WorldWideScience

Sample records for cell fate control

  1. Control of stem cell fate by engineering their micro andnanoenvironment

    Institute of Scientific and Technical Information of China (English)

    Michelle F Griffin; Peter E Butler; Alexander M Seifalian; Deepak M Kalaskar

    2015-01-01

    Stem cells are capable of long-term self-renewal anddifferentiation into specialised cell types, making theman ideal candidate for a cell source for regenerativemedicine. The control of stem cell fate has become amajor area of interest in the field of regenerative medicineand therapeutic intervention. Conventional methodsof chemically inducing stem cells into specific lineagesis being challenged by the advances in biomaterialtechnology, with evidence highlighting that materialproperties are capable of driving stem cell fate. Materialsare being designed to mimic the clues stem cells receivein their in vivo stem cell niche including topographicaland chemical instructions. Nanotopographical clues thatmimic the extracellular matrix (ECM) in vivo have shownto regulate stem cell differentiation. The delivery of ECMcomponents on biomaterials in the form of short peptidessequences has also proved successful in directing stem celllineage. Growth factors responsible for controlling stemcell fate in vivo have also been delivered via biomaterialsto provide clues to determine stem cell differentiation. Analternative approach to guide stem cells fate is to providegenetic clues including delivering DNA plasmids andsmall interfering RNAs via scaffolds. This review, aims toprovide an overview of the topographical, chemical andmolecular clues that biomaterials can provide to guidestem cell fate. The promising features and challenges ofsuch approaches will be highlighted, to provide directionsfor future advancements in this exciting area of stem celltranslation for regenerative medicine.

  2. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...

  3. Wnt signaling and the control of human stem cell fate.

    Science.gov (United States)

    Van Camp, J K; Beckers, S; Zegers, D; Van Hul, W

    2014-04-01

    Wnt signaling determines major developmental processes in the embryonic state and regulates maintenance, self-renewal and differentiation of adult mammalian tissue stem cells. Both β-catenin dependent and independent Wnt pathways exist, and both affect stem cell fate in developing and adult tissues. In this review, we debate the response to Wnt signal activation in embryonic stem cells and human, adult stem cells of mesenchymal, hematopoetic, intestinal, gastric, epidermal, mammary and neural lineages, and discuss the need for Wnt signaling in these cell types. Due to the vital actions of Wnt signaling in developmental and maintenance processes, deregulation of the pathway can culminate into a broad spectrum of developmental and genetic diseases, including cancer. The way in which Wnt signals can feed tumors and maintain cancer stem stells is discussed as well. Manipulation of Wnt signals both in vivo and in vitro thus carries potential for therapeutic approaches such as tissue engineering for regenerative medicine and anti-cancer treatment. Although many questions remain regarding the complete Wnt signal cell-type specific response and interplay of Wnt signaling with pathways such as BMP, Hedgehog and Notch, we hereby provide an overview of current knowledge on Wnt signaling and its control over human stem cell fate. PMID:24323281

  4. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  5. Cell fate control in the developing central nervous system

    International Nuclear Information System (INIS)

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  6. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  7. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  8. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  9. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  10. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis

    OpenAIRE

    J. A. Cornwell; Hallett, R. M.; S. Auf der Mauer; A. Motazedian; Schroeder, T.; J. S. Draper; Harvey, R. P.; R. E. Nordon

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, an...

  11. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    OpenAIRE

    Hilary Jane Anderson; Matthew John Dalby; Jugal eSahoo; Rein eUljin

    2016-01-01

    Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC) and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson...

  12. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells

    Science.gov (United States)

    Kang, Jinjoo; Yoo, Jaehyuk; Lee, Sunju; Tang, Wanli; Aguilar, Berenice; Ramu, Swapnika; Choi, Inho; Otu, Hasan H.; Shin, Jay W.; Dotto, G. Paolo; Koh, Chester J.; Detmar, Michael

    2010-01-01

    Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may coreside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators. PMID:20351309

  13. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming.

    Science.gov (United States)

    Buck, Michael D; O'Sullivan, David; Klein Geltink, Ramon I; Curtis, Jonathan D; Chang, Chih-Hao; Sanin, David E; Qiu, Jing; Kretz, Oliver; Braas, Daniel; van der Windt, Gerritje J W; Chen, Qiongyu; Huang, Stanley Ching-Cheng; O'Neill, Christina M; Edelson, Brian T; Pearce, Edward J; Sesaki, Hiromi; Huber, Tobias B; Rambold, Angelika S; Pearce, Erika L

    2016-06-30

    Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controlscell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming. PMID:27293185

  14. Deubiquitylating Enzyme UBP64 Controls Cell Fate through Stabilization of the Transcriptional Repressor Tramtrack▿

    Science.gov (United States)

    Bajpe, Prashanth Kumar; van der Knaap, Jan A.; Demmers, Jeroen A. A.; Bezstarosti, Karel; Bassett, Andrew; van Beusekom, Heleen M. M.; Travers, Andrew A.; Verrijzer, C. Peter

    2008-01-01

    Protein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate in the developing eye. UBP64 represses neuronal cell fate but promotes the formation of nonneuronal cone cells. Using a proteomics approach, we identified the transcriptional repressor Tramtrack (TTK) as a primary UBP64 substrate. In common with TTK, reduced UBP64 levels lead to a loss of cone cells, supernumerary photoreceptors, and mechanosensory bristle cells. Previously, it was demonstrated that the blockade of neuronal cell fate was relieved by SINA-dependent ubiquitylation and degradation of TTK. We found that UBP64 counteracts SINA function by deubiquitylating TTK, leading to its stabilization and thereby promoting a nonneuronal cell fate. Mass spectrometric mapping revealed that SINA ubiquitylates multiple sites dispersed throughout TTK, which are duly deubiquitylated by UBP64. This observation suggests that both E3 SINA and UBP64 use a scanning mechanism to (de)ubiquitylate TTK. We conclude that the balance of TTK ubiquitylation by SINA and deubiquitylation by UBP64 constitutes a specific posttranslational switch controlling cell fate. PMID:18160715

  15. Divergent Paths Lnc Cell Fates.

    Science.gov (United States)

    Ounzain, Samir; Pedrazzini, Thierry

    2016-05-01

    Long noncoding RNAs (lncRNAs) comprise a class of regulatory molecules that may control diverse stem cell properties. Now in Cell Stem Cell, Luo et al. (2016) show that a specific group of lncRNAs, those transcribed divergently from protein coding genes, activate key developmental genes to control embryonic stem cell fate. PMID:27152437

  16. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis.

    Science.gov (United States)

    Cornwell, J A; Hallett, R M; der Mauer, S Auf; Motazedian, A; Schroeder, T; Draper, J S; Harvey, R P; Nordon, R E

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here we show that competing risks and concordance statistics, previously applied to clinical data and the study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics provide a robust and unbiased approach for evaluating hypotheses at the single-cell level. PMID:27250534

  17. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    Directory of Open Access Journals (Sweden)

    GiancarloForte

    2014-07-01

    Full Text Available The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction – which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs - would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli.The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.

  18. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  19. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    Science.gov (United States)

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces. PMID:26693600

  20. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish

    OpenAIRE

    Flasse, Lydie; Pirson, Justine; Stern, David,; Von Berg, Virginie; Manfroid, Isabelle; Peers, Bernard; Voz, Marianne

    2013-01-01

    Background NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. Results We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is inste...

  1. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    Directory of Open Access Journals (Sweden)

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  2. Early Cell Fate Decisions of Human Embryonic Stem Cells and Mouse Epiblast Stem Cells Are Controlled by the Same Signalling Pathways

    OpenAIRE

    Ludovic Vallier; Thomas Touboul; Zhenzhi Chng; Minodora Brimpari; Nicholas Hannan; Enrique Millan; Smithers, Lucy E.; Matthew Trotter; Peter Rugg-Gunn; Anne Weber; Pedersen, Roger A.

    2009-01-01

    Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors suc...

  3. The transcription factor GATA3 controls cell fate and maintenance of type 2 innate lymphoid cells

    OpenAIRE

    Hoyler, Thomas; Klose, Christoph S.N.; Souabni, Abdallah; Turqueti-Neves, Adriana; Pfeifer, Dietmar; Rawlins, Emma L.; Voehringer, David; Busslinger, Meinrad; Diefenbach, Andreas

    2012-01-01

    Innate lymphoid cells (ILCs) reside at mucosal surfaces and control immunity to intestinal infections. Type 2 innate lymphoid cells (ILC2) produce cytokines such as IL-5 and IL-13 and are required for immune defense against helminth infections and are involved in the pathogenesis of airway hyperreactivity. Here, we have investigated the role of the transcription factor GATA3 for ILC2 differentiation and maintenance. We showed that ILC2 and their lineage-specified bone marrow precursor (ILC2P)...

