater than can be achieved with nonresonant light sources which rely on the free electron contributions to plasma refractivity. Absorption effects also yield data on plasma flow patterns

  3. Quantitative Analysis of AGV System in FMS Cell Layout

    OpenAIRE

    B Ramana; S. Sudhakara Reddy; B. Ramprasad

    1997-01-01

    Material handling is a specialised activity for a modern manufacturing concern. Automated guided vehicles (AGVs) are invariably used for material handling in flexible manufacturing Systems (FMSs) due to their flexibility. The quantitative analysis of an AGV system is useful for determining the material flow rates, operation times, length of delivery, length of empty move of AGV and the number of AGVs required for a typical FMS cell layout. The efficiency of the material handling system...

  4. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  5. An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina.

    OpenAIRE

    DeVries, S H; Baylor, D A

    1995-01-01

    Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode...

  6. First cell magnet system tests

    International Nuclear Information System (INIS)

    The ISABELLE refrigeration system utilizes compressed liquid helium to supply refrigeration to nearly 1100 superconducting bending and focusing magnets. These magnets steer the proton orbits of the accelerator and are arranged into two interlocking rings. The total heat load that the refrigerator must provide is made up of the heat load of the magnets, magnet leads and vessels and the interconnecting piping to the refrigerator. The design and test results of the magnet system during various operating conditions in use on the ISABELLE prototype, the First Cell, are described

  7. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  8. System and method for detecting cells or components thereof

    Science.gov (United States)

    Porter, Marc D.; Lipert, Robert J.; Doyle, Robert T.; Grubisha, Desiree S.; Rahman, Salma

    2009-01-06

    A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

  9. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  10. Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane

    Science.gov (United States)

    Yao, Wei; Ding, Guang-Hong

    2011-08-01

    In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.

  11. Interstitial fluid flow:simulation of mechanical environment of cells in the interosseous membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Yao; Guang-Hong Ding

    2011-01-01

    In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues,while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array,we set up a porous media model simulating the flow field with FLUENT software,studied the shear stress on interstitial cells' surface due to the interstitial fluid flow,and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells,up to 30 Pa or so,which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries,blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion,numerical simulation provides an effective way for in vivo dynamic interstitial velocity research,helps to set up the vivid subtle interstitial flow environment of cells,and is beneficial to understanding the physiological functions of interstitial fluid flow.

  12. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines

    Science.gov (United States)

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Katnik, Steve; Myc, Andrzej; Thomas, Thommey; Luker, Kathryn E.; Luker, Gary D.; Baker, James R., Jr.; Norris, Theodore B.

    2007-07-01

    We have developed a new two-photon system for in vivo flow cytometry, thereby allowing us to simultaneously quantify different circulating populations in a single animal. The instrument was able to resolve minute-by-minute depletion dynamics of injected fluorescent microspheres at finer time scales than conventional flow cytometry. Also observed were the circulation dynamics of human MCF-7 and MDA-MB-435 breast cancer cells, which have low and high metastatic potential, respectively. After co-injection of both cell types into mice, markedly greater numbers of MCF-7 cells were present in the circulation at early time points. While low metastatic MCF-7 cells were cleared from the vascular system within 24 hours, detectable numbers of metastatic MDA-MB- 435 cells in the circulation remained constant over time. When we replace the commercial (80-MHz) NIR excitation laser with a reduced-repetition-rate (20-MHz) mode-locked oscillator, the signal is enhanced four-fold, enabling superior detection in blood of cell lines expressing fluorescent proteins tdTomato and mPlum (crosslabeled with DiI and DiD). Detection sensitivity versus incident laser power is understood in terms of detected event photon count distribution, which can be predicted with simple fluorophore distribution assumptions. The technique of two-color, two-photon flow cytometry greatly enhances the capabilities of ex vivo flow cytometry to investigate dynamics of circulating cells in cancer and other important diseases.

  13. Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    CERN Document Server

    Yamada, H; Ito, M

    1998-01-01

    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critic...

  14. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  15. Flow of a circulating tumor cell and red blood cells in microvessels

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  16. The Energy Transformation Limit Theorem for Gas Flow Systems

    OpenAIRE

    Volov, V. T.

    2011-01-01

    The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with ...

  17. Review of bipolar plates in PEM fuel cells: flow field designs, materials and manufacturing techniques

    International Nuclear Information System (INIS)

    The polymer electrolyte membrane (PEM) fuel cell is a promising candidate as zero-emission power source for transport and stationary cogeneration applications due to its high efficiency, low temperature operation, high power density, fast start-up, and system robustness. Bipolar plate is a vital component of PEM fuel cells, which supplies fuel and oxidant to reactive sites, removes reaction products, collects produced current and provides mechanical support for the cells in the stack. Bipolar plates constitute more than 60% of the weight and 30% of the total cost in a fuel cell stack. For this reason, the weight, volume and cost of the fuel cell stack can be reduced significantly by improving layout configuration of flow field and use of light weight materials. Different combinations of materials, flow field layouts and fabrication techniques have been developed for these plates to achieve aforementioned functions efficiently, with the aim of obtaining high performance and economic advantages. The present paper presents a comprehensive review of these combinations and their pros and cons. (author)

  18. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  19. Uncertainty in prediction and simulation of flow in sewer systems

    DEFF Research Database (Denmark)

    Breinholt, Anders

    included flow from downstream the catchment, rain measured at two rain gauges and monthly evaporation. The data period covered subperiods of 2007-2010. The catchment area consists of both combined and separated drainage systems and significant infiltration inflow enters the system through permeable surface...... areas. The simple serial linear reservoir flow routing principle was applied for modelling both the fast rainfall runoff from paved areas and the slow infiltration inflow from permeable areas. The wastewater flow variation was modelled by a harmonic function. Models of different complexity in terms of...... prediction and simulation whereas the epistemic uncertainty was assessed only in simulation. A maximum likelihood method was applied for parameter estimation in the stochastic approach, i.e. one optimal parameter set was derived that minimises the errors between model outputs and observations. Conversely in...

  20. Mathematical modelling of flow distribution in the human cardiovascular system

    Science.gov (United States)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  1. Modeling of D-STATCOM in distribution systems load flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents modeling of Distribution STATCOM (D-STATCOM) in load flow calculations for the steadystate voltage compensation. An accurate model for D-STATCOM is derived to use in load flow calculations. The rating of this device as well as the direction of required reactive power injection for voltage compensation in the desired value (1 p.u.) is derived and discussed analytically and mathematically by the phasor diagram method. Furthermore, an efficient method for node and line identification used in load flow calculations is presented. The validity of the proposed model is examined by using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of D-STATCOM for under voltage problem mitigation approach in the distribution networks is determined. The results validate the proposed model for DSTATCOM in large distribution systems.

  2. Mathematical simulation of gas induced bath flow in drained aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    李相鹏; 李劼; 赖延清; 赵恒勤; 刘业翔

    2004-01-01

    A mathematical model describing the bubble driven bath flow in a drained cell with a center sump was presented, which spanned the fluid around half an anode and was developed to simulate the flow fields. The calculated results show reasonable agreement with the experiment. Then the model was developed to a full cell model, and bath flow pattern in the whole cell was predicted and analyzed. The flow pattern variation with the changes of the ACD, anode slope, anode immersion depth and current density, especially the fluid secondary recirculation, was modeled. According to the results, side channel or slots feeding technique was recommended in such a drained cell.

  3. Good Cell, Bad Cell: Flow Cytometry Reveals T-cell Subsets Important in HIV Disease

    OpenAIRE

    Chattopadhyay, Pratip K.; Roederer, Mario

    2010-01-01

    Flow cytometry is a key technology in the study of HIV disease. In this article, we review various cellular markers that can be measured in the setting of pathogenesis or vaccination studies, including markers of activation, differentiation, senescence, immune suppression, and function. In addition, we discuss important considerations for making these measurements. Finally, we examine how flow cytometry studies have taught researchers about the disease process, and the potential for flow cyto...

  4. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

    Directory of Open Access Journals (Sweden)

    Alexander M. Sailon

    2009-01-01

    Full Text Available Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm. A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67%±5.0%, while in the core it was 0.3%±0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94%±8.3% and core density of 76%±3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  5. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  6. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  7. Large-scale flow experiments for managing river systems

    Science.gov (United States)

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  8. Discrete time analysis of batch processes in material flow systems

    OpenAIRE

    Schleyer, Marc

    2007-01-01

    Scope of this work is the development of appropriate models for the evaluation of batch processes in material flow systems. The presented analytical methods support the long range planning in an early planning stage, in which capacities are determined to minimize the facility costs under the condition of cycle time targets.

  9. Convection and diffusion in a micro-flow injection system

    NARCIS (Netherlands)

    Akker, van E.B.; Bos, M.; Linden, van der W.E.

    1998-01-01

    Five micro-structures were used to study the effect of the convection and diffusion behavior (dispersion) of a dye in a micro-flow system. Besides a straight manifold, manifolds with curved bends and manifolds with rectangular bends were constructed. The dispersion resulting from hydrodynamic inject

  10. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi

    2014-01-01

    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  11. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    Science.gov (United States)

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  12. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  13. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  14. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Low temperature hydrogen fuel cells are electrochemical devices which offer a promising alternative to traditional power sources. Fuel cells produce electricity with a reaction of the fuel (hydrogen) and air. Fuel cells have the advantage of being clean; only producing water and heat as by products. The efficiency of a fuel cell varies depending on the type; SOFC with CHP for example, can have a system efficiency of up to 65%. What the Authors present here is a comparison between three different configurations of flow plates of a proton exchange membrane fuel cell, the manufacturer's serpentine flow plate and two new configurations; the maze flow plate and the parallel flow plate. A study of the input parameters affecting output responses of voltage, current, power and efficiency of a fuel cell is performed through experimentation. The results were taken from direct readings of the fuel cell and from polarisation curves produced. This information was then analysed through a design of experiment to investigate the effects of the changing parameters on different configurations of the fuel cell's flow plates. The results indicate that, in relation to current and voltage response of the polarisation curve and the corresponding graphs produced from the DOE, the serpentine flow plate design is a much more effective design than the maze or parallel flow plate design. It was noted that the parallel flow plate performed reasonably well at higher pressures but over all statically the serpentine flow plate performed better.

  15. The Distributed Workflow Management System--FlowAgent

    Institute of Scientific and Technical Information of China (English)

    王文军; 仲萃豪

    2000-01-01

    While mainframe or 2-tier client/server system have serious problems in flexibility and scalability for the large-scale business processes, 3-tier client/server architecture and object-oriented system modeling which construct business process on service components seem to bring software system some scalability. As enabling infrastructure for object-oriented methodology, distributed WFMS (Work-flow Management System) can flexibly describe business rules among autonomous 'service tasks', and support scalability of large-scale business process. But current distributed WFMS still have difficulty to manage a large number of distributed tasks, the 'multi-TaskDomain' architecture of FlowAgent will try to solve this problem, and bring a dynamic and distributed environment for task-scheduling.

