WorldWideScience

Sample records for cell flow systems

  1. Flow cell system for miscible displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.H.; Kirkham, D.

    1971-02-01

    The use of a continuous graphic recording system for flow-component measurement in miscible displacement experiments is described. This system measures and continuously records radioactive tracer concentrations of effluents of miscible displacement columns. The recordings are needed breakthrough curves. The use of the system obviates fraction collectors.

  2. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  3. A novel in vitro flow system for changing flow direction on endothelial cells

    OpenAIRE

    Wang, Chong; LU, Hao; Schwartz, Martin Alexander

    2012-01-01

    Atherosclerotic plaques localize to regions of flow disturbance, i.e. bifurcations, branch points and regions of high curvature. Shear stress in these regions can be multi-directional due to complex flow patterns such as time-varying vortices. However, commonly used in vitro flow models are incapable of changing flow orientation to any direction other than the reverse. We have developed a novel in vitro flow system to enable changes in flow direction to any angle. When cells were pre-aligned ...

  4. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    Science.gov (United States)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  5. Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.

    Science.gov (United States)

    Teodósio, Joana S; Silva, Filipe C; Moreira, Joana M R; Simões, Manuel; Melo, Luís F; Alves, Manuel A; Mergulhão, Filipe J

    2013-09-01

    Semi-circular flow cells are often used to simulate the formation of biofilms in industrial pipes with circular section because their planar surface allows easy sampling using coupons. Computational fluid dynamics was used to assess whether the flow in pipe systems can be emulated by the semi-circular flow cells that are used to study biofilm formation. The results show that this is the case for Reynolds numbers (Re) ranging from 10 to 1000 and 3500 to 10,000. A correspondence involving the friction factor was obtained in order to correlate any semi-circular flow cell to any circular pipe for Re between 10 and 100,000. The semi-circular flow cell was then used to assess experimentally the effect of Reynolds number (Re = 4350 and 6720) on planktonic cell concentration and biofilm formation using Escherichia coli JM109 (DE3). Lower planktonic cell concentrations and thicker biofilms (>1.2 mm) were obtained with the lower Re.

  6. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  7. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip

    Science.gov (United States)

    Yang, Sung-Yi; Hsiung, Suz-Kai; Hung, Yung-Ching; Chang, Chen-Min; Liao, Teh-Lu; Lee, Gwo-Bin

    2006-07-01

    Flow cytometry is a popular technique for counting and sorting individual cells. This study presents and demonstrates a new cell counting/sorting system integrated with several essential components including a micromachined flow cytometer chip device, an optical detection system and a data analysis and control system to achieve the functions of cell sample injection, optical signal detection and cell collection. By using MEMS technology, we have integrated several microfluidic components such as micro pneumatic pumps/valves onto a polymer-based chip device. Three pneumatic micropumps are used to provide the hydrodynamic driving force for both sample and sheath flows such that hydrodynamic flow focusing can be achieved, and a micro flow switch device comprising three pneumatic microvalves located downstream of the micro sample flow channel is used for cell collection. Cell samples of human lung cancer cells labelled with commercially available fluorescent dyes have been detected and collected successfully utilizing the developed device. The real-time image of dye-labelled cell samples being excited and detected can be monitored and observed through the LCD panel by a custom designed CCD/APD holder and moving stage. Finally, micro flow switch devices were used to successfully sort the cells into the desired outlet channel, and the counting results of the specific cell samples were monitored through the counting panel. The current study focuses on the setup of the overall system. The proposed flow cytometer system has several advantages such as portability, low cost and easy operation process. The size of the system is 37 cm × 16 cm × 18 cm and the weight is 3.5 kg. The error rate of counting and sorting was 1.5% and 2%, respectively. The sorting frequency of the microvalve device is calculated to be 120 cells min-1. The developed microfluidic chip device could be a promising tool for cell-based application fields such as profiling, counting and sorting.

  8. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    Science.gov (United States)

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  9. [Studies on sequential injection spectrophotometric system using a reflective flow cell for process analysis].

    Science.gov (United States)

    Fan, Shi-hua; Wang, Shi-li; Fan, Xiao-feng; Wang, Fu-ren; Fang, Zhao-lun

    2004-03-01

    A reflective flow cell was developed and coupled to a sequential injection system and optical fiber photometric detection system based on emitting diode light source. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. Optical fibers were used to carry light from the electronics unit to a reflective flow-through cell and back. The liquid flow path through the cell is linear with a large exit aperture such that bubbles are not trapped in the optical path. The optical arrangement is such that the incident light crosses the liquid flow orthogonally and is reflected back to the receiver fiber. This arrangement reduces the reflective index sensitivity by an order of magnitude relative to a conventional flow cell. The cell showed good immunity to refractive index and air bubble effects. The chromogenic reaction of chloride ion with mercury thiocyanate-iron(III) was used as a model reaction to optimize the experiment system and check the optical system. The reflectance of the reaction was monitored with blue emitting diode. The linear range was 0-100 mg x L(-1) Cl-. A detection limit (3sigma) of 1.2 mg x L(-1), precision of 1.5% (n = 11), and a throughput of 30 samples per hour were achieved. PMID:15760003

  10. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    Science.gov (United States)

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health. PMID:26386206

  11. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    OpenAIRE

    Van herle, Jan; Favrat, Daniel; Maréchal, François; Bucheli, Olivier; Leuenberger, Sacha; Membrez, Yves

    2004-01-01

    A model for a 1000 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 degreesC displaying state-of- the-art electrochemical performance (0.15 W/cm(2) at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m(3)/h biogas (63% ...

  12. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  13. Enzyme-based flow injection analysis system for glutamine and glutamate in mammalian cell culture media.

    Science.gov (United States)

    Mayer, C; Frauer, A; Schalkhammer, T; Pittner, F

    1999-03-01

    We present the setup of a flow injection analysis system designed for on-line monitoring of glutamate and glutamine. These amino acids represent a major energy source in mammalian cell culture. A cycling assay consisting of glutamate dehydrogenase and aspartate aminotransferase produces NADH proportional to the glutamate concentration in the sample. NADH is then measured spectrophotometrically. Glutamine is determined by conversion to glutamate which is fed into the cycling assay. The conversion of glutamine to glutamate is catalyzed by asparaginase. Asparaginase was used in place of glutaminase due to its relatively high reactivity with glutamine and a pH optimum similar to that of glutamate dehydrogenase. The enzymes were immobilized covalently to activated controlled pore glass beads and integrated into the flow injection analysis system. The application of the immobilized enzymes and the technical setup are presented in this paper.

  14. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  15. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination

    DEFF Research Database (Denmark)

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-01-01

    In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit into the w...

  16. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-ye

  17. Cascade redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  18. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    Science.gov (United States)

    Van herle, J.; Maréchal, F.; Leuenberger, S.; Membrez, Y.; Bucheli, O.; Favrat, D.

    A model for a 100 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 °C displaying state-of-the-art electrochemical performance (0.15 W/cm 2 at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m 3/h biogas (63% CH 4), equivalent to 269 kW (higher heating value, HHV), the SOFC stack was calculated to deliver 131 kW el electricity (48.7%) using a steam-to-carbon ratio of 0.5. This would allow the sewage site to more than cover its own electrical needs, hence to depollute the waste stream at negative energy cost. In its current exploitation using a low efficient gas engine (130 kW), the site is only ≈50% self-sufficient. Special attention was given to the thermal balance of the stack. The stack developed heat (143 kW) could be balanced by endothermal reforming (78 kW) and by cathode excess air λ (=3), allowing a temperature difference between stack inlet and outlet of 200 K. The case was compared to other fuel scenarios. Steam-added biogas behaves basically identically to steam-reformed methane. For partial oxidation of biogas or pure hydrogen feeding, electrical efficiency drops to under 43% while λ needs to be raised to 4.5 to maintain the 200 K thermal gradient over the stack.

  19. A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows

    CERN Document Server

    Selvam, A M

    2006-01-01

    Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...

  20. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien, E-mail: adrien.chauvet@epfl.ch; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Tibiletti, Tania; Caffarri, Stefano [Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille (France)

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  1. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem, E-mail: qasem.alramadan@epfl.ch [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore); Christophe, Lay; Teo, William; ShuJun, Li; Hua, Feng Han [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore)

    2010-07-12

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  2. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    Directory of Open Access Journals (Sweden)

    Jörg U Hammel

    Full Text Available Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  3. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    Science.gov (United States)

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  4. Vega flow assurance system

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marit; Munaweera, Sampath

    2010-07-01

    Vega is a gas condensate field located at the west coast of Norway and developed as a tie-in to the Gjoea platform. Operator is Statoil, production startup is estimated to the end of 2010. Flow assurance challenges are high reservoir pressure and temperature, hydrate and wax control, liquid accumulation and monitoring the well/template production rates. The Vega Flow Assurance System (FAS) is a software that supports monitoring and operation of the field. The FAS is based FlowManagerTM designed for real time systems. This is a flexible tool with its own steady state multiphase- and flow assurance models. Due to the long flowlines lines and the dynamic behavior, the multiphase flow simulator OLGA is also integrated in the system. Vega FAS will be used as: - An online monitoring tool - An offline what-if simulation and validation tool - An advisory control system for well production allocation. (Author)

  5. Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system.

    Science.gov (United States)

    Hester, J P; Rondón, G; Huh, Y O; Lauppe, M J; Champlin, R E; Deisseroth, A B

    1995-08-01

    The application of continuous flow apheresis technology to processing bone marrow for collection of the mononuclear progenitor cell population appears to follow the same principles as collection of mononuclear cells from peripheral blood. Unlike peripheral blood, however, where mobilization of cells from extravascular sites during the procedures contributes significantly to the final cell yield, the entire quantity of progenitor cells available for recovery from marrow is present in the original marrow when it is pooled. The process then becomes one of attempting optimal recovery of the cells of interest while excluding contaminating erythrocytes and cells of the myeloid series. This study reports the development of a protocol for recovery of MNC, CD33+, CD34+, and CD34+/DR- cells from harvested marrow for autologous and allogeneic transplants using a continuous flow blood cell separator, the variables influencing the recovery of the cells of interest and the clinical response to infusion of the processed cells.

  6. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system.

    Science.gov (United States)

    Duncan, Kathleen E; Perez-Ibarra, Beatriz Monica; Jenneman, Gary; Harris, Jennifer Busch; Webb, Robert; Sublette, Kerry

    2014-01-01

    A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H₂S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.

  7. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system.

    Science.gov (United States)

    Duncan, Kathleen E; Perez-Ibarra, Beatriz Monica; Jenneman, Gary; Harris, Jennifer Busch; Webb, Robert; Sublette, Kerry

    2014-01-01

    A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H₂S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC. PMID:23636692

  8. A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand.

    Science.gov (United States)

    Seo, Kyo Seong; Choo, Kwang Ho; Chang, Ho Nam; Park, Joong Kon

    2009-05-01

    The biochemical oxygen demand (BOD) determination was studied using a novel flow injection analysis (FIA) system with encapsulated Saccharomyces cerevisiae cells and an oxygen electrode and was compared with conventional 5-day BOD tests. S. cerevisiae cells were packed in a calcium alginate capsule at a dry cell weight of 250 g/l of capsule core. The level of dissolved oxygen (DO) was reduced due to the enhanced respiratory activity of the microbial cells when the injected nutrient passed through the bioreactor. The decrease in DO (DeltaDO) was intensified with the amount of microbial cells packed in the bioreactor. However, the specific DeltaDO decreased as the amount of cells loaded in the bioreactor increased. The DeltaDO value was dependent on the pH and temperature of the mobile phase and reached its maximum value at 35 degrees C and pH 7-8. Also, DeltaDO became larger at longer response times as the flow rate of the mobile phase decreased. The measurement of DeltaDO was repeated more than six times consecutively using a 20-ppm standard glucose and glutamic acid solution, which confirmed the reproducibility with a standard deviation of 0.95%. A strong linear correlation between DeltaDO and BOD was also observed. The 5-day BOD values of actual water and wastewater samples were in accordance with the BOD values obtained by this FIA method using encapsulated S. cerevisiae cells. Unlike the cell-immobilized bead system, there was no contamination of the bioreactor resulting from any leak of yeast cells from the sensor capsules during BOD measurements. PMID:19153729

  9. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  10. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    International Nuclear Information System (INIS)

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively

  11. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell.

    Science.gov (United States)

    Liu, Yuhan; Lu, Keding; Dong, Huabin; Li, Xin; Cheng, Peng; Zou, Qi; Wu, Yusheng; Liu, Xingang; Zhang, Yuanhang

    2016-05-01

    In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid (HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell (LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10pptV within 2min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China. PMID:27155434

  12. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan;

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process...

  13. Geophysical Fluid Flow Cell Simulation

    Science.gov (United States)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  14. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2016-02-01

    Full Text Available An optical sensor platform based on surface plasmon resonance (SPR in a plastic optical fiber (POF integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG/anti-IgG assay.

  15. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    Science.gov (United States)

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-01-01

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay. PMID:26861328

  16. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    Science.gov (United States)

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-02-04

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay.

  17. Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Directory of Open Access Journals (Sweden)

    Díaz José

    2009-05-01

    Full Text Available Abstract Background We study root cells from the model plant Arabidopsis thaliana and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene ERF1 to the concentration of ethylene. Results The above equation is used to compute the Shannon entropy (H or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene ERF1 (Ethylene Response Factor 1 can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal. Conclusion The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB; b the rate of information transfer (0.003 bits during the transport of each new ERF1 molecule into the nucleus and c the time of synthesis of each new ERF1 molecule (~21.3 s. Finally, we demonstrate that in the case of the system of a single master gene (ERF1 and a single slave gene (HLS1, the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy

  18. Rebalancing electrolytes in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  19. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  20. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    Science.gov (United States)

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  1. The ECN flow animation system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1995-12-01

    ECN has developed a system for the visualization of fluid flow. The system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. Several additional programs had to be developed for the conversion of data and the post-processing of the images. This report, written for Flomerics Ltd., is a guide to the use of the ECN Flow Animation System. The system is described on various levels of detail. After an overview, each component is described in depth, including a description of commands and examples. 22 figs., 3 refs.

  2. Glucose Dependency of the Metabolic Pathway of HEK 293 Cells Measured by a Flow-through Type pH/CO2 Sensor System Using ISFETs

    Science.gov (United States)

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    Our group previously reported the application of a flow-through type pH/CO2 sensor system designed to evaluate the metabolic activity of cultured cells. The sensor system consists of two ion-sensitive field effect transistors (ISFETs), an ISFET to measure the total pH change and an ISFET enclosed within a gas-permeable silicone tube to measure the pH change attributable to CO2. In that study, we used the system to quantitatively analyze metabolic switching induced by glucose concentration changes in three cultured cell types (bovine arterial endothelium cell (BAEC), human umbilical vein endothelium cell (HUVEC), and rat cardiomuscle cell (RCMC)), and to measure the production rates of total carbonate and free lactic acid in the cultured cells. In every cell type examined, a decrease in the glucose concentration led to an increase in total carbonate, a product of cellular respiration, and a decrease of free lactic acid, a product of glycolysis. There were very significant differences among the cell types, however, in the glucose concentrations at the metabolic switching points. We postulated that the cell has a unique switching point on the metabolic pathway from glycolysis to respiration. In this paper we use our sensor system to evaluate the metabolic switching of human embryonic kidney 293 cells triggered by glucose concentration changes. The superior metabolic pathway switched from glycolysis to respiration when the glucose concentration decreased to about 2 mM. This result was very similar to that obtained in our earlier experiments on HUVECs, but far different from our results on the other two cells types, BAECs and RCMCs. This sensor system will be useful for analyzing cellular metabolism for many applications and will yield novel information on different cell types.

  3. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system

    Science.gov (United States)

    Cooper, Christy L.; Leary, James F.

    2015-03-01

    Leukemia stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in the peripheral blood of leukemia patients. Since leukemic stem cells are also resistant to standard chemotherapeutic regimens, new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial targeting studies we utilized a bioinformatics approach to design an antibodyfluorescent nanoparticle conjugate for targeting to these leukemic stem cells and to minimize targeting to normal stemprogenitor cells. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell RS4;11 (with putative immunophenotype CD133+/CD24+/-, CD34+/-, CD38+, CD10-/Flt3+) was spiked into normal hematopoietic stem-progenitor cells obtained from a "buffy coat" prep (with putative immunophenotype CD133- /CD34+/CD38-/CD10-/Flt-3-) to be used as a model human leukemia patient. To analyze the model system, digital data mixtures of the two cell types were first created and assigned classifiers in order to create truth sets. ROC (Receiver Operating Characteristic) and multidimensional cluster analyses were used to evaluate the specificity and sensitivity of the immunophenotyping panel and for automated cell population identification, respectively. Costs of misclassification (false targeting) were also accounted for by this analysis scheme. Ultimately, this analysis scheme will be applied to use of nanoparticle-antibody conjugates at therapeutic doses for targeted killing of leukemia stem cells preferentially to normal stem -progenitor cells.

  4. Intelligent Control for Improvements in PEM Fuel Cell Flow Performance

    Institute of Scientific and Technical Information of China (English)

    Jonathan G Williams; Guoping Liu; Senchun Chai; David Rees

    2008-01-01

    The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.

  5. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  6. An Innovative Method to Identify Autoantigens Expressed on the Endothelial Cell Surface: Serological Identification System for Autoantigens Using a Retroviral Vector and Flow Cytometry (SARF

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shirai

    2013-01-01

    Full Text Available Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF. Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2 from patients with systemic lupus erythematosus (SLE, intercellular adhesion molecule 1 (ICAM-1 from a patient with rheumatoid arthritis, and Pk (Gb3/CD77 from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases.

  7. Responses of Cells to Flow in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available The response of cells to a flow has been studied in vitro. The response of cells was examined in two types of flow channels: a circumnutating flow in a donut-shaped open channel in a culture dish, and a one-way flow in a parallelepiped rhombus flow channel. Variation was made on the material of the parallelepiped channel to study on adhesion of cells to the plates: glass and polydimethylsiloxane. Behavior of cells on the plate was observed under a flow of a medium with an inverted phase-contrast-microscope. The shear stress on the plate is calculated with an estimated parabolic distribution of the velocity between the parallel plates. The adhesion of cells was evaluated with the cumulated shear, which is a product of the shear stress and the exposure time. The experimental results show that cells are responsive to the flow, which governs orientation, exfoliation, and differentiation. The response depends on the kinds of cells: endothelial cells orient along the stream line, although myocytes orient perpendicular to the stream line. The adhesion depends on the combination between scaffold and cell: myocytes are more adhesive to glass than cartilage cells, and fibroblasts are more adhesive to oxygenated polydimethylsiloxane than glass.

  8. A new flow co-culture system for studying mechanobiology effects of pulse flow waves

    OpenAIRE

    Scott-Drechsel, Devon; Su, Zhenbi; Hunter, Kendall; Li, Min; Shandas, Robin; Tan, Wei

    2012-01-01

    Artery stiffening is known as an important pathological change that precedes small vessel dysfunction, but underlying cellular mechanisms are still elusive. This paper reports the development of a flow co-culture system that imposes a range of arterial-like pulse flow waves, with similar mean flow rate but varied pulsatility controlled by upstream stiffness, onto a 3-D endothelial-smooth muscle cell co-culture. Computational fluid dynamics results identified a uniform flow area critical for c...

  9. Flow regimes in a trapped vortex cell

    Science.gov (United States)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  10. Micro Groove for Trapping of Flowing Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2015-06-01

    Full Text Available Micro grooves have been designed to trap a biological cell, which flows through a micro channel in vitro. Each micro groove of a rectangular shape (0.002 mm depth, 0.025 mm width and 0.2 mm length has been fabricated on the surface of the polydimethylsiloxane (PDMS disk with the photolithography technique. Variation has been made on the angle between the longitudinal direction of the groove and the flow direction: zero, 0.79, or 1.57 rad. A rectangular flow channel (0.1 mm depth x 5 mm width x 30 mm length has been constructed with a silicone film of 0.1 mm thick, which has been sandwiched by two transparent PDMS disks. Two types of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, or 3T3-L1 (mouse fat precursor cells. A constant flow (2.8 x 10-11 m3/s of a suspension of cells was introduced with a syringe pump. The behavior of cells moving over the micro grooves was observed with an inverted phase contrast microscope. The results show that the cell is trapped with the micro grooves under the wall shear rate of 3 s-1 for a few seconds and that the trapped interval depends on the kind of cells.