  4. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  5. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard;

    2013-01-01

    involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation......-producing beta-cells can be significantly enhanced upon induction of a pro-endocrine drive combined with the inhibition of Notch processing....... of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...

  6. Engineering hyaluronic acid hydrogel degradation to control cellular interactions and adult stem cell fate in 3D

    Science.gov (United States)

    Khetan, Sudhir

    The design and implementation of extracellular matrix (ECM)-mimetic hydrogels for tissue engineering (TE) applications requires an intensive understanding of cell-material interactions, including matrix remodeling and stem cell differentiation. However, the influence of microenvironmental cues, e.g., matrix biodegradability, on cell behavior in vitro has not been well studied in the case of direct cell encapsulation within 3-dimensional (3D) hydrogels. To address these issues, a facile sequential crosslinking technique was developed that provides spatial and temporal control of 3D hydrogel degradability to investigate the importance of material design on cell behavior. Specifically, hydrogels were synthesized from hyaluronic acid (HA) macromers in a sequential process: (1) a primary Michael-type addition crosslinking using cell adhesive and matrix metalloprotease (MMP)-degradable oligopeptides to consume a portion of total reactive groups and resulting in "-UV" hydrogels permissive to cell-mediated degradation, followed by (2) a secondary, light initiated free-radical crosslinking to consume remaining reactive groups and "switch" the network to a non-degradable structure ("+UV") via the addition of non-degradable kinetic chains. Using this approach, we demonstrated control of encapsulated hMSC spreading by varying the crosslink type (i.e., the relative hydrogel biodegradability), including with spatial control. Upon incubation with bipotential soluble differentiation factors, these same degradation-mediated spreading cues resulted in an hMSC differentiation fate switch within -UV versus +UV environments. Follow-up studies demonstrated that degradation-mediated traction generation, rather than matrix mechanics or cell morphology, is the critical biophysical signal determining hMSC fate. Sequentially crosslinked HA hydrogels were also studied for the capacity to support remodeling by in vivo and ex vivo tissues, including with spatial control, toward tissue

  7. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1.

    Directory of Open Access Journals (Sweden)

    David Latrasse

    Full Text Available Polycomb Repressive Complexes (PRC modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein like heterochromatin protein1 (LHP1 is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2. LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA

  8. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development

    Science.gov (United States)

    Stergiopoulos, Athanasios; Politis, Panagiotis K.

    2016-01-01

    The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. PMID:27447294

  9. Epigenetic control of dendritic cell development and fate determination of common myeloid progenitor by Mysm1.

    Science.gov (United States)

    Won, Haejung; Nandakumar, Vijayalakshmi; Yates, Peter; Sanchez, Suzi; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi

    2014-10-23

    The mechanisms controlling the development of dendritic cells (DCs) remain incompletely understood. Using an Mysm1 knockout (Mysm1(-/-)) mouse model, we identified the histone H2A deubiquitinase Mysm1, as a critical regulator in DC differentiation. Mysm1(-/-) mice showed a global reduction of DCs in lymphoid organs, whereas development of granulocytes and macrophages were not severely affected. Hematopoietic progenitors and DC precursors were significantly decreased in Mysm1(-/-) mice and defective in Fms-like tyrosine kinase-3(Flt3) ligand-induced, but not in granulocyte macrophage-colony-stimulating factor (GM-CSF)-induced DC differentiation in vitro. Molecular studies demonstrated that the developmental defect of DCs from common myeloid progenitor (CMP) in Mysm1(-/-) mice is associated with decreased Flt3 expression and that Mysm1 derepresses transcription of the Flt3 gene by directing histone modifications at the Flt3 promoter region. Two molecular mechanisms were found to be responsible for the selective role of Mysm1 in lineage determination of DCs from CMPs: the selective expression of Mysm1 in a subset of CMPs and the different requirement of Mysm1 for PU.1 recruitment to the Flt3 locus vs GM-CSF-α and macrophage-colony-stimulating factor receptor loci. In conclusion, this study reveals an essential role of Mysm1 in epigenetic regulation of Flt3 transcription and DC development, and it provides a novel mechanism for lineage determination from CMP. PMID:25217698

  10. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    OpenAIRE

    McDonald, Angela C.H.; Steffen Biechele; Janet Rossant; William L. Stanford

    2014-01-01

    Little is known about the gene regulatory networks (GRNs) distinguishing extraembryonic endoderm (ExEn) stem (XEN) cells from those that maintain the extensively characterized embryonic stem cell (ESC). An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expressio...

  11. Optimization of Femtosecond Laser Polymerized Structural Niches to Control Mesenchymal Stromal Cell Fate in Culture

    Directory of Open Access Journals (Sweden)

    Manuela T. Raimondi

    2014-06-01

    Full Text Available We applied two-photon polymerization to fabricate 3D synthetic niches arranged in complex patterns to study the effect of mechano-topological parameters on morphology, renewal and differentiation of rat mesenchymal stromal cells. Niches were formed in a photoresist with low auto-fluorescence, which enabled the clear visualization of the fluorescence emission of the markers used for biological diagnostics within the internal niche structure. The niches were structurally stable in culture up to three weeks. At three weeks of expansion in the niches, cell density increased by almost 10-fold and was 67% greater than in monolayer culture. Evidence of lineage commitment was observed in monolayer culture surrounding the structural niches, and within cell aggregates, but not inside the niches. Thus, structural niches were able not only to direct stem cell homing and colony formation, but also to guide aggregate formation, providing increased surface-to-volume ratios and space for stem cells to adhere and renew, respectively.

  12. Gene dosage imbalance during DNA replication controls bacterial cell-fate decision

    Science.gov (United States)

    Igoshin, Oleg

    Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin, the other close to the terminus leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A~P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell-cycle spent in starvation. Furthermore, changes in DNA replication and cell-cycle parameters with decreased growth rate in starvation conditions enable cells to indirectly detect starvation without the need for evaluating specific metabolites. The simplicity of the uncovered coordination mechanism and starvation sensing suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. This work is supported by National Science Foundation Grants MCB-1244135, EAGER-1450867, MCB-1244423, NIH NIGMS Grant R01 GM088428 and HHMI International Student Fellowship.

  13. A Progesterone-CXCR4 Axis Controls Mammary Progenitor Cell Fate in the Adult Gland

    Directory of Open Access Journals (Sweden)

    Yu-Jia Shiah

    2015-03-01

    Full Text Available Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12, is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi and luminal (CD24+CD49flo subsets. This is accompanied by a marked reduction in CD49b+SCA-1− luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

  14. p66Shc Aging Protein in Control of Fibroblasts Cell Fate

    Directory of Open Access Journals (Sweden)

    Mariusz R. Wieckowski

    2011-08-01

    Full Text Available Reactive oxygen species (ROS are wieldy accepted as one of the main factors of the aging process. These highly reactive compounds modify nucleic acids, proteins and lipids and affect the functionality of mitochondria in the first case and ultimately of the cell. Any agent or genetic modification that affects ROS production and detoxification can be expected to influence longevity. On the other hand, genetic manipulations leading to increased longevity can be expected to involve cellular changes that affect ROS metabolism. The 66-kDa isoform of the growth factor adaptor Shc (p66Shc has been recognized as a relevant factor to the oxygen radical theory of aging. The most recent data indicate that p66Shc protein regulates life span in mammals and its phosphorylation on serine 36 is important for the initiation of cell death upon oxidative stress. Moreover, there is strong evidence that apart from aging, p66Shc may be implicated in many oxidative stress-associated pathologies, such as diabetes, mitochondrial and neurodegenerative disorders and tumorigenesis. This article summarizes recent knowledge about the role of p66Shc in aging and senescence and how this protein can influence ROS production and detoxification, focusing on studies performed on skin and skin fibroblasts.

  15. MicroRNA-126–mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors

    OpenAIRE

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F.

    2013-01-01

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstra...

  16. FY08 LDRD Final Report Stem Cell Fate Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A

    2009-03-02

    A detailed understanding of the biological control of fate decisions of stem and progenitor cells is needed to harness their full power for tissue repair and/or regeneration. Currently, internal and external factors that regulate stem cell fate are not fully understood. We aim to engineer biocompatible tools to facilitate the measurement and comparison of the roles and significance of immobilized factors such as extracellular matrix and signaling peptides, synergistic and opposing soluble factors and signals, and cell-to-cell communication, in stem cell fate decisions. Our approach is based on the development of cell microarrays to capture viable stem/progenitor cells individually or in small clusters onto substrate-bound signals (e.g. proteins), combined with conventional antibody and customized subcellular markers made in-house, to facilitate tracking of cell behavior during exposure to relevant signals. Below we describe our efforts, including methods to manipulate a model epithelial stem cell system using a custom subcellular reporter to track and measure cell signaling, arrays with surface chemistry that support viable cells and enable controlled presentation of immobilized signals to cells on the array and fluorescence-based measurement of cell response, and successful on-array tests via conventional immunofluorescence assays that indicate correct cell polarity, localization of junctional proteins, and phenotype, properties which are essential to measuring true cell responses.