  16. Numerical simulation of flow characteristics of lean jet to cross-flow in safety injection of reactor cooling system

    International Nuclear Information System (INIS)

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio VR is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio VR, the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering. (authors)

  17. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  18. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  19. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    Science.gov (United States)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  20. Controlling two-phase flow in microfluidic systems using electrowetting

    OpenAIRE

    Gu, Hao

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologies into one allows to combine the advantages of both worlds: (i) high throughput (from TPF) and (ii) precise control over each individual drop (from EW). Thus the aim of this thesis was to investiga...

  1. Geometrical theory of dynamical systems and fluid flows

    CERN Document Server

    Kambe, Tsutomu

    2004-01-01

    This is an introductory textbook on the geometrical theory ofdynamical systems, fluid flows, and certain integrable systems. Thesubjects are interdisciplinary and extend from mathematics, mechanicsand physics to mechanical engineering, and the approach is veryfundamental. The underlying concepts are based on differentialgeometry and theory of Lie groups in the mathematical aspect, and ontransformation symmetries and gauge theory in the physical aspect. Agreat deal of effort has been directed toward making the descriptionelementary, clear and concise, so that beginners will have an accessto th

  2. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel...

  3. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Cho, Sung Chan

    Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow

  4. Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow.

    Science.gov (United States)

    Kroon, Jeffrey; Daniel, Anna E; Hoogenboezem, Mark; van Buul, Jaap D

    2014-01-01

    During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium. PMID:25146919

  5. From Flow Logic to Static Type Systems in Coordination Languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, René Rydhof;

    2008-01-01

    Coordination languages are often used to describe open ended systems. This makes it challenging to develop tools for guaranteeing security of the coordinated systems and correctness of their interaction. Successful approaches to this problem have been based on type systems with dynamic checks......; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper we show how to combine these two approaches to obtain a static type system for describing secure access to tuple spaces and...... safe process migration for a dialect of the language Klaim....

  6. Subsonic Flow for the Multidimensional Euler-Poisson System

    Science.gov (United States)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  7. Natural selection of autocatalytic systems in flow as the universal mechanism of prebiotic evolution

    Science.gov (United States)

    Bartsev, S.; Mezhevikin, V.

    The problem of searching for extraterrestrial life is closely associated with the problem of origin of life in general and on the Earth. However convincing scientific concept of this event does not exist till now. The probability of casual occurrence of the elementary living cell from a set of abiogenous substances is so small, that from the point of natural-science methodological positions this variant of life origin should be excluded. It is necessary to assume the predecessors of cells were very simple, and their development, perfecting and thickening occurred gradually and in the certain sense neatly via natural selection. An assumption, that the predecessors of cells were elementary autocatalytic systems on the basis of the phase-isolated particles, and the mechanism of their selection was selection in flow with respect to kinetics parameters is put forward. In the paper probable directions of autocatalytic systems selection in flow inside a reactor of deal mixing are considered. As reali analog of in flow system of the kind the hydrothermal vent tube worms found in deep-sea waters could be considered. Thus, it is possible to select certain types of autocatalytic systems admitting an opportunity of "mutagenesis", and to plan experimental modeling of initial stages of prebiotic evolution under various physical-chemical conditions, including extraterrestrial ones. According to the concept, the life origin under the certain physical-chemical planetary conditions is the inevitable planetary phenomenon and key stages of this phenomenon allow not only theoretical, but also experimental analysis.

  8. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  9. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  10. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    Science.gov (United States)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  11. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    OpenAIRE

    Chung-Ju Lee; Pin-Cheng Chan; Chi-Yuan Lee

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and cont...

  12. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  13. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    International Nuclear Information System (INIS)

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to 60Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor

  14. Flow cytometry as a tool to identify Mycobacterium tuberculosis interaction with the immune system and drug susceptibility

    Directory of Open Access Journals (Sweden)

    Maria da Gloria Bonecini-Almeida

    2000-08-01

    Full Text Available Flow cytometric analysis is a useful and widely employed tool to identify immunological alterations caused by different microorganisms, including Mycobacterium tuberculosis. However, this tool can be used for several others analysis. We will discuss some applications for flow cytometry to the study of M. tuberculosis, mainly on cell surface antigens, mycobacterial secreted proteins, their interaction with the immune system using inflammatory cells recovered from peripheral blood, alveolar and pleura spaces and the influence of M. tuberculosis on apoptosis, and finally the rapid determination of drug susceptibility. All of these examples highlight the usefulness of flow cytometry in the study of M. tuber-culosis infection.

  15. Epistemic uncertainty propagation in energy flows between structural vibrating systems

    Science.gov (United States)

    Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong

    2016-03-01

    A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.

  16. Simulation of contaminant flow ina laboratory-scale porous system

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, M.

    1995-12-01

    The microscopic movement of contaminants in a porous medium has been simulated in an experiment. The approach has been to study the microscale transport processes using a novel nonintrusive fluorescence imaging technique developed in our laboratories. The system studied consists of a packed porous column with a refractive index-matched fluid seeded with fluorescent tracer particles (for flow measurements) or an organic dye (for contaminant concentration measurements). Microscopic measurements of contaminant concentration, contaminant velocity, and pore geometry were obtained in a full three-dimensional volume of the test section at a good accuracy and a high resolution. 3D plots of these measurements show the complex geometry of the porous medium. It is also seen that near the contaminant front there is a significant correlation between the flow and the contaminant concentration. The goal is to use these and future results toward better understanding of contaminant flow and report thorough natural porous media.

  17. Laser flow microphotometry for rapid analysis and sorting of mammalian cells. [X and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mullaney, P.F.; Steinkamp, J.A.; Crissman, H.A.; Cram, L.S.; Crowell, J.M.; Salzman, G.C.; Martin, J.C.; Price, B.

    1976-01-01

    Quantitative precision measurements can be made of the optical properties of individual mammalian cells using flow microphotometry. Suspended cells pass through a special flow chamber where they are lined up for exposure to blue light from an argon-ion laser. As each cell crosses the laser beam, it produces one or more optical pulses of a duration equal to cell transit time across the beam. These pulses are detected, amplified, and analyzed using the techniques of gamma ray spectroscopy. Quantitative DNA distributions made it possible to distinguish tumor cells from normal cells as well as to assay for radiation effects on tumor cells subjected to x and gamma radiation. (HLW)

  18. Realizing compact system for Schlieren visualization of transonic flows

    International Nuclear Information System (INIS)

    This paper describes a Schlieren system for flow visualization thought to overcome most of the drawbacks connected with the Z-configuration usually adopted: lack of transportability, wide overall dimensions, long and difficult alignment of the components, restricted sensitivity. The system, originally designed and realized, is of the double-pass type with all the emitting and receiving components mounted on an optical table and aligned during the initial assembly. The paper shows both monochromatic (Helium-Neon laser) and white-light (Mercury or Xenon arc lamps) visualizations of flames and transonic flows in calibrating nozzles and in turbine cascades in a wind tunnel. The accuracy and versatility displayed make this Schlieren system easily usable in fluid dynamics researches

  19. Criteria for inhalation exposure systems utilizing concurrent flow spirometry

    International Nuclear Information System (INIS)

    Principles are given for the design and operation of a new class of inhalation exposure systems utilizing concurrent flow spirometry (CFS), a simple method for providing realtime measurement of respiratory volumes and rates during inhalation exposure by mouth or nose of individual experimental animals or man to aerosols or gases. This technique is especially useful for inhalation exposure of larger experimental animals, such as horses, where whole-body plethysmography is usually impractical. Difficulties encountered with conventional exposure systems in maintenance of uniform aerosol or gas concentrations and prevention of large pressure excursions in the exposure chamber during breathing are obviated by systems utilizing the principles of concurrent flow spirometry. For illustration, two exposure units with CFS are described, one for exposure of Beagle dogs and one for ponies. (U.S.)

  20. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    , industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms......Biofilms are agglomerates of microorganisms surrounded by a self-produced extracellular matrix. During the last 10 years, there has been an increasing recognition of biofilms as a highly significant topic in microbiology with relevance for a variety of areas in our society including the environment...... formed in flow-chamber experimental systems by genetically color-coded bacteria have provided detailed knowledge about biofilm developmental processes, cell differentiations, spatial organization, and function of laboratory-grown biofilms, in some cases down to the single cell level. In addition, the...

  1. Production flow synchronisation versus buffer capacities in assembly systems

    Directory of Open Access Journals (Sweden)

    D. Krenczyk

    2008-07-01

    Full Text Available Purpose: The goal of the considerations carried-out in that paper is the determination of the system synchronisation conditions. Those conditions concern capacities of system buffers. The fulfilment of the developed conditions should guarantee the production flow synchronisation into the expected steady state determined by the system bottleneck. In analysed assembly system rhythmic concurrent production with wide assortment is realised.Design/methodology/approach: The considerations presented in that paper are rooted in the authority method called Requirements and Possibilities Balance Method (RPBM. The experiments in the computer simulations programmes have been carried-out within the confines of the researches. The computer simulation models of the assembly systems using Taylor II for Windows and Enterprise Dynamics have been built.Findings: There are two kinds of system buffers: the entrance buffers and the inter-resources buffers in the assembly systems. The interdependences informing about the required number of elements allocated into the system buffers in order to the production realisation during the first cycle of the system steady state has been formulated. Moreover, the minimal buffer capacities have been determined.Research limitations/implications: The developed interdependences constitute the first step towards formulation of the automatic method designed for the automatic construction of rules controlling the system work during system transition state. That method should enable the automation of the system buffers filling-up.Practical implications: The presented system synchronisation conditions can become an integrated part of existing authority computer system. It aids the decision-making process connected with production planning and control.Originality/value: To develop the interdependences is the main achievement of the given paper. The presented approach permits to solve the problem concerning the production flow

  2. Fuel-cell engine stream conditioning system

    Science.gov (United States)

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  3. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Benard convective cell

    CERN Document Server

    Eidelman, A; Gluzman, I; Golbraikh, E

    2013-01-01

    We present results of the study of a turbulent air flow with a large scale circulation in Rayleigh-Benard rectangular convective cell with a heated bottom wall and a cooled top wall. The mean horizontal velocity of the main roll and the mean vorticity of eddy rings are almost aligned in a large part of the flow. The helicity of the mean flow is quite high, and is the source of turbulent helicity. Since helicity of the mean flow and turbulence is quite large, the flow in Rayleigh-Benard convective cell is well suited to study properties of helical turbulence.

  4. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis

    OpenAIRE

    Baecker, M.; Rakowski, D.; Poghossian, A.; Biselli, M; Wagner, P.; Schoening, M. J.

    2013-01-01

    A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The...