  11. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  12. Geophysical Fluid Flow Cell (GFFC) Simulation

    Science.gov (United States)

    1999-01-01

    These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)

  13. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  14. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...... and complexity. The aim is to compare well established systems/methods and systems involving electronic sensor technology....

  15. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    OpenAIRE

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.; Packman, Aaron I.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. ...

  16. A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lan; Oosthuizen, Patrick H. [Department of Mechanical and Materials Engineering, McLaughlin Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada); McAuley, Kim B. [Department of Chemical Engineering, Dupuis Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2006-10-15

    A numerical study of pressure distribution and flow cross-over through the gas diffusion layer (GDL) in a PEMFC flow plate using a serpentine channel system has been undertaken for the case where the channel has a trapezoidal cross-sectional shape. The flow has been assumed to be 3-D, steady, incompressible and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved by using the commercial CFD solver, FIDAP. The results obtained indicate that: (1) the size ratio, R, of trapezoidal cross-sectional shape has a significant effect on the flow cross-over. As R increases, the flow cross-over through GDL increases; (2) the ratio R also has a significant effect on the pressure variation in the flow field for both cross-over and no cross-over cases; (3) flow cross-over has a significant influence on the pressure variation through the channel, tending to decrease the pressure drop across the channel; (4) an increase in Re number can lead to a slight increase in the flow cross-over. (author)

  17. INTEGRATED LAYOUT DESIGN OF CELLS AND FLOW PATHS

    Institute of Scientific and Technical Information of China (English)

    Li Zhihua; Zhong Yifang; Zhou Ji

    2003-01-01

    The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.

  18. Natures of Rotating Stall Cell in a Diagonal Flow Fan

    Institute of Scientific and Technical Information of China (English)

    N. SHIOMI; K. KANEKO; T. SETOGUCHI

    2005-01-01

    In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.

  19. Artificial Hair Cells for Sensing Flows

    Science.gov (United States)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  20. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    Science.gov (United States)

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  1. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  2. Systems and methods for rebalancing redox flow battery electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  3. The structure and composition of novel electrodeposited Sn-Fe and Sn-Co-Fe alloys from a flow circulation cell system

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, M.; Chisholm, C. U., E-mail: C.Chisholm@gcal.ac.uk [Glasgow Caledonian University, School of Engineering and Computing and Research Group for Surface Technology (United Kingdom); Kuzmann, E. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Centre (Hungary); Sziraki, L. [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Stichleutner, S. [Hungarian Academy of Sciences, Institute of Isotopes (Hungary); Homonnay, Z.; Suevegh, K. [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Vertes, A. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Centre (Hungary)

    2009-07-15

    This study involved the use of a flow circulation cell, using varying circulation rates as a room temperature process (20 deg. C). Moessbauer and XRD analysis were conducted to ascertain whether amorphous or microcrystalline structures could be obtained at 20 deg. C using a range of current densities. Amorphous or microcrystalline structures of Sn-Fe and Sn-Co-Fe have potentially important industrial applications for energy efficient cells, for use as high performance electrodes in lithium batteries, as environmentally acceptable corrosion resistant materials and are derived from an energy efficient environmentally friendly electrolyte process which would be acceptable as an industrial process. {sup 57}Fe and {sup 119}Sn Moessbauer investigations supported by XRD analysis confirmed that the room temperature flow circulation cell gave rise to previously unknown non-equilibrium amorphous structures which do not occur in the corresponding thermally prepared alloys as shown in the thermal equilibrium diagrams. Moessbauer analysis shows these alloys to be both amorphous and ferromagnetic. It is shown that the flow circulation cell used at 20 deg. C based on the environmentally friendly gluconate bath reported gives amorphous based Sn-Fe and Sn-Co-Fe alloys over a useful range of current densities facilitated by using a range of circulation rates.

  4. CD4 T-cell enumeration in a field setting: evaluation of CyFlow counter using the CD4 easy count kit-dry and Pima CD4 systems.

    Directory of Open Access Journals (Sweden)

    Djibril Wade

    Full Text Available BACKGROUND: Flow Cytometry (FCM is still considered to be the method of choice for accurate CD4 enumeration. However, the use of FCM in developing countries is problematic due to their cost and complexity. Lower-cost technologies have been introduced. We evaluated CyFlow Counter together with its lyophilized reagents, and Pima CD4 in high-temperature area, using FACSCount as reference. MATERIALS AND METHODS: Whole blood samples were consecutively collected by venipuncture from 111 HIV+ patients and 17 HIV-negative donors. CD4 T-cell enumeration was performed on CyFlow Counter, Pima CD4 and FACSCount. RESULTS: CyFlow Counter and Pima CD4 systems showed good correlation with FACSCount (slope of 0.82 and 0.90, and concordance ρc of 0.94 and 0.98, respectively. CyFlow Counter showed absolute or relative biases (LOA of -63 cells/mm(3 (-245 to 120 or -9.8% (-38.1 to 18.4 respectively, and Pima CD4 showed biases (LOA of -30 cells/mm(3 (-160 to 101 or -3.5% (-41.0 to 33.9%. CyFlow Counter and Pima CD4 showed respectively 106.7% and 105.9% of similarity with FACSCount. According to WHO-2010 ART initiation threshold of 350 cells/mm(3, CyFlow Counter and Pima CD4 showed respectively sensibility of 100% and 97%, and specificity of 91% and 93%. CyFlow Counter and Pima CD4 were strongly correlated (slope of 1.09 and ρc of 0.95. These alternative systems showed good agreement with bias of 33 cells/mm(3 (-132 to 203 or 6.3% (-31.2 to 43.8, and similarity of 104.3%. CONCLUSION: CyFlow Counter using CD4 easy count kit-dry and Pima CD4 systems can accurately provide CD4 T-cell counts with acceptable agreement to those of FACSCount.

  5. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  6. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    Science.gov (United States)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  7. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua;

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  8. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  9. Collective flow in small systems

    International Nuclear Information System (INIS)

    The large density of matter in the interaction region of the proton–nucleus or deuteron–nucleus collisions enables the collective expansion of the fireball. Predictions of a hydrodynamic model for the asymmetric transverse flow are presented and compared to experimental data

  10. Complex flows in granular and quantum systems

    Science.gov (United States)

    Herrera, Mark Richard

    In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.

  11. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    Science.gov (United States)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  12. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  13. Acoustic Flow Monitor System - User Manual

    Science.gov (United States)

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  14. Monitoring electrolyte concentrations in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  15. The Geophysical Fluid Flow Cell Experiment

    Science.gov (United States)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  16. Flow cytometry in the study of cell death

    Directory of Open Access Journals (Sweden)

    Álvaro L Bertho

    2000-06-01

    Full Text Available In this report we present a concise review concerning the use of flow cytometric methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. The applications of these techniques to clinical and basic research are also considered. The following cell features are useful to characterize the mode of cell death: (1 activation of an endonuclease in apoptotic cells results in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, leads to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content make it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of apoptotic process; (2 plasma membrane integrity, which is lost in necrotic but not in apoptotic cells; (3 the decrease in forward light scatter, paralleled either by no change or an increase in side scatter, represent early changes during apoptosis. The data presented indicate that flow cytometry can be applied to basic research of the molecular and biochemical mechanisms of apoptosis, as well as in the clinical situations, where the ability to monitor early signs of apoptosis in some systems may be predictive for the outcome of some treatment protocols.

  17. Intelligent System for Radial Distribution Load Flow

    Directory of Open Access Journals (Sweden)

    Vaishali Holkar

    2012-10-01

    Full Text Available This paper shows an application of Artificial Neural Networks (ANNs to determine the bus voltages and phase angles of a radial distribution system, without executing the complicated load flow algorithm, for any given load. The performance of the conventional load flow methods such as Newtoh-Raphson load flow, Fast decoupled load flow is found to be very poor under critical conditions such as high R/X ratio, heavily loading condition etc.To overcome the limitations of these regularly used methods a simple and reliable ladder iterative technique is used for solving the power balance equations of radial distribution system (RDS. The proposed method make use of a multi-layer feed forward ANN with error back propagation learning algorithm for calculation of bus voltages and its angles. A sample IEEE 33-bus is extensively tested with the proposed ANN based approach indicating its viability for RDS load flow assessment and results are presented.

  18. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  19. Exhaust System Reinforced by Jet Flow

    OpenAIRE

    Pedersen, Lars Germann; Nielsen, Peter V

    1991-01-01

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for industrial ventilation purposes. With the REEXS principle it is possible to create a flow pattern in front of the exhaust opening which will have a considerable influence on the general flow in a given r...

  20. The influence on performance of co-flow and counter-flow PEM fuel cell channels

    International Nuclear Information System (INIS)

    Full text: A three-dimensional computational fluid dynamics model of a PEM fuel cell with serpentine flow field channels that combines co-flow and counter-flow configurations is presented in this paper. The PEM fuel cell performance is significantly influenced by the direction of fuel and oxidant flow. Therefore, the CFD model used in this paper accounts for the major transport phenomena that occur in PEM fuel cells with co-flow and counter-flow configuration. The results will highlight the convective and diffusive heat and mass transfer, the electrode kinetics, and the potential fields. (authors)

  1. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  2. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  3. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  4. Method of detaching adherent cells for flow cytometry

    KAUST Repository

    Kaur, Mandeep

    2015-12-24

    In one aspect, a method for detaching adherent cells can include adding a cell lifting solution to the media including a sample of adherent cells and incubating the sample of adherent cells with the cell lifting solution. No scraping or pipetting is needed to facilitate cell detachment. The method do not require inactivation of cell lifting solution and no washing of detaching cells is required to remove cell lifting solution. Detached cells can be stained with dye in the presence of cell lifting solution and are further analyzed using flow cytometer. The method has been tested using 6 different cell lines, 4 different assays, two different plate formats (96 and 384 well plates) and two different flow cytometry instruments. The method is simple to perform, less time consuming, with no cell loss and makes high throughput flow cytometry on adherent cells a reality.

  5. The ECN flow animation system. New features

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1996-02-01

    The Netherlands Energy Research Foundation (ECN) has developed a system for the visualization of fluid flow. This system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. The use of the system by Flomerics Ltd. has revealed the need for a number of extensions. These have been implemented at ECN, and are described in this report. For each extension its usage and, if necessary, its implementation are described. The extensions concern motion blur for moving cameras, the visualization of scalar data on surfaces, and the use of particle sinks. 14 figs., 3 refs., 3 appendices

  6. Microbial adhesion in flow displacement systems

    NARCIS (Netherlands)

    Busscher, HJ; van der Mei, HC

    2006-01-01

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  7. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  8. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Christian; Wlokas, Irenaeus; Schulz, Christof [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); Schoot, Nadine van der; Lindken, Ralph [Center for Fuel Cell Technology ZBT GmbH, Duisburg (Germany); Kronemayer, Helmut [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); BASF SE, Ludwigshafen (Germany)

    2012-03-15

    Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed. (orig.)

  9. From Traffic Flow to Economic System

    Science.gov (United States)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  10. Study on Fluid Shear Flow on Osteoblast-like Cells in Their Tensile Loading Experiments

    Institute of Scientific and Technical Information of China (English)

    TENG Wei-zhong; WU Wenzhou; CHEN Wei-wi

    2006-01-01

    In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial fiat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan' s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively.

  11. Aqueous semi-solid flow cell: demonstration and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  12. Resource Prospector Propulsion System Cold Flow Testing

    Science.gov (United States)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  13. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  14. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  15. Traffic Flow Control In Automated Highway Systems

    OpenAIRE

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  16. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  17. Traction Forces of Endothelial Cells under Slow Shear Flow

    Science.gov (United States)

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  18. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  19. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  20. Lymphatic vessel development: fluid flow and valve-forming cells.

    Science.gov (United States)

    Kume, Tsutomu

    2015-08-01

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders. PMID:26214518

  1. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Science.gov (United States)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  2. A bio-inspired aquatic flow sensor using an artificial cell membrane

    Science.gov (United States)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  3. Effect of channel arrangement on fluid flow in PEMFC flow field using serpentine channel system with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2005-07-01

    Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.

  4. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  5. A new DFM flow for sub-100nm standard cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    DFM (Design-For-Manufacturability) method, which aims to improve manufacturability of ICs through specific design considerations, is becoming important nowadays. In particular, standard cells now should be designed by DFM method. This paper reports a new DFM flow for sub-100 nm standard cell design with a group of technologies for process modeling, manufacturability simulation and trial RETs.Based on this flow, a set of DFM-friendly 90m standard cells were designed.

  6. Research development of designing flow cells for optical absorption detectors.

    Science.gov (United States)

    Yang, Sandong; Tang, Tao; Li, Tong; Wang, Fengyun; Hao, Qingli

    2016-02-01

    The optical absorption detector is one of the most commonly used detectors for high performance liquid chromatography (HPLC). As a core part of this kind of detector, the designs of flow cells, where light passes through samples for acquiring samples information, will affect the performance of a detector. In order to enhance the signal to noise ratio of detectors and reduce the bands broadening that come from flow cells, it is necessary to design a flow cell with a longer optical path length and a less cell volume while maintaining the luminous flux. However the limitations of the machining capacity make it difficult to increase the optical path length, reduce the cell volume and keep or increase the luminous flux simultaneously. It is a challenge to optimize the designing and machining of flow cells so as to improve the performance of detectors. This review discusses the development of designing flow cells based on the detection principle in some aspects of increasing the optical path length, reducing the cell volume, taking the advantages of total reflection and so on. At the same time, some of the designs are illustrated in detail. These various ideas and structures are significant references for designing flow cells and developing optical absorption detectors. PMID:27382716

  7. flowCL: ontology-based cell population labelling in flow cytometry

    Science.gov (United States)

    Courtot, Mélanie; Meskas, Justin; Diehl, Alexander D.; Droumeva, Radina; Gottardo, Raphael; Jalali, Adrin; Taghiyar, Mohammad Jafar; Maecker, Holden T.; McCoy, J. Philip; Ruttenberg, Alan; Scheuermann, Richard H.; Brinkman, Ryan R.

    2015-01-01

    Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. Results: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. Conclusion: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. Availability and implementation: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). Contact: rbrinkman@bccrc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25481008

  8. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  9. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  10. Flow instabilities in two-phase flow system with and without phase change

    International Nuclear Information System (INIS)

    The gas-liquid two-phase flow of various types, such as single component or multiple components, and boiling two-phase flow or insulated two-phase flow, exist in piping systems, and the undesirable phenomena for the operation of systems such as the large scale pulsation of flow rate and the uneven distribution of flow may occur according to the condition. Generally these phenomena are called unstable flow. The author has carried out the research on unstable flow with air-water two-phase flow system, but a question arose to what extent the results in air-water system are applicable to boiling system. The unstable flow is explained with some examples. In this study, the similarity of pulsation in boiling system and insulated system was clarified, using the examples of pressure drop oscillation and flow rate distribution, and the theory to treat them in unified way was presented. The range of discussion is limited to the phenomena that do not depend on the microstructure of flow. The experimental setups were Freon boiling system, air-water capillary system and air-water vertical tube system. The characteristics of pressure drop oscillation and the fundamental mechanism, the theoretical analysis of pressure drop oscillation, the uneven distribution of flow rate in parallel tubes, the stability of flow rate distribution, and the numerical simulation are reported. (Kako, I.)

  11. Traffic Flow Wide-Area Surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  12. Parallel flow in Hele-Shaw cells with ferrofluids

    OpenAIRE

    Miranda, J. A.; Widom, M.

    1999-01-01

    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growt...

  13. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pheparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  14. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi;

    2012-01-01

    the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose......Multilevel Flow Modeling (MFM) is a well recognized methodology for functional modeling of complex systems which primarily focuses on the representation of their goals and functions. It has been successfully used in industrial process, e.g. nuclear power plant, chemical plants etc. to facilitate...... components e.g. storage tanks, are modeled using the MFM methodology. Both the goals and functions of material and energy processes and the control functions of the heating systems are represented in the MFM models. It is found that varying the physical system setup results in only little differences among...

  15. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  16. Modeling two-phase flow in PEM fuel cell channels

    Science.gov (United States)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  17. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  18. VLT Data Flow System Begins Operation

    Science.gov (United States)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  19. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  20. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  1. Upward swimming of a sperm cell in shear flow

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  2. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  3. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  4. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D. [Centenary Institute of Cancer Medicine and Cell Biology, Sydney (Australia)] [and others

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  5. flowCL: ontology-based cell population labelling in flow cytometry

    OpenAIRE

    Courtot, Mélanie; Meskas, Justin; Diehl, Alexander D.; Droumeva, Radina; Gottardo, Raphael; Jalali, Adrin; Taghiyar, Mohammad Jafar; Maecker, Holden T; McCoy, J. Philip; Ruttenberg, Alan; Scheuermann, Richard H.; Brinkman, Ryan R

    2014-01-01

    Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources.

  6. Liquid flow cells having graphene on nitride for microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  7. New all-vanadium redox flow cell

    Science.gov (United States)

    Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G.; Green, M. A.

    1986-05-01

    A laboratory-scale cell was constructed to test the performance of V(II)/V(III) and V(IV)/V(V) half-cells in an all-vanadium redox battery. Graphite plates were used as electrodes, and the membrane was manufactured from a sulfonated polyehylene anion-selective material. The average charging efficiency of the cell was over 90 percent. Stability tests on the reduced and oxidized electrolytes, measured over the temperature range of -5 C to 60 C, showed no accelerated decomposition at high temperatures and no crystallization at the lower temperatures. After prolonged usage, however, a slow deterioration of the positive electrode and the membrane was observed.

  8. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A microelectrochemical scanning flow cell with downstream analytics

    International Nuclear Information System (INIS)

    Research highlights: → A flow type scanning droplet cell with in situ detection via UV-vis to investigate corrosion was constructed. → Dependency of OCP of Zn on pH between 6.6 and 9.0 was studied with passive active transition between pH 7.1 and 7.4. → Zinc concentration profiles revealed a steady etching process that is diffusion controlled at all pH values → Sulfate ions interfere with the passivity of zinc and increase the etching rate, they also influence the pitting potential. - Abstract: The combination of a capillary based microelectrochemical flow cell system and downstream UV-vis analytics allows obtaining synchronized electrochemical and spectroscopic data in a fully automated mode. This method combination can be generally applied to microelectrochemical studies in which an electrochemical species is released or consumed during the electrochemical reaction. For the example of pure zinc surfaces, the characterization of the integrated spectroscopic system is presented with a Zn2+ detection limit below 0.1 μmol l-1 using Zincon as complexing agent. A parameter screening of the effect of pH in the range of 6.6-9.0 in borate buffer reveals a linear increase in zinc dissolution with proton concentration but a distinct step in the open circuit potential from the active state (around -700 mV SHE, pH 6.6-7.1) to the passive state (around -300 mV SHE, pH 7.4-9.0) indicating the formation of a closed passive layer. This mechanism is strongly influenced by sulfate anions which increase the dissolution rate of the passive film and promote the active state as monitored by the dissolution profile and OCP (open circuit potential) values. Within the scope of this parameter variation, the congruency between OCP transients, potentiodynamic sweeps and time resolved dissolution profiles is discussed.

  10. Flow sorting in the study of teratocarcinoma cell differentiation

    NARCIS (Netherlands)

    G.H. Schaap (Gerard Hendrik)

    1984-01-01

    textabstractFlow cytometry is a technique by which particles (cells, subcellular fragments, bacteria) in aqueous suspension are passed one by one through a sensing region where optical (or electrical) signals are generated. These signals for each individual cell are collected and processed, and may

  11. Microfluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Møinichen, Christine

    2012-01-01

    In this project the main goal was to establish a routine for making a microfluidic flow cell (MFFC) using soft lithography methods, and test the flow cell with different electrolytes, sulphuric acid and a ruthenium red-ox couple, and eventually use the established routine to make a microfluidic fuel cell and test it. A routine was established using the negative photoresist ma-N405. The photoresist was overdeveloped to make sure an undercut profile was reached, which proved to be necessary for...

  12. Simulation of Flow Field of Molten Salt in Neodymium Metal Electrolytic Cell Using Vortex-Flow Function Method

    Institute of Scientific and Technical Information of China (English)

    Ren Yonghong; Kong Xiangmin; Xie Liying

    2004-01-01

    With the applications of Nd-Fe-B material extending in recent years, the materials of neodymium metal and other rare earth metal alloy confront the increased demand and the high quality request at the same time.These factors stimulated greatly to perfect the producing craft of RE metals and improve the equipments.The rare earth electrolysis cell is developing towards large-scale way.Notwithstanding the present electrolysis cell of Nd metal, include 6 kA and 10 kA cell, exists some insurmountable problems during operation and these problems lead to lower electric efficiency and higher operating costs.So it is significant to study the physical fields of rare earth electrolysis cell.In this paper,a numerical flow mode is established using vortex- flowing function method and the fluid flow field of 3000A Nd electrolysis cell is computed using MATLAB.The results of the study will be important reference in theory for improving and enlarging rare earth fluoride system cell.