  17. Proliferating cell nuclear antigen in neutrophil fate.

    Science.gov (United States)

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  18. Binary cell fate decisions and fate transformation in the Drosophila larval eye.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Mishra

    Full Text Available The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5 or the green-sensitive Rhodopsin 6 (Rh6. Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.

  19. Glucocorticoid dose determines osteocyte cell fate

    OpenAIRE

    Jia, Junjing; Yao, Wei; Guan, Min; Dai, WeiWei; Shahnazari, Mohammad; Kar, Rekha; Bonewald, Lynda; Jiang, Jean X.; Lane, Nancy E.

    2011-01-01

    In response to cellular insult, several pathways can be activated, including necrosis, apoptosis, and autophagy. Because glucocorticoids (GCs) have been shown to induce both osteocyte apoptosis and autophagy, we sought to determine whether osteocyte cell fate in the presence of GCs was dose dependent by performing in vivo and in vitro studies. Male Swiss-Webster mice were treated with slow-release prednisolone pellets at 1.4, 2.8, and 5.6 mg/kg/d for 28 d. An osteocyte cell line, MLO-Y4 cells...

  20. Cell fate regulation in early mammalian development

    Science.gov (United States)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  1. Cell fate regulation in early mammalian development

    International Nuclear Information System (INIS)

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell–cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species. (paper)

  2. Fibronectin mediates mesendodermal cell fate decisions

    Science.gov (United States)

    Cheng, Paul; Andersen, Peter; Hassel, David; Kaynak, Bogac L.; Limphong, Pattraranee; Juergensen, Lonny; Kwon, Chulan; Srivastava, Deepak

    2013-01-01

    Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm. PMID:23715551

  3. The "occlusis" model of cell fate restriction.

    Science.gov (United States)

    Lahn, Bruce T

    2011-01-01

    A simple model, termed "occlusis", is presented here to account for both cell fate restriction during somatic development and reestablishment of pluripotency during reproduction. The model makes three assertions: (1) A gene's transcriptional potential can assume one of two states: the "competent" state, wherein the gene is responsive to, and can be activated by, trans-acting factors in the cellular milieu, and the "occluded" state, wherein the gene is blocked by cis-acting, chromatin-based mechanisms from responding to trans-acting factors such that it remains silent irrespective of whether transcriptional activators are present in the milieu. (2) As differentiation proceeds in somatic lineages, lineage-inappropriate genes shift progressively and irreversibly from competent to occluded state, thereby leading to the restriction of cell fate. (3) During reproduction, global deocclusion takes place in the germline and/or early zygotic cells to reset the genome to the competent state in order to facilitate a new round of organismal development. PMID:20954221

  4. EMT and MET as paradigms for cell fate switching

    Institute of Scientific and Technical Information of China (English)

    Jiekai Chen; Qingkai Han; Duanqing Pei

    2012-01-01

    Cell fate determination is a major unsolved problem in cell and developmental biology,The discovery of reprogramming by pluripotent factors offers a rational system to investigate the molecular mechanisms associated with cell fate decisions.The idea that reprogramming of fibroblasts starts with a mesenchymal-epithelial transition (MET) suggests that the process is perhaps a reversal of epithelial to mesenchymal transition (EMT) found frequently during early embryogenesis,As such,we believe that investigations into MET-EMT may yield detailed molecular insights into cell fate decisions,not only for the switching between epithelial and mesenchymal cells,but also other cell types.

  5. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Aurore Gely-Pernot

    2015-10-01

    Full Text Available All-trans retinoic acid (ATRA is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG or all ATRA receptors (RARA, RARB and RARG. We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.

  6. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  7. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    International Nuclear Information System (INIS)

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  8. Oct4 shuffles Sox partners to direct cell fate

    OpenAIRE

    AlFatah Mansour, Abed; Hanna, Jacob H.

    2013-01-01

    Early cell fate decisions demand rapid rewiring of transcriptional circuits. Stanton and colleagues report on enhancer-dependent partnering of Oct4 with either Sox2 or Sox17 to switch from pluripotency to differentiation.

  9. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation. PMID:27147029

  10. Early pancreatic islet fate and maturation is controlled through RBP-Jκ.

    Science.gov (United States)

    Cras-Méneur, Corentin; Conlon, Megan; Zhang, Yaqing; Pasca Di Magliano, Marina; Bernal-Mizrachi, Ernesto

    2016-01-01

    Notch signaling is known to control early pancreatic differentiation through Ngn3 repression. In later stages, downstream of Notch, the Presenilins are still required to maintain the endocrine fate allocation. Amongst their multiple targets, it remains unclear which one actually controls the maintenance of the fate of the early islets. Conditional deletions of the Notch effector RBP-Jκ with lineage tracing in Presenilin-deficient endocrine progenitors, demonstrated that this factor is central to the control of the fate through a non-canonical Notch mechanism. RBP-Jκ mice exhibit normal islet morphogenesis and function, however, a fraction of the progenitors fails to differentiate and develop into disorganized masses resembling acinar to ductal metaplasia and chronic pancreatitis. A subsequent deletion of RBP-Jκ in forming β-cells led to the transdifferentiation into the other endocrine cells types, indicating that this factor still mediates the maintenance of the fate within the endocrine lineage itself. These results highlight the dual importance of Notch signaling for the endocrine lineage. Even after Ngn3 expression, Notch activity is required to maintain both fate and maturation of the Ngn3 progenitors. In a subset of the cells, these alterations of Notch signaling halt their differentiation and leads to acinar to ductal metaplasia. PMID:27240887

  11. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    Science.gov (United States)

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  12. Stem cell decisions: a twist of fate or a niche market?

    Science.gov (United States)

    Januschke, Jens; Näthke, Inke

    2014-10-01

    Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can dependent on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or `niche'. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells. PMID:24613913

  13. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. ...

  14. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    International Nuclear Information System (INIS)

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium

  15. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  16. Generation of bivalent chromatin domains during cell fate decisions

    Directory of Open Access Journals (Sweden)

    De Gobbi Marco

    2011-06-01

    Full Text Available Abstract Background In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3 lineage control genes while 'poising' (H3K4me3 them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. Results Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. Conclusions While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

  17. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Van den Haute, Chris; Cufí, Sílvia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Lopez-Bonet, Eugeni; Rodriguez-Gallego, Esther; Fernández-Arroyo, Salvador; Joven, Jorge; Baekelandt, Veerle; Menendez, Javier A

    2016-07-01

    Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts fromPINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain

  18. Formula G1: Cell cycle in the driver's seat of stem cell fate determination.

    Science.gov (United States)

    Julian, Lisa M; Carpenedo, Richard L; Rothberg, Janet L Manias; Stanford, William L

    2016-04-01

    Cell cycle dynamics has emerged as a key regulator of stem cell fate decisions. In particular, differentiation decisions are associated with the G1 phase, and recent evidence suggests that self-renewal is actively regulated outside of G1. The mechanisms underlying these phenomena are largely unknown, but direct control of gene regulatory programs by the cell cycle machinery is heavily implicated. A recent study sheds important mechanistic insight by demonstrating that in human embryonic stem cells (hESCs) the Cyclin-dependent kinase CDK2 controls a wide-spread epigenetic program that drives transcription at differentiation-related gene promoters specifically in G1. Here, we discuss this finding and explore whether similar mechanisms are likely to function in multipotent stem cells. The implications of this discovery toward our understanding of stem cell-related disease are discussed, and we postulate novel mechanisms that position the cell cycle as a regulator of cell fate gene networks at epigenetic, transcriptional and post-transcriptional levels. PMID:26857166

  19. An ECHO in biology II: Insights in chondrocyte cell fate

    NARCIS (Netherlands)

    Schivo, S.; Scholma, J.; Huang, X.; Zhong, L.; Pol, van de J.C.; Karperien, H.B.J.; Langerak, R.; Post, J.N.