  5. Work flow management systems applied in nuclear power plants management system to a new computer platform

    International Nuclear Information System (INIS)

    Activities performed in most companies are based on the flow of information between their different departments and personnel. Most of this information is on paper (delivery notes, invoices, reports, etc). The percentage of information transmitted electronically (electronic transactions, spread sheets, files from word processors, etc) is usually low. The implementation of systems to control and speed up this work flow is the aim of work flow management systems. This article presents a prototype for applying work flow management systems to a specific area: the basic life cycle of a purchase order in a nuclear power plant, which requires the involvement of various computer applications: purchase order management, warehouse management, accounting, etc. Once implemented, work flow management systems allow optimisation of the execution of different tasks included in the managed life cycles and provide parameters to, if necessary, control work cycles, allowing their temporary or definitive modification. (Author)

  6. Self-Regulating Water-Separator System for Fuel Cells

    Science.gov (United States)

    Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.

    2007-01-01

    proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The

  7. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    DeVol, T.A.; Fjeld, R.A. [Clemson Univ., Clemson, SC (United States)

    1995-10-01

    The use of ion chromatography (IC) for radiochemical separations is a well established technique. IC is commonly used in routine environmental monitoring applications as well as in specialized research applications. Typical usage involves the separation of a single radionuclide from the non-radioactive constituents. During the past decade, a limited amount of research has been conducted using automated IC systems in actinide separation applications (e.g.). More recently, separation procedures for common non-gamma emitting activation and fission products were developed utilizing a high performance liquid chromatography (HPLC) system. In addition, a separation procedure for six common actinides has been developed using a HPLC system. These latter systems used on-line flow-cell detectors for quantification of the radioactive constituents of the effluent stream.

  8. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  9. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  10. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  11. Knowledge Representation Using Multilevel Flow Model in Expert System

    International Nuclear Information System (INIS)

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available

  12. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  13. In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse

    OpenAIRE

    Embury, Stephen H.; Mohandas, Narla; Paszty, Chris; Cooper, Philip; Cheung, Anthony T.W.

    1999-01-01

    The accepted importance of circulatory impairment to sickle cell anemia remains to be verified by in vivo experimentation. Intravital microscopy studies of blood flow in patients are limited to circulations that can be viewed noninvasively and are restricted from deliberate perturbations of the circulation. Further knowledge of sickle blood flow abnormalities has awaited an animal model of human sickle cell disease. We compared blood flow in the mucosal–intestinal microvessels of normal mice ...

  14. A simple flow cell for monitoring biofilm formation in laboratory and industrial conditions

    OpenAIRE

    Pereira, Maria Olívia; Vieira, M. J.; Melo, L. F.

    2000-01-01

    This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, nondestructive and destructive biofilm analysis without the stoppage of the flow. With this flow cell, biofilm growth and respiratory activity can be easily followed, either in well defined laboratory conditions or in an industrial environment. The reproducible and typical biofilm development curves obtained ...

  15. Operational evaluation of the high flow alternative filter test system

    International Nuclear Information System (INIS)

    An alternative to the current filter test system (Q107) used to test Size 4 (500 cubic feet per min rated flow) and larger nuclear grade high efficiency particulate air (HEPA) filters at DOE Filter Test Facilities (FTFs) has been developed. This new test system, called the High Flow Alternative Filter Test System (HFATS), has undergone a long-term operational evaluation at the Oak Ridge FTF (ORFTF) for: comparison between HEPA filter penetration measurements made with the HFATS and with the Q107; assessment of the HFATS' long-term routine operational performance in the FTF environment; and determination of the potential operational impacts of the HFATS on the FTFs. Data for the operational evaluation were collected by the Oak Ridge staff using both test systems. These data were analyzed and interpreted by Los Alamos staff. A total of 849 filters were tested in the evaluation. The data provided by the HFATS easily permits filter penetration to be reported in terms of: penetration at the size of maximum penetration; number, surface area, or mass penetration; or penetration at 0.3 μm for reference to historical data. Results of the penetration measurement comparisons show that the HFATS measurements at about 0.3 μm aerosol diameter do not differ significantly from the Q107 measurements. Analysis of the HFATS penetration data indicates that for the 100% flow tests maximum penetration most frequently occurs at an aerosol diameter of about 0.15 μm as measured by a laser aerosol spectrometer (LAS). The 0.15 μm HFATS measurements at 100% test flow were markedly higher than the corresponding Q107 measurements. These measurements resulted in over 18% of the filters being rejected by the HFATS only, compared to no filters being rejected only by the Q107 and approximately 0.2% being rejected by both systems

  16. Solid Oxide Fuel Cell Systems PVL Line

    Energy Technology Data Exchange (ETDEWEB)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development

  17. Experimental analysis of the flow structure in the laboratory model of SOFC fuel cell channels

    International Nuclear Information System (INIS)

    In the presented paper a flow structure in the gas channel of planar SOFC fuel cell is presented. The model taken for analysis was constructed based on the channel geometry manufactured by SOFC Power company. The shape of a channel was rectangular filled with large number of obstacles which role is to divide the flow into segments with possibly homogenous velocity distribution. The model itself was constructed from Plexiglas and the reactant gases flow was modelled by water motion. To investigate and visualize the flow structures a PIV technique was applied. Three different flow rates were taken for investigations and the flow uniformity and time dependence was studied.

  18. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  19. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  20. UVC-induced lysis and detritus production of Oscillatoria limnetica in a two-stage continuous-flow system

    NARCIS (Netherlands)

    Van Hannen, E.J.; Gons, H.J.

    1997-01-01

    In order to study in model systems the role of heterotrophic micro-organisms in the aquatic microbial food web, a natural food source consisting of senescent primary producer cells is indispensable. A two-stage continuous-flow system with the ability to produce detritus continuously is presented. In

  1. Shear modulation of intercellular contact area between two deformable cells colliding under flow

    OpenAIRE

    Jadhav, Sameer; Chan, Kit Yan; Konstantopoulos, Konstantinos; Eggleton, Charles D.

    2007-01-01

    Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are computed using the Immersed Boundary Method for shear rates of 100–400 s−1. As the two cells collid...

  2. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics

    OpenAIRE

    Ramji, Ramesh; Wang, Ming; Bhagat, Ali Asgar S.; Tan Shao Weng, Daniel; Thakor, Nitish V.; Teck Lim, Chwee; Chen, Chia-Hung

    2014-01-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel...

  3. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  4. Development of high pressure two-phase choked flow analysis methodology in complex piping system

    International Nuclear Information System (INIS)

    Choked flow mechanism, characteristics of two-phase flow sound velocity and compressibility effects on flow through various piping system components are studied to develop analysis methodology for high pressure two-phase choked flow in complex piping system which allows choking flow rate evaluation and piping system design related analysis. Piping flow can be said choked if Mach number is equal to 1 and compressibility effects can be accounted through modified incompressible formula in momentum equation. Based on these findings, overall analysis system is developed to study thermal-hydraulic effects on steady-state piping system flow and future research items are presented. (Author)

  5. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  6. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    Science.gov (United States)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  7. Radiometric systems for monitoring material flow through cement works furnaces

    International Nuclear Information System (INIS)

    The measuring system uses the principle of monitoring the attenuation of a gamma-ray beam following passage through matter. The transported material travels in the space between the radiation source and the detector. Radiometric material flow monitoring was industrially used in cement works for monitoring the flow of material through an exchanger shaft and two exchangers on the Portland cement production line, and for measuring the thickness of deposits on the cyclone exchanger lining on the white cement production line. 137Cs sources of activities in the range of 6.65 to 26.6 GBq and a 60Co source of an activity of 16.6 GBq were used. The radiation was detected using Geiger-Mueller counters. The measuring systems thus implemented feature long-term reliability, minimal failure rate and minimal requirements for operation and maintenance. (J.C.)

  8. Fiber optic flow system for potable water monitoring

    Science.gov (United States)

    Stadnik, Dorota; Majewska, Emilia; Chudy, Michal; Wróblewski, Wojciech; Brzózka, Zbigniew; Dybko, Artur

    2005-09-01

    The principle of the operation of a fiber optic chemical sensor (FOCS) is a chemically sensitive receptor part, which can be called as a chemooptical interface. This interface converts information on the analyte into changes of optical signal. In the case of the designed system, an appropriate reagent exhibiting changes in absorbance is immobilized on a polymeric support in a form of small beads. Such modified polymers are then loaded into a tube in order to construct a flow through sensor. The following reagents were used: bromothymol blue as pH-sensitive indicator, Chlorophosphonazo III as calcium-sensitive indicator, and 4-(2-pyridylazo)-resorcinol (PAR) as heavy metal indicator. The paper describes the immobilization procedures, tests of the flow through sensors with their calibration characteristics as well as system design considerations.

  9. The aerodynamic performance of several flow control devices for internal flow systems

    Science.gov (United States)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  10. Far from equilibrium energy flow in quantum critical systems

    CERN Document Server

    Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad

    2013-01-01

    We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.

  11. Self-Calibrating, Variable-Flow Pumping System

    Science.gov (United States)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  12. Clogging transition of many-particle systems flowing through bottlenecks

    OpenAIRE

    Iker Zuriguel; Daniel Ricardo Parisi; Raúl Cruz Hidalgo; Celia Lozano; Alvaro Janda; Paula Alejandra Gago; Juan Pablo Peralta; Luis Miguel Ferrer; Luis Ariel Pugnaloni; Eric Clément; Diego Maza; Ignacio Pagonabarraga; Angel Garcimartín

    2014-01-01

    When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, ...

  13. Capturing Android Malware Behaviour using System Flow Graph

    OpenAIRE

    Andriatsimandefitra, Radoniaina; Viet Triem Tong, Valérie

    2014-01-01

    This article uses a new data structure namely System Flow Graph (SFG) that offers a compact representation of information dis- semination induced by an execution of an application to characterize malicious application behavior and lead some experiments on 4 malware families DroidKungFu1, DroidKungFu2, jSMSHider, BadNews. We show how SFG are relevant to exhibit malware behavior.

  14. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  15. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  16. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  17. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  18. Nanoparticle-based assays in automated flow systems: A review

    International Nuclear Information System (INIS)

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section

  19. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    OpenAIRE

    Bittagopal Mondal; Dipankar Chatterjee

    2016-01-01

    The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC) since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus...