  13. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  14. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    Science.gov (United States)

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  15. Deterministic sequential isolation of floating cancer cells under continuous flow.

    Science.gov (United States)

    Tran, Quang D; Kong, Tian Fook; Hu, Dinglong; Marcos; Lam, Raymond H W

    2016-08-01

    Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types. PMID:27387093

  16. ENERGY FLOWS IN COMPLEX ECOLOGICAL SYSTEMS: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG

    2009-01-01

    Energy flow drives the complex systems to evolve. The allometric scaling as the universal energy flow pattern has been found in different scales of ecological systems. It reflects the general power law relationship between flow and store. The underlying mechanisms of energy flow patterns are explained as the branching transportation networks which can be regarded as the result of systematic optimization of a biological target under constraints. Energy flows in the ecological system may be modelled by the food web model and population dynamics on the network. This paper reviews the latest progress on the energy flow patterns, explanatory models for the allometric scaling and modelling approach of flow and network evolution dynamics in ecology. Furthermore, the possibility of generalizing these flow patterns, modelling approaches to other complex systems is discussed.

  17. DNA content analysis of insect cell lines by flow cytometry

    OpenAIRE

    Léry, Xavier; Charpentier, Guy; Belloncik, Serge

    1999-01-01

    The DNA content of insect cell lines (6 lepidoptera, 1 coleoptera and 1 diptera) was determined by flow cytometry. The DNA profiles of the 8 cell lines tested were different. They were characterized by the presence of several peaks (2 to 7) corresponding to different ploidy levels, by differences in the fluorescence intensity of each peak and by the proportion of cells in each peak. Two cell lines (Cf124 and BmN) were constituted of 2 distinct populations of cells. The DNA profiles of the cel...

  18. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    CERN Document Server

    Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...

  19. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.;

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...

  20. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  1. Circulation times of cancer cells by in vivo flow cytometry

    Science.gov (United States)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  2. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.;

    2016-01-01

    systems are capable of acquiring thousands of images per second for fast moving flow as well as yielding estimates of low velocity flow. These emerging techniques allow vector flow systems to assess highly complex flow with transitory vortices and moving tissue, and they can also be used in functional...... ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  3. Designing piping systems for two-phase flow

    International Nuclear Information System (INIS)

    A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns

  4. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  5. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  6. Dynamic modelling of packaging material flow systems.

    Science.gov (United States)

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data. PMID:15864957

  7. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.

    Science.gov (United States)

    Schneider, Matthias F; Guttenberg, Zeno; Schneider, Stefan W; Sritharan, Kumudesh; Myles, Vanessa M; Pamukci, Umut; Wixforth, Achim

    2008-03-14

    A novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few mul and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.g. curvatures, bifurcations and stenosis). Addition of polymer walls to the planar fluidic track enables cell culturing on the chip surface and the investigation of cell-cell adhesion dynamics under flow. We demonstrate the flexibility of the system for application in many areas of microfluidic investigations including blood clotting phenomena under various flow conditions and the investigation of different stages of cell adhesion. PMID:18306189

  8. Support system for process flow scheduling

    OpenAIRE

    Salomone, Enrique; Chiotti, Omar Juan Alfredo; Lerch, Juan

    2001-01-01

    Process flow scheduling is a concept that refers to the scheduling of flow shop process plants, whose scheduling calculations are guided by the process structure. In a wide variety of high-volume process industries, the process flow scheduling concept implies an integrated structure for planning and scheduling. This integrated vision of the planning function and the very particular characteristics of the process industry production environment challenge the application of the most traditio...

  9. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  10. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  11. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  12. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  13. Micro-fluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Ingdal, Mats

    2014-01-01

    Micro fluidic flow cells (MFFCs) are a relatively new technique for characterization of electrochemical reactions. This work includes both techniques for manufacturing the cells and electrochemical characterization of them.Improvements to a previously established procedure for the manufacturing MFFCs included change of template for PDMS-masters from glass slides to silicon wafers and the change from electrodes consisting of titanium gold and platinum to only titanium and platinum. The changes...

  14. Identification of resting cells by dual-parameter flow cytometry of statin expression and DNA content

    Energy Technology Data Exchange (ETDEWEB)

    Pellicciari, C.; Mangiarotti, R.; Bottone, M.G.; Danova, M. [Univ. of Pavia (Italy); Wang, E. [Jewish General Hospital, Montreal, Quebec (Canada)

    1995-12-01

    Statin, a 57-kDa nuclear protein, has been recognized as a unique marker of quiescent (G{sub 0}) cells; specific monoclonal antibodies (MoAb) against statin have been produced and used to label resting cells in tissue sections and in cultured cells. We present an improved method for the identification of G{sub 0} cells by dual-parameter flow cytometry of statin expression and DNA content. The appropriate technical conditions were set up by using resting and cycling human fibroblasts as a model cell system. Several fixatives proved to be suitable for the immunocytochemical detection of statin; among them, 70% ethanol was selected because this fixation procedure is suitable for DNA staining with intercalating dyes and is routinely used for the immunolabeling of proliferation markers (such as proliferating cell nuclear antigen [PCNA] and Ki-67) and of bromodeoxyuridine (BrdUrd) incorporation. Following cell permeabilization with detergent, exposure to the antistatin antibody (S-44), and indirect fluorescein isothiocyanate immunolabeling, cells were counterstained for DNA with propidium iodide and analyzed by dual-parameter flow cytometry. In cells from several animal sources (rat thymocytes and C6 glioma cells, mouse 3T3 cells, and human MCF-7 cells), under different experimental conditions, the expression of statin was found to correlate inversely with that of PCNA and Ki-67, and with the BrdUrd labeling index. In dual-parameter flow scattergrams, G{sub 0} (statin positive) cells can be discriminated from the potentially cycling (statin negative) G{sub 1} cells, i.e., within a cell fraction having the same DNA content. This approach can be envisaged as a powerful tool both for monitoring changes in the resting cell fraction and for investigating the process of G{sub 0}-G{sub 1} transition in unperturbed and drug-treated cell populations. 48 refs., 5 figs., 1 tab.

  15. Design flow factors for sewerage systems in small arid communities

    OpenAIRE

    Imam, Emad H.; Haitham Y. Elnakar

    2014-01-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are cl...

  16. Fuel cell based hybrid systems

    OpenAIRE

    Davat, B.; Astier, S.; Bethoux, O.; CANDUSSO,D; Coquery, G.; DE-BERNARDINIS, A; DRUART, F; Francois, M; GARCIA ARREGUI, F; Harel, F.

    2009-01-01

    This paper presents different works which are currently developed in the field of fuel cell hybrid systems indifferent public laboratories in France. These works are presented in three sections corresponding to: 1. Hybrid fuel cell/battery or supercapacitor power sources; 2. Fuel cell multistack power sources; 3. Fuel cell in hybrid power systems for distributed generation. The presented works combine simulation and experimental results.

  17. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  18. Co-laminar flow cells for electrochemical energy conversion

    Science.gov (United States)

    Goulet, Marc-Antoni; Kjeang, Erik

    2014-08-01

    In this review, we present the major developments in the evolution of 'membraneless' microfluidic electrochemical cells which utilize co-laminar flow to minimize reactant mixing while producing electrical power in a compact form. Categorization of devices according to reactant phases is suggested, with further differentiation being subject to fabrication method and function, namely multi-layer sandwich structures for medium-power cell stacks and single-layer monolithic cells for low-power on-chip applications. Power density metrics reveal that recent co-laminar flow cells compare favourably with conventional membrane-based electrochemical cells and that further optimization of device architecture could be expedited through standardized testing. Current research trends indicate that co-laminar flow cell technology for power generation is growing rapidly and finding additional use as an analytical and education tool. Practical directions and recommendations for further research are provided, with the intention to guide scientific advances and technology development toward ultimate pairing with commercial applications.

  19. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (PFlow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  20. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or near-dip

  1. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems.

    Science.gov (United States)

    Saias, Laure; Autebert, Julien; Malaquin, Laurent; Viovy, Jean-Louis

    2011-03-01

    We propose a strategy for optimizing distribution of flow in a microfluidic chamber for microreactor, lateral flow assay and immunocapture applications. It is aimed at maximizing flow throughput, while keeping footprint, cell thickness, and shear stress in the distribution channels at a minimum, and offering a uniform flow field along the whole analysis chamber. In order to minimize footprint, the traditional tree-like or "rhombus" design, in which distribution microchannels undergo a series of splittings into two subchannels with equal lengths and widths, was replaced by a design in which subchannel lengths are unequal, and widths are analytically adapted within the Hele-Shaw approximation, in order to keep the flow resistance uniform along all flow paths. The design was validated by hydrodynamic flow simulation using COMSOL finite element software. Simulations show that, if the channel is too narrow, the Hele-Shaw approximation loses accuracy, and the flow velocity in the chamber can fluctuate by up to 20%. We thus used COMSOL simulation to fine-tune the channel parameters, and obtained a fluctuation of flow velocity across the whole chamber below 10%. The design was then implemented into a PDMS device, and flow profiles were measured experimentally using particle tracking. Finally, we show that this system can be applied to cell sorting in self-assembling magnetic arrays, increasing flow throughput by a factor 100 as compared to earlier reported designs. PMID:21240403

  2. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T;

    2013-01-01

    as control antibody. Without antibodies this system is suitable for analyses of natural killer cell activity. In optimization of the assay we have used effector lymphocytes from healthy donors. The most effective effector cells are CD56(+) cells. CD8(+) T cells also express CD107a in ADCC. Using the adapted......Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable...... assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients...

  3. Flow induced pulsations in pipe systems

    Science.gov (United States)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  4. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  5. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila;

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... is challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....

  6. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  7. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.;

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...

  8. Employment of synchronized cells and flow microfluorometry in investigations on the JB-1 ascites tumour chalones.

    Science.gov (United States)

    Bichel, P; Barfod, N M; Jakobsen, A

    1975-11-01

    In most experimental ascites tumours the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of non-cycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumour in the plateau phase of growth lowmolecular-weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. The present paper describes an in-vitro model for testing the effect of the humoral growth inhibitors contained in the ascitic fluid. The test system is based on synchronized JB-1 cells analysed by flow-through cytofluorometry. Addition to the synchronous cells of a ultrafiltrate (less than 50000 Daltons) of the JB-1 ascitic fluid was found to induce a complete, but temporary arrest of the cells at the G1-S border.

  9. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  10. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Zongzheng Chen; Cheng Xiang; Bo Liu; Handi Xie; Kairong Qin

    2016-01-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the rela-tionship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the tra-ditional ones, which have been only based upon either stag-nation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addi-tion, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and con-veniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  11. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  12. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  13. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  14. Parallel flow in hele-shaw cells with ferrofluids

    Science.gov (United States)

    Miranda; Widom

    2000-02-01

    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of wave propogation for a given wave number. We note that the magnetic field creates an effective interaction between the solitons. PMID:11046508

  15. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  16. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  17. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén;

    2014-01-01

    in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses......This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  18. Flow of red blood cells in capillary networks

    OpenAIRE

    Couto, Ana; Teixeira, Lúcia; Leble, Vladimir; Lima, R.; Ribeiro, António E.; Dias, Ricardo

    2011-01-01

    In the present work we have studied the flow of red blood cells through a column packed with soda lime glass spheres with diameter of 337.5 micron (pore diameter 150 micron). The ratio between the average velocity of the RBCs and the average velocity of the carrying fluid (physiological saline) was close to 0.9. The RBCs migrated faster through the column than the carrying fluid mainly due to a hydrodynamic chromatographic effect.

  19. Surfactant micelles: model systems for flow instabilities of complex fluids

    OpenAIRE

    Perge, Christophe; Fardin, Marc-Antoine; Manneville, Sebastien

    2013-01-01

    Complex fluids such as emulsions, colloidal gels, polymer or surfactant solutions are all characterized by the existence of a "microstructure" which may couple to an external flow on timescales that are easily probed in experiments. Such a coupling between flow and microstructure usually leads to instabilities under relatively weak shear flows that correspond to vanishingly small Reynolds numbers. Wormlike micellar surfactant solutions appear as model systems to study two examples of such ins...

  20. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  1. Design flow factors for sewerage systems in small arid communities.

    Science.gov (United States)

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  2. Design flow factors for sewerage systems in small arid communities

    Directory of Open Access Journals (Sweden)

    Emad H. Imam

    2014-09-01

    Full Text Available Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc. and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  3. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    Science.gov (United States)

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes. PMID:27030780

  4. Pulsed photoacoustic flow imaging with a handheld system.

    Science.gov (United States)

    van den Berg, Pim J; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  5. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    Science.gov (United States)

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  6. An Architecture for Context-Aware Knowledge Flow Management Systems

    CERN Document Server

    Jarrahi, Ali

    2012-01-01

    The organizational knowledge is one of the most important and valuable assets of organizations. In such environment, organizations with broad, specialized and up-to-date knowledge, adequately using knowledge resources, will be more successful than their competitors. For effective use of knowledge, dynamic knowledge flow from the sources to destinations is essential. In this regard, a novel complex concept in knowledge management is the analysis, design and implementation of knowledge flow management systems. One of the major challenges in such systems is to explore the knowledge flow from the source to the recipient and control the flow for quality improvements concerning the users' needs as possible. Therefore, the purpose of this paper is to provide an architecture in order to solve this challenge. For this purpose, in addition to the architecture for knowledge flow management systems, a new node selection strategy is provided with higher success rate compared to previous strategies.

  7. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  8. The closed circuit and the low flow systems

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2013-01-01

    Full Text Available A breathing system is defined as an assembly of components, which delivers gases from the anesthesia machine to the patients′ airways. When the components are arranged as a circle, it is termed a circle system. The flow of exhaled gases is unidirectional in the system. The system contains a component (absorber, which absorbs exhaled carbon dioxide and it is not necessary to give high fresh gas flows as in Mapleson systems. When the adjustable pressure limiting (APL valve is closed and all the exhaled gases without carbon dioxide are returned to the patient, the system becomes a totally closed one. Such a circle system can be used with flows as low as 250 to 500 mL and clinically can be termed as low-flow systems. The components of the circle system can be arranged in different ways with adherence to basic rules: (1 Unidirectional valve must be present between the reservoir bag and the patient on both inspiratory and expiratory sides; (2 fresh gas must not enter the system between the expiratory unidirectional valve and the patient; and (3 the APL valve must not be placed between the patient and the inspiratory unidirectional valve. The functional analysis is explained in detail. During the function, the arrangement of components is significant only at higher fresh gas flows. With the introduction of low resistance valves, improved soda lime canisters and low dead space connectors, the use of less complicated pediatric circle systems is gaining popularity to anesthetize children. There are bidirectional flow systems with carbon dioxide absorption. The Waters to and fro system, a classic example of bidirectional flow systems with a canister to absorb carbon dioxide, is valveless and portable. It was widely used in the past and now is only of historical importance.

  9. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  10. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow in...... the geometry of the gating system causes pressure waves to form that eventually lead to defective castings. It is clear that sharp corners and dead ends in gating systems should be avoided, and that more stream lined, organic designs based on fluid dynamic principles will are necessary to design...

  11. Modelling of uncertainness for a flow and level system

    Science.gov (United States)

    Hernández, C.; Angel, L.; Viola, J.

    2016-07-01

    This paper presents the identification of uncertainness that affects the dynamics of a flow and level system. Initially, flow a level system is descripted. Then, family of plants is determined from the identification of dynamic model for different operating conditions. The uncertain model reflects the changes for different operating conditions when the output flow and storage tank dimensions are varied. Finally, the maximum multiplicative uncertain is calculated to define the desired controller specifications to achieve a robust stability and performance of the closed loop system.

  12. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    Science.gov (United States)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  13. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood.

    Science.gov (United States)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-01-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis. PMID:27596736

  14. Determinants of resting cerebral blood flow in sickle cell disease.

    Science.gov (United States)

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  15. From Flow Logic to static type systems for coordination languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, Rene Rydhof;

    2010-01-01

    checks; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper, we show how the insights from the Flow Logic approach can be used to construct a type system for statically...

  16. System proportions fluid-flow in response to demand signals

    Science.gov (United States)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  17. C++ based design flow for reconfigurable image processing systems

    NARCIS (Netherlands)

    Beun, R.; Karkowski, I.; Ditzel, M.

    2007-01-01

    In this paper a new hardware-software co-design flow for FPGA based image processing systems is described. This flow is fully C++ based and allows specification, verification and semi-automatic generation of all necessary software and hardware components. It allows the involvement of algorithm devel

  18. PEM fuel cell systems performance optimisation using the mathematical modeling

    International Nuclear Information System (INIS)

    PEM fuel cell systems and technologies have emerged as viable energy conversion devices for terrestrial applications (stationary and mobile). They offer huge economical and environmental potentials in the next generation power systems, but they are still more expensive than most conventional power conversion devices. Therefore, there is a need to optimize these technologies from the performance and costs point of view. Mathematical modeling proved to be the most important tool for PEM fuel cell optimization, providing the best solution for design, operating condition, experimentation and exploitation. This paper proposes a study for fluid flow channels optimization in order to improve the performance of PEM fuel cell systems. Thus, we run simulations using 3 types of geometries for the flowing channels: serpentine, parallel and spiral channel in order to find the optimum flowing geometry. Concluding, we can consider the modeling like an important alternative for fuel cell optimization and for exploitation/experimentation costs reduction. (authors)

  19. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells.

    Science.gov (United States)

    Singer, Benjamin D; Mock, Jason R; D'Alessio, Franco R; Aggarwal, Neil R; Mandke, Pooja; Johnston, Laura; Damarla, Mahendra

    2016-05-01

    Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis. PMID:26944088

  20. A Computational Model of Deformable Cell Rolling in Shear Flow

    Science.gov (United States)

    Eggleton, Charles; Jadhav, Sameer

    2005-03-01

    Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. The cell rolling velocity is influenced by bond interactions on the molecular scale that oppose hydrodynamic forces at the mesoscale. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for these differences, we developed a 3-D computational model which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The average bond lifetime, number of receptor-ligand bonds and the cell-substrate contact area decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.

  1. Integrated thermal and micro Coriolis flow sensing system with a dynamic flow range of more than 4 decades

    NARCIS (Netherlands)

    Lötters, J.C.; Lammerink, T.S.J.; Groenesteijn, J.; Haneveld, J.; Wiegerink, R.J.

    2011-01-01

    We have realized a micromachined single chip flow sensing system with an unprecedented ultra-wide dynamic flow range of more than 4 decades, from less than 0.1 up to more than 1000 μl/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges. Oper

  2. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  3. Measuring information flow in cellular networks by the systems biology method through microarray data.

    Science.gov (United States)

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  4. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  5. Holomorphic Embedded Load Flow for autonomous spacecraft power systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...

  6. Axisymmetric Predictions of Fluid Flow inside a Rotating Cavity System

    Directory of Open Access Journals (Sweden)

    Mujeebuddin Memon

    2013-07-01

    Full Text Available Accurate prediction of fluid flow in the rotating cavity system is of practical interest as it is most commonly used in the gas turbine engines and compressors. This paper presents the numerical predictions of a rotating cavity flow system for Reynolds numbers of the range 1x105 < Re? < 4x105 and two different mass flow rates Cw=1092 and 2184. A finite-difference technique is employed for a Steady-state solution in the axisymmetric cylindrical polar coordinate frame of reference. The two low Reynolds number turbulence models, the low Reynolds number k-? model and the low Reynolds number second moment closure have been used to compute the basic characteristics of the flow inside the rotating cavity flow system. Different flow regions have been identified by computing flow structures and dimensions of those regions have also been studied under different flow rates. A comparison of the computed variation of moment coefficient of both the turbulence models are presented for the above mentioned parameters and the parametric effects on the moment coefficients have been discussed

  7. Bifurcation and catastrophe of seepage flow system in broken rock

    Institute of Scientific and Technical Information of China (English)

    MIAO Xie-xing; LI Shun-cai; CHEN Zhan-qing

    2009-01-01

    The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo-tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.

  8. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  9. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  10. Multisensor Acquirement System of Electrokinetic in Multiphase Flow

    Directory of Open Access Journals (Sweden)

    Yahui Bu

    2013-09-01

    Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow

  11. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

    Science.gov (United States)

    Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

    2015-11-01

    We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

  12. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel;

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...... up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions....