    2016-01-01

    Purpose: An intricate network of regulatory processes determines the chondrocyte cell fate during development and maintains tissue homeostasis. In the event of a disease such as OA, the regulatory network is critically compromised. To cure the disease, we need to restore the regulatory processes to

  20. Chemicals as the Sole Transformers of Cell Fate

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-01-01

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes. PMID:27426081

  1. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (<3 µg/kg), and well below either the TPH concentration of concern or the expected concentration, assuming no losses. Bioretention areas with deep-root vegetation contained significantly greater quantites of bacterial 16S rRNA genes and two functional genes involved in hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three

  2. Asymmetric Cell Division in T Lymphocyte Fate Diversification.

    Science.gov (United States)

    Arsenio, Janilyn; Metz, Patrick J; Chang, John T

    2015-11-01

    Immunological protection against microbial pathogens is dependent on robust generation of functionally diverse T lymphocyte subsets. Upon microbial infection, naïve CD4(+) or CD8(+) T lymphocytes can give rise to effector- and memory-fated progeny that together mediate a potent immune response. Recent advances in single-cell immunological and genomic profiling technologies have helped elucidate early and late diversification mechanisms that enable the generation of heterogeneity from single T lymphocytes. We discuss these findings here and argue that one such mechanism, asymmetric cell division, creates an early divergence in T lymphocyte fates by giving rise to daughter cells with a propensity towards the terminally differentiated effector or self-renewing memory lineages, with cell-intrinsic and -extrinsic cues from the microenvironment driving the final maturation steps. PMID:26474675

  3. Allosteric Regulation of Histidine Kinases by Their Cognate Response Regulator Determines Cell Fate

    OpenAIRE

    Paul, Ralf; Jaeger, Tina; Abel, Sören; Wiederkehr, Irene; Folcher, Marc; Biondi, Emanuele G.; Laub, Michael T.; Jenal, Urs

    2008-01-01

    The two-component phosphorylation network is of critical importance for bacterial growth and physiology. Here, we address plasticity and interconnection of distinct signal transduction pathways within this network. In Caulobacter crescentus antagonistic activities of the PleC phosphatase and DivJ kinase localized at opposite cell poles control the phosphorylation state and subcellular localization of the cell fate determinator protein DivK. We show that DivK functions as an allosteric regulat...

  4. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease

    Science.gov (United States)

    Sancho, Rocio; Cremona, Catherine A; Behrens, Axel

    2015-01-01

    The control of cell fate decisions is vital to build functional organs and maintain normal tissue homeostasis, and many pathways and processes cooperate to direct cells to an appropriate final identity. Because of its continuously renewing state and its carefully organised hierarchy, the mammalian intestine has become a powerful model to dissect these pathways in health and disease. One of the signalling pathways that is key to maintaining the balance between proliferation and differentiation in the intestinal epithelium is the Notch pathway, most famous for specifying distinct cell fates in adjacent cells via the evolutionarily conserved process of lateral inhibition. Here, we will review recent discoveries that advance our understanding of how cell fate in the mammalian intestine is decided by Notch and lateral inhibition, focusing on the molecular determinants that regulate protein turnover, transcriptional control and epigenetic regulation. PMID:25855643

  5. Stem cell fate determination during development and regeneration of ectodermal organs

    Directory of Open Access Journals (Sweden)

    LuciaJimenez-Rojo

    2012-04-01

    Full Text Available The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands and teeth. Despite varying in number, shape and function, all these ectodermal organs develop through continuous and reciprocal epithelial-mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein (BMP and fibroblast growth factor (FGF signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues.

  6. 1984: On monitoring cell fate in three-dimensional polymeric scaffolds for tissue engineering applications

    OpenAIRE

    Leferink, Anne Marijke

    2014-01-01

    In cartilage and bone engineering there is a high need for methods to replace traditional tissue and organ transplantation approaches to overcome the currently faced problems of donor shortage and invasiveness of the transplantation procedure. Although many promising advances have been made in the past decades in in vitro tissue engineering, quality control remains a challenge. Most conventional methods to assess the quality of a tissue engineered construct, e.g. by studying cell fate and tis...

  7. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    Science.gov (United States)

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  8. Spatially patterned matrix elasticity directs stem cell fate

    Science.gov (United States)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-01-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness. PMID:27436901

  9. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate

    Science.gov (United States)

    Lee, Sunju; Kang, Jinjoo; Yoo, Jaehyuk; Ganesan, Sathish K.; Cook, Sarah C.; Aguilar, Berenice; Ramu, Swapnika; Lee, Juneyong

    2009-01-01

    Specification of endothelial cell (EC) fate during vascular development is controlled by distinct key regulators. While Notch plays an essential role in induction of arterial phenotypes, COUP-TFII is required to maintain the venous EC identity. Homeodomain transcription factor Prox1 functions to reprogram venous ECs to lymphatic endothelial cells (LECs). Here, we report that the venous EC fate regulator COUP-TFII is expressed in LECs throughout development and physically interacts with Prox1 to form a stable complex in various cell types including LECs. We found that COUP-TFII functions as a coregulator of Prox1 to control several lineage-specific genes including VEGFR-3, FGFR-3, and neuropilin-1 and is required along with Prox1 to maintain LEC phenotype. Together, we propose that the physical and functional interactions of the 2 proteins constitute an essential part in the program specifying LEC fate and may provide the molecular basis for the hypothesis of venous EC identity being the prerequisite for LEC specification. PMID:18815287

  10. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate.

    Science.gov (United States)

    Van de Walle, Inge; Dolens, Anne-Catherine; Durinck, Kaat; De Mulder, Katrien; Van Loocke, Wouter; Damle, Sagar; Waegemans, Els; De Medts, Jelle; Velghe, Imke; De Smedt, Magda; Vandekerckhove, Bart; Kerre, Tessa; Plum, Jean; Leclercq, Georges; Rothenberg, Ellen V; Van Vlierberghe, Pieter; Speleman, Frank; Taghon, Tom

    2016-01-01

    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. PMID:27048872

  11. Environmental cues to guide stem cell fate decision for tissue engineering applications.

    Science.gov (United States)

    Alsberg, Eben; von Recum, Horst A; Mahoney, Melissa J

    2006-09-01

    The human body contains a variety of stem cells capable of both repeated self-renewal and production of specialised, differentiated progeny. Critical to the implementation of these cells in tissue engineering strategies is a thorough understanding of which external signals in the stem cell microenvironment provide cues to control their fate decision in terms of proliferation or differentiation into a desired, specific phenotype. These signals must then be incorporated into tissue regeneration approaches for regulated exposure to stem cells. The precise spatial and temporal presentation of factors directing stem cell behaviour is extremely important during embryogenesis, development and natural healing events, and it is possible that this level of control will be vital to the success of many regenerative therapies. This review covers existing tissue engineering approaches to guide the differentiation of three disparate stem cell populations: mesenchymal, neural and endothelial. These progenitor cells will be of central importance in many future connective, neural and vascular tissue regeneration technologies. PMID:16918253

  12. Notch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate

    OpenAIRE

    Mizeracka, Karolina; DeMaso, Christina R.; Cepko, Constance L.

    2013-01-01

    Several models of cell fate determination can be invoked to explain how single retinal progenitor cells (RPCs) produce different cell types in a terminal division. To gain insight into this process, the effects of the removal of a cell fate regulator, Notch1, were studied in newly postmitotic cells using a conditional allele of Notch1 (N1-CKO) in mice. Almost all newly postmitotic N1-CKO cells became rod photoreceptors, whereas wild-type (WT) cells achieved a variety of fates. Single cell pro...

  13. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  14. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.

    Science.gov (United States)

    Chou, Hsuan; Zhu, Yingfang; Ma, Yi; Berkowitz, Gerald A

    2016-02-01

    CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non-cell-autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca(2+) elevations, cyclic nucleotide (cGMP)-activated Ca(2+) channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca(2+) elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca(2+) and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP-activated Ca(2+) channel. In wild-type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor. When CLV3-dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca(2+) channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca(2+) , and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM. PMID:26756833

  15. Time-variant clustering model for understanding cell fate decisions.

    Science.gov (United States)

    Huang, Wei; Cao, Xiaoyi; Biase, Fernando H; Yu, Pengfei; Zhong, Sheng

    2014-11-01

    Both spatial characteristics and temporal features are often the subjects of concern in physical, social, and biological studies. This work tackles the clustering problems for time course data in which the cluster number and clustering structure change with respect to time, dubbed time-variant clustering. We developed a hierarchical model that simultaneously clusters the objects at every time point and describes the relationships of the clusters between time points. The hidden layer of this model is a generalized form of branching processes. A reversible-jump Markov Chain Monte Carlo method was implemented for model inference, and a feature selection procedure was developed. We applied this method to explore an open question in preimplantation embryonic development. Our analyses using single-cell gene expression data suggested that the earliest cell fate decision could start at the 4-cell stage in mice, earlier than the commonly thought 8- to 16-cell stage. These results together with independent experimental data from single-cell RNA-seq provided support against a prevailing hypothesis in mammalian development. PMID:25339442

  16. Nanomaterials for regulating cancer and stem cell fate

    Science.gov (United States)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  17. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

    Directory of Open Access Journals (Sweden)

    Yang Xian-Jie

    2009-08-01

    Full Text Available Abstract Background The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. Results We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. Conclusion These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase

  18. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs.