  20. Flow-Driven Cell Migration under External Electric Fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  1. Comparison of Multi-Line Power Flow Control using Unified power flow controller (UPFC and Interline Power Flow Controller (IPFC in Power Transmission Systems

    Directory of Open Access Journals (Sweden)

    SUNIL KUMAR JILLEDI

    2011-04-01

    Full Text Available The Unified power flow controller (UPFC and Interline power flow controller (IPFC are two latest generation flexible AC transmission systems (FACTS controller used to control power flows ofmultiple transmission lines. This paper presents a mathematical model of UPFC and IPFC, termed as power injection model (PIM. This model is incorporated in Newton- Raphson (NR power flow algorithmto study the power flow control in transmission lines in which UPFC and IPFC is placed and power flows are compared. A program in MATLAB has been written in order to extend conventional NR algorithmbased on this model. Numerical results are carried out on a standard 2 machine 5 bus system. The results are seen with our incoperation of any FACTS device and it has been compared with incorporation ofUPFC and IPFC are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

  2. Automatic multicommmutated flow system for diffusion studies of pharmaceuticals through artificial enteric membrane.

    Science.gov (United States)

    Sales, M G; Reis, B F; Montenegro, M C

    2001-08-01

    An automatic flow procedure with spectrophotometric detection was developed for the study of pharmaceuticals diffusion through an artificial enteric membrane. The manifold comprised two independent flow pathways, gathered by a diffusion unit with two compartments and an enteric lipophilic membrane. The pathways were automatically filled with solutions simulating digestive and plasmatic conditions by means of four solenoid valves. The diffusion of pharmaceuticals from the enteric to the plasmatic compartment was performed in closed loop pathways, and was continuously monitored by a flow cell coupled to the acceptor solution pathway. The volumes of the digestive and plasmatic solutions were 6.0 and 3.6 ml, respectively, which comprised filling unit compartment, pumping tubing and connecting flow lines. Pumping flow rates of donor and acceptor solutions were maintained at 6.0 and 2.5 ml min(-1), respectively. The proposed system was employed in diffusion studies of caffeine and aminophylline, and in the evaluation of the influence of tensioactive agents on the diffusion process. After continuous solutions circulation for 60 min, caffeine concentration in the acceptor stream was ca. 18% of its initial concentration at the digestive compartment. The system could be programmed to perform several replicates, stopping them with different degrees of diffusion without operator assistance. The data generated by the spectrophotometer was read by the microcomputer as a time function, and stored for further mathematical treatment. PMID:11451647

  3. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  4. Energy Flows in Low-Entropy Complex Systems

    CERN Document Server

    Chaisson, Eric J

    2015-01-01

    Nature's many complex systems--physical, biological, and cultural--are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence--relating neither entropy nor information, rather energy--suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density--the rate of energy flow per unit mass--can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy t...

  5. Characteristics of oscillating flow through a channel filled with open-cell metal foam

    International Nuclear Information System (INIS)

    An experimental study was performed to investigate the characteristics of oscillating flow through a channel filled with open-cell metal foam with a fully inter-connected pore structure. Detailed experimental data of oscillating flow pressure drops and velocities for a wide range of oscillatory frequency and the maximum flow displacement were presented. A correlation equation for the maximum friction factor of metal foams subject to oscillating flow was obtained and compared with the results for channels inserted with wire-screens obtained by other investigators. The results showed that oscillating flow characteristics in an open-cell metal foam are governed by a hydraulic ligament diameter based kinetic Reynolds number Re ω(Dh) and the dimensionless flow displacement amplitude A Dh. The effects of kinetic Reynolds number on the variations of pressure drop and flow velocity in metal foam are more significant than that of the dimensionless flow displacement amplitude. The maximum friction factor of oscillating flow in open-cell metal foams is much smaller than that of oscillating flow in wire-screens for large flow displacement amplitudes

  6. The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state.

    Science.gov (United States)

    Hewitt, Christopher J; Nebe-Von-Caron, Gerhard

    2004-01-01

    The development of multi-parameter flow cytometric techniques in our laboratories has led to a functional classification of the physiological state of single celled micro-organisms, including both yeast and bacteria. This classification is based on the presence or absence of an intact fully polarized cytoplasmic membrane and the transport systems across it. Using these techniques it is possible to resolve a cells physiological state, beyond culturability to include metabolic activity enabling assessment of population heterogeneity. Importantly results are available in real-time, 1-2 min after a sample is taken, enabling informed decisions to be taken about a process. These techniques have been extensively applied by us for monitoring the stress responses of micro-organisms in such diverse areas as brewing, bio-remediation, bio-transformation, food processing and pharmaceutical fermentation, some of which are discussed here. PMID:15217160

  7. Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    CERN Document Server

    Korn, C B

    2008-01-01

    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.

  8. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology.

    Science.gov (United States)

    Kuystermans, Darrin; Avesh, Mohd; Al-Rubeai, Mohamed

    2016-05-01

    Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications. PMID:25352493

  9. Experimental study of flow instability in elongated natural circulation system

    International Nuclear Information System (INIS)

    The visual experimental study with water as the working substance was performed to investigate the operation behavior of a natural circulation system with elongated loops and long horizontal sections at atmospheric pressure, and the transient operation behavior and instability mechanism of typical experimental phenomenon (P= 1.46 kW) were given. The results show that the single natural circulation in elongated system with the great resistance coefficient is difficult to appear, but the heat can be removed by two-phase intermittent boiling. The driven force caused by the sub-cooled boiling can not drive the fluid to produce the effective natural circulation because of the great loop resistance, and the circular flow occurs only when the fluid in heat section produces the saturation boiling. The big loop resistance and flashing because of pressure drop in boiling process make the elongated natural circulation difficult to maintain a stable flow driven head and they are the fundamental reasons of intermittent boiling and strong flow instability. (authors)

  10. OPTIMIZATION OF MATERIAL FLOW IN FLEXIBLE MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    J.V.S. BHASKAR,

    2010-12-01

    Full Text Available Flexible manufacturing systems have evolved as a solution to efficient mid-volume production of a variety of part types with low setup time, low work-in-process, low inventory, short manufacturing lead time, high machine utilization and high quality. Flexible manufacturing system (FMS is a computer controlled manufacturing system composed of separate workstations that are inter-connected by automatic material handling system. FMS can produce a number of different parts concurrently. Each part requires different operations in a certain sequence and workstations can typically perform a variety of operations. In this work, a material and information flow analysis as well as an analysis of the department and machines layout is made using genetic algorithm and Tabu search. This method reduces the manufacturing lead-time to produce the components and in-turn gives monetary benefits to the industry.

  11. A simple flow analysis of diffuser-getter-diffuser systems

    International Nuclear Information System (INIS)

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  12. Determination of Free and Total Sulfites in Wine using an Automatic Flow Injection Analysis System with Voltammetric Detection

    OpenAIRE

    Gonçalves, Luís Moreira; Pacheco, João Grosso; Magalhães, Paulo Jorge; Rodrigues, José António; Barros, Aquiles Araújo

    2009-01-01

    Abstract An automated Flow Injection Analysis (FIA) system based on a initial analyte separation by gas-diffusion and subsequent determination by square-wave voltammetry (SWV) in a flow cell is proposed for the determination of total and free content of sulphur dioxide (SO2) in wine. The proposed method was compared with two iodometric methodologies (the Ripper method and the simplified method commonly used by the wine industry). The developed method shown repeatability (RSD lower ...

  13. High flow, low mobile weight quick disconnect system

    Science.gov (United States)

    Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)

    2010-01-01

    A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.

  14. Thermoelectric and heat flow phenomena in mesoscopic systems

    Science.gov (United States)

    Matthews, Jason E.

    Low-dimensional electronic systems, systems that are restricted to single energy levels in at least one of the three spatial dimensions, have attracted considerable interest in the field of thermoelectric materials. At these scales, the ability to manipulate electronic energy levels offers a great deal of control over a device's thermopower, that is, its ability to generate a voltage due to a thermal gradient. In addition, low-dimensional devices offer increased control over phononic heat flow. Mesoscale geometry can also have a large impact on both electron and phonon dynamics. Effects such as ballistic transport in a two-dimensional electron gas structure can lead to the enhancement or attenuation of electron transmission probabilities in multi-terminal junctions. The first half of this dissertation investigates the transverse thermoelectric properties of a four-terminal ballistic junction containing a central symmetry-breaking scatterer. It is believed that the combined symmetry of the scatterer and junction is the key component to understanding non-linear and thermoelectric transport in these junctions. To this end, experimental investigations on this type of junction were carried out to demonstrate its ability to generate a transverse thermovoltage. To aid in interpreting the results, a multi-terminal scattering-matrix theory was developed that relates the junction's non-linear electronic properties to its thermoelectric properties. The possibility of a transverse thermoelectric device also motivated the first derivation of the transverse thermoelectric efficiency. This second half of this dissertation focuses on heat flow phenomena in InAs/InP heterostructure nanowires. In thermoelectric research, a phononic heat flow between thermal reservoirs is considered parasitic due to its minimal contribution to the electrical output. Recent experiments involving heterostructure nanowires have shown an unexpectedly large heat flow, which is attributed in this

  15. Process Flow and Functional Analysis of the Iter Cryogenic System

    Science.gov (United States)

    Henry, D.; Chalifour, M.; Forgeas, A.; Kalinin, V.; Monneret, E.; Serio, L.; Vincent, G.; Voigt, T.

    2010-04-01

    The ITER cryogenic system is presently under design by a large international collaboration. It will start commissioning at Cadarache, south of France in 2015. The system is designed to provide an equivalent refrigeration capacity of 65 kW at 4.5 K for the superconducting magnet and 1300 kW at 80 K for the cryoplant pre-cooling stages and the Cryostat Thermal Shields (CTS). The cryoplant consists of three 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. Two 4.5 K modules are dedicated to the magnet system and a small one is devoted to the cryopumps and Pellet Injection System. One Interconnection box interfaces the cryoplant and a complex cryodistribution system which includes 5 Auxiliary Cold Boxes dedicated to each cryogenic subsystem. The ITER cryogenic system will have to cope with various normal and abnormal operational modes including superconducting magnets quench recovery and fast energy discharge. We will present the general Process Flow Diagram of the cryoplant and cryodistribution system and the operation requirements. The functional analysis of the cryogenic system will be performed leading to a proposal of the cryogenic control system architecture. The instrumentation and control requirements will also be outlined.

  16. System Studies of Fuel Cell Power Plants

    OpenAIRE

    Kivisaari, Timo

    2001-01-01

    This thesis concerns system studies of power plants wheredifferent types of fuel cells accomplish most of the energyconversion. Ever since William Grove observed the fuel cell effect inthe late 1830s fuel cells have been the subject or more or lessintense research and development. Especially in the USA theseactivities intensified during the second part of the 1950s,resulting in the development of the fuel cells used in theApollo-program. Swedish fuel cell activities started in themid-1960s, w...

  17. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    CERN Document Server

    Borsche, Raul

    2014-01-01

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  18. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    Science.gov (United States)

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  19. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  20. Energy Flows in Low-Entropy Complex Systems

    Directory of Open Access Journals (Sweden)

    Eric J. Chaisson

    2015-12-01

    Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.