  13. Obtaining Internet Flow Statistics by Volunteer-Based System

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Bujlow, Tomasz

    2012-01-01

    In this paper we demonstrate how the Volunteer Based System for Research on the Internet, developed at Aalborg University, can be used for creating statistics of Internet usage. Since the data is collected on individual machines, the statistics can be made on the basis of both individual users...... and groups of users, and as such be useful also for segmentation of users intro groups. We present results with data collected from real users over several months; in particular we demonstrate how the system can be used for studying flow characteristics - the amount of TCP and UDP flows, average flow lengths...

  14. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  15. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  16. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  17. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min.

  18. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  19. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    OpenAIRE

    Prechanon Kumkratug

    2010-01-01

    Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into ...

  20. Flow cytometric immunophenotypic characteristics of plasma cell leukemia

    Directory of Open Access Journals (Sweden)

    Barbara Kruk

    2011-04-01

    Full Text Available The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI. Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01. Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively. However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1 or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54

  1. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  2. Use of acoustic monitoring system for debris flow discharge evaluation

    Science.gov (United States)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  3. Integration and Validation of Flow Image Quantification (Flow-IQ) System

    OpenAIRE

    Carneal, Jason Bradley

    2004-01-01

    The first aim of this work was to integrate, validate, and document, a digital particle image quantification (Flow-IQ) software package developed in conjunction with and supported by Aeroprobe Corporation. The system is tailored towards experimental fluid mechanics applications. The second aim of this work was to test the performance of DPIV algorithms in wall shear flows, and to test the performance of several particle sizing algorithms for use in spray sizing and average diameter calculati...

  4. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    International Nuclear Information System (INIS)

    Highlights: → Sequential injection determination of phosphate in estuarine and freshwaters. → Alternative spectrophotometric flow cells are compared. → Minimization of schlieren effect was assessed. → Proposed method can cope with wide salinity ranges. → Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 μM PO43-) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 μM) was achieved using both detection systems.

  5. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Raquel B.R. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); Ferreira, M. Teresa S.O.B. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Toth, Ildiko V. [REQUIMTE, Departamento de Quimica, Faculdade de Farmacia, Universidade de Porto, Rua Anibal Cunha, 164, 4050-047 Porto (Portugal); Bordalo, Adriano A. [Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); McKelvie, Ian D. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Rangel, Antonio O.S.S., E-mail: aorangel@esb.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2011-09-02

    Highlights: {yields} Sequential injection determination of phosphate in estuarine and freshwaters. {yields} Alternative spectrophotometric flow cells are compared. {yields} Minimization of schlieren effect was assessed. {yields} Proposed method can cope with wide salinity ranges. {yields} Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 {mu}M PO{sub 4}{sup 3-}) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 {mu}M) was achieved using both detection systems.

  6. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-01

    was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health. PMID:24995370

  7. Unitized regenerative fuel cell system

    Science.gov (United States)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  8. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  9. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  10. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    Science.gov (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  11. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  12. Digital Schlieren System for Flow Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is an SBIR proposal to develop a revolutionary digital schlieren imaging system that will greatly improve a widely used aerodynamics tool and render it so...

  13. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  14. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  15. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    Science.gov (United States)

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  16. MAG-GATE System for Molten metal Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  17. Method, apparatus and system for controlling fluid flow

    Science.gov (United States)

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  18. Stochastic modeling of a lava-flow aquifer system

    Science.gov (United States)

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  19. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  20. Power System Stability Enhancement Using Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: The enhancement of transient stability of the power system is one of the most challenging research areas in power engineer. Approach: This study presents the method to enhance transient stability of power system by Unified Power Flow Controller (UPFC. The mathematical model of power system equipped with a UPFC is systematically derived. The parameters of UPFC are modeled into power flow equation and thus it is used to determine control strategy. The swing curves of the three phase faulted power system without and with a UPFC are tested and compared in various cases. Results: The swing curve of system without a UPFC gets increases monotonically and thus the system can be considered as unstable whereas the swing curves of system with a UPFC can return to stable equilibrium point. Conclusion: From the simulation results, the UPFC can enhance transient stability of power system.

  1. CFD characterization of flow regimes inside open cell foam substrates

    International Nuclear Information System (INIS)

    Highlights: • We investigated the pressure drop in open-cell foams. • The study is based on a combination of micro-CT, image-based modeling and CFD tools. • Detailed CFD simulations were applied for the investigation of turbulent flow regimes. • The effects of geometrical parameters are studied by means of RANS CFD simulations. • Results are analyzed in terms of non-dimensional parameters. - Abstract: In this work a combination of micro-CT, image-based modeling and CFD has been applied to investigate the pressure drop in open-cell foams. The analysis covers a range of flow regimes and is aimed at determining the effects of important morphological parameters on the pressure drop. The adoption of micro-CT technology along with detailed CFD modeling allows the investigation of phenomena occurring in real foam micro-structures. Moreover, by means of image processing tools, the geometry can be artificially modified in order to investigate the effects of mathematical transformation of the geometrical parameters of a real foam, one parameter at a time, e.g. varying pore size without affecting the porosity. Non-dimensional coefficients have been defined for the analysis of the results, with the purpose of describing the pressure drop as a function of the Reynolds number. The proposed formulation allows us to relate the permeability properties of an open-cell foam to its morphology alone, without any dependence on the properties of the fluid adopted or on the effective characteristic dimension of the foam micro-structure (pore or cell size). Comparison with experimental results available in the literature is also provided for one of the cases studied

  2. A cell-centered ICE method for multiphase flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwa, B.A.; Padial, N.T. [Los Alamos National Lab., NM (United States); Rauenzahn, R.M. [Molten Metals Technology, Inc., Waltham, MA (United States); VanderHeyden, W.B. [Amoco Oil Co., Naperville, IL (United States)

    1993-12-01

    The Implicit Continuous-fluid Eulerian (ICE) method is a finite-volume scheme that is stable for any value of the Courant number based on the sound speed. In the incompressible limit, the ICE method becomes essentially identical to the Marker and Cell (MAC) method, so the two schemes are closely related. In this article, the classical ICE method is extended to multiple interpenetrating phases, and employed with a single control volume (nonstaggered) mesh framework. The incompressible limit is preserved, so that problems involving equations of state, or those exhibiting constant material densities, can be addressed with the same computer code. The scheme reduces properly to a single-fluid method, enabling benchmarking using well-known test cases. Thus, the numerical issues focus only on those aspects unique to problems having multiple density, velocity and temperature fields. The discussion begins with a derivation of the exact, ensemble-averaged equations. Examples of the most basic closures axe given, and the well-posedness of the equations is demonstrated. The numerical method is described in operator notation, and the discretization is sketched. The flow patterns in a bubble column are computed as an incompressible flow example. For a compressible flow example, the expansion and compression of a bubble formed by high-explosive gases under water is shown. In each case, comparison to experimental data is made.

  3. Dynamical-systems approach to localised turbulence in pipe flow

    CERN Document Server

    Ritter, Paul; Avila, Marc

    2015-01-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.

  4. Active flow control systems architectures for civil transport aircraft

    OpenAIRE

    Jabbal, M; Liddle, SC; Crowther, WJ

    2010-01-01

    Copyright @ 2010 American Institute of Aeronautics and Astronautics This paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study applicatio...

  5. Mechanism and estimation of negative entropy flow in terrestrial system

    Institute of Scientific and Technical Information of China (English)

    LI Shaoxin; HUA Ben; HAN Guangze; WEN Dehua

    2005-01-01

    The origin, existence and evolution of life on the earth depend on the negative entropy flow in the terrestrial system (TS). In this paper, we investigate the mechanisms of different negative entropy flows caused by the vertical heat transfer of water phase transition and the gravitational field effect, and the vertical atmospheric heat transfer and the gravitational field effect, under the influences of the sun's radiation, the photosynthesis of the plants, and the earth's rotation. The magnitude orders and the mechanisms of the abovementioned negative entropy flow are also discussed.

  6. A multi-agent system for monitoring patient flow.

    Science.gov (United States)

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow.

  7. A multi-agent system for monitoring patient flow.

    Science.gov (United States)

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow. PMID:23920718

  8. Peculiarities of the Accretion Flow in the System HL CMa

    CERN Document Server

    Semena, Andrey; Buckley, David; Lutovinov, Alexander; Breytenbach, Hannes

    2016-01-01

    The properties of the aperiodic brightness variability for the dwarf nova HL CMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above $7\\times10^{-3}$Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and X-ray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system, the flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics i...

  9. Numerical simulation of transient flow in horizontal drainage systems

    Institute of Scientific and Technical Information of China (English)

    Ze-yu MAO; Han XIAO; Ying LIU; Ying-jun HU

    2009-01-01

    A numerical simulation model based on the characteristic-based finite-difference method with a time-line interpolation scheme was developed for predicting transient free surface flow in horizontal drainage systems. The fundamental accuracy of the numerical model was first clarified by comparison with the experimental results for a single drainage pipe. Boundary conditions for junctions and bends, which are often encountered in drainage systems, were studied both experimentally and numerically. The numerical model was applied to an actual drainage system. Comparison with a full-scale model experiment indicates that the model can be used to accurately predict flow characteristics in actual drainage networks.

  10. A contribution about ferrofluid based flow manipulation and locomotion systems

    International Nuclear Information System (INIS)

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  11. A contribution about ferrofluid based flow manipulation and locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K; Zeidis, I; Bohm, V; Popp, J [TU Ilmenau, Fak. f. Maschinenbau, FG Technische Mechanik, Max-Planck-Ring 12, 98693 Ilmenau (Germany)], E-mail: klaus.zimmermann@tu-ilmenau.de, E-mail: jana.popp@tu-ilmenau.de

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  12. Simulation of fluid flow system in process industries

    OpenAIRE

    Khamkham, Nasser E

    2000-01-01

    A comprehensive and integrated suite of computer software has been developed to simulate the steady, one-dimensional, incompressible fluid flow in pipeline networks. The computer program accommodates Newtonian liquids, but does not generally apply to gas flow unless the assumption of constant density is acceptable. The computer program is written in C language, to solve the basic pipe system equations using the linear theory method. This computer program is written to analyse steady state...

  13. On model of information system for management of information flows

    OpenAIRE

    Kraleva, Radoslva; Kralev, Velin

    2016-01-01

    In this article are discussed some problems in developing software related to the management of information flows. We presented the basic stages in their development. We bold a methodology for conceptual modeling and design of information systems of this type. In order to demonstrate the effectiveness of the proposed model is an information system for administrative services of graduate students in the university.

  14. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, Hao

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologie

  15. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    Science.gov (United States)

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  16. Cerebral blood flow in sickle cell cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  17. Regularized image system for Stokes flow outside a solid sphere

    Science.gov (United States)

    Wróbel, Jacek K.; Cortez, Ricardo; Varela, Douglas; Fauci, Lisa

    2016-07-01

    The image system for a three-dimensional flow generated by regularized forces outside a solid sphere is formulated and implemented as an extension of the method of regularized Stokeslets. The method is based on replacing a point force given by a delta distribution with a smooth localized function and deriving the exact velocity field produced by the forcing. In order to satisfy zero-flow boundary conditions at a solid sphere, the image system for singular Stokeslets is generalized to give exact cancellation of the regularized flow at the surface of the sphere. The regularized image system contains the same elements as the singular counterpart but with coefficients that depend on a regularization parameter. As this parameter vanishes, the expressions reduce to the image system of the singular Stokeslet. The expression relating force and velocity can be inverted to compute the forces that generate a given velocity boundary condition elsewhere in the flow. We present several examples within the context of biological flows at the microscale in order to validate and highlight the usefulness of the image system in computations.

  18. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  19. A zero-flow microfluidics for long-term cell culture and detection

    Science.gov (United States)

    Sang, Shengbo; Tang, Xiaoliang; Feng, Qiliang; Jian, Aoqun; Zhang, Wendong

    2015-04-01

    A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM) was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells' normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS) will provide a research foundation for microfluidic technology.

  20. Comparison of plateletpheresis on three continuous flow cell separators

    Directory of Open Access Journals (Sweden)

    Tendulkar Anita

    2009-01-01

    Full Text Available Introduction: Platelet concentrate (PC remains one of the most important support measures in thrombocytopenic patients. An efficient cell separator is a prerequisite for an optimally functioning apheresis setup. Donor blood count may undergo a temporary reduction after the procedure. Aim: The aim was to find the extent of reduction in donor blood count (hemoglobin, hematocrit, white blood cell, and platelet after plateletpheresis and to evaluate the cell separator for collection efficiency, processing time, and leukoreduction. Study Design and Methods: Two hundred and thirty seven procedures performed on the Amicus (N = 121, Fenwal CS-3000 Plus (N = 50 and Cobe spectra (N = 66 in a one year period were evaluated. The procedures performed on the continuous flow centrifugation (CFC cell separators and donor blood counts (pre and post donation done were included in the study. Results: The percent reduction in hemoglobin (HB, hematocrit (HCT, white blood cell (WBC and platelet count ((PLT ct was 2.9, 3.1, 9, 30.7 (Mean, N = 237 respectively after the procedure. The post donation PLT ct reduced to < 100x109/L (range 80-100 in five donors (N = 5/237, Amicus. The pre donation PLT ct in them was 150-200x109/L. Collection efficiency (percent of Amicus (79.3 was better as compared to the other two machines (CS: 62.5, Cobe: 57.5. PC collected on Cobe spectra had < 1x106 WBC. The donor pre donation PLT levels had a positive correlation to the product PLT yield (r = 0.30, P = 0.000. Conclusion: Monitoring donor blood counts helps to avoid pheresis induced adverse events. A cautious approach is necessary in donors whose pre donation PLT ct is 150-200x109/L. The main variable in PLT yield is donor PLT ct (pre donation. High collection efficiency is a direct measure of an optimally functioning cell separator.

  1. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u...

  2. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    Science.gov (United States)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  3. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    OpenAIRE

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, which accommodates electrochemical, thermal, feed flow and water crossover models in addition to two-phase calculatio...

  4. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  5. Controlled Logic Gates-Switch Gate and Fredkin Gate Based on Enzyme-Biocatalyzed Reactions Realized in Flow Cells.

    Science.gov (United States)

    Fratto, Brian E; Katz, Evgeny

    2016-04-01

    Controlled logic gates, where the logic operations on the Data inputs are performed in the way determined by the Control signal, were designed in a chemical fashion. Specifically, the systems where the Data output signals directed to various output channels depending on the logic value of the Control input signal have been designed based on enzyme biocatalyzed reactions performed in a multi-cell flow system. In the Switch gate one Data signal was directed to one of two possible output channels depending on the logic value of the Control input signal. In the reversible Fredkin gate the routing of two Data signals between two output channels is controlled by the third Control signal. The flow devices were created using a network of flow cells, each modified with one enzyme that biocatalyzed one chemical reaction. The enzymatic cascade was realized by moving the solution from one reacting cell to another which were organized in a specific network. The modular design of the enzyme-based systems realized in the flow device allowed easy reconfiguration of the logic system, thus allowing simple extension of the logic operation from the 2-input/3-output channels in the Switch gate to the 3-input/3-output channels in the Fredkin gate. Further increase of the system complexity for realization of various logic processes is feasible with the use of the flow cell modular design. PMID:26748763

  6. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    Science.gov (United States)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  7. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  8. Lockheed laminar-flow control systems development and applications

    Science.gov (United States)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  9. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device.

    Science.gov (United States)

    Moura Rosa, Patrícia; Gopalakrishnan, Nimi; Ibrahim, Hany; Haug, Markus; Halaas, Øyvind

    2016-10-01

    T cells play a central role in immunity towards cancer and infectious diseases. T cell responses are initiated in the T cell zone of the lymph node (LN), where resident antigen-bearing dendritic cells (DCs) prime and activate antigen-specific T cells passing by. In the present study, we investigated the T cell : DC interaction in a microfluidic device to understand the intercellular dynamics and physiological conditions in the LN. We show random migration of antigen-specific T cells onto the antigen-presenting DC monolayer independent of the flow direction with a mean T cell : DC dwell time of 12.8 min and a mean velocity of 6 μm min(-1). Furthermore, we investigated the antigen specific vs. unspecific attachment and detachment of CD8(+) and CD4(+) T cells to DCs under varying shear stress. In our system, CD4(+) T cells showed long stable contacts with APCs, whereas CD8(+) T cells presented transient interactions with DCs. By varying the shear stress from 0.01 to 100 Dyn cm(-2), it was also evident that there was a much stronger attachment of antigen-specific than unspecific T cells to stationary DCs up to 1-12 Dyn cm(-2). The mechanical force of the cell : cell interaction associated with the pMHC-TCR match under controlled tangential shear force was estimated to be in the range of 0.25-4.8 nN. Finally, upon performing attachment & detachment tests, there was a steady accumulation of antigen specific CD8(+) T cells and CD4(+) T cells on DCs at low shear stresses, which were released at a stress of 12 Dyn cm(-2). This microphysiological model provides new possibilities to recreate a controlled mechanical force threshold of pMHC-TCR binding, allowing the investigation of intercellular signalling of immune synapses and therapeutic targets for immunotherapy.

  10. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  11. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    PeiwenLi

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  12. Quantitative assessment of immune cells in the injured spinal cord tissue by flow cytometry: a novel use for a cell purification method.

    Science.gov (United States)

    Nguyen, Hal X; Beck, Kevin D; Anderson, Aileen J

    2011-04-09

    Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both

  13. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  14. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  15. Modeling of D-STATCOM in distribution systems load flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents modeling of Distribution STATCOM (D-STATCOM) in load flow calculations for the steadystate voltage compensation. An accurate model for D-STATCOM is derived to use in load flow calculations. The rating of this device as well as the direction of required reactive power injection for voltage compensation in the desired value (1 p.u.) is derived and discussed analytically and mathematically by the phasor diagram method. Furthermore, an efficient method for node and line identification used in load flow calculations is presented. The validity of the proposed model is examined by using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of D-STATCOM for under voltage problem mitigation approach in the distribution networks is determined. The results validate the proposed model for DSTATCOM in large distribution systems.

  16. Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    CERN Document Server

    Yamada, H; Ito, M

    1998-01-01

    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critic...

  17. Pressure and flow distribution in internal gas manifolds of a fuel-cell stack

    Science.gov (United States)

    Koh, Joon-Ho; Seo, Hai-Kyung; Lee, Choong Gon; Yoo, Young-Sung; Lim, Hee Chun

    Gas-flow dynamics in internal gas manifolds of a fuel-cell stack are analyzed to investigate overall pressure variation and flow distribution. Different gas-flow patterns are considered in this analysis. Gas-flow through gas channels of each cell is modeled by means of Darcy's law where permeability should be determined on an experimental basis. Gas-flow in manifolds is modeled from the macroscopic mechanical energy balance with pressure-loss by wall friction and geometrical effects. A systematic algorithm to solve the proposed flow model is suggested to calculate pressure and flow distribution in fuel-cell stacks. Calculation is done for a 100-cell molten carbonate fuel-cell stack with internal manifolds. The results show that the pressure-loss by wall friction is negligible compared with the pressure recovery in inlet manifolds or loss in outlet manifolds due to mass dividing or combining flow at manifold-cell junctions. A more significant effect on manifold pressure possibly arises from the geometrical manifold structure which depends on the manifold size and shape. The geometrical effect is approximated from pressure-loss coefficients of several types of fittings and valves. The overall pressure and flow distribution is significantly affected by the value of the geometrical pressure-loss coefficient. It is also found that the flow in manifolds is mostly turbulent in the 100-cell stack and this way result in an uneven flow distribution when the stack manifold is incorrectly, designed.

  18. Biofilm streamers cause rapid clogging of flow systems

    Science.gov (United States)

    Shen, Yi; Drescher, Knut; Wingreen, Ned; Bassler, Bonnie; Stone, Howard

    2012-11-01

    Biofilms are antibiotic-resistant, sessile bacterial communities that are found on most surfaces on Earth. In addition to constituting the most abundant form of bacterial life, biofilms also cause chronic and medical device-associated infections. Despite their importance, basic information about how biofilms behave in common ecological environments is lacking. Here we demonstrate that flow through soil-like porous materials, industrial filters, and medical stents dramatically modifies the morphology of Pseudomonas aeruginosa biofilms to form streamers which over time bridge the space between obstacles and corners in non-uniform environments. Using a microfluidic model system we find that, contrary to the accepted paradigm, the accumulation of surface-attached bacterial biofilm has little effect on flow resistance whereas the formation of biofilm streamers causes sudden and rapid clogging. The time at which clogging happens depends on bacterial growth, while the duration of the clogging transition is driven by flow-mediated transport of bacteria to the clogging site. Flow-induced shedding of extracellular matrix from the resident biofilm generates a sieve-like network that catches bacteria flowing by, which add to the network of extracellular matrix, to cause exponentially rapid clogging. We expect these biofilm streamers to be ubiquitous in nature, and to have profound effects on flow through porous materials in environmental, industrial, and medical environments.