    Science.gov (United States)

    Bal, Suzanne M; Bernink, Jochem H; Nagasawa, Maho; Groot, Jelle; Shikhagaie, Medya M; Golebski, Kornel; van Drunen, Cornelis M; Lutter, Rene; Jonkers, Rene E; Hombrink, Pleun; Bruchard, Melanie; Villaudy, Julien; Munneke, J Marius; Fokkens, Wytske; Erjefält, Jonas S; Spits, Hergen; Ros, Xavier Romero

    2016-06-01

    Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation. PMID:27111145

  19. Developmental biology: cell fate in the mammary gland

    Science.gov (United States)

    Most breast cancers have their origin in the luminal epithelial cells of the mammary gland. Defining how a master regulator controls the development of this cell lineage could provide important hints about why this should be. ...

  20. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kate L. Loveland

    2015-01-01

    Full Text Available Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.

  1. β-catenin-driven binary cell fate decisions in animal development.

    Science.gov (United States)

    Bertrand, Vincent

    2016-01-01

    The Wnt/β-catenin pathway plays key roles during animal development. In several species, β-catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β-catenin levels between daughter cells. β-Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. For further resources related to this article, please visit the WIREs website. PMID:26952169

  2. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  3. A single dividing cell population with imbalanced fate drives oesophageal tumour growth.

    Science.gov (United States)

    Frede, Julia; Greulich, Philip; Nagy, Tibor; Simons, Benjamin D; Jones, Philip H

    2016-09-01

    Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity. PMID:27548914

  4. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  5. Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: Clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, D.E.; Chvatchko, Y.; Zinkernagel, R.M.; MacDonald, H.R. (Ludwig Institute for Cancer Research, Epalinges (Switzerland))

    1990-11-01

    Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E+ thymic component. Irradiation chimeras reconstituted with I-E- bone marrow showed substantial numbers of mature V beta 6+ T cells despite host Mls-1a expression. Analysis of the functional properties of such chimeric T cells revealed a surprising variability in their in vitro reactivity to host Mls-1a, depending on the H-2 haplotype of stem cells used for reconstitution. In chimeras reconstituted with B10.S (H-2s) stem cells, mature V beta 6+ lymphocytes were present but functionally anergic to host-type Mls-1a in vitro. In contrast, in chimeras reconstituted with B10.G (H-2q) bone marrow, nondeleted V beta 6+ cells were highly responsive to Mls-1a in vitro. These findings suggest that clonal anergy of V beta 6+ cells to self-Mls-1a may be controlled by the affinity/avidity of T cell receptor interactions with bone marrow-derived cells in the thymus depending on the major histocompatibility complex class II molecules involved. Furthermore, chimeras bearing host (Mls-1a)-reactive V beta 6+ cells did not differ clinically from those with anergic or deleted V beta 6+ cells and survived more than one year without signs of autoimmune disease. Interestingly, their spleen cells had no Mls-1a stimulatory capacity in vitro. Therefore, regulation at the level of antigen presentation may be an alternative mechanism for maintenance of tolerance to certain self-antigens such as Mls-1a.

  6. Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: Clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus

    International Nuclear Information System (INIS)

    Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E+ thymic component. Irradiation chimeras reconstituted with I-E- bone marrow showed substantial numbers of mature V beta 6+ T cells despite host Mls-1a expression. Analysis of the functional properties of such chimeric T cells revealed a surprising variability in their in vitro reactivity to host Mls-1a, depending on the H-2 haplotype of stem cells used for reconstitution. In chimeras reconstituted with B10.S (H-2s) stem cells, mature V beta 6+ lymphocytes were present but functionally anergic to host-type Mls-1a in vitro. In contrast, in chimeras reconstituted with B10.G (H-2q) bone marrow, nondeleted V beta 6+ cells were highly responsive to Mls-1a in vitro. These findings suggest that clonal anergy of V beta 6+ cells to self-Mls-1a may be controlled by the affinity/avidity of T cell receptor interactions with bone marrow-derived cells in the thymus depending on the major histocompatibility complex class II molecules involved. Furthermore, chimeras bearing host (Mls-1a)-reactive V beta 6+ cells did not differ clinically from those with anergic or deleted V beta 6+ cells and survived more than one year without signs of autoimmune disease. Interestingly, their spleen cells had no Mls-1a stimulatory capacity in vitro. Therefore, regulation at the level of antigen presentation may be an alternative mechanism for maintenance of tolerance to certain self-antigens such as Mls-1a

  7. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René;

    2009-01-01

    factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify...

  8. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail;

    2013-01-01

    Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here......, we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates...

  9. Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage

    Science.gov (United States)

    Huang, S.; Johnson, K. E.; Wang, H. Z.

    1998-01-01

    To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90 degrees with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35-38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90 degrees rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90 degrees, but the fate of the blastomeres did not simply show a 90 degrees switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position: (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.

  10. Determination of wing cell fate by the escargot and snail genes in Drosophila.

    Science.gov (United States)

    Fuse, N; Hirose, S; Hayashi, S

    1996-04-01

    Inset appendages such as the wing and the leg are formed in response to inductive signals in the embryonic field. In Drosophila, cells receiving such signals initiate developmental programs which allow them to become imaginal discs. Subsequently, these discs autonomously organize patterns specific for each appendage. We here report that two related transcription factors, Escargot and Snail that are expressed in the embryonic wing disc, function as intrinsic determinants of the wing cell fate. In escargot or snail mutant embryos, wing-specific expression of Snail, Vestigial and beta-galactosidase regulated by escargot enhancer were found as well as in wild-type embryos. However, in escargot snail double mutant embryos, wing development proceeded until stage 13, but the marker expression was not maintained in later stages, and the invagination of the primordium was absent. From such analyses, it was concluded that Escargot and Snail expression in the wing disc are maintained by their auto- and crossactivation. Ubiquitous escargot or snail expression induced from the hsp70 promoter rescued the escargot snail double mutant phenotype with the effects confined to the prospective wing cells. Similar DNA binding specificities of Escargot and Snail suggest that they control the same set of genes required for wing development. We thus propose the following scenario for early wing disc development. Prospective wing cells respond to the induction by turning on escargot and snail transcription, and become competent for regulation by Escargot and Snail. Such cells initiate auto- and crossregulatory circuits of escargot and snail. The sustained Escargot and Snail expression then activates vestigial and other target genes that are essential for wing development. This maintains the commitment to the wing cell fate and induces wing-specific cell shape change. PMID:8620833

  11. The fate of chrysotile-induced multipolar mitosis and aneuploid population in cultured lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Beatriz de Araujo Cortez

    Full Text Available Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.

  12. A fungicide-responsive kinase as a tool for synthetic cell fate regulation.

    Science.gov (United States)

    Furukawa, Kentaro; Hohmann, Stefan

    2015-08-18

    Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic 'suicide attack' system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications. PMID:26138483

  13. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  14. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    International Nuclear Information System (INIS)

    Research highlights: → hMSCs appeared to sense thin collagen gel (130 μm) with higher effective modulus as compared to thick gel (1440 μm). → Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). → Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanical properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 μm) as having a higher effective modulus than the thick gel (1440 μm) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 μm) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.

  15. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    Science.gov (United States)

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs). PMID:27422432

  16. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    OpenAIRE

    Siham Yennek; Mithila Burute; Manuel Théry; Shahragim Tajbakhsh

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  17. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  18. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  19. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Thery, Manuel

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  20. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  1. A blueprint for engineering cell fate: current technologies to reprogram cell identity

    Institute of Scientific and Technical Information of China (English)

    Samantha A Morris; George Q Daley

    2013-01-01

    Human diseases such as heart failure,diabetes,neurodegenerative disorders,and many others result from the deficiency or dysfunction of critical cell types.Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types.In addition to transplantation therapy,the generation of otherwise inaccessible cells also permits disease modeling,toxicology testing and drug discovery in vitro.In this review,we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states.We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching,and discuss the mechanisms underlying the engineering of cell fate.Finally,we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.

  2. Identification of novel genes involved in the commitment of endodermal cells to the thymic epithelial cell fate

    OpenAIRE

    Mathieu, Yves D.

    2006-01-01

    The thymus provides the microenvironment for the maturation and selection of the majority of peripheral T cells. Endodermal cells of the ventral aspect of the third pharyngeal pouch (3rdpp) at 10.5 days of mouse gestation (E10.5) adopt a thymic epithelial cell fate while cells of the dorsal part of the 3rdpp give rise to the parathyroid glands. To identify novel genes potentially involved in the commitment of endodermal cells to the thymic epithelial cell fate, the transcriptome o...