  1. Determining Solubility and Diffusivity by Using a Flow Cell Coupled to a Mass Spectrometer.

    Science.gov (United States)

    Khodayari, Mehdi; Reinsberg, Philip; Abd-El-Latif, Abd-El-Aziz A; Merdon, Christian; Fuhrmann, Juergen; Baltruschat, Helmut

    2016-06-01

    One of the main challenges in metal-air batteries is the selection of a suitable electrolyte that is characterized by high oxygen solubility, low viscosity, a liquid state and low vapor pressure across a wide temperature range, and stability across a wide potential window. Herein, a new method based on a thin layer flow through cell coupled to a mass spectrometer through a porous Teflon membrane is described that allows the determination of the solubility of volatile species and their diffusion coefficients in aqueous and nonaqueous solutions. The method makes use of the fact that at low flow rates the rate of species entering the vacuum system, and thus the ion current, is proportional to the concentration times the flow rate (c⋅u) and independent of the diffusion coefficient. The limit at high flow rates is proportional to D2/3·c·u1/3 . Oxygen concentrations and diffusion coefficients in aqueous electrolytes that contain Li(+) and K(+) and organic solvents that contain Li(+) , K(+) , and Mg(2+) , such as propylene carbonate, dimethyl sulfoxide tetraglyme, and N-methyl-2-pyrrolidone, have been determined by using different flow rates in the range of 0.1 to 80 μL s(-1) . This method appears to be quite reliable, as can be seen by a comparison of the results obtained herein with available literature data. The solubility and diffusion coefficient values of O2 decrease as the concentration of salt in the electrolyte was increased due to a "salting out" effect. PMID:27017297

  2. Laminar flow in radial flow cell with small aspect ratios: Numerical and experimental study

    DEFF Research Database (Denmark)

    Detry, J. G.; Deroanne, C.; Sindic, M.; Jensen, Bo Boye Busk

    2009-01-01

    be applied for experiments performed at higher Reynolds numbers. The present study is a numerical analysis of the radial axisymmetrical flow for aspect ratios of 0.125, 0.25, 0.5 and 1 with inlet pipe Reynolds numbers varying from 0 to 2000, aiming at computing the wall shear stress distribution at...... investigations. The experimental positions of these recirculation zones corresponded well to the numerical predictions. Based on this work, a map of the flow for the different aspect ratios was developed, which can be particularly interesting for the design of experimental devices involving axisymmetrical flow....

  3. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  4. Groundwater flow system and Nitrogen cycle in volcanic aquifer of pyroclastic flow uplands, Japan

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Tashiro, S.; Niimi, H.

    2007-12-01

    Study area is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture and cattle farming. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. The detailed three dimensional groundwater flow system study has been done by using existing wells in the basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. However, the detailed groundwater age analysis by using Tritium for unconfined and confined groundwater has not been succeeded because of present low atmosphere tritium concentration. Thus we applied to challenge the CFCs dating method. Although the CFCs method has been widely used for dating the young groundwater instead of tritium in many countries, in Japan CFCs has been used only by Oceanographic study and has not been used in the field of Hydrology. The history and fate of Nitrate contamination have been shown in multidisciplinary local transect studies in areas with agricultural sources (Bohlke and Denver 1995). However, identification of Nitrogen sources can be difficult in larger regional studies because of co-occurrence of multiple anthropogenic Nitrogen sources and uncertainty in Nitrogen transformation pathways. Thus, the characterization of N geochemistry remains challenging, particularly in aquifer-scale assessments (Stephen 2006). In this study, the evidence of the shallow groundwater flowing towards deep aquifer was verified by the groundwater dating and the detailed Nitrogen reduction process was confirmed along the groundwater flow.

  5. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer.

    Science.gov (United States)

    Nozaki, O; Kawamoto, H

    2000-01-01

    A novel flow cell reactor was developed for micro-flow injection determination of hydrogen peroxide (H(2)O(2)) using horseradish peroxide (HRP)-catalysed luminol chemiluminescence. The newly developed flow cell reactor for a chemiluminometer allowed mixing of the chemiluminescent reagents in front of a photomultiplier for maximum detection of the emitted light. The rapid mixing allowed a decrease in the flow rate of the pump to 0.1-0.01 mL/min, resulting in increased sensitivity of detection of light. The flow cell reactor was made by packing HRP-immobilized gels into a flow cell (Teflon tube; 6 cm x 0.98 mm i.d.) located in the cell holder of a chemiluminometer (flow-through type). The HRP-immobilized gels were made by immobilizing HRP onto the Chitopearl gel by the periodate method. H(2)O(2) specimens (50 microL) were injected into a stream of water delivered at a flow rate of 0.1 mL/min and mixed with a luminol solution (0.56 mmol/L in Tricine buffer, pH 9.2) delivered at 0.1 mL/min in the flow cell reactor. Within-run reproducibility of the assay of H(2)O(2) was 2.4% (4.85 micromol/L; flow rate 0.1 mL/min, injection interval 10 min). The reproducibility of the H(2)O(2) assay was influenced by the flow rates and the injection intervals of the H(2)O(2) specimens. As the flow rates decreased, both the light intensity and the light duration increased. Optimal light intensity was obtained at a luminol concentration of 3-8 mmol/L, but 0.56 mmol/L was sufficient for assay of H(2)O(2) in clinical specimens. At a luminol concentration of 0.56 mmol/L, the regression equation of the standard curve for H(2)O(2) (0-9.7 micromol/L) was Y = 27.5 X(2) + 394 X + 58.9 (Y = light intensity; X = concentration of H(2)O(2)) and the detection limit of H(2)O(2) was 0.2 micromol/L. This method was used to assay glucose (2.7-16.7 mmol/L) based on a glucose oxidase (20 U/mL, pH 7.4) reaction. The standard curve for glucose was Y = 167 X(2) - 351 X + 1484 (Y = light intensity; X = glucose

  6. A Movable Asymmetrical Flow Field-Flow Fractionation System for Size Characterization of Nanoparticles

    International Nuclear Information System (INIS)

    The performance test of the established AF4 system was carried out with polystyrene or silver reference nanoparticles. In order to investigate trace amounts of natural nanoparticles using AF4, highly sensitive detection method or pre-concentration of samples are necessary. In the present work, liquid waveguide capillary cells (LWCCs) with longer optical path length than 1 cm are adopted for enhancing sensitivity of absorption measurement. The optimum separation conditions of AF4 coupled with LWCC system and the limit of detection (LOD) of different cells will be discussed. A movable AF4 system was developed and tested for separation and size characterization of polystyrene and silver reference nanoparticles. For the enhancement of sensitivity on absorption measurement, LWCC with longer optical path length than 1 cm was coupled with the developed AF4 system and the optimized condition of AF4-LWCC system was obtained. The developed AF4 system will be combined with laser-induced breakdown detection (LIBD) for analysis of trace nanoparticles in natural water

  7. A Movable Asymmetrical Flow Field-Flow Fractionation System for Size Characterization of Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Tae; Cho, Hye-Ryun; Cha, Wansik; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungho [Hannam University, Daejeon (Korea, Republic of)

    2015-05-15

    The performance test of the established AF4 system was carried out with polystyrene or silver reference nanoparticles. In order to investigate trace amounts of natural nanoparticles using AF4, highly sensitive detection method or pre-concentration of samples are necessary. In the present work, liquid waveguide capillary cells (LWCCs) with longer optical path length than 1 cm are adopted for enhancing sensitivity of absorption measurement. The optimum separation conditions of AF4 coupled with LWCC system and the limit of detection (LOD) of different cells will be discussed. A movable AF4 system was developed and tested for separation and size characterization of polystyrene and silver reference nanoparticles. For the enhancement of sensitivity on absorption measurement, LWCC with longer optical path length than 1 cm was coupled with the developed AF4 system and the optimized condition of AF4-LWCC system was obtained. The developed AF4 system will be combined with laser-induced breakdown detection (LIBD) for analysis of trace nanoparticles in natural water.

  8. A rapid, simple and sensitive flow cytometric system for detection of Plasmodium falciparum.

    Science.gov (United States)

    Saito-Ito, A; Akai, Y; He, S; Kimura, M; Kawabata, M

    2001-11-01

    We have established a rapid, simple and sensitive flow cytometric system for the detection of Plasmodium falciparum that involves lysing erythrocytes and staining parasites at the same time using a newly developed hemolysing and staining solution containing dodecyl methyl ammonium chloride and acridine orange. In this system, freed parasites of P. falciparum could be plotted separately from erythrocyte ghosts, white blood cells and platelets on the two-dimensional scattergram of forward-angle light scatter and green fluorescence by flow cytometry with an argon laser. It took only 2-3 min per sample to obtain the scattergram and analyze the data, including the time of sample preparation for flow cytometric analysis. Sample preparation with this method does not require any difficult handling procedures. The threshold of parasite detection was almost equal to that of microscopic examination for cultured P. falciparum. The results of drug-susceptibility assays using this system were also almost identical to those obtained using microscopic examination. In this system, parasites at different erythrocytic stages could be easily distinguished. This system must prove useful and practical for basic laboratory studies of P. falciparum including those requiring the differential measurement of parasites at specific erythrocytic stages. PMID:11719111

  9. Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems

    Institute of Scientific and Technical Information of China (English)

    BINKOU Alhabib; YU Yixin

    2008-01-01

    The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

  10. The ATLAS Data Flow System for Run 2

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  11. The ATLAS Data Flow System for LHC Run II

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  12. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    CERN Document Server

    Doss, C E; Swisdak, M

    2016-01-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary...

  13. Flow Instability and Its Control in Compression Systems

    Institute of Scientific and Technical Information of China (English)

    Jingyi Chen

    2003-01-01

    This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.

  14. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  15. System design description for GCFR-core flow test loop

    International Nuclear Information System (INIS)

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations

  16. System design description for GCFR-core flow test loop

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  17. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small

  18. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical...... the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for...

  19. Simple liquid chromatography system for low flow rate gradient separations

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Kahle, Vladislav

    Brno : Vysoké učení technické v Brně, Fakulta chemická, 2013 - (Dzik, P.), s. 416-421 ISBN 978-80-214-5078-3. [Studentská odborná konference Chemie je život 2014. Brno (CZ), 04.12.2014-05.12.2014] R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : gradient elution * simple system * low flow rates Subject RIV: CB - Analytical Chemistry, Separation http://hdl.handle.net/11104/0241159

  20. Numerical simulation of multiphase flows with material interface on an unstructured grid system

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2012-05-15

    Two-dimensional multiphase flows with material interface due to density difference are numerically simulated on an unstructured grid system by a Navier-Stokes solver developed by Myong and Kim (2006), since numerical computation for these flows is still known to be difficult, especially if the interface separates fluids of large different densities. This solver employs an unstructured cell-centered method based on a conservative pressure-based finite volume method, since the unstructured grid approach makes the solver very flexible in dealing with complex boundaries, and adopts a high resolution method (CICSAM) in a volume of fluid (VOF) scheme for the accurate phase interface capturing. The test cases are the Rayleigh-Taylor instability (density ratio of 2), the oil bubble rising in a partially filled container (density ratio of 2), the air bubble rising in a fully filled container with bubble shedding (density ratio of 100) and the droplet splash (density ratio of about 1000), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present results are compared with other numerical solutions found in the literature. The present method (solver) efficiently and accurately simulates complex interface flows such as multiphase flows with material interface due to both density difference and instability.