  19. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  20. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  1. Interstitial fluid flow:simulation of mechanical environment of cells in the interosseous membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Yao; Guang-Hong Ding

    2011-01-01

    In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues,while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array,we set up a porous media model simulating the flow field with FLUENT software,studied the shear stress on interstitial cells' surface due to the interstitial fluid flow,and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells,up to 30 Pa or so,which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries,blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion,numerical simulation provides an effective way for in vivo dynamic interstitial velocity research,helps to set up the vivid subtle interstitial flow environment of cells,and is beneficial to understanding the physiological functions of interstitial fluid flow.

  2. Large-scale flow experiments for managing river systems

    Science.gov (United States)

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  3. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi

    2014-01-01

    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  4. From Flow Logic to Static Type Systems in Coordination Languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, René Rydhof;

    2008-01-01

    ; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper we show how to combine these two approaches to obtain a static type system for describing secure access to tuple spaces...

  5. Convection and diffusion in a micro-flow injection system

    NARCIS (Netherlands)

    Akker, van E.B.; Bos, M.; Linden, van der W.E.

    1998-01-01

    Five micro-structures were used to study the effect of the convection and diffusion behavior (dispersion) of a dye in a micro-flow system. Besides a straight manifold, manifolds with curved bends and manifolds with rectangular bends were constructed. The dispersion resulting from hydrodynamic inject

  6. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...

  7. Flow induced noise modelling for industrial piping systems

    NARCIS (Netherlands)

    Gijrath, H.; Ǎbom, M.

    2003-01-01

    Noise from e.g. gas-transport piping systems becomes more and more a problem for plants located close to urban areas. Too high noise levels are unacceptable and will put limitations on the plant capacity. Flow-induced noise of valves, orifices and headers installed in the installation plays a domina

  8. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  9. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    Science.gov (United States)

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  10. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines

    Science.gov (United States)

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Katnik, Steve; Myc, Andrzej; Thomas, Thommey; Luker, Kathryn E.; Luker, Gary D.; Baker, James R., Jr.; Norris, Theodore B.

    2007-07-01

    We have developed a new two-photon system for in vivo flow cytometry, thereby allowing us to simultaneously quantify different circulating populations in a single animal. The instrument was able to resolve minute-by-minute depletion dynamics of injected fluorescent microspheres at finer time scales than conventional flow cytometry. Also observed were the circulation dynamics of human MCF-7 and MDA-MB-435 breast cancer cells, which have low and high metastatic potential, respectively. After co-injection of both cell types into mice, markedly greater numbers of MCF-7 cells were present in the circulation at early time points. While low metastatic MCF-7 cells were cleared from the vascular system within 24 hours, detectable numbers of metastatic MDA-MB- 435 cells in the circulation remained constant over time. When we replace the commercial (80-MHz) NIR excitation laser with a reduced-repetition-rate (20-MHz) mode-locked oscillator, the signal is enhanced four-fold, enabling superior detection in blood of cell lines expressing fluorescent proteins tdTomato and mPlum (crosslabeled with DiI and DiD). Detection sensitivity versus incident laser power is understood in terms of detected event photon count distribution, which can be predicted with simple fluorophore distribution assumptions. The technique of two-color, two-photon flow cytometry greatly enhances the capabilities of ex vivo flow cytometry to investigate dynamics of circulating cells in cancer and other important diseases.

  11. The Distributed Workflow Management System--FlowAgent

    Institute of Scientific and Technical Information of China (English)

    王文军; 仲萃豪

    2000-01-01

    While mainframe or 2-tier client/server system have serious problems in flexibility and scalability for the large-scale business processes, 3-tier client/server architecture and object-oriented system modeling which construct business process on service components seem to bring software system some scalability. As enabling infrastructure for object-oriented methodology, distributed WFMS (Work-flow Management System) can flexibly describe business rules among autonomous 'service tasks', and support scalability of large-scale business process. But current distributed WFMS still have difficulty to manage a large number of distributed tasks, the 'multi-TaskDomain' architecture of FlowAgent will try to solve this problem, and bring a dynamic and distributed environment for task-scheduling.

  12. Quantitative Analysis of AGV System in FMS Cell Layout

    OpenAIRE

    B Ramana; S. Sudhakara Reddy; B. Ramprasad

    1997-01-01

    Material handling is a specialised activity for a modern manufacturing concern. Automated guided vehicles (AGVs) are invariably used for material handling in flexible manufacturing Systems (FMSs) due to their flexibility. The quantitative analysis of an AGV system is useful for determining the material flow rates, operation times, length of delivery, length of empty move of AGV and the number of AGVs required for a typical FMS cell layout. The efficiency of the material handling system...

  13. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    Science.gov (United States)

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  14. Mathematical simulation of gas induced bath flow in drained aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    李相鹏; 李劼; 赖延清; 赵恒勤; 刘业翔

    2004-01-01

    A mathematical model describing the bubble driven bath flow in a drained cell with a center sump was presented, which spanned the fluid around half an anode and was developed to simulate the flow fields. The calculated results show reasonable agreement with the experiment. Then the model was developed to a full cell model, and bath flow pattern in the whole cell was predicted and analyzed. The flow pattern variation with the changes of the ACD, anode slope, anode immersion depth and current density, especially the fluid secondary recirculation, was modeled. According to the results, side channel or slots feeding technique was recommended in such a drained cell.

  15. Controlling two-phase flow in microfluidic systems using electrowetting

    OpenAIRE

    Gu, Hao

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologies into one allows to combine the advantages of both worlds: (i) high throughput (from TPF) and (ii) precise control over each individual drop (from EW). Thus the aim of this thesis was to investiga...

  16. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  17. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  18. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  19. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    Science.gov (United States)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  20. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  1. Theory to predict shear stress on cells in turbulent blood flow.

    Science.gov (United States)

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  2. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  3. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

    Directory of Open Access Journals (Sweden)

    Alexander M. Sailon

    2009-01-01

    Full Text Available Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm. A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67%±5.0%, while in the core it was 0.3%±0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94%±8.3% and core density of 76%±3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  4. An annotation system for 3D fluid flow visualization

    Science.gov (United States)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  5. Subsonic Flow for the Multidimensional Euler-Poisson System

    Science.gov (United States)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  6. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  7. Continuous-flow free acid monitoring method and system

    Science.gov (United States)

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  8. Impact of electrolyte composition on the performance of the zinc-cerium redox flow battery system

    Science.gov (United States)

    Nikiforidis, Georgios; Berlouis, Léonard; Hall, David; Hodgson, David

    2013-12-01

    The zinc-cerium redox flow battery has the highest open circuit cell voltage (Ecell = 2.4 V) of all the common redox flow battery (RFB) systems being investigated. In this paper, carbon polymer composite materials based on polyvinyl ester and polyvinylidene difluoride are investigated as the negative electrode for this RFB system. Electrolyte composition, particularly on the negative side, is found to play a key role in maintaining high (˜90%) coulombic efficiencies for the different charge durations, from 10 min to 4 h, examined. Energy efficiencies >60% are obtained for temperatures in the range 45 °C-55 °C when the zinc ion concentration in the methanesulfonic acid electrolyte is 2.5 mol dm-3. No dependence of the energy efficiency on the flow velocity is found, over the range 7.5 cm s-1-13.5 cm-1.

  9. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  10. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  11. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  12. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  13. Criteria for inhalation exposure systems utilizing concurrent flow spirometry

    International Nuclear Information System (INIS)

    Principles are given for the design and operation of a new class of inhalation exposure systems utilizing concurrent flow spirometry (CFS), a simple method for providing realtime measurement of respiratory volumes and rates during inhalation exposure by mouth or nose of individual experimental animals or man to aerosols or gases. This technique is especially useful for inhalation exposure of larger experimental animals, such as horses, where whole-body plethysmography is usually impractical. Difficulties encountered with conventional exposure systems in maintenance of uniform aerosol or gas concentrations and prevention of large pressure excursions in the exposure chamber during breathing are obviated by systems utilizing the principles of concurrent flow spirometry. For illustration, two exposure units with CFS are described, one for exposure of Beagle dogs and one for ponies. (U.S.)

  14. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...

  15. Development of Saline Flow Systems in Closed Basins

    Science.gov (United States)

    Huntington, J. M.; Halford, K. J.; Garcia, C.

    2011-12-01

    Saline playas frequently occur in closed basins, such as the Humboldt Salt Marsh in Dixie Valley, in west-central Nevada. This playa is the terminus of a local groundwater flow system, is comprised of dense clay, and has shallow groundwater salinities more than 5 times the salinity of sea water (TDS concentrations of 172,000 to 311,900 mg/L). The saline system has developed and continues to expand as surface runoff and groundwater evaporates from the playa surface and dissolved solutes remain. Negligible discharge of fresh groundwater occurs where the saline system is present, because the fresh-water / saltwater interface that abuts the playa is analogous hydraulically to interfaces in coastal aquifers. The period of time necessary to develop a relatively isolated saline flow system was quantified by simulating a hypothetical cross-section with a variable-density groundwater flow and transport model (SEAWAT). Preliminary analysis suggests that the perimeter of saline system expands between 10 and 100 m every 10,000 years.

  16. Production flow synchronisation versus buffer capacities in assembly systems

    Directory of Open Access Journals (Sweden)

    D. Krenczyk

    2008-07-01

    Full Text Available Purpose: The goal of the considerations carried-out in that paper is the determination of the system synchronisation conditions. Those conditions concern capacities of system buffers. The fulfilment of the developed conditions should guarantee the production flow synchronisation into the expected steady state determined by the system bottleneck. In analysed assembly system rhythmic concurrent production with wide assortment is realised.Design/methodology/approach: The considerations presented in that paper are rooted in the authority method called Requirements and Possibilities Balance Method (RPBM. The experiments in the computer simulations programmes have been carried-out within the confines of the researches. The computer simulation models of the assembly systems using Taylor II for Windows and Enterprise Dynamics have been built.Findings: There are two kinds of system buffers: the entrance buffers and the inter-resources buffers in the assembly systems. The interdependences informing about the required number of elements allocated into the system buffers in order to the production realisation during the first cycle of the system steady state has been formulated. Moreover, the minimal buffer capacities have been determined.Research limitations/implications: The developed interdependences constitute the first step towards formulation of the automatic method designed for the automatic construction of rules controlling the system work during system transition state. That method should enable the automation of the system buffers filling-up.Practical implications: The presented system synchronisation conditions can become an integrated part of existing authority computer system. It aids the decision-making process connected with production planning and control.Originality/value: To develop the interdependences is the main achievement of the given paper. The presented approach permits to solve the problem concerning the production flow

  17. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    Science.gov (United States)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  18. Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow.

    Science.gov (United States)

    Kroon, Jeffrey; Daniel, Anna E; Hoogenboezem, Mark; van Buul, Jaap D

    2014-01-01

    During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium. PMID:25146919

  19. Flow cytometry as a tool to identify Mycobacterium tuberculosis interaction with the immune system and drug susceptibility

    Directory of Open Access Journals (Sweden)

    Maria da Gloria Bonecini-Almeida

    2000-08-01

    Full Text Available Flow cytometric analysis is a useful and widely employed tool to identify immunological alterations caused by different microorganisms, including Mycobacterium tuberculosis. However, this tool can be used for several others analysis. We will discuss some applications for flow cytometry to the study of M. tuberculosis, mainly on cell surface antigens, mycobacterial secreted proteins, their interaction with the immune system using inflammatory cells recovered from peripheral blood, alveolar and pleura spaces and the influence of M. tuberculosis on apoptosis, and finally the rapid determination of drug susceptibility. All of these examples highlight the usefulness of flow cytometry in the study of M. tuber-culosis infection.

  20. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    OpenAIRE

    Chung-Ju Lee; Pin-Cheng Chan; Chi-Yuan Lee

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and cont...

  1. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  2. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis

    OpenAIRE

    Baecker, M.; Rakowski, D.; Poghossian, A.; Biselli, M; Wagner, P.; Schoening, M. J.

    2013-01-01

    A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The...

  3. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  4. Knowledge Representation Using Multilevel Flow Model in Expert System

    International Nuclear Information System (INIS)

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available

  5. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  6. Operational evaluation of the high flow alternative filter test system

    International Nuclear Information System (INIS)

    An alternative to the current filter test system (Q107) used to test Size 4 (500 cubic feet per min rated flow) and larger nuclear grade high efficiency particulate air (HEPA) filters at DOE Filter Test Facilities (FTFs) has been developed. This new test system, called the High Flow Alternative Filter Test System (HFATS), has undergone a long-term operational evaluation at the Oak Ridge FTF (ORFTF) for: comparison between HEPA filter penetration measurements made with the HFATS and with the Q107; assessment of the HFATS' long-term routine operational performance in the FTF environment; and determination of the potential operational impacts of the HFATS on the FTFs. Data for the operational evaluation were collected by the Oak Ridge staff using both test systems. These data were analyzed and interpreted by Los Alamos staff. A total of 849 filters were tested in the evaluation. The data provided by the HFATS easily permits filter penetration to be reported in terms of: penetration at the size of maximum penetration; number, surface area, or mass penetration; or penetration at 0.3 μm for reference to historical data. Results of the penetration measurement comparisons show that the HFATS measurements at about 0.3 μm aerosol diameter do not differ significantly from the Q107 measurements. Analysis of the HFATS penetration data indicates that for the 100% flow tests maximum penetration most frequently occurs at an aerosol diameter of about 0.15 μm as measured by a laser aerosol spectrometer (LAS). The 0.15 μm HFATS measurements at 100% test flow were markedly higher than the corresponding Q107 measurements. These measurements resulted in over 18% of the filters being rejected by the HFATS only, compared to no filters being rejected only by the Q107 and approximately 0.2% being rejected by both systems

  7. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Benard convective cell

    CERN Document Server

    Eidelman, A; Gluzman, I; Golbraikh, E

    2013-01-01

    We present results of the study of a turbulent air flow with a large scale circulation in Rayleigh-Benard rectangular convective cell with a heated bottom wall and a cooled top wall. The mean horizontal velocity of the main roll and the mean vorticity of eddy rings are almost aligned in a large part of the flow. The helicity of the mean flow is quite high, and is the source of turbulent helicity. Since helicity of the mean flow and turbulence is quite large, the flow in Rayleigh-Benard convective cell is well suited to study properties of helical turbulence.

  8. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  9. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    DeVol, T.A.; Fjeld, R.A. [Clemson Univ., Clemson, SC (United States)

    1995-10-01

    The use of ion chromatography (IC) for radiochemical separations is a well established technique. IC is commonly used in routine environmental monitoring applications as well as in specialized research applications. Typical usage involves the separation of a single radionuclide from the non-radioactive constituents. During the past decade, a limited amount of research has been conducted using automated IC systems in actinide separation applications (e.g.). More recently, separation procedures for common non-gamma emitting activation and fission products were developed utilizing a high performance liquid chromatography (HPLC) system. In addition, a separation procedure for six common actinides has been developed using a HPLC system. These latter systems used on-line flow-cell detectors for quantification of the radioactive constituents of the effluent stream.

  10. The aerodynamic performance of several flow control devices for internal flow systems

    Science.gov (United States)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  11. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  12. Development of high pressure two-phase choked flow analysis methodology in complex piping system

    International Nuclear Information System (INIS)

    Choked flow mechanism, characteristics of two-phase flow sound velocity and compressibility effects on flow through various piping system components are studied to develop analysis methodology for high pressure two-phase choked flow in complex piping system which allows choking flow rate evaluation and piping system design related analysis. Piping flow can be said choked if Mach number is equal to 1 and compressibility effects can be accounted through modified incompressible formula in momentum equation. Based on these findings, overall analysis system is developed to study thermal-hydraulic effects on steady-state piping system flow and future research items are presented. (Author)

  13. Fiber optic flow system for potable water monitoring

    Science.gov (United States)

    Stadnik, Dorota; Majewska, Emilia; Chudy, Michal; Wróblewski, Wojciech; Brzózka, Zbigniew; Dybko, Artur

    2005-09-01

    The principle of the operation of a fiber optic chemical sensor (FOCS) is a chemically sensitive receptor part, which can be called as a chemooptical interface. This interface converts information on the analyte into changes of optical signal. In the case of the designed system, an appropriate reagent exhibiting changes in absorbance is immobilized on a polymeric support in a form of small beads. Such modified polymers are then loaded into a tube in order to construct a flow through sensor. The following reagents were used: bromothymol blue as pH-sensitive indicator, Chlorophosphonazo III as calcium-sensitive indicator, and 4-(2-pyridylazo)-resorcinol (PAR) as heavy metal indicator. The paper describes the immobilization procedures, tests of the flow through sensors with their calibration characteristics as well as system design considerations.

  14. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  15. Self-Calibrating, Variable-Flow Pumping System

    Science.gov (United States)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  16. Far from equilibrium energy flow in quantum critical systems

    CERN Document Server

    Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad

    2013-01-01

    We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.

  17. UVC-induced lysis and detritus production of Oscillatoria limnetica in a two-stage continuous-flow system

    NARCIS (Netherlands)

    Van Hannen, E.J.; Gons, H.J.

    1997-01-01

    In order to study in model systems the role of heterotrophic micro-organisms in the aquatic microbial food web, a natural food source consisting of senescent primary producer cells is indispensable. A two-stage continuous-flow system with the ability to produce detritus continuously is presented. In

  18. Experimental analysis of the flow structure in the laboratory model of SOFC fuel cell channels

    International Nuclear Information System (INIS)

    In the presented paper a flow structure in the gas channel of planar SOFC fuel cell is presented. The model taken for analysis was constructed based on the channel geometry manufactured by SOFC Power company. The shape of a channel was rectangular filled with large number of obstacles which role is to divide the flow into segments with possibly homogenous velocity distribution. The model itself was constructed from Plexiglas and the reactant gases flow was modelled by water motion. To investigate and visualize the flow structures a PIV technique was applied. Three different flow rates were taken for investigations and the flow uniformity and time dependence was studied.

  19. Self-Regulating Water-Separator System for Fuel Cells

    Science.gov (United States)

    Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.

    2007-01-01

    proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The

  20. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  1. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different m...... pumps connected to the microfluidic system. © 2013 by the authors; licensee MDPI, Basel, Switzerland....

  2. Nanoparticle-based assays in automated flow systems: A review

    International Nuclear Information System (INIS)

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section

  3. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  4. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  5. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics

    OpenAIRE

    Ramji, Ramesh; Wang, Ming; Bhagat, Ali Asgar S.; Tan Shao Weng, Daniel; Thakor, Nitish V.; Teck Lim, Chwee; Chen, Chia-Hung

    2014-01-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel...

  6. Sequential feasible optimal power flow in power systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A sequential feasible optimal power flow (OPF) method is developed for large-scale power systems. One of the outstanding features of this method is that it can maintain feasibility for both equality and inequality constraints during iterations. In sequential feasible OPF, every iteration consists of two stages: Objective improving stage and feasibility enforcing stage. Analytical basis for each stage is provided. Numerical studies on various power systems up to 2383 buses indicate that the proposed feasible approach is promising. Compared with the conventional OPF algorithms, such as interior point method, the proposed sequential feasible OPF approach can be terminated at any iteration and yield a feasible operating point simultaneously.

  7. Particle seeding flow system for horizontal shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Stephen [Los Alamos National Laboratory; Garcia, Nicolas J. [Los Alamos National Laboratory; Martinez, Adam A. [Los Alamos National Laboratory; Orlicz, Gregory C. [Los Alamos National Laboratory; Prestridge, Katherine P. [Los Alamos National Laboratory

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  8. Energy Flows in Low-Entropy Complex Systems

    CERN Document Server

    Chaisson, Eric J

    2015-01-01

    Nature's many complex systems--physical, biological, and cultural--are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence--relating neither entropy nor information, rather energy--suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density--the rate of energy flow per unit mass--can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy t...