  3. DEPENDENCE OF STEM CELL FATE IN ARABIDOPSIS ON A FEEDBACK LOOP REGULATED BY CLV3 ACTIVITY

    Science.gov (United States)

    The fate of stem cells in plant meristems is governed by directional signalling systems that are regulated by negative feedback. In Arabidopsis, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell restricting pathway. We have used transgenic plants over-expressing CLV3 t...

  4. Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape

    OpenAIRE

    Chouhan, Raghuraj Singh; Qureshi, Anjum; Kolkar Mohammed, Javed Hussain Niazi

    2015-01-01

    In this study, we surface engineered living S. cerevisiae cells by decorating quantum dots (QDs) and traced the fate of QDs on molecular landscape of single mother cell through several generation times (progeny cells). The fate of QDs on cell-surface was tracked through the cellular division events using confocal microscopy and fluorescence emission profiles. The extent of cell-surface QDs distribution among the offspring was determined as the mother cell divides into daughter cells. Fluoresc...

  5. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.

    OpenAIRE

    Lewis, P J; Partridge, S R; Errington, J

    1994-01-01

    Soon after the initiation of sporulation, Bacillus subtilis divides asymmetrically to produce sister cells that have very different developmental fates. Recently, it has been proposed that the differential gene expression which begins soon after this division is due to cell-specific activation of the transcription factors sigma F and sigma E in the prespore and the mother cell, respectively. We describe the use of a method for the localization of gene expression in individual sporulating cell...

  6. Differential T Cell Function and Fate in Lymph Node and Nonlymphoid Tissues

    OpenAIRE

    Harris, N. L.; Watt, V; Ronchese, F.; Le Gros, G.

    2002-01-01

    The functions and fate of antigen-experienced T cells isolated from lymph node or nonlymphoid tissues were analyzed in a system involving adoptive transfer of in vitro-activated T cells into mice. Activated T cells present in the lymph nodes could be stimulated by antigen to divide, produce effector cytokines, and migrate to peripheral tissues. By contrast, activated T cells that had migrated into nonlymphoid tissues (lung and airway) produced substantial effector cytokines upon antigen chall...

  7. An emerging molecular mechanism for the neural vs mesodermal cell fate decision

    Institute of Scientific and Technical Information of China (English)

    Roman A Li; Kate G Storey

    2011-01-01

    @@ Understanding how primary cell fates are established and maintained in the vertebrate embryo provides important insights that inform directed in vitro differentiation of embryonic stem cells or adult cells that have undergone induced pluripotency.Neural differentiation is of particular interest as new neural cells may contribute to therapeutic approaches to nervous system injury and diseases and provide in vitro disease models for small molecule screening and for determining personalized drug treatments.

  8. Fate and protective effect of marrow stromal cells after subretinal transplantation

    Institute of Scientific and Technical Information of China (English)

    Hong Pan; Xinjian Liu; Jihong Wu; Yuhua Tian; Shenghai Zhang; Zhixin Lin; Qian Huang

    2008-01-01

    Engraftment of marrow stromai cells(MSCs)has been proposed as a therapeutic approach for degenerative diseases.In this study we investigated the fate and dynamic progress of grafted MSCs in living retina with the aim of evaluating the use of transplanted MSCs to treat retinal degeneration.Approximately 1×10 5 gfp-MSCs in 2 μl phosphate-buffered saline were injected into the subretinal space of adult Sprague-Dawley rats.Two weeks later,approximately 0.174%±O.082% of the transplanted cells had survived and diffused into the subretinal space.Nine weeks after transplantation the surviving gfp-MSCs accounted for 0.049%±0.023% of the number of cells injected and were mainly located at the injection site.The same number of MSCs were transplanted into the left eye subretinal space of 3-week-old hereditary retinal degenerative Royal College of Surgeons rats,and phosphate-buffered saline was injected into their right eyes as a control.Five weeks after transplantation,the amount of rudimentary photoreceptors was more significantly increased in grafted eyes than in control eyes.The results indicated that grafted MS CS could survive and rescue retinal degeneration.

  9. Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture.

    Science.gov (United States)

    Wang, Songfeng; Cao, Siqi; Wang, Yongfeng; Jiang, Bingqi; Wang, Lianhong; Sun, Feifei; Ji, Rong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is the brominated flame retardant with the highest production volume and its bioaccumulation in environment has caused both human health and environmental concerns, however the fate and metabolism of TBBPA in plants is unknown. We studied the fate, metabolites, and transformation of (14)C-labeled TBBPA in rice cell suspension culture. During the incubation for 14 days, TBBPA degradation occurred continuously in the culture, accompanied by formation of one anisolic metabolite [2,6-dibromo-4-(2-(2-hydroxy)-propyl)-anisole] (DBHPA) (50% of the degraded TBBPA) and cellular debris-bound residues (46.4%) as well as mineralization (3.6%). The cells continuously accumulated TBBPA in the cytoplasm, while a small amount of DBHPA (2.1% of the initially applied TBBPA) was detectable inside the cells only at the end of incubation. The majority of the accumulated residues in the cells was attributed to the cellular debris-bound residues, accounting for 70-79% of the accumulation after the first incubation day. About 5.4% of the accumulation was associated with cell organelles, which contributed 7.5% to the cellular debris-bound residues. Based on the fate and metabolism of TBBPA in the rice cell suspension culture, a type II ipso-substitution pathway was proposed to describe the initial step for TBBPA degradation in the culture and balance the fate of TBBPA in the cells. To the best of our knowledge, our study provides for the first time the insights into the fate and metabolism of TBBPA in plants and points out the potential role of type II ipso-hydroxylation substitution in degradation of alkylphenols in plants. Further studies are required to reveal the mechanisms for the bound-residue formation (e.g., binding of residues to specific cell wall components), nature of the binding, and toxicological effects of the bound residues and DBHPA. PMID:27105166

  10. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  11. Hydrogen peroxide – production, fate and role in redox signaling of tumor cells

    OpenAIRE

    Lennicke, Claudia; Rahn, Jette; Lichtenfels, Rudolf; Wessjohann, Ludger A; Seliger, Barbara

    2015-01-01

    Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an in...

  12. Fate mapping of interleukin-17 producing T cells in inflammatory responses

    OpenAIRE

    Stockinger, Brigitta B; Hirota, Keiji; Duarte, Joao H; Veldhoen, Marc; Hornsby, Eve; Li, Ying; Cua, Daniel J.; Tolaini, Mauro; Menzel, Ursula; Garefalaki, Anna; Potocnik, Alexandre J.; Wilhelm, Christoph; Ahlfors, Helena

    2011-01-01

    Abstract We describe a reporter mouse strain designed to fate-map cells that have activated IL-17A. Here we show that TH17 cells show distinct plasticity in different inflammatory settings. Chronic inflammatory conditions in EAE caused a switch to alternative cytokines in TH17 cells, whereas acute cutaneous infection with Candida albicans, did not result in deviation of TH17 to alternative cytokine production, although IL-17A production was shut off in the course of the infection ....

  13. GATA-3 Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland

    OpenAIRE

    Kouros-Mehr, Hosein; Slorach, Euan M.; Sternlicht, Mark D.; Werb, Zena

    2006-01-01

    The GATA family of transcription factors plays fundamental roles in cell-fate specification. However, it is unclear if these genes are necessary for the maintenance of cellular differentiation after development. We identified GATA-3 as the most highly enriched transcription factor in the mammary epithelium of pubertal mice. GATA-3 was found in the luminal cells of mammary ducts and the body cells of terminal end buds (TEBs). Upon conditional deletion of GATA-3, mice exhibited severe defects i...

  14. Immunological control of adult neural stem cells

    OpenAIRE

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many patholog...