  1. Numerical simulation of multiphase flows with material interface on an unstructured grid system

    International Nuclear Information System (INIS)

    Two-dimensional multiphase flows with material interface due to density difference are numerically simulated on an unstructured grid system by a Navier-Stokes solver developed by Myong and Kim (2006), since numerical computation for these flows is still known to be difficult, especially if the interface separates fluids of large different densities. This solver employs an unstructured cell-centered method based on a conservative pressure-based finite volume method, since the unstructured grid approach makes the solver very flexible in dealing with complex boundaries, and adopts a high resolution method (CICSAM) in a volume of fluid (VOF) scheme for the accurate phase interface capturing. The test cases are the Rayleigh-Taylor instability (density ratio of 2), the oil bubble rising in a partially filled container (density ratio of 2), the air bubble rising in a fully filled container with bubble shedding (density ratio of 100) and the droplet splash (density ratio of about 1000), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present results are compared with other numerical solutions found in the literature. The present method (solver) efficiently and accurately simulates complex interface flows such as multiphase flows with material interface due to both density difference and instability

  2. The map of energy flow in HVAC systems

    International Nuclear Information System (INIS)

    Highlights: → Discussion of the four stages in the 'HVAC systems energy chain'. → Examination of HVAC systems as energy conversion devices. → Analysis of HVAC Sankey diagrams. → Discussion of HVAC loads and HVAC energy losses. -- Abstract: Heating, ventilation and air conditioning (HVAC) systems are the most energy consuming building services representing approximately half of the final energy use in the building sector and between one tenth and one fifth of the energy consumption in developed countries. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research and energy policies, mainly due to the complexity and variety of HVAC systems but also to insufficient rigour in their energy analysis. This paper reviews energy related aspects of HVAC systems with the aim of establishing a common ground for the analysis of their energy efficiency. The paper focuses on the map of energy flow to deliver thermal comfort: the HVAC energy chain. Our approach deals first with thermal comfort as the final service delivered to building occupants. Secondly, conditioned spaces are examined as the systems where useful heat (or coolth) is degraded to provide comfort. This is followed by the analysis of HVAC systems as complex energy conversion devices where energy carriers are transformed into useful heat and coolth, and finally, the impact of HVAC energy consumption on energy resources is discussed.

  3. Ex-situ gas diffusion layer intrusion effect determination of polymer electrolyte membrane fuel cell flow fields

    Science.gov (United States)

    Haase, S.; Rauber, M.

    2015-09-01

    In automotive PEM fuel cell systems, one of the most important targets is to reduce the parasitic power of balance of plant components, e.g. the air supply. This can be achieved for example by decreasing air stoichiometry. However, this could lead to bad flow sharing in the fuel cell stack. Therefore the fluid distribution in the flow field has to be evaluated, understood and optimized. This work evaluates the effect of GDL intrusion on the pressure drop via ex-situ determination of GDL intrusion using CFD simulation. The intruded GDL geometries, evaluated by an optical microscope with 200 times enlargement, are transferred to pressure drop behaviors by a numerical CFD model. These results are compared to the results of the differential pressure method of mapping the pressure distribution, described in [43]. The intrusion of the GDL leads to homogeneous flow distribution up to clamping pressures of 2.5 MPa. The inhomogeneous intrusion, induced by cracked fibers that extend into the channel, dominates the flow at higher clamping pressures and leads to the exponential increase in pressure drop in the differential pressure method. For clamping pressures used in typical fuel cell applications, the results of both methods show homogeneous flow through the channels.

  4. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...

  5. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  6. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  7. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  8. Energy flows in lowland soybean production system in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Carolina da Silva Andrea

    2016-01-01

    Full Text Available ABSTRACT: Soybean is the main product of Brazilian agribusiness, both production and income. Considering the increase in food and energy demand and the search for more sustainable production systems, this study aimed to analyze inputs and energy use of a possible area of expansion of soybean production: a system under sub irrigation management located in a lowland area of Cerrado biome, northern region of Brazil. Its environmental performance was compared to other Brazilian locations among them traditionally soybean producers. The evaluation and comparison was made through material and energy flow tools in order to determine the inputs embodied per area, as well as energy demand, availability and efficiency in the analyzed production system. Energy demand (IE and energy availability (OE of the analyzed production system were 7.6 and 57.1 GJ ha-1, respectively. Energy balance (EB was 49,5 GJ ha-1, energy return over investment (EROI was 7.5 and embodied energy in grains (EE was 2,2 MJ kg-1, respectively. Highest energy consumption was due to the use of fertilizers, fuel and herbicide. The system is energy efficient, since it provides more energy than demands, and efficient when compared to usual production systems in other regions, however it is highly dependent on non-renewable energy.

  9. Steam electrolysis cell system and electrolyzing method

    International Nuclear Information System (INIS)

    The present invention concerns a method effective to the electrolysis of tritium water in a tritium recovering system of a thermonuclear fuel system. Namely, in a steam electrolysis cell system including integrally constituted multistage type cells and independently disposed single stage type cell, steams are supplied from upstream to the multistage type cell. A voltage is applied at such a level that the concentration of the steams in the vicinity of the single stage type cell situated at the downmost stream among the cells is not decreased to 0 to electrolyze steams. Then, not yet decomposed steams are introduced to the single stage cell to complete the electrolysis. The device can be simplified and steams can be electrolyzed efficiently. (N.H.)

  10. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles

    OpenAIRE

    Ong, Peng Kai; Namgung, Bumseok; Johnson, Paul C.; Kim, Sangho

    2010-01-01

    Formation of a cell-free layer is an important dynamic feature of microcirculatory blood flow, which can be influenced by rheological parameters, such as red blood cell aggregation and flow rate. In this study, we investigate the effect of these two rheological parameters on cell-free layer characteristics in the arterioles (20–60 μm inner diameter). For the first time, we provide here the detailed temporal information of the arteriolar cell-free layer in various rheological conditions to bet...

  11. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    OpenAIRE

    Brust, Matthias,; Aouane, Othmane; Thiébaud, Marine; Flormann, Daniel; Verdier, Claude; Kaestner, Lars; Laschke, Matthias; Selmi, Hassib; Benyoussef, Abdellilah; Podgorski, Thomas; Coupier, Gwennou; Misbah, Chaouqi; Wagner, Christian

    2014-01-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule netw...

  12. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.;

    2009-01-01

    change in the flow pattern in the vicinity of the aggregates and not because of changes in the type of particle adhesion. This raises the importance of the experimental conditions on assessing the critical wall shear stress since this parameter may not be always only directly related to the soil adhesion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the...

  13. Systems and certification issues for civil transport aircraft flow control systems

    OpenAIRE

    Liddle, Stephen C; Crowther, William J.; Jabbal, Mark

    2009-01-01

    This article is placed here with permission from the Royal Aeronautical Society - Copyright @ 2009 Royal Aeronautical Society The use of flow control (FC) technology on civil transport aircraft is seen as a potential means of providing a step change in aerodynamic performance in the 2020 time frame. There has been extensive research into the flow physics associated with FC. This paper focuses on developing an understanding of the costs and design drivers associated with the systems needed ...

  14. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  15. In vivo flow cytometer for real-time detection and quantification of circulating cells

    OpenAIRE

    Novak, J.; Georgakoudi, I.; Wei, X; Prossin, A.; Lin, C.P.

    2004-01-01

    An in vivo flow cytometer is developed that allows the real-time detection and quantification of circulating fluorescently labeled cells in live animals. A signal from a cell population of interest is recorded as the cells pass through a slit of light focused across a blood vessel. Confocal detection of the excited fluorescence allows continuous monitoring of labeled cells in the upper layers of scattering tissue, such as the skin. The device is used to characterize the in vivo kinetics of re...

  16. A rapid method for evaluation of cell number and viability by flow cytometry

    OpenAIRE

    Al-Rubeai, M.; Welzenbach, K.; Lloyd, D R; Emery, A.N.

    1997-01-01

    A simple, rapid and reliable method has been developed for assessing the number and viability of cells, as well as cell size, in suspension culture by the use of flow cytometry. Propidium iodide exclusion is used for viability determination and fluorescent beads serve as an internal standard for cell enumeration. The main advantages of this method are its ability to handle a large number of samples with a high degree of precision and its specificity in detecting viable cells quantitatively in...

  17. Combined Flow Cytometric Measurement of Two Cell-Surface Antigens and DNA-RNA Content

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Ingrid Schmid Corresponding author ([]()) ### INTRODUCTION Flow cytometry is frequently used to assess nucleic acid content in individual cells. Based on DNA content alone, however, cells in the quiescent G0 phase cannot be discriminated from cells in the proliferative G1 phase, as DNA content remains constant until S-phase entry. In contrast, by measuring RNA content in addition to DNA content, cells can be assigned to G0 and c...

  18. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  19. Unsteady flow modeling of an electrorheological valve system with experimental validation

    International Nuclear Information System (INIS)

    This paper presents an unsteady flow modeling of an electrorheological (ER) valve system and verifies its effectiveness through experimental investigation. After designing a cylindrical ER valve, a dynamic model for unsteady flow of ER fluid is derived by considering the fluid inertia. The field-dependent pressure drop of the unsteady flow is then calculated and validated with the experimental result. In order to clearly observe the difference between the unsteady flow model and the steady model, the flow rate of the ER valve is analyzed under low frequency and high frequency sinusoidal inputs. In addition, in order to demonstrate the effectiveness of the proposed unsteady flow model, a position control system activated by ER valves is constructed. The dynamic model of the control system is formulated on the basis of the unsteady flow analysis, and control responses such as flow rate, pressure drop and displacement are compared between the unsteady flow and the steady flow models

  20. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.