  9. Solid Oxide Fuel Cell Systems PVL Line

    Energy Technology Data Exchange (ETDEWEB)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development

  10. Analysis of system trustworthiness based on information flow noninterference theory

    Institute of Scientific and Technical Information of China (English)

    Xiangying Kong; Yanhui Chen; Yi Zhuang

    2015-01-01

    The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer-ence (NI) theory of the information flow is studied. Firstly, existing methods cannot analyze the impact of the system states on the trustworthiness of software during the process of trust chain trans-fer. To solve this problem, the impact of the system state on trust-worthiness of software is investigated, the run-time mutual interfer-ence behavior of software entities is described and an interference model of the access control automaton of a system is established. Secondly, based on the intransitive noninterference (INI) theory, a formal analytic method of trustworthiness for trust chain transfer is proposed, providing a theoretical basis for the analysis of dynamic trustworthiness of software during the trust chain transfer process. Thirdly, a prototype system with dynamic trustworthiness on a plat-form with dual core architecture is constructed and a verification algorithm of the system trustworthiness is provided. Final y, the monitor hypothesis is extended to the dynamic monitor hypothe-sis, a theorem of static judgment rule of system trustworthiness is provided, which is useful to prove dynamic trustworthiness of a system at the beginning of system construction. Compared with previous work in this field, this research proposes not only a formal analytic method for the determination of system trustworthiness, but also a modeling method and an analysis algorithm that are feasible for practical implementation.

  11. Experimental study of flow instability in elongated natural circulation system

    International Nuclear Information System (INIS)

    The visual experimental study with water as the working substance was performed to investigate the operation behavior of a natural circulation system with elongated loops and long horizontal sections at atmospheric pressure, and the transient operation behavior and instability mechanism of typical experimental phenomenon (P= 1.46 kW) were given. The results show that the single natural circulation in elongated system with the great resistance coefficient is difficult to appear, but the heat can be removed by two-phase intermittent boiling. The driven force caused by the sub-cooled boiling can not drive the fluid to produce the effective natural circulation because of the great loop resistance, and the circular flow occurs only when the fluid in heat section produces the saturation boiling. The big loop resistance and flashing because of pressure drop in boiling process make the elongated natural circulation difficult to maintain a stable flow driven head and they are the fundamental reasons of intermittent boiling and strong flow instability. (authors)

  12. A simple flow analysis of diffuser-getter-diffuser systems

    International Nuclear Information System (INIS)

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  13. OPTIMIZATION OF MATERIAL FLOW IN FLEXIBLE MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    J.V.S. BHASKAR,

    2010-12-01

    Full Text Available Flexible manufacturing systems have evolved as a solution to efficient mid-volume production of a variety of part types with low setup time, low work-in-process, low inventory, short manufacturing lead time, high machine utilization and high quality. Flexible manufacturing system (FMS is a computer controlled manufacturing system composed of separate workstations that are inter-connected by automatic material handling system. FMS can produce a number of different parts concurrently. Each part requires different operations in a certain sequence and workstations can typically perform a variety of operations. In this work, a material and information flow analysis as well as an analysis of the department and machines layout is made using genetic algorithm and Tabu search. This method reduces the manufacturing lead-time to produce the components and in-turn gives monetary benefits to the industry.

  14. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    OpenAIRE

    Bittagopal Mondal; Dipankar Chatterjee

    2016-01-01

    The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC) since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus...

  15. High flow, low mobile weight quick disconnect system

    Science.gov (United States)

    Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)

    2010-01-01

    A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.

  16. Direct velocity measurement of a turbulent shear flow in a planar Couette cell

    CERN Document Server

    Niebling, Michael; Toussaint, Renaud; Måløy, Knut Jørgen

    2014-01-01

    In a plane Couette cell a thin fluid layer consisting of water is sheared between a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cells flow channel is large compared to the film separation. To extract the flow velocity in the experiments a correlation image velocimetry (CIV) method is used on pictures recorded with a high speed camera. The flow is recorded at a resolution that allows to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent pattern that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven with the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction which is the direction the band is moving. Although the flow sta...

  17. Thermoelectric and heat flow phenomena in mesoscopic systems

    Science.gov (United States)

    Matthews, Jason E.

    Low-dimensional electronic systems, systems that are restricted to single energy levels in at least one of the three spatial dimensions, have attracted considerable interest in the field of thermoelectric materials. At these scales, the ability to manipulate electronic energy levels offers a great deal of control over a device's thermopower, that is, its ability to generate a voltage due to a thermal gradient. In addition, low-dimensional devices offer increased control over phononic heat flow. Mesoscale geometry can also have a large impact on both electron and phonon dynamics. Effects such as ballistic transport in a two-dimensional electron gas structure can lead to the enhancement or attenuation of electron transmission probabilities in multi-terminal junctions. The first half of this dissertation investigates the transverse thermoelectric properties of a four-terminal ballistic junction containing a central symmetry-breaking scatterer. It is believed that the combined symmetry of the scatterer and junction is the key component to understanding non-linear and thermoelectric transport in these junctions. To this end, experimental investigations on this type of junction were carried out to demonstrate its ability to generate a transverse thermovoltage. To aid in interpreting the results, a multi-terminal scattering-matrix theory was developed that relates the junction's non-linear electronic properties to its thermoelectric properties. The possibility of a transverse thermoelectric device also motivated the first derivation of the transverse thermoelectric efficiency. This second half of this dissertation focuses on heat flow phenomena in InAs/InP heterostructure nanowires. In thermoelectric research, a phononic heat flow between thermal reservoirs is considered parasitic due to its minimal contribution to the electrical output. Recent experiments involving heterostructure nanowires have shown an unexpectedly large heat flow, which is attributed in this

  18. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  19. Groundwater flow system and Nitrogen cycle in volcanic aquifer of pyroclastic flow uplands, Japan

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Tashiro, S.; Niimi, H.

    2007-12-01

    Study area is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture and cattle farming. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. The detailed three dimensional groundwater flow system study has been done by using existing wells in the basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. However, the detailed groundwater age analysis by using Tritium for unconfined and confined groundwater has not been succeeded because of present low atmosphere tritium concentration. Thus we applied to challenge the CFCs dating method. Although the CFCs method has been widely used for dating the young groundwater instead of tritium in many countries, in Japan CFCs has been used only by Oceanographic study and has not been used in the field of Hydrology. The history and fate of Nitrate contamination have been shown in multidisciplinary local transect studies in areas with agricultural sources (Bohlke and Denver 1995). However, identification of Nitrogen sources can be difficult in larger regional studies because of co-occurrence of multiple anthropogenic Nitrogen sources and uncertainty in Nitrogen transformation pathways. Thus, the characterization of N geochemistry remains challenging, particularly in aquifer-scale assessments (Stephen 2006). In this study, the evidence of the shallow groundwater flowing towards deep aquifer was verified by the groundwater dating and the detailed Nitrogen reduction process was confirmed along the groundwater flow.

  20. Energy Flows in Low-Entropy Complex Systems

    Directory of Open Access Journals (Sweden)

    Eric J. Chaisson

    2015-12-01

    Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.

  1. Determination of Free and Total Sulfites in Wine using an Automatic Flow Injection Analysis System with Voltammetric Detection

    OpenAIRE

    Gonçalves, Luís Moreira; Pacheco, João Grosso; Magalhães, Paulo Jorge; Rodrigues, José António; Barros, Aquiles Araújo

    2009-01-01

    Abstract An automated Flow Injection Analysis (FIA) system based on a initial analyte separation by gas-diffusion and subsequent determination by square-wave voltammetry (SWV) in a flow cell is proposed for the determination of total and free content of sulphur dioxide (SO2) in wine. The proposed method was compared with two iodometric methodologies (the Ripper method and the simplified method commonly used by the wine industry). The developed method shown repeatability (RSD lower ...

  2. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  3. Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction

    CERN Document Server

    Korn, C B

    2008-01-01

    For a cell moving in hydrodynamic flow above a wall, translational and rotational degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling of convection and diffusion due to the position-dependent mobility. These couplings render calculation of the mean encounter time between cell surface receptors and ligands on the substrate very difficult. Here we show for a two-dimensional model system how analytical progress can be achieved by treating motion in the vertical direction by an effective reaction term in the mean first passage time equation for the rotational degree of freedom. The strength of this reaction term can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical results are confirmed by computer simulations and allow to assess the relative roles of convection and diffusion for different scaling regimes of interest.

  4. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    CERN Document Server

    Borsche, Raul

    2014-01-01

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  5. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology.

    Science.gov (United States)

    Kuystermans, Darrin; Avesh, Mohd; Al-Rubeai, Mohamed

    2016-05-01

    Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications.

  6. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    Science.gov (United States)

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW.

  7. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    Science.gov (United States)

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  8. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  9. Flow and Pressure Distribution in Fuel Cell Manifolds

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Bang, Mads; Kær, Søren Knudsen

    2010-01-01

    The manifold is an essential part of the fuel cell stack. Evidently, evenly distributed reactants are a prerequisite for an efficient fuel cell stack. In this study, the cathode manifold ability to distribute air to the cells of a 70 cell stack is investigated experimentally. By means of 20...

  10. Determining Solubility and Diffusivity by Using a Flow Cell Coupled to a Mass Spectrometer.

    Science.gov (United States)

    Khodayari, Mehdi; Reinsberg, Philip; Abd-El-Latif, Abd-El-Aziz A; Merdon, Christian; Fuhrmann, Juergen; Baltruschat, Helmut

    2016-06-01

    One of the main challenges in metal-air batteries is the selection of a suitable electrolyte that is characterized by high oxygen solubility, low viscosity, a liquid state and low vapor pressure across a wide temperature range, and stability across a wide potential window. Herein, a new method based on a thin layer flow through cell coupled to a mass spectrometer through a porous Teflon membrane is described that allows the determination of the solubility of volatile species and their diffusion coefficients in aqueous and nonaqueous solutions. The method makes use of the fact that at low flow rates the rate of species entering the vacuum system, and thus the ion current, is proportional to the concentration times the flow rate (c⋅u) and independent of the diffusion coefficient. The limit at high flow rates is proportional to D2/3·c·u1/3 . Oxygen concentrations and diffusion coefficients in aqueous electrolytes that contain Li(+) and K(+) and organic solvents that contain Li(+) , K(+) , and Mg(2+) , such as propylene carbonate, dimethyl sulfoxide tetraglyme, and N-methyl-2-pyrrolidone, have been determined by using different flow rates in the range of 0.1 to 80 μL s(-1) . This method appears to be quite reliable, as can be seen by a comparison of the results obtained herein with available literature data. The solubility and diffusion coefficient values of O2 decrease as the concentration of salt in the electrolyte was increased due to a "salting out" effect. PMID:27017297

  11. Decomposing the Unsteady Flow Routing in River Systems

    Science.gov (United States)

    Gomez Cunya, L. A.; Leon, A.; Gibson, N. L.; Vasylkivska, V.

    2014-12-01

    This work presents an optimization-based domain decomposition strategy for unsteady flow routing in complex river systems. This strategy couples the domain decomposition technique with a Precomputed Channel Hydraulics Ensemble approach, known also as HydraulicPerformance Graph (HPG), which utilizes precomputed solutions along reaches on a river system. These solutions are stored in a database. While efficient and robust, HPGs requires extensive memory allocation, especially for high resolution simulations. Decomposing the river system into subdomains reduces computer memory constraints as each sub-domain is solved independently. Further, an optimization method is used to couple the sub-domains using the stored precomputed solution. In turn, the computational efficiency of the HPG approach allows the optimization-based scheme to be competitive with a whole domain methodology. The combined strategy is expected to reduce the overall computational time for large-scale problems. This work discusses the results of the application to the Columbia River (Northwest USA).

  12. Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems

    Institute of Scientific and Technical Information of China (English)

    BINKOU Alhabib; YU Yixin

    2008-01-01

    The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

  13. The ATLAS Data Flow System for Run 2

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  14. The ATLAS Data Flow System for LHC Run II

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  15. Laminar flow in radial flow cell with small aspect ratios: Numerical and experimental study

    DEFF Research Database (Denmark)

    Detry, J. G.; Deroanne, C.; Sindic, M.;

    2009-01-01

    be applied for experiments performed at higher Reynolds numbers. The present study is a numerical analysis of the radial axisymmetrical flow for aspect ratios of 0.125, 0.25, 0.5 and 1 with inlet pipe Reynolds numbers varying from 0 to 2000, aiming at computing the wall shear stress distribution at any...... distance from the center. The simulations provided a thorough description of the complex flow pattern encountered close to the inlet section, which were validated for the laminar regime by dye injection. A total of up to four recirculation zones were identified in both numerical and experimental......Studies on the effect of wall shear stress on soil and biofilm attachment and removal from a surface are one of the many applications of radial axisymmetrical flow. The particular nature of this flow allows taking advantage of a wide range of wall shear Stress applied at the analyzed surface...

  16. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  17. Ultrasound Vector Flow Imaging: Part I: Sequential Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.;

    2016-01-01

    The paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional, sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived vector flow imaging, directional beamforming...

  18. Flow Instability and Its Control in Compression Systems

    Institute of Scientific and Technical Information of China (English)

    Jingyi Chen

    2003-01-01

    This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.

  19. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  20. System design description for GCFR-core flow test loop

    International Nuclear Information System (INIS)

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations

  1. System design description for GCFR-core flow test loop

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  2. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Nativ, R. [Hebrew Univ., Jerusalem (IL); Hunley, A.E. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small.

  3. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small

  4. A rapid, simple and sensitive flow cytometric system for detection of Plasmodium falciparum.

    Science.gov (United States)

    Saito-Ito, A; Akai, Y; He, S; Kimura, M; Kawabata, M

    2001-11-01

    We have established a rapid, simple and sensitive flow cytometric system for the detection of Plasmodium falciparum that involves lysing erythrocytes and staining parasites at the same time using a newly developed hemolysing and staining solution containing dodecyl methyl ammonium chloride and acridine orange. In this system, freed parasites of P. falciparum could be plotted separately from erythrocyte ghosts, white blood cells and platelets on the two-dimensional scattergram of forward-angle light scatter and green fluorescence by flow cytometry with an argon laser. It took only 2-3 min per sample to obtain the scattergram and analyze the data, including the time of sample preparation for flow cytometric analysis. Sample preparation with this method does not require any difficult handling procedures. The threshold of parasite detection was almost equal to that of microscopic examination for cultured P. falciparum. The results of drug-susceptibility assays using this system were also almost identical to those obtained using microscopic examination. In this system, parasites at different erythrocytic stages could be easily distinguished. This system must prove useful and practical for basic laboratory studies of P. falciparum including those requiring the differential measurement of parasites at specific erythrocytic stages. PMID:11719111

  5. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  6. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical...... the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for...

  7. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom;

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  8. Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;

    2009-01-01

    This paper describes a case study of two electrolysis tests of solid oxide cells [Ni/yttria-stabilized zirconia (YSZ)-YSZ-lanthanum strontium manganite (LSM)/YSZ] tested in a plug-flow setup. An extensively instrumented cell test setup was used, and the tests involved measurements of the cell...

  9. Numerical simulation of multiphase flows with material interface on an unstructured grid system

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2012-05-15

    Two-dimensional multiphase flows with material interface due to density difference are numerically simulated on an unstructured grid system by a Navier-Stokes solver developed by Myong and Kim (2006), since numerical computation for these flows is still known to be difficult, especially if the interface separates fluids of large different densities. This solver employs an unstructured cell-centered method based on a conservative pressure-based finite volume method, since the unstructured grid approach makes the solver very flexible in dealing with complex boundaries, and adopts a high resolution method (CICSAM) in a volume of fluid (VOF) scheme for the accurate phase interface capturing. The test cases are the Rayleigh-Taylor instability (density ratio of 2), the oil bubble rising in a partially filled container (density ratio of 2), the air bubble rising in a fully filled container with bubble shedding (density ratio of 100) and the droplet splash (density ratio of about 1000), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present results are compared with other numerical solutions found in the literature. The present method (solver) efficiently and accurately simulates complex interface flows such as multiphase flows with material interface due to both density difference and instability.

  10. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    CERN Document Server

    Doss, C E; Swisdak, M

    2016-01-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary...

  11. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  12. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  13. System Studies of Fuel Cell Power Plants

    OpenAIRE

    Kivisaari, Timo

    2001-01-01

    This thesis concerns system studies of power plants wheredifferent types of fuel cells accomplish most of the energyconversion. Ever since William Grove observed the fuel cell effect inthe late 1830s fuel cells have been the subject or more or lessintense research and development. Especially in the USA theseactivities intensified during the second part of the 1950s,resulting in the development of the fuel cells used in theApollo-program. Swedish fuel cell activities started in themid-1960s, w...

  14. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  15. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  16. Flow Cytometric Analysis of T, B, and NK Cells Antigens in Patients with Mycosis Fungoides.

    Science.gov (United States)

    Yazıcı, Serkan; Bülbül Başkan, Emel; Budak, Ferah; Oral, Barbaros; Adim, Şaduman Balaban; Ceylan Kalin, Zübeyde; Özkaya, Güven; Aydoğan, Kenan; Saricaoğlu, Hayriye; Tunali, Şükran

    2015-01-01

    We retrospectively analyzed the clinicopathological correlation and prognostic value of cell surface antigens expressed by peripheral blood mononuclear cells in patients with mycosis fungoides (MF). 121 consecutive MF patients were included in this study. All patients had peripheral blood flow cytometry as part of their first visit. TNMB and histopathological staging of the cases were retrospectively performed in accordance with International Society for Cutaneous Lymphomas/European Organization of Research and Treatment of Cancer (ISCL/EORTC) criteria at the time of flow cytometry sampling. To determine prognostic value of cell surface antigens, cases were divided into two groups as stable and progressive disease. 17 flow cytometric analyses of 17 parapsoriasis (PP) and 11 analyses of 11 benign erythrodermic patients were included as control groups. Fluorescent labeled monoclonal antibodies were used to detect cell surface antigens: T cells (CD3(+), CD4(+), CD8(+), TCRαβ(+), TCRγδ(+), CD7(+), CD4(+)CD7(+), CD4(+)CD7(-), and CD71(+)), B cells (HLA-DR(+), CD19(+), and HLA-DR(+)CD19(+)), NKT cells (CD3(+)CD16(+)CD56(+)), and NK cells (CD3(-)CD16(+)CD56(+)). The mean value of all cell surface antigens was not statistically significant between parapsoriasis and MF groups. Along with an increase in cases of MF stage statistically significant difference was found between the mean values of cell surface antigens. Flow cytometric analysis of peripheral blood cell surface antigens in patients with mycosis fungoides may contribute to predicting disease stage and progression. PMID:26788525

  17. The influence of venous blood flow on the retinal ganglion cell complex in patients with primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2014-07-01

    Full Text Available Purpose: To study the influence of venous blood flow on the ganglion cell complex (GCC in patients with preperimetric and perimetric open angle glaucoma.Methods: 74 patients were included in the research. 59 eyes and 62 eyes were diagnosed with preperimetric and perimetric open angle glaucoma respectively. The mean age was 56.5±10.5 years. 22 (12 female and 10 male healthy individuals constituted the control group. The ganglion cell complex and retinal nerve fibre layer were evaluated with the help of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA. Ocular blood flow was measured by Color Doppler Imaging (multifunctional VOLUSON 730 ProSystem. The statistical analysis included correlation between GCC and RNFL thickness in both glaucoma groups.Results: The results showed a statistically significant reduction of venous blood flow velocity in both glaucoma groups compared to the control group. No difference in venous blood flow parameters between two glaucoma groups was found, except resistance index, which was higher in perimetric group in comparison to preperimetric group. A correlation was also obtained between venous blood flow parameters and GCC and RNFL thickness in both glaucoma groups.Conclusion: Early GCC damage in glaucoma might occur due to venous blood flow reduction. This fact may be of great value in understanding glaucoma pathogenesis and search for novel treatment options.

  18. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells.

    Science.gov (United States)

    Buschmann, M H; Dieterich, P; Adams, N A; Schnittler, H-J

    2005-03-01

    Endothelial cells, covering the inner surface of vessels and the heart, are permanently exposed to fluid flow, which affects the endothelial structure and the function. The response of endothelial cells to fluid shear stress is frequently investigated in cone-plate systems. For this type of device, we performed an analytical and numerical analysis of the steady, laminar, three-dimensional flow of a Newtonian fluid at low Reynolds numbers. Unsteady oscillating and pulsating flow was studied numerically by taking the geometry of a corresponding experimental setup into account. Our investigation provides detailed information with regard to shear-stress distribution at the plate as well as secondary flow. We show that: (i) there is a region on the plate where shear stress is almost constant and an analytical approach can be applied with high accuracy; (ii) detailed information about the flow in a real cone-plate device can only be obtained by numerical simulations; (iii) the pulsating flow is quasi-stationary; and (iv) there is a time lag on the order of 10(-3) s between cone rotation and shear stress generated on the plate.