  15. Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

    Science.gov (United States)

    Choi, Inho; Choi, Dongwon; Chung, Hee Kyoung; Kim, Kyu Eui; Lee, Sunju; Aguilar, Berenice; Kang, Jinjoo; Park, Eunkyung; Lee, Yong Suk; Maeng, Yong-Sun; Kim, Nam Yoon; Koh, Chester J.; Hong, Young-Kwon

    2012-01-01

    Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV. PMID:22719258

  16. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  17. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  18. A deterministic map of Waddington's epigenetic landscape for cell fate specification

    Directory of Open Access Journals (Sweden)

    Andersen Melvin E

    2011-05-01

    Full Text Available Abstract Background The image of the "epigenetic landscape", with a series of branching valleys and ridges depicting stable cellular states and the barriers between those states, has been a popular visual metaphor for cell lineage specification - especially in light of the recent discovery that terminally differentiated adult cells can be reprogrammed into pluripotent stem cells or into alternative cell lineages. However the question of whether the epigenetic landscape can be mapped out quantitatively to provide a predictive model of cellular differentiation remains largely unanswered. Results Here we derive a simple deterministic path-integral quasi-potential, based on the kinetic parameters of a gene network regulating cell fate, and show that this quantity is minimized along a temporal trajectory in the state space of the gene network, thus providing a marker of directionality for cell differentiation processes. We then use the derived quasi-potential as a measure of "elevation" to quantitatively map the epigenetic landscape, on which trajectories flow "downhill" from any location. Stochastic simulations confirm that the elevation of this computed landscape correlates to the likelihood of occurrence of particular cell fates, with well-populated low-lying "valleys" representing stable cellular states and higher "ridges" acting as barriers to transitions between the stable states. Conclusions This quantitative map of the epigenetic landscape underlying cell fate choice provides mechanistic insights into the "forces" that direct cellular differentiation in the context of physiological development, as well as during artificially induced cell lineage reprogramming. Our generalized approach to mapping the landscape is applicable to non-gradient gene regulatory systems for which an analytical potential function cannot be derived, and also to high-dimensional gene networks. Rigorous quantification of the gene regulatory circuits that govern cell

  19. Fate of pup inside the Mycobacterium proteasome studied by in-cell NMR.

    Directory of Open Access Journals (Sweden)

    Andres Y Maldonado

    Full Text Available The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactions between Pup-GGQ, mycobacterial proteasomal ATPase, Mpa, and Mtb proteasome core particle (CP inside a living cell at amino acid residue resolution. We showed that under in-cell conditions, in the absence of the proteasome CP, Pup-GGQ interacts with Mpa only weakly, primarily through its C-terminal region. When Mpa and non-stoichiometric amounts of proteasome CP are present, both the N-terminal and C-terminal regions of Pup-GGQ bind strongly to Mpa. This suggests a mechanism by which transient binding of Mpa to the proteasome CP controls the fate of Pup.

  20. The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis.

    Directory of Open Access Journals (Sweden)

    Samantha Hughes

    Full Text Available Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam or differentiated (hypodermal or neuronal fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27. We show that trd-1(RNAi and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.

  1. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma.

    Science.gov (United States)

    Snijders, Antoine M; Schmidt, Brian L; Fridlyand, Jane; Dekker, Nusi; Pinkel, Daniel; Jordan, Richard C K; Albertson, Donna G

    2005-06-16

    Genomes of solid tumors are characterized by gains and losses of regions, which may contribute to tumorigenesis by altering gene expression. Often the aberrations are extensive, encompassing whole chromosome arms, which makes identification of candidate genes in these regions difficult. Here, we focused on narrow regions of gene amplification to facilitate identification of genetic pathways important in oral squamous cell carcinoma (SCC) development. We used array comparative genomic hybridization (array CGH) to define minimum common amplified regions and then used expression analysis to identify candidate driver genes in amplicons that spanned LAMA3, MMP7), as well as members of the hedgehog (GLI2) and notch (JAG1, RBPSUH, FJX1) pathways to be amplified and overexpressed. Deregulation of these and other members of the hedgehog and notch pathways (HHIP, SMO, DLL1, NOTCH4) implicates deregulation of developmental and differentiation pathways, cell fate misspecification, in oral SCC development. PMID:15824737

  2. JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Shree Ram SINGH; Xiu CHEN; Steven X.HOU

    2005-01-01

    In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.

  3. Stem-cell dynamics and lineage topology from in vivo fate mapping in the hematopoietic system.

    Science.gov (United States)

    Höfer, Thomas; Barile, Melania; Flossdorf, Michael

    2016-06-01

    In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells. PMID:27107166

  4. Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis

    OpenAIRE

    Levdikov, Vladimir M; Blagova, Elena V.; Rawlings, Andrea E.; Jameson, Katie; Tunaley, James; Hart, Darren J.; Barak, Imrich; Wilkinson, Anthony J.

    2012-01-01

    Sporulation in Bacillus subtilis begins with an asymmetric cell division producing two genetically identical cells with different fates. SpoIIE is a membrane protein that localizes to the polar cell division sites where it causes FtsZ to relocate from mid-cell to form polar Z-rings. Following polar septation, SpoIIE establishes compartment-specific gene expression in the smaller forespore cell by dephosphorylating the anti-sigma factor antagonist SpoIIAA, leading to the release of the RNA pol...

  5. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    Science.gov (United States)

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-05-22

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates. PMID:24836002

  6. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Directory of Open Access Journals (Sweden)

    Siham Yennek

    2014-05-01

    Full Text Available Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.

  7. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components. PMID:22935613

  8. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates.

    Science.gov (United States)

    Piccirillo, Sarah; Kapros, Tamas; Honigberg, Saul M

    2016-05-01

    Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony's nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation-low acetate concentration or high temperature-the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed "Differential Partitioning provides Environmental Buffering" or DPEB hypothesis. PMID:26743103

  9. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2007-01-01

    Full Text Available Abstract Background The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. Results Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. Conclusion We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.

  10. Mark the transition: chromatin modifications and cell fate decision

    Institute of Scientific and Technical Information of China (English)

    Qiang Wu; Huck-Hui Ng

    2011-01-01

    With their unique features of selfrenewal and pluripotency,human embryonic stem (hES) cells are considered to be a nearly unlimited resource for research and clinical applications [1].Accordingly,the transcriptional network specifying and governing human ES cell identity has been extensively studied.OCT4,NANOG and SOX2 form a core transcriptional network that regulates itself as well as a number of target genes [2].This transcriptional network acts together with signaling pathways to maintain ES cell identity [3].Moreover,the last decade has seen tremendous advances in understanding the epigenetic mechanisms underlying ES eell self-renewal and pluripotency.

  11. Intestinal Neurogenin 3 Directs Differentiation of a Bipotential Secretory Progenitor to Endocrine Cell Rather than Goblet Cell Fate

    OpenAIRE

    López-Díaz, Lymari; Jain, Renu N.; Keeley, Theresa M.; VanDussen, Kelli L.; Brunkan, Cynthia S.; Gumucio, Deborah L.; Samuelson, Linda C.

    2007-01-01

    Neurogenin 3 is essential for enteroendocrine cell development; however, it is unknown whether this transcription factor is sufficient to induce an endocrine program in the intestine or how it affects the development of other epithelial cells originating from common progenitors. In this study, the mouse villin promoter was used to drive Neurogenin 3 expression throughout the developing epithelium to measure the affect on cell fate. Although the general morphology of the intestine was unchange...

  12. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    International Nuclear Information System (INIS)

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells

  13. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  14. Tapetal cell fate, lineage and proliferation in the Arabidopsis anther.

    Science.gov (United States)

    Feng, Xiaoqi; Dickinson, Hugh G

    2010-07-01

    The four microsporangia of the flowering plant anther develop from archesporial cells in the L2 of the primordium. Within each microsporangium, developing microsporocytes are surrounded by concentric monolayers of tapetal, middle layer and endothecial cells. How this intricate array of tissues, each containing relatively few cells, is established in an organ possessing no formal meristems is poorly understood. We describe here the pivotal role of the LRR receptor kinase EXCESS MICROSPOROCYTES 1 (EMS1) in forming the monolayer of tapetal nurse cells in Arabidopsis. Unusually for plants, tapetal cells are specified very early in development, and are subsequently stimulated to proliferate by a receptor-like kinase (RLK) complex that includes EMS1. Mutations in members of this EMS1 signalling complex and its putative ligand result in male-sterile plants in which tapetal initials fail to proliferate. Surprisingly, these cells continue to develop, isolated at the locular periphery. Mutant and wild-type microsporangia expand at similar rates and the 'tapetal' space at the periphery of mutant locules becomes occupied by microsporocytes. However, induction of late expression of EMS1 in the few tapetal initials in ems1 plants results in their proliferation to generate a functional tapetum, and this proliferation suppresses microsporocyte number. Our experiments also show that integrity of the tapetal monolayer is crucial for the maintenance of the polarity of divisions within it. This unexpected autonomy of the tapetal 'lineage' is discussed in the context of tissue development in complex plant organs, where constancy in size, shape and cell number is crucial. PMID:20570940

  15. The acquisition of cell fate in the Arabidopsis thaliana root meristem

    OpenAIRE

    Scheres, B.J.G.; Berg, C. van den; Hage, W.; Willemsen, V; Werff, N. van der; Wolkenfelt, H.; McKhann, H.; Weisbeek, P.

    1997-01-01

    During plant embryogenesis an embryo with cotyledons, a shoot apical meristem, a hypocotyl and a root apical meristem, is formed. The primary root and shoot meristems initiate post-embryonic growth generating all plant organs. The root meristem forms the primary root, and the shoot meristem forms the aerial portion of the plant including secondary meristems. Histological and fate map data have shown that there is no precise correlation between the shoot meristem cells and their descendants. T...