    Science.gov (United States)

    Zhao, Fenglong; Li, Li; Guan, Liuyuan; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2014-03-01

    Adhesion of cancer cell to endothelial cells and the subsequent trans-endothelial migration are key steps in hematogenous metastasis. However, the molecular mechanisms of cancer cell/endothelial cell interaction under hemodynamic shear flow and how shear flow-induced cancer cell mechanotransduction are yet to be fully defined. In this study, we identified that the integrins of both platelet glycoprotein IIb/IIIa (GP IIb/IIIa) and αvβ3 were crucial for hematogenous metastasis of human breast carcinoma MDA-MB-231 cells. The cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of invaded MDA-MB-231 cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited MDA-MB-231 cell invasion. We further used a parallel-plate flow chamber to investigate MDA-MB-231 cell adhesion under flow conditions. Alike in static condition, the adhesion capability of MDA-MB-231 cells to endothelial monolayer was also significantly affected by GP IIb/IIIa and αvβ3 integrins. The expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and αvβ3 integrin in MDA-MB-231 cells were up-regulated after low shear stress exposure (1.84 dynes/cm(2), 2 h). Moreover, we also demonstrated that low shear stress induced a sustained activation of p85 (a regulatory subunit of PI3K) and Akt. Pre-treating MDA-MB-231 cells with the specific PI3K inhibitor of LY294002 abolished the shear stress induced-Akt activation, and the expression of MMP-2, MMP-9, vascular endothelial growth factor (VEGF) and αvβ3 integrin were also down-regulated. Immunofluorescence assay showed that low shear stress also induced αvβ3 integrin clustering and nuclear factor-κB (NF-κB) activation. Interestingly, shear stress-induced activation of Akt and NF-κB was attenuated by LM609, a specific antibody of αvβ3 integrin. It suggests that αvβ3

  1. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  2. A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide

    International Nuclear Information System (INIS)

    The behavior of a small-scale flow alkaline fuel cell (AFC) built-up for on-site production of HO2- using commercial gas-diffusion electrodes has been studied. It produces a spontaneous current due to the oxidation of H2 to H2O at the H2-diffusion anode and the reduction of O2 to HO2- at the O2-diffusion cathode, while a fresh 1.0-6.0 mol dm-3 KOH electrolyte at 15.0-45.0 deg. C is injected through it. Under circulation of HO2-+KOH solutions in open circuit, the flow AFC behaves as a two-electron reversible system. When it is shorted with an external load (Rext), steady cell voltage-current density curves are found. The use of O2/N2 mixtures to fed the cathode causes a loss of its performance, being required to supply pure O2 to yield a maximum HO2- electrogeneration. The current density and HO2- productivity increase with raising OH- concentration, temperature and pressure of O2 fed. At Rext=0.10 Ω, a current efficiency close to 100% is obtained, and current densities >100 mA cm-2 are achieved for 1.0 mol dm-3 KOH at 45.0 deg. C and for higher KOH concentrations at 25.0 deg. C. The flow AFC can work under optimum conditions up to 6.0 mol dm-3 KOH and 45.0 deg. C for possible industrial applications

  3. Finite element analysis of turbulent flow in fast reactor fuel subassembly elementary flow cell

    International Nuclear Information System (INIS)

    The method is described of calculating fully developed longitudinal steady-state turbulent flow of an incompressible fluid through an infinite bundle of parallel smooth rods, based on the finite element method and one-equation turbulence model. Theoretical calculation results are compared with experimental results. (author). 5 figs., 3 refs

  4. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  5. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  6. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  7. Improvement and analysis of the hydrogen-cerium redox flow cell

    Science.gov (United States)

    Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.

    2016-09-01

    The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.

  8. A degree theory for coupled cell systems with quotient symmetries

    International Nuclear Information System (INIS)

    We introduce a topological degree theory for the study of Hopf bifurcations in coupled cell systems whose quotient systems (obtained by restricting the system to its flow-invariant subspaces) possess various symmetries. To describe the structure of these quotient symmetries, we introduce the concept of a representation lattice, which is defined as a lattice of representation spaces of (different) symmetry groups that satisfy a compatibility and a consistence condition. Based on the (twisted) equivariant degree, we define a lattice-equivariant degree for maps that are compatible with respect to this representation lattice structure. We apply the lattice-equivariant degree to study a synchrony-breaking Hopf-bifurcation problem in (homogeneous) coupled cell systems and obtain a topological classification of all bifurcating branches of oscillating solutions according to their synchrony types and their symmetric properties. (paper)

  9. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yuji Ishii; Ryota Saito; Hideki Marushima; Ryusuke Ito; Taro Sakamoto; Katsuhiko Yanaga

    2008-01-01

    AIM:To examine the efficacy of the radial flow bioreactor (RFB) as an extracorporeal bioartificial liver (BAL) and the reconstruction of liver organoids using embryonic pig liver cells.METHODS:We reconstructed the liver organoids using embryonic porcine liver cells in the RFB.We also determined the gestational time window for the optimum growth of embryonic porcine liver cells.Five weeks of gestation was designated as embryonic day (E) 35 and 8 wk of gestation was designated as E56.These cells were cultured for one week before morphological and functional examinations.Moreover,the efficacy of pulsed administration of a high concentration hepatocyte growth factor (HGF) was examined.RESULTS:Both cell growth and function were excellent after harvesting on E3S.The pulsed administration of a high concentration of HGF promoted the differentiation and maturation of these fetal hepatic cells.Microscopic examination of organoids in the RFB revealed palisading and showed that bile duct-like structures were well developed,indicating that the organoids were mini livers.Transmission electron microscopy revealed microvilli on the luminal surfaces of bile duct-like structures and junctional complexes,which form the basis of the cytoskeleton of epithelial tissues.Furthermore,strong expression of connexin (Cx) 32,which is the mainprotein of hepatocyte gap junctions,was observed.With respect to liver function,ammonia detoxification and urea synthesis were shown to be performed effectively.CONCLUSION:Our system can potentially be applied in the fields of BAL and transplantation medicine.

  10. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  11. Evaluation of IEEE 57 Bus System for Optimal Power Flow Analysis

    OpenAIRE

    Pooja Sharma; Navdeep Batish

    2015-01-01

    The analysis of load flow in a network under steady state operation is challenging task especially subjected to inequality constraints in which the system operates. No doubt, that the load flow system analysis is an important aspect for power system analysis and design. The basic analysis technique for power flow is to find different parameters including magnitude and phase angle of voltage at each bus with active and reactive power flows in each transmission lines. Thus, load flo...

  12. Cluster of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction

    CERN Document Server

    Clavería, Viviana; Thiébaud, Marine; Abkarian, Manouk; Coupier, Gwennou; Misbah, Chaouqi; John, Thomas; Wagner, Christian

    2016-01-01

    We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters form along the capillaries and macromolecule-induced adhesion contribute to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes the only predominant mechanism. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles captures the transition between adhesive and non-adhesive clusters at different flow velocities.

  13. A Raman Flow Cytometer: An Innovative Microfluidic Approach for Continuous Label-Free Analysis of Cells via Raman Spectroscopy

    KAUST Repository

    De Grazia, Antonio

    2015-05-05

    In this work a Raman flow cytometer is presented. It is a whole new microfluidic device that takes advantage of basic principles of Raman spectroscopy and fluorescent flow cytometry mixed together in a system of particularly shaped channels. These are indeed composed by specific shape and sizes – thanks to which cells can flow one-by-one – and a trap by means of which cells are trapped in order to perform Raman analysis on single ones in a constant and passive way. In this sense the microfluidic device promotes a fast method to look for single cells in a whole multicellular sample. It is a label-free analysis and this means that, on the contrary of what happens with fluorescent flow cytometry, the sample does not need to undergo any particular time-consuming pretreatment before being analyzed. Moreover it gives a complete information about the biochemical content of the sample thanks to the involvement of Raman spectroscopy as method of analysis. Many thought about a device like this, but eventually it is the first one being designed, fabricated and tested. The materials involved in the production of the Raman flow cytometer are chosen wisely. In particular the chip – the most important component of the device – is multilayered, being composed by a slide of calcium fluoride (which gives a negligible signal in Raman analyses), a photosensitive resist containing a pattern with channels and another slide of calcium fluoride in order for the channels to be sealed on both sides. The chip is, in turn, connected to gaskets and external frames. Several fabrication processes are followed to ultimately get the complete Raman flow cytometer and experiments on red blood cells demonstrate its validity in this field.

  14. Microfluidic systems for cell lysis

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Ivona; Grym, Jakub; Klepárník, Karel; Foret, František

    2006. [Annual European Conference on Micro&Nanoscale Technologies for the Biosciences /10./. 14.11.2006-16.11.2006, Montreux] R&D Projects: GA AV ČR IAA400310506; GA AV ČR KAN400310651; GA MŠk LC06023; GA ČR GA203/06/1685 Institutional research plan: CEZ:AV0Z40310501 Keywords : cell lysis * yeast cells * microfluidic device Subject RIV: CB - Analytical Chemistry, Separation

  15. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system.

    Science.gov (United States)

    Huang, Gui-Lin; Zhang, Ni-Ni; Wang, Jun-Sheng; Yao, Li; Zhao, Yu-Jie; Wang, Yu-Ying

    2012-08-01

    This study investigated the transdifferentiation of stem cells from human amnion tissue into functional acinar cells (ACs) using a co-culture system. Human amniotic epithelial cells (hAECs) were isolated from amnion tissue by mechanical mincing and enzymatic digestion. After primary culture, the phenotype of the cells was identified by flow cytometry (FCM) and immunocytochemical staining. hAECs were co-cultured with submandibular gland acinar cells of SD rats using a double-chamber system. The expression of α-amylase was determined by immunocytochemical method and fluorescent real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) after induction for 1 and 2 weeks, respectively. Digestion with trypsin is an effective method for isolating hAECs from amnion tissue. These cells were positive for CD29 and CK19 and weakly positive for CD44 and α-amylase. Within 2 weeks, α-amylase in hAECs increased with induction time. The expression of α-amylase in hAECs was increased 3.38-fold after co-culturing for 1 week. This ratio increased to 6.6-fold, and these cells were positive for mucins, after co-culturing for 2 weeks. hAECs possess the potential to differentiate into ACs in vitro. They might be a stem cell resource for clinical applications of cell replacement therapy in salivary gland dysfunction diseases. PMID:22800093

  16. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    Science.gov (United States)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2015-12-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  17. Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Directory of Open Access Journals (Sweden)

    López-Carro Beatriz

    2009-01-01

    Full Text Available Abstract Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson. This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use.

  18. Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Casuriaga Rosana

    2009-03-01

    Full Text Available Abstract Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson. This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use.

  19. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  20. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2006-10-01

    Full Text Available This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i the design of novel matrices for enzymeimmobilisation, (ii new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH or parathion hydrolase (PH and (v thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations.

  1. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system

    OpenAIRE

    Abdul Razak, Mohd Azhar; Hoettges, Kai F.; Fatoyinbo, Henry O.; Labeed, Fatima H.; Hughes, Michael P

    2013-01-01

    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede “real world” performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In t...