  19. Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; ZHANG Youtong; ASIF Malik

    2015-01-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine’s operating conditions. That will lead to low NOX conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between–8%and 10%to–4%and 2%and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms . The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NOX emission remains almost unchanged. The trade-off between NOX conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine’s operating conditions quickly.

  20. Broadband measuring system for unsteady flow investigation in wind tunnel

    Science.gov (United States)

    Biriukov, V. I.; Garifullin, M. F.; Korneeva, D. B.; Slitinskaya, A. Ju.

    2016-10-01

    Due to increasingly tough requirements to the accuracy and informativity of the wind tunnel experiments, the urgency has grown of the unsteady flows research. A distinctive feature of such studies is synchronous multichannel measurements of rapidly changing in time process parameters (with a broadband spectrum and characteristic frequencies of 0 Hz to 1000 Hz and above) and also the need for fast processing and storage of large volumes of the data received. To solve these problems and to meet the requirements, TsAGI has developed a measuring system (MS) and the corresponding software. The basic purpose of MS is to conduct transonic buffeting research in T-128 wind tunnel. Besides, it can be used to study separated flow regimes, aeroelastic vibrations, including: classic flutter, stall flutter, limit cycle oscillations, etc. The MS can be used also to study a variety of transient regimes. It is possible to expand the system further on to enhance its performance without introducing any fundamental changes in its structure and software, and without breaking its operability for the period of modernization.

  1. Verification of Information Flow in Agent-Based Systems

    Science.gov (United States)

    Sabri, Khair Eddin; Khedri, Ridha; Jaskolka, Jason

    Analyzing information flow is beneficial for ensuring the satisfiability of security policies during the exchange of information between the agents of a system. In the literature, models such as Bell-LaPadula model and the Chinese Wall model are proposed to capture and govern the exchange of information among agents. Also, we find several verification techniques for analyzing information flow within programs or multi-agent systems. However, these models and techniques assume the atomicity of the exchanged information, which means that the information cannot be decomposed or combined with other pieces of information. Also, the policies of their models prohibit any transfer of information from a high level agent to a low level agent. In this paper, we propose a technique that relaxes these assumptions. Indeed, the proposed technique allows classifying information into frames and articulating finer granularity policies that involve information, its elements, or its frames. Also, it allows for information manipulation through several operations such as focusing and combining information. Relaxing the atomicity of information assumption permits an analysis that takes into account the ability of an agent to link elements of information in order to evolve its knowledge.

  2. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  3. Ex-situ gas diffusion layer intrusion effect determination of polymer electrolyte membrane fuel cell flow fields

    Science.gov (United States)

    Haase, S.; Rauber, M.

    2015-09-01

    In automotive PEM fuel cell systems, one of the most important targets is to reduce the parasitic power of balance of plant components, e.g. the air supply. This can be achieved for example by decreasing air stoichiometry. However, this could lead to bad flow sharing in the fuel cell stack. Therefore the fluid distribution in the flow field has to be evaluated, understood and optimized. This work evaluates the effect of GDL intrusion on the pressure drop via ex-situ determination of GDL intrusion using CFD simulation. The intruded GDL geometries, evaluated by an optical microscope with 200 times enlargement, are transferred to pressure drop behaviors by a numerical CFD model. These results are compared to the results of the differential pressure method of mapping the pressure distribution, described in [43]. The intrusion of the GDL leads to homogeneous flow distribution up to clamping pressures of 2.5 MPa. The inhomogeneous intrusion, induced by cracked fibers that extend into the channel, dominates the flow at higher clamping pressures and leads to the exponential increase in pressure drop in the differential pressure method. For clamping pressures used in typical fuel cell applications, the results of both methods show homogeneous flow through the channels.

  4. Systems and certification issues for civil transport aircraft flow control systems

    OpenAIRE

    Liddle, Stephen C; Crowther, William J.; Jabbal, Mark

    2009-01-01

    This article is placed here with permission from the Royal Aeronautical Society - Copyright @ 2009 Royal Aeronautical Society The use of flow control (FC) technology on civil transport aircraft is seen as a potential means of providing a step change in aerodynamic performance in the 2020 time frame. There has been extensive research into the flow physics associated with FC. This paper focuses on developing an understanding of the costs and design drivers associated with the systems needed ...

  5. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    Science.gov (United States)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  6. NUMERICAL INVESTIGATION OF FLOW PATTERNS IN DIFFERENT PUMP INTAKE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jie-min; WANG Ben-cheng; YU Ling-hui; LI Yok-sheung; TANG Ling

    2012-01-01

    A 3-D numerical model for pump intake is established based on the Navier-Stokes equations with the RNG k-εturbulence model and the VOF method to simulate the free surface.The applicability of the proposed model is validated by a test case of non-symmetric pump-intake bay.The predicted locations,structures and shapes of all vortices are in good agreement with those observed in experiments,though with some differences in vorticity strengths.The flow pattern and the efficiency of five types of pump intake systems are studied.The discharge and the velocity uniformity of the intake system are used as indices to evaluate its performance.

  7. Unsteady flow modeling of an electrorheological valve system with experimental validation

    International Nuclear Information System (INIS)

    This paper presents an unsteady flow modeling of an electrorheological (ER) valve system and verifies its effectiveness through experimental investigation. After designing a cylindrical ER valve, a dynamic model for unsteady flow of ER fluid is derived by considering the fluid inertia. The field-dependent pressure drop of the unsteady flow is then calculated and validated with the experimental result. In order to clearly observe the difference between the unsteady flow model and the steady model, the flow rate of the ER valve is analyzed under low frequency and high frequency sinusoidal inputs. In addition, in order to demonstrate the effectiveness of the proposed unsteady flow model, a position control system activated by ER valves is constructed. The dynamic model of the control system is formulated on the basis of the unsteady flow analysis, and control responses such as flow rate, pressure drop and displacement are compared between the unsteady flow and the steady flow models

  8. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  9. Predication of Plastic Flow Characteristics in Ferrite/Pearlite Steel Using a Fern Unit Cell Method

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han; Jing Liu; Lv Zhang

    2004-01-01

    The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.

  10. The interaction of human endothelial cells with chemical gradient surfaces during exposure to flow

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; Van der Meer, J; Van der Mei, HC; Busscher, HJ; Olij, WJV; Anderson, HR

    1998-01-01

    In this study, the position bound shape, spreading, detachment and migration of adhering HUVEC endothelial cells on dichlorodimethylsilane (DDS) chemical gradient surfaces was investigated during exposure to flow in a parallel plate flow chamber in the presence of` serum proteins. Gradient surfaces

  11. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  12. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  13. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    Science.gov (United States)

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  14. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  15. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  16. Analytical solutions of actin-retrograde-flow in a circular stationary cell: a mechanical point of view.

    Science.gov (United States)

    Ghasemi, V A; Firoozabadi, B; Saidi, M S

    2014-03-01

    The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

  17. In vivo flow cytometer for real-time detection and quantification of circulating cells

    OpenAIRE

    Novak, J.; Georgakoudi, I.; Wei, X; Prossin, A.; Lin, C.P.

    2004-01-01

    An in vivo flow cytometer is developed that allows the real-time detection and quantification of circulating fluorescently labeled cells in live animals. A signal from a cell population of interest is recorded as the cells pass through a slit of light focused across a blood vessel. Confocal detection of the excited fluorescence allows continuous monitoring of labeled cells in the upper layers of scattering tissue, such as the skin. The device is used to characterize the in vivo kinetics of re...

  18. Combined Flow Cytometric Measurement of Two Cell-Surface Antigens and DNA-RNA Content

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Ingrid Schmid Corresponding author ([]()) ### INTRODUCTION Flow cytometry is frequently used to assess nucleic acid content in individual cells. Based on DNA content alone, however, cells in the quiescent G0 phase cannot be discriminated from cells in the proliferative G1 phase, as DNA content remains constant until S-phase entry. In contrast, by measuring RNA content in addition to DNA content, cells can be assigned to G0 and c...

  19. A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide

    International Nuclear Information System (INIS)

    The behavior of a small-scale flow alkaline fuel cell (AFC) built-up for on-site production of HO2- using commercial gas-diffusion electrodes has been studied. It produces a spontaneous current due to the oxidation of H2 to H2O at the H2-diffusion anode and the reduction of O2 to HO2- at the O2-diffusion cathode, while a fresh 1.0-6.0 mol dm-3 KOH electrolyte at 15.0-45.0 deg. C is injected through it. Under circulation of HO2-+KOH solutions in open circuit, the flow AFC behaves as a two-electron reversible system. When it is shorted with an external load (Rext), steady cell voltage-current density curves are found. The use of O2/N2 mixtures to fed the cathode causes a loss of its performance, being required to supply pure O2 to yield a maximum HO2- electrogeneration. The current density and HO2- productivity increase with raising OH- concentration, temperature and pressure of O2 fed. At Rext=0.10 Ω, a current efficiency close to 100% is obtained, and current densities >100 mA cm-2 are achieved for 1.0 mol dm-3 KOH at 45.0 deg. C and for higher KOH concentrations at 25.0 deg. C. The flow AFC can work under optimum conditions up to 6.0 mol dm-3 KOH and 45.0 deg. C for possible industrial applications

  20. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia.

    Science.gov (United States)

    Volden, T A; Reyelts, C D; Hoke, T A; Arikkath, J; Bonasera, S J

    2015-12-01

    Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

  1. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  2. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.

    Science.gov (United States)

    Zhao, Fenglong; Li, Li; Guan, Liuyuan; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2014-03-01

    Adhesion of cancer cell to endothelial cells and the subsequent trans-endothelial migration are key steps in hematogenous metastasis. However, the molecular mechanisms of cancer cell/endothelial cell interaction under hemodynamic shear flow and how shear flow-induced cancer cell mechanotransduction are yet to be fully defined. In this study, we identified that the integrins of both platelet glycoprotein IIb/IIIa (GP IIb/IIIa) and αvβ3 were crucial for hematogenous metastasis of human breast carcinoma MDA-MB-231 cells. The cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of invaded MDA-MB-231 cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited MDA-MB-231 cell invasion. We further used a parallel-plate flow chamber to investigate MDA-MB-231 cell adhesion under flow conditions. Alike in static condition, the adhesion capability of MDA-MB-231 cells to endothelial monolayer was also significantly affected by GP IIb/IIIa and αvβ3 integrins. The expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and αvβ3 integrin in MDA-MB-231 cells were up-regulated after low shear stress exposure (1.84 dynes/cm(2), 2 h). Moreover, we also demonstrated that low shear stress induced a sustained activation of p85 (a regulatory subunit of PI3K) and Akt. Pre-treating MDA-MB-231 cells with the specific PI3K inhibitor of LY294002 abolished the shear stress induced-Akt activation, and the expression of MMP-2, MMP-9, vascular endothelial growth factor (VEGF) and αvβ3 integrin were also down-regulated. Immunofluorescence assay showed that low shear stress also induced αvβ3 integrin clustering and nuclear factor-κB (NF-κB) activation. Interestingly, shear stress-induced activation of Akt and NF-κB was attenuated by LM609, a specific antibody of αvβ3 integrin. It suggests that αvβ3

  3. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2006-10-01

    Full Text Available This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i the design of novel matrices for enzymeimmobilisation, (ii new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH or parathion hydrolase (PH and (v thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations.

  4. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  5. Improvement and analysis of the hydrogen-cerium redox flow cell

    Science.gov (United States)

    Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.

    2016-09-01

    The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.

  6. Research on flow instability phenomena in FBR triple loop system

    International Nuclear Information System (INIS)

    In the case of the plants which use high temperature working fluid and have free liquid surface, the variation of level and swirling of the liquid cause repeated thermal stress in vessels, and lead to the fatigue and breakdown of the vessels. In the case of the plants which have many free liquid surfaces in vessels, and those vessels are connected with pipings as a closed loop, in which working fluid circulates, liquid level causes the variation by the interference among free liquid surfaces. In the plants in which multiple loops are formed, which jointly own a part, the interference among respective loops occurs. In this research, regarding the triple loop system having many liquid surfaces, it was aimed at to examine the stability of free liquid surfaces. The testing setup comprises the main tank and three loops having one free liquid surface each, which are connected to the main tank. Water was circulated with a pump, and the variation of flow velocity in pipings and the variation of liquid level in the main tank were measured. Also the relation among the loops and the state of free liquid surfaces were examined by frequency analysis. The experimental setup, the water flow test and the experimental results are reported. The behavior of swirling became clear. (K.I.)

  7. Electromagnetic Coupling of Ocean Flow with the Earth System

    Directory of Open Access Journals (Sweden)

    Robert Tyler

    2015-01-01

    Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.

  8. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yuji Ishii; Ryota Saito; Hideki Marushima; Ryusuke Ito; Taro Sakamoto; Katsuhiko Yanaga

    2008-01-01

    AIM:To examine the efficacy of the radial flow bioreactor (RFB) as an extracorporeal bioartificial liver (BAL) and the reconstruction of liver organoids using embryonic pig liver cells.METHODS:We reconstructed the liver organoids using embryonic porcine liver cells in the RFB.We also determined the gestational time window for the optimum growth of embryonic porcine liver cells.Five weeks of gestation was designated as embryonic day (E) 35 and 8 wk of gestation was designated as E56.These cells were cultured for one week before morphological and functional examinations.Moreover,the efficacy of pulsed administration of a high concentration hepatocyte growth factor (HGF) was examined.RESULTS:Both cell growth and function were excellent after harvesting on E3S.The pulsed administration of a high concentration of HGF promoted the differentiation and maturation of these fetal hepatic cells.Microscopic examination of organoids in the RFB revealed palisading and showed that bile duct-like structures were well developed,indicating that the organoids were mini livers.Transmission electron microscopy revealed microvilli on the luminal surfaces of bile duct-like structures and junctional complexes,which form the basis of the cytoskeleton of epithelial tissues.Furthermore,strong expression of connexin (Cx) 32,which is the mainprotein of hepatocyte gap junctions,was observed.With respect to liver function,ammonia detoxification and urea synthesis were shown to be performed effectively.CONCLUSION:Our system can potentially be applied in the fields of BAL and transplantation medicine.

  9. Cluster of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction

    CERN Document Server

    Clavería, Viviana; Thiébaud, Marine; Abkarian, Manouk; Coupier, Gwennou; Misbah, Chaouqi; John, Thomas; Wagner, Christian

    2016-01-01

    We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters form along the capillaries and macromolecule-induced adhesion contribute to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes the only predominant mechanism. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles captures the transition between adhesive and non-adhesive clusters at different flow velocities.

  10. A Raman Flow Cytometer: An Innovative Microfluidic Approach for Continuous Label-Free Analysis of Cells via Raman Spectroscopy

    KAUST Repository

    De Grazia, Antonio

    2015-05-05

    In this work a Raman flow cytometer is presented. It is a whole new microfluidic device that takes advantage of basic principles of Raman spectroscopy and fluorescent flow cytometry mixed together in a system of particularly shaped channels. These are indeed composed by specific shape and sizes – thanks to which cells can flow one-by-one – and a trap by means of which cells are trapped in order to perform Raman analysis on single ones in a constant and passive way. In this sense the microfluidic device promotes a fast method to look for single cells in a whole multicellular sample. It is a label-free analysis and this means that, on the contrary of what happens with fluorescent flow cytometry, the sample does not need to undergo any particular time-consuming pretreatment before being analyzed. Moreover it gives a complete information about the biochemical content of the sample thanks to the involvement of Raman spectroscopy as method of analysis. Many thought about a device like this, but eventually it is the first one being designed, fabricated and tested. The materials involved in the production of the Raman flow cytometer are chosen wisely. In particular the chip – the most important component of the device – is multilayered, being composed by a slide of calcium fluoride (which gives a negligible signal in Raman analyses), a photosensitive resist containing a pattern with channels and another slide of calcium fluoride in order for the channels to be sealed on both sides. The chip is, in turn, connected to gaskets and external frames. Several fabrication processes are followed to ultimately get the complete Raman flow cytometer and experiments on red blood cells demonstrate its validity in this field.

  11. Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.

    Science.gov (United States)

    Smaldone, Gregory T; Jin, Yujie; Whitfield, Damion L; Mu, Andrew Y; Wong, Edward C; Wuertz, Stefan; Singer, Mitchell

    2014-04-01

    Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.

  12. Distinguishing two-phase flow stability by using system identification method in a natural circulation system

    International Nuclear Information System (INIS)

    A research program on Two-phase flow stability in a natural circulation system has been executed in the Institute of Nuclear Energy Technology (INET), Tsinghua University in the development process of Nuclear Heating Reactor for the resent ten years. Two sets of experiment facility (HRTL-5 and HRTL-200) were erected, which serve as the simulator to the primary circuit of the nuclear heating reactor NHR-5 and NHR-200 separately, and were used for investigation on their thermo-physical behavior. Very important and useful results have been reached. The investigation presented, is one of the subject in the above mentioned research program. The main objective of the investigation is to develop a practical technology and method in engineering, based on general control theory, for distinguishing two-phase flow stability and identifying safety margin by using system identification method. By combining the two-phase flow stability theory in thermo-physics field with the system stability theory and system identification method in information science field, a thermo-hydraulic experiment technology with new concept was developed. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeat pseudo-random sequences of heating power as the input signal sources and the measured flow rate as response function in the test, Two-phase flow stability and stability margin of the natural circulation system were investigated with analyzing the system pulse response function, Decay Ratio, and stability boundary under different operation conditions. The results are compared with that by using conventional method. The test system, test method and obtained typical results are provided

  13. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    Science.gov (United States)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2015-12-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  14. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    Science.gov (United States)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  15. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used...

  16. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  17. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  18. Portable real time analysis system for regional cerebral blood flow

    International Nuclear Information System (INIS)

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit

  19. Portable real time analysis system for regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-02-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit.

  20. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  1. Exergy Flows inside a One Phase Ejector for Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2016-03-01

    Full Text Available The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.

  2. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  3. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  4. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  5. Study of the Behavior of the Mercury on Diverse Microelectrodes with Cell of Continuous Flow

    International Nuclear Information System (INIS)

    A comparative study of six types of microelectrodes in two different support electrolytes was developed using a new analytic technique for analysis of mercury in liquid samples in the ambit of parts by million. For it, a new system of cell of continuous flow and platinum microelectrodes and of platinum with gold film was implemented using volt-amperemetry of anodized spoil with square wave. In a preliminary study, some parameters that characterize the analysis with this new cell were optimized, for example the sample's speed flow and the time of electrodeposition. The calibration curves were made for the different types of microelectrode that were used in an ambit of concentrations of 1-10 ppm. According to the obtained results, the microelectrode that better works is the platinum disk for possessing bigger superficial area exposed to the dissolution, which increases the analite's currents of pick. And as a support electrolyte, potassium tiocianato is recommended because of its effectiveness to solve the analytic sign of the mercury. Studies of answer of the current of mercury regarding the quantity of the placed sample and studies of interferences of the analysis with this type of microelectrode were also carried out. With regard to the study of the quantity of sample, it was obtained that the electrochemical answer of the cell is directly proportional to the concentration of the analite placed in it. In the study of interference, it was found that the copper, lead, and zinc ions affect the analysis of mercury in concentrations of 0.1 ppm and on in the case of the microelectrode of platinum disk. And in case that the same microelectrode is used recovered with gold, it only affects the copper in concentrations over 5 ppm, for what is necessary to take into account a previous treatment of the sample in the event of containing some of the interfering ions

  6. The ATLAS Data Flow system for the Second LHC Run

    CERN Document Server

    Hauser, Reiner; The ATLAS collaboration

    2015-01-01

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the Readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, the f...

  7. Investigations on proton exchange membrane fuel cells with different configurations and flow fields

    Science.gov (United States)

    Kazim, Ayoub Mohamed

    In this study, two mathematical models are developed. The first one is a simple mathematical approach that computes all transport and electrochemical parameters inside the different layers of a fuel cell regardless of its configuration. Through heat and mass transfer analogy, convective mass transfer coefficients at different Reynolds number are determined for both concentric cylindrical and conventional proton exchange membrane (PEM) fuel cells. Concentrations of oxygen and hydrogen are then determined at each layer of the fuel cell using steady-state diffusion analysis. The concentration equations are solved together with the electrochemical equations inside the fuel cell, to obtain the fuel cell voltage and power density. The results from this simple approach compared well with the existing numerical and experimental results. The second mathematical model is to study PEM fuel cell with conventional and non-conventional namely interdigitated flow fields. Through proper handling of the boundary conditions at the gas diffusion/catalyst layer interface, the numerical solution of the model resulted in the profiles of transport and electrochemical parameters in the cathode. Parameters such as pressure distribution, velocity profile, oxygen concentration, molar flux, current density, polarization and overall power density at different cell over-potentials in both flow fields were determined. The results demonstrates the superiority of interdigitated flow field over the conventional type in terms of overall performance and illustrated the importance of the convective term of the species equation in enhancing the reaction rates, leading to a significant improvement in the fuel cell performance. The effects of different parameters, such as cathode porosity, inlet oxygen mole fraction, and operating pressure on fuel cell performance have been studied using this 2-D mathematical model. Finally, a simple efficiency and economical analysis was formulated and implemented on

  8. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  9. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  10. Multi-Use Non-Intrusive Flow Characterization System (FCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  11. Convection of tin in a Bridgman system. II - An electrochemical method for detecting flow regimes

    Science.gov (United States)

    Sears, B.; Fripp, A. L.; Debnam, W. J., Jr.; Woodell, G. A.; Anderson, T. J.; Narayanan, R.

    1992-01-01

    An ampoule was designed in order to obtain local flow behavior of the flow fields for convection of tin in a vertical Bridgman configuration. Multiple electrochemical cells were located along the periphery of the ampoule. Oxygen was titrated into the ampoule at one of the cell locations using a potentiostat and the concentration of oxygen was monitored at the other cell locations by operating the cells in a galvanic mode. Onset of oscillations were detected by means of thermocouples. We conclude that the flows are generally three dimensional for an aspect ratio of 5. Results on oscillations concurred with those of earlier workers. Suggestions for improved designs were made.

  12. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J;

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  13. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne;

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...

  14. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  15. Miniaturized cavity ring-down detection in a liquid flow cell

    NARCIS (Netherlands)

    Bahnev, B.; Sneppen, van der L.; Wiskerke, A.E.; Ariese, F.; Gooijer, C.; Ubachs, W.M.G.

    2005-01-01

    A novel method for applying cavity ring-down spectroscopy in the liquid phase, compatible with LC analyses, is presented. The core of the setup is a home-built cavity ring-down flow cell (cell volume 12 muL) that is constructed using a silicon rubber spacer, which is clamped leak-tight between two h

  16. Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow

    Science.gov (United States)

    Wang, Ming-Wen

    2010-02-01

    The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.

  17. Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies

    Science.gov (United States)

    Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung

    2016-01-01

    Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental

  18. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.

    Science.gov (United States)

    Manti, Anita; Boi, Paola; Amalfitano, Stefano; Puddu, Alberto; Papa, Stefano

    2011-12-01

    Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.

  19. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  20. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  1. Numerical simulation of turbulent flow around a forced moving circular cylinder on cut cells

    Institute of Scientific and Technical Information of China (English)

    BAI Wei

    2013-01-01

    Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a mode- rate Reynolds number,Re=3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbu- lent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vor- tex induced vibration.

  2. Embedded Control System for a High Precision Flow Meter

    OpenAIRE

    Nilsson, Joel

    2011-01-01

    This degree project has been conducted to study flow meters and develop firmware for EC Instrument’s Reciflow. Flow rate is the volume of a fluid or mass of a substance which passes through a surface per time unit. Conversion can be made between volumetric and mass flow rate if the gas density is known. A market survey showed that Coriolis and thermal mass flow meters and positive displacement (volumetric) flow meters, as the Reciflow, are the most common kinds. The Reciflow consist of a syst...

  3. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system.

    Science.gov (United States)

    Huang, Gui-Lin; Zhang, Ni-Ni; Wang, Jun-Sheng; Yao, Li; Zhao, Yu-Jie; Wang, Yu-Ying

    2012-08-01

    This study investigated the transdifferentiation of stem cells from human amnion tissue into functional acinar cells (ACs) using a co-culture system. Human amniotic epithelial cells (hAECs) were isolated from amnion tissue by mechanical mincing and enzymatic digestion. After primary culture, the phenotype of the cells was identified by flow cytometry (FCM) and immunocytochemical staining. hAECs were co-cultured with submandibular gland acinar cells of SD rats using a double-chamber system. The expression of α-amylase was determined by immunocytochemical method and fluorescent real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) after induction for 1 and 2 weeks, respectively. Digestion with trypsin is an effective method for isolating hAECs from amnion tissue. These cells were positive for CD29 and CK19 and weakly positive for CD44 and α-amylase. Within 2 weeks, α-amylase in hAECs increased with induction time. The expression of α-amylase in hAECs was increased 3.38-fold after co-culturing for 1 week. This ratio increased to 6.6-fold, and these cells were positive for mucins, after co-culturing for 2 weeks. hAECs possess the potential to differentiate into ACs in vitro. They might be a stem cell resource for clinical applications of cell replacement therapy in salivary gland dysfunction diseases. PMID:22800093

  4. Flow of Fluid and Particle Assemblages in Rotating Systems

    Science.gov (United States)

    Kizito, John; Hiltner, David; Niederhaus, Charles; Kleis, Stanley; Hudson, Ed; Gonda, Steve

    2004-01-01

    NASA-designed bioreactors have been highly successful in growing three-dimensional tissue structures in a low shear environment both on earth and in space. The goal of the present study is to characterize the fluid flow environment within the HFB-S bioreactor and determine the spatial distribution of particles that mimic cellular tissue structures. The results will be used to obtain optimal operating conditions of rotation rates and media perfusehnfuse rates which are required for cell culture growth protocols. Two types of experiments have been performed so far. First, we have performed laser florescent dye visualization of the perfusion loop to determine the mixing times within the chamber. The second type of experiments involved particles which represent cellular tissue to determine the spatial distribution with the chamber. From these experiments we established that mixing times were largely dependant on the speed ratio and sign of the difference between the spinner and the dome. The shortest mixing times occurred when the spinner rotates faster than the dome and longest mixing times occurs with no relative motion between the dome and spinner. Also, we have determined the spatial and temporal distribution of particle assemblages within the chamber.

  5. Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system.

    Science.gov (United States)

    Ohira, Shin-Ichi; Toda, Kei

    2006-01-01

    Accurate liquid flow control is important in most chemical analyses. In this work, the measurement of liquid flow in microliters per minute was performed, and feedback control of the flow rate was examined. The flow sensor was arranged on a channel made in a polydimethylsiloxane (PDMS) block. The center of the channel was cooled by a miniature Peltier device, and the change in temperature balance along the channel formed by the flow was measured by two temperature sensors. Using this flow sensor, feedback flow control was examined with two pumping methods. One was the electroosmotic flow method, made by applying a high voltage (HV) between the reagent and waste reservoirs; the other was the piezo valve method, in which a micro-valve-seat was fabricated in a PDMS cavity with a silicone diaphragm. The latter was adopted for a micro gas analysis system (microGAS) for measuring atmospheric H2S and SO2. The obtained baselines were stable, and better limits of detection were obtained. PMID:16429774

  6. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  7. Cell kinetics in a model of artificial skin. An immunohistochemical and flow cytometric analysis

    Directory of Open Access Journals (Sweden)

    A Casasco

    2009-12-01

    Full Text Available Bioengineered organs raised in vitro are candidate substitutes for natural organs in biological, pharmacological and clinical applications. We have studied cell kinetics in a human skin equivalent (HSE using a combined immunohistochemical and flow cytometric approach. Morphological analysis has shown that, relative to unstimulated natural skin, cell proliferation mainly occurs in the basal layer of the epidermal equivalent. Immunohistochemical and flow cytometric measurements of the growth fraction suggested a cell turnover comparable to that of natural skin. Immunohistochemical labelling indices matched well with flow cytometric data. These observations are consistent with morphological and histochemical data demonstrating normal cell differentiation and tissue architecture in HSE and suggest that such HSE may be a usefull substitute for human skin.

  8. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  9. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    Science.gov (United States)

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%. PMID:25942924

  10. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  11. Mathematical analysis of mis-estimation of cell subsets in flow cytometry: viability staining revisited.

    Science.gov (United States)

    Petrunkina, A M; Harrison, R A P

    2011-05-31

    Many research projects in cell biology now use flow cytometry for analysis or for isolation of specific cell types. In such studies, cell viability is obviously a crucial issue. However, many studies appear to rely upon light-scattering characteristics to identify and gate out non-viable cells, despite the fact that reliable identification of such cells can only be achieved through staining with impermeable fluorescent nuclear dyes such as propidium iodide or 7-amino actinomycin. In this paper we apply mathematical analysis to the theoretical problem of quantifying cell sub-populations labeled with two or more fluorescent markers, comparing situations in which dead cells have been identified with those in which cell viability has not been assessed. We demonstrate that in all cases in which dead cells are present within the population, percentages of live sub-populations in different subsets are mis-estimated. In cases where the pattern of marker expression differs greatly between live and dead cells, or where the proportion of dead cells is high, this mis-estimation will be aggravated; the subsets pattern will therefore be biased in a population selected only on the basis of light-scatter behavior. The importance of accurately detecting and gating out dead cells is illustrated by an experimental example accompanying the mathematical analysis. To conclude, identification of dead cells by means of viability stains should be an absolute routine in practical flow cytometry, so as to avoid mis-estimation in sorting or analysis.

  12. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  13. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  14. Flow fraction in charged rectangular microchannel to optimally design hydrodynamic filtration chip for cell sorting

    Science.gov (United States)

    Chun, Myung-Suk; Jeong, Sohyun; Kim, Jae Hun; Lee, Tae Seok

    2015-11-01

    Among the passive separations, hydrodynamic filtration (HDF) can perform the fractionation of cells or particles by selective extraction of streamlines controlled by the flow fraction at each branch. Only the stream near the sidewall enters the branches as the focusing, with the amount of fluid leaving the main channel being determined by the flow distribution related to the hydraulic flow resistances. Its understanding is important, but in-depth consideration has not been treated until now. The virtual boundary of the fluid layer should be first specified, and the parabolic velocity profile starts to form from the steady state flow with high Péclet numbers. We computed the 3-dimensional flow profile at the rectangular cross-section with any aspect ratios, by considering electrokinetic transport coupled with the Poisson-Boltzmann and Navier-Stokes equations. The chip was designed with the parameters rigorously determined by the complete analysis of laminar flow for flow fraction and complicated networks of main and multi-branched channels for cell sorting into the finite number of subpopulations. For potential applications to the precise sorting, our designed microfluidic chip can be validated by applying model cells consisting of heterogeneous subpopulations. Supported by the KIST Institutional Program (No. 2E25382).

  15. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures – Part I: Idealized Axisymmetric Swirling Flow

    Science.gov (United States)

    Vasquez, Paula A.; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M. Gregory

    2016-01-01

    A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700

  16. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  17. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  18. The Lagrangian coordinate system and what it means for two-dimensional crowd flow models

    Science.gov (United States)

    van Wageningen-Kessels, Femke; Leclercq, Ludovic; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-02-01

    A continuum crowd flow model is solved using the Lagrangian coordinate system. The system has proven to give computational advantages over the traditional Eulerian coordinate system for (one-dimensional) road traffic flow. Our extension of the model and simulation method to (two-dimensional) crowd flow paves the way to explore the advantages for crowd flow simulation. Detailed analysis of the advantages is left for future research. However, this paper provides a first exploration and shows that a model and simulation method for two-dimensional crowd flow can be developed using Lagrangian numerical techniques and that it leads to accurate simulation results.

  19. Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip

    Science.gov (United States)

    González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus

    2016-09-01

    This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.

  20. Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices

    OpenAIRE

    Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino

    2014-01-01

    By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without r...

  1. Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry.

    OpenAIRE

    Assaraf, Y G; Schimke, R. T.

    1987-01-01

    We have studied the frequency of transport mutations in methotrexate-resistant Chinese hamster ovary cells using a rapid-flow cytometric technique. After saturating cells with fluoresceinated methotrexate, we examined the ability of hydrophilic and lipophilic antifolates to displace fluoresceinated methotrexate binding to dihydrofolate reductase. Cells with methotrexate transport deficiency are unable to take up methotrexate and thus retain the fluorescence, whereas the lipophilic antifolates...

  2. Detection and quantitation of human immunodeficiency virus-infected peripheral blood mononuclear cells by flow cytometry.

    OpenAIRE

    McSharry, J J; Costantino, R; Robbiano, E; Echols, R; Stevens, R; Lehman, J M

    1990-01-01

    A flow cytometric assay has been developed to detect and quantitate human immunodeficiency virus (HIV)-infected peripheral blood mononuclear cells obtained from HIV-seropositive patients. Peripheral blood was obtained from patients attending an acquired immune deficiency syndrome clinic, and mononuclear cells were separated by centrifugation onto Ficoll-Hypaque. The cell layer at the interface was removed, washed in phosphate-buffered saline without Ca2+ and Mg2+, and fixed with 90% methanol,...

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Acoustic module of the Acquabona (Italy debris flow monitoring system

    Directory of Open Access Journals (Sweden)

    A. Galgaro

    2005-01-01

    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  5. Acoustic module of the Acquabona (Italy) debris flow monitoring system

    Science.gov (United States)

    Galgaro, A.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2005-02-01

    Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys).

  6. Getting into the flow: Red cells go on a roll, two-component vesicles swing

    Science.gov (United States)

    Viallat, Annie; Dupire, Jules; Khelloufi, Kamel; Al Halifa, Al Hair; Adhesion and Inflammation Team

    2013-11-01

    Red blood cells are soft capsules. Under shear flow, their two known motions were ``tumbling'' and ``swinging-tank treading,'' depending on cell mechanics and flow conditions. We reveal new wobbling regimes, among which the ``rolling'' regime, where red cells move as wheels on a road. We show, by coupling two video-microscopy approaches providing multi-directional cell pictures that the orientation of cells flipping into the flow is determined by the shear rate. Rolling permits to avoid energetically costly cellular deformations and is a true signature of the cytoskeleton elasticity. We highlight two transient dynamics: an intermittent regime during the ``tank-treading-to-flipping'' transition and a Frisbee-like ``spinning'' regime during the ``rolling-to-tank-treading'' transition. We find that the biconcave red cell shape is very stable under moderate shear stresses, and we interpret this result in terms of shape memory and elastic buckling. Finally, we generate lipid vesicles with a shape memory by using two lipids with different bending rigidities. These vesicles swing in shear flow similarly to red blood cells but their non-axisymmetric stress-free shape changes the periodicity of the motion and induces specific features.

  7. Flow-induced Expression and Phosphorylation of VASPin Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Muller; SYLYAINE; Jean-FranoisSYOLTZ

    2005-01-01

    1 Introduction It is well known that mechanical forces have important influence on endothelial cells, in particular, on cytoskeleton reorganization. VASP (vasodilator stimulated phosphoprotein) is a 46 KD actin associated protein. It is a member of Ena/VASP protein family and composed of EVH1, proline-rich and EVH2 domains. It is considered as an important component of the sub-cellular regions where remodelling of the actin cytoskeleton takes place, such as the front of spreading lamellipodia in motile cell...

  8. Control assembly for controlling a fuel cell system during shutdown and restart

    Science.gov (United States)

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  9. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    Science.gov (United States)

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process.

  10. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    Science.gov (United States)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  11. A Numerical Simulation of Cell Separation by Simplified Asymmetric Pinched Flow Fractionation.

    Science.gov (United States)

    Ma, Jing-Tao; Xu, Yuan-Qing; Tang, Xiao-Ying

    2016-01-01

    As a typical microfluidic cell sorting technique, the size-dependent cell sorting has attracted much interest in recent years. In this paper, a size-dependent cell sorting scheme is presented based on a controllable asymmetric pinched flow by employing an immersed boundary-lattice Boltzmann method (IB-LBM). The geometry of channels consists of 2 upstream branches, 1 transitional channel, and 4 downstream branches (D-branches). Simulations are conducted by varying inlet flow ratio, the cell size, and the ratio of flux of outlet 4 to the total flux. It is found that, after being randomly released in one upstream branch, the cells are aligned in a line close to one sidewall of the transitional channel due to the hydrodynamic forces of the asymmetric pinched flow. Cells with different sizes can be fed into different downstream D-branches just by regulating the flux of one D-branch. A principle governing D-branch choice of a cell is obtained, with which a series of numerical cases are performed to sort the cell mixture involving two, three, or four classes of diameters. Results show that, for each case, an adaptive regulating flux can be determined to sort the cell mixture effectively. PMID:27597877

  12. A Numerical Simulation of Cell Separation by Simplified Asymmetric Pinched Flow Fractionation

    Directory of Open Access Journals (Sweden)

    Jing-Tao Ma

    2016-01-01

    Full Text Available As a typical microfluidic cell sorting technique, the size-dependent cell sorting has attracted much interest in recent years. In this paper, a size-dependent cell sorting scheme is presented based on a controllable asymmetric pinched flow by employing an immersed boundary-lattice Boltzmann method (IB-LBM. The geometry of channels consists of 2 upstream branches, 1 transitional channel, and 4 downstream branches (D-branches. Simulations are conducted by varying inlet flow ratio, the cell size, and the ratio of flux of outlet 4 to the total flux. It is found that, after being randomly released in one upstream branch, the cells are aligned in a line close to one sidewall of the transitional channel due to the hydrodynamic forces of the asymmetric pinched flow. Cells with different sizes can be fed into different downstream D-branches just by regulating the flux of one D-branch. A principle governing D-branch choice of a cell is obtained, with which a series of numerical cases are performed to sort the cell mixture involving two, three, or four classes of diameters. Results show that, for each case, an adaptive regulating flux can be determined to sort the cell mixture effectively.

  13. Mechanisms of eosinophil adhesion to endothelial cells under flow conditions

    NARCIS (Netherlands)

    Ulfman, L.H.

    2002-01-01

    Eosinophils play an important role in allergic inflammatory diseases such as allergic asthma. Infiltrates of these cells are present in the interstitium and the lumen of the bronchi of asthmatic patients. Eosinophils must pass the endothelium to enter this site of inflammation. A widely accepted par

  14. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  15. Optical cell monitoring system for underwater targets

    Science.gov (United States)

    Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan

    2008-10-01

    We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.

  16. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    Science.gov (United States)

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA. PMID:27587174

  17. An acoustically-driven biochip - Impact of flow on the cell-association of targeted drug carriers

    CERN Document Server

    Fillafer, Christian; Neumann, Jürgen; Guttenberg, Zeno; Dissauer, Silke; Lichtscheidl, Irene; Wirth, Michael; Gabor, Franz; Schneider, Matthias; 10.1039/B906006E

    2011-01-01

    The interaction of targeted drug carriers with epithelial and endothelial barriers in vivo is largely determined by the dynamics of the body fluids. To simulate these conditions in binding assays, a fully biocompatible in vitro model was developed which can accurately mimic a wide range of physiological flow conditions on a thumbnail-format cell-chip. This acoustically-driven microfluidic system was used to study the interaction characteristics of protein-coated particles with cells. Poly(D,L-lactide-co-glycolide) (PLGA) microparticles (2.86 {\\pm} 0.95 {\\mu}m) were conjugated with wheat germ agglutinin (WGA-MP, cytoadhesive protein) or bovine serum albumin (BSA-MP, nonspecific protein) and their binding to epithelial cell monolayers was investigated under stationary and flow conditions. While mean numbers of 1500 {\\pm} 307 mm-2 WGA-MP and 94 {\\pm} 64 mm-2 BSA-MP respectively were detected to be cell-bound in the stationary setup, incubation at increasing flow velocities increasingly antagonized the attachment...

  18. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Science.gov (United States)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  19. Cell and Tissue Organization in the Circulatory and Ventilatory Systems Volume 1 Signaling in Cell Organization, Fate, and Activity, Part A Cell Structure and Environment

    CERN Document Server

    Thiriet, Marc

    2011-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning.  The present volume is devoted to cellular events that allow adaptation to environmental conditions, particularly mechanotransduction. It begins with cell organization and a survey of cell types in the vasculatur...

  20. A thermo-stabilized flow cell for surface plasmon resonance sensors in D-shaped plastic optical fibers

    Science.gov (United States)

    Cennamo, N.; Chiavaioli, F.; Trono, C.; Tombelli, S.; Giannetti, A.; Baldini, F.; Zeni, L.

    2016-05-01

    The first example of an optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. In this work, an IgG/anti-IgG assay was implemented as model bioassay, with the IgG biolayer deposited on the sensor gold surface and the biological target, anti-IgG, transported through a new thermo-stabilized flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. This complete optical sensor system can be used for the future reduction of the device cost and dimension, with the possibility of integrating the POF-SPR sensing platform with microfluidic and optoelectronic devices.