  16. Transcriptional regulatory mechanisms that govern embryonic stem cell fate.

    Science.gov (United States)

    Das, Satyabrata; Levasseur, Dana

    2013-01-01

    Embryonic stem cells (ESCs) are defined by their simultaneous capacity for limitless self-renewal and the ability to specify cells borne of all germ layers. The regulation of ESC pluripotency is governed by a set of core transcription factors that regulate transcription by interfacing with nuclear proteins that include the RNA polymerase II core transcriptional machinery, histone modification enzymes, and chromatin remodeling protein complexes. The growing adoption of systems biological approaches used in stem cell biology over last few years has contributed significantly to our understanding of pluripotency. Multilayered approaches coupling transcriptome profiling and proteomics (Nanog-, Oct4-, and Sox2-centered protein interaction networks or "interactomes") with transcription factor chromatin occupancy and epigenetic footprint measurements have enabled a more comprehensive understanding of ESC pluripotency and self-renewal. Together with the genetic and biochemical characterization of promising pluripotency modifying proteins, these systems biological approaches will continue to clarify the molecular underpinnings of the ESC state. This will most certainly contribute to the improvement of current methodologies for the derivation of pluripotent cells from adult tissues. PMID:23756950

  17. Microspore embryogenesis: reprogramming cell fate from pollen to embryo development

    NARCIS (Netherlands)

    Hui Li,

    2014-01-01

    Microspore embryogenesis is an expression of plant cell totipotency that leads to the production of haploid embryos. Besides being a widely exploited plant breeding tool, microspore embryogenesis is also a fascinating system that can be used to obtain a deeper mechanistic understanding of plant toti

  18. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.

    Science.gov (United States)

    Layman, Awo A K; Oliver, Paula M

    2016-05-15

    The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. PMID:27183634

  19. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    OpenAIRE

    Kozmiková, I. (Iryna); S Candiani; P. Fabian; Gurská, D. (Daniela); Kozmik, Z

    2013-01-01

    In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a p...

  20. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  1. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  2. Viscoelastic Properties of Differentiating Blood Cells Are Fate- and Function-Dependent

    Science.gov (United States)

    Ekpenyong, Andrew E.; Whyte, Graeme; Chalut, Kevin; Pagliara, Stefano; Lautenschläger, Franziska; Fiddler, Christine; Paschke, Stephan; Keyser, Ulrich F.; Chilvers, Edwin R.; Guck, Jochen

    2012-01-01

    Although cellular mechanical properties are known to alter during stem cell differentiation, understanding of the functional relevance of such alterations is incomplete. Here, we show that during the course of differentiation of human myeloid precursor cells into three different lineages, the cells alter their viscoelastic properties, measured using an optical stretcher, to suit their ultimate fate and function. Myeloid cells circulating in blood have to be advected through constrictions in blood vessels, engendering the need for compliance at short time-scales (minutes), compared to undifferentiated cells. These findings suggest that reduction in steady-state viscosity is a physiological adaptation for enhanced migration through tissues. Our results indicate that the material properties of cells define their function, can be used as a cell differentiation marker and could serve as target for novel therapies. PMID:23028868

  3. Laminopathies disrupt epigenomic developmental programs and cell fate.

    Science.gov (United States)

    Perovanovic, Jelena; Dell'Orso, Stefania; Gnochi, Viola F; Jaiswal, Jyoti K; Sartorelli, Vittorio; Vigouroux, Corinne; Mamchaoui, Kamel; Mouly, Vincent; Bonne, Gisèle; Hoffman, Eric P

    2016-04-20

    The nuclear envelope protein lamin A is encoded by thelamin A/C(LMNA) gene, which can contain missense mutations that cause Emery-Dreifuss muscular dystrophy (EDMD) (p.R453W). We fused mutated forms of the lamin A protein to bacterial DNA adenine methyltransferase (Dam) to define euchromatic-heterochromatin (epigenomic) transitions at the nuclear envelope during myogenesis (using DamID-seq). Lamin A missense mutations disrupted appropriate formation of lamin A-associated heterochromatin domains in an allele-specific manner-findings that were confirmed by chromatin immunoprecipitation-DNA sequencing (ChIP-seq) in murine H2K cells and DNA methylation studies in fibroblasts from muscular dystrophy patient who carried a distinctLMNAmutation (p.H222P). Observed perturbations of the epigenomic transitions included exit from pluripotency and cell cycle programs [euchromatin (open, transcribed) to heterochromatin (closed, silent)], as well as induction of myogenic loci (heterochromatin to euchromatin). In muscle biopsies from patients with either a gain- or change-of-functionLMNAgene mutation or a loss-of-function mutation in theemeringene, both of which cause EDMD, we observed inappropriate loss of heterochromatin formation at theSox2pluripotency locus, which was associated with persistent mRNA expression ofSox2 Overexpression ofSox2inhibited myogenic differentiation in human immortalized myoblasts. Our findings suggest that nuclear envelopathies are disorders of developmental epigenetic programming that result from altered formation of lamina-associated domains. PMID:27099177

  4. Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates

    OpenAIRE

    Tsunekawa, Yuji; Britto, Joanne M; Takahashi, Masanori; Polleux, Franck; Tan, Seong-Seng; Osumi, Noriko

    2012-01-01

    Localized translation of the cell-cycle regulator Cyclin D2 in the basal process of radial glial progenitor cells leads to its selective inheritance by the daughter cell undergoing self-renewal, thus representing a new mechanism for asymmetric cell fate determination.

  5. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

    Science.gov (United States)

    Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  6. Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas.

    Directory of Open Access Journals (Sweden)

    Yaron Suissa

    Full Text Available Neurogenin3(+ (Ngn3(+ progenitor cells in the developing pancreas give rise to five endocrine cell types secreting insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. Gastrin is a hormone produced primarily by G-cells in the stomach, where it functions to stimulate acid secretion by gastric parietal cells. Gastrin is expressed in the embryonic pancreas and is common in islet cell tumors, but the lineage and regulators of pancreatic gastrin(+ cells are not known. We report that gastrin is abundantly expressed in the embryonic pancreas and disappears soon after birth. Some gastrin(+ cells in the developing pancreas co-express glucagon, ghrelin or pancreatic polypeptide, but many gastrin(+ cells do not express any other islet hormone. Pancreatic gastrin(+ cells express the transcription factors Nkx6.1, Nkx2.2 and low levels of Pdx1, and derive from Ngn3(+ endocrine progenitor cells as shown by genetic lineage tracing. Using mice deficient for key transcription factors we show that gastrin expression depends on Ngn3, Nkx2.2, NeuroD1 and Arx, but not Pax4 or Pax6. Finally, gastrin expression is induced upon differentiation of human embryonic stem cells to pancreatic endocrine cells expressing insulin. Thus, gastrin(+ cells are a distinct endocrine cell type in the pancreas and an alternative fate of Ngn3+ cells.

  7. Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28

    DEFF Research Database (Denmark)

    Hernebring, Malin; Fredriksson, Asa; Liljevald, Maria; Cvijovic, Marija; Norrman, Karin; Wiseman, John; Semb, Tor Henrik; Nyström, Thomas

    2013-01-01

    In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activato...... that PA28aß has a hitherto unidentified role required for resetting the levels of protein damage at the transition from self-renewal to cell differentiation.......In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activator...... PA28aß (11S), subunits of the immunoproteasome (20Si), and the 20Si regulator TNFa. This induction is accompanied by assembly of mature PA28-20S(i) proteasomes and elevated proteasome activity. Inhibiting accumulation of PA28a using miRNA counteracted the removal of damaged proteins demonstrating...

  8. SOX17 is a critical specifier of human primordial germ cell fate.

    Science.gov (United States)

    Irie, Naoko; Weinberger, Leehee; Tang, Walfred W C; Kobayashi, Toshihiro; Viukov, Sergey; Manor, Yair S; Dietmann, Sabine; Hanna, Jacob H; Surani, M Azim

    2015-01-15

    Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information. PMID:25543152

  9. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe;

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled...... later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and...

  10. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  11. Duel of the fates: the role of transcriptional circuits and noise in CD4+ cells.

    Science.gov (United States)

    Hebenstreit, Daniel; Deonarine, Andrew; Babu, M Madan; Teichmann, Sarah A

    2012-06-01

    CD4+ T cells play key roles in orchestrating adaptive immune responses, and are a popular model for mammalian cell differentiation. While immune regulation would seem to require exactly adjusted mRNA and protein expression levels of key factors, there is little evidence that this is strictly the case. Stochastic gene expression and plasticity of cell types contrast