  2. Study of the Behavior of the Mercury on Diverse Microelectrodes with Cell of Continuous Flow

    International Nuclear Information System (INIS)

    A comparative study of six types of microelectrodes in two different support electrolytes was developed using a new analytic technique for analysis of mercury in liquid samples in the ambit of parts by million. For it, a new system of cell of continuous flow and platinum microelectrodes and of platinum with gold film was implemented using volt-amperemetry of anodized spoil with square wave. In a preliminary study, some parameters that characterize the analysis with this new cell were optimized, for example the sample's speed flow and the time of electrodeposition. The calibration curves were made for the different types of microelectrode that were used in an ambit of concentrations of 1-10 ppm. According to the obtained results, the microelectrode that better works is the platinum disk for possessing bigger superficial area exposed to the dissolution, which increases the analite's currents of pick. And as a support electrolyte, potassium tiocianato is recommended because of its effectiveness to solve the analytic sign of the mercury. Studies of answer of the current of mercury regarding the quantity of the placed sample and studies of interferences of the analysis with this type of microelectrode were also carried out. With regard to the study of the quantity of sample, it was obtained that the electrochemical answer of the cell is directly proportional to the concentration of the analite placed in it. In the study of interference, it was found that the copper, lead, and zinc ions affect the analysis of mercury in concentrations of 0.1 ppm and on in the case of the microelectrode of platinum disk. And in case that the same microelectrode is used recovered with gold, it only affects the copper in concentrations over 5 ppm, for what is necessary to take into account a previous treatment of the sample in the event of containing some of the interfering ions

  3. Research on flow instability phenomena in FBR triple loop system

    International Nuclear Information System (INIS)

    In the case of the plants which use high temperature working fluid and have free liquid surface, the variation of level and swirling of the liquid cause repeated thermal stress in vessels, and lead to the fatigue and breakdown of the vessels. In the case of the plants which have many free liquid surfaces in vessels, and those vessels are connected with pipings as a closed loop, in which working fluid circulates, liquid level causes the variation by the interference among free liquid surfaces. In the plants in which multiple loops are formed, which jointly own a part, the interference among respective loops occurs. In this research, regarding the triple loop system having many liquid surfaces, it was aimed at to examine the stability of free liquid surfaces. The testing setup comprises the main tank and three loops having one free liquid surface each, which are connected to the main tank. Water was circulated with a pump, and the variation of flow velocity in pipings and the variation of liquid level in the main tank were measured. Also the relation among the loops and the state of free liquid surfaces were examined by frequency analysis. The experimental setup, the water flow test and the experimental results are reported. The behavior of swirling became clear. (K.I.)

  4. Electromagnetic Coupling of Ocean Flow with the Earth System

    Directory of Open Access Journals (Sweden)

    Robert Tyler

    2015-01-01

    Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.

  5. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.;

    2008-01-01

    ' measurements of processes related to living cells, i.e., systems without lysing the cells. The focus is on chip based amperometric and impedimetric cell analysis systems where measurements utilizing solely carbon fiber microelectrodes (CFME) and other nonchip electrode formats, such as CFME for exocytosis......This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive...... studies and scanning electrochemical microscopy (SECM) studies of living cells have been omitted. Included is also a discussion about some future and emerging nano tools and considerations that might have an impact on the future of "nondestructive" chip based electroanalysis of living cells....

  6. Lensless imaging system to quantify cell proliferation

    Science.gov (United States)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  7. Distinguishing two-phase flow stability by using system identification method in a natural circulation system

    International Nuclear Information System (INIS)

    A research program on Two-phase flow stability in a natural circulation system has been executed in the Institute of Nuclear Energy Technology (INET), Tsinghua University in the development process of Nuclear Heating Reactor for the resent ten years. Two sets of experiment facility (HRTL-5 and HRTL-200) were erected, which serve as the simulator to the primary circuit of the nuclear heating reactor NHR-5 and NHR-200 separately, and were used for investigation on their thermo-physical behavior. Very important and useful results have been reached. The investigation presented, is one of the subject in the above mentioned research program. The main objective of the investigation is to develop a practical technology and method in engineering, based on general control theory, for distinguishing two-phase flow stability and identifying safety margin by using system identification method. By combining the two-phase flow stability theory in thermo-physics field with the system stability theory and system identification method in information science field, a thermo-hydraulic experiment technology with new concept was developed. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeat pseudo-random sequences of heating power as the input signal sources and the measured flow rate as response function in the test, Two-phase flow stability and stability margin of the natural circulation system were investigated with analyzing the system pulse response function, Decay Ratio, and stability boundary under different operation conditions. The results are compared with that by using conventional method. The test system, test method and obtained typical results are provided

  8. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system.

    Science.gov (United States)

    Yan, Jian; Guo, Cheng-Gang; Liu, Xiao-Ping; Kong, Fan-Zhi; Shen, Qiao-Yi; Yang, Cheng-Zhang; Li, Jun; Cao, Cheng-Xi; Jin, Xin-Qiao

    2013-12-20

    Complex assembly, inconvenient operations, poor control of Joule heating and leakage of solution are still fundamental issues greatly hindering application of free-flow electrophoresis (FFE) for preparative purpose in bio-separation. To address these issues, a novel FFE device was developed based on our previous work. Firstly, a new mechanical structure was designed for compact assembly of separation chamber, fast removal of air bubble, and good anti-leakage performance. Secondly, a highly efficient thermoelectric cooling system was used for dispersing Joule heating for the first time. The systemic experiments revealed the three merits: (i) 3min assembly without any liquid leakage, 80 times faster than pervious FFE device designed by us or commercial device (4h); (ii) 5s removing of air bubble in chamber, 1000-fold faster than a normal one (2h or more) and (iii) good control of Joule heating by the cooling system. These merits endowed the device high stable thermo- and hydro-dynamic flow for long-term separation even under high electric field of 63V/cm. Finally, the developed device was used for up to 8h continuous separation of 5mg/mL fuchsin acid and purification of three model proteins of phycocyanin, myoglobin and cytochrome C, demonstrating the applicability of FFE. The developed FFE device has evident significance to the studies on stem cell, cell or organelle proteomics, and protein complex as well as micro- or nano-particles. PMID:24246174

  10. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  11. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J;

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  12. Miniaturized cavity ring-down detection in a liquid flow cell

    NARCIS (Netherlands)

    Bahnev, B.; Sneppen, van der L.; Wiskerke, A.E.; Ariese, F.; Gooijer, C.; Ubachs, W.M.G.

    2005-01-01

    A novel method for applying cavity ring-down spectroscopy in the liquid phase, compatible with LC analyses, is presented. The core of the setup is a home-built cavity ring-down flow cell (cell volume 12 muL) that is constructed using a silicon rubber spacer, which is clamped leak-tight between two h

  13. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena

  14. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used...

  15. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  16. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    During a recurring bench test of an operating system, high amplitude vibrations have been observed on a safety piping system of a nuclear power plant. Due to the source of the pumps, these vibrations lead to wear damage and it is therefore necessary to estimate the life time of the piping system. This paper describes the methodology used to study the dynamic behaviour and to analyze the damage of a piping system submitted to internal flow. Starting from an experimental modal analysis of the piping system when not i service, we analyse the main parameters of the mechanical behaviour. Following this analysis, we obtain a mechanical model fitting the first experimental modes. On this basis, we build a vibro-acoustical model. This model takes into account the influence of the acoustical pipe length, both above and below the mechanical part, the modelling of acoustical components, the speed of sound. We did not experimentally characterize the pumps. Therefore, we use a numerical model in order to simulate the behaviour of the pumps. This model is based on the theory of the transfer matrix and takes into account the geometric and the hydraulic characteristics of the pump.The modelling of both sources (suction and discharge) connected to the pump is formed by contributions from a source corresponding to the turbulent noise at low frequency, a source at blade passage frequency. This model has been experimentally validated in a laboratory. The final results of the modelling of the complete piping system are in a complete accord with experimental measurements. (author). 3 refs., 7 figs

  17. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  18. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  19. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  20. Turbine systems and methods for using internal leakage flow for cooling

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Nestor (Schenectady, NY); Gazzillo, Clement (Schenectady, NY); Boss, Michael J. (Ballston Spa, NY); Parry, William (Rexford, NY); Tyler, Karen J. (Burnt Hills, NY)

    2010-02-09

    A cooling system for a turbine with a first section and a second section. The first section may include a first line for diverting a first flow with a first temperature from the first section, a second line for diverting a second flow with a second temperature less than the first temperature from the first section, and a merged line for directing a merged flow of the first flow and the second flow to the second section.

  1. Portable real time analysis system for regional cerebral blood flow

    International Nuclear Information System (INIS)

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit

  2. Portable real time analysis system for regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-02-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit.

  3. Exergy Flows inside a One Phase Ejector for Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2016-03-01

    Full Text Available The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.

  4. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  5. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  6. Malignant human cell transformation of Marcellus Shale gas drilling flow back water.

    Science.gov (United States)

    Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  7. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  8. Control assembly for controlling a fuel cell system during shutdown and restart

    Science.gov (United States)

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  9. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  10. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  11. The ATLAS Data Flow system for the Second LHC Run

    CERN Document Server

    Hauser, Reiner; The ATLAS collaboration

    2015-01-01

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the Readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, the f...

  12. Water balance in fuel cells systems

    International Nuclear Information System (INIS)

    Fuel cell systems are attractive for their high efficiency (i.e., electric power generated per weight/volume of fuel,) and lower emissions. These systems are being developed for applications that include transportation (propulsion and auxiliary), remote stationary, and portable. Where these systems use on-board fuel processing of available fuels, the fuel processor requires high-purity water. For utility applications, this water may be available on-site, but for most applications, the process water must be recovered from the fuel cell system exhaust gas. For such applications, it is critically important that the fuel cell system be a net water-producing device. A variety of environmental conditions (e.g., ambient temperature, pressure), fuel cell system design, and operating conditions determine whether the fuel cell system is water-producing or water-consuming. This paper will review and discuss the conditions that determine the net-water balance of a generic fuel cell system and identify some options that will help meet the water needs of the fuel processor

  13. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  14. Multi-Use Non-Intrusive Flow Characterization System (FCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  15. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  16. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  17. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  18. Cell and Tissue Organization in the Circulatory and Ventilatory Systems Volume 1 Signaling in Cell Organization, Fate, and Activity, Part A Cell Structure and Environment

    CERN Document Server

    Thiriet, Marc

    2011-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning.  The present volume is devoted to cellular events that allow adaptation to environmental conditions, particularly mechanotransduction. It begins with cell organization and a survey of cell types in the vasculatur...

  19. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    Science.gov (United States)

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%. PMID:25942924

  20. Multiplexed labeling system for high-throughput cell sorting.

    Science.gov (United States)

    Shin, Seung Won; Park, Kyung Soo; Song, In Hyun; Shin, Woo Jung; Kim, Byung Woo; Kim, Dong-Ik; Um, Soong Ho

    2016-09-01

    Flow cytometry and fluorescence activated cell sorting techniques were designed to realize configurable classification and separation of target cells. A number of cell phenotypes with different functionalities have recently been revealed. Before simultaneous selective capture of cells, it is desirable to label different samples with the corresponding dyes in a multiplexing manner to allow for a single analysis. However, few methods to obtain multiple fluorescent colors for various cell types have been developed. Even when restricted laser sources are employed, a small number of color codes can be expressed simultaneously. In this study, we demonstrate the ability to manifest DNA nanostructure-based multifluorescent colors formed by a complex of dyes. Highly precise self-assembly of fluorescent dye-conjugated oligonucleotides gives anisotropic DNA nanostructures, Y- and tree-shaped DNA (Y-DNA and T-DNA, respectively), which may be used as platforms for fluorescent codes. As a proof of concept, we have demonstrated seven different fluorescent codes with only two different fluorescent dyes using T-DNA. This method provides maximum efficiency for current flow cytometry. We are confident that this system will provide highly efficient multiplexed fluorescent detection for bioanalysis compared with one-to-one fluorescent correspondence for specific marker detection. PMID:27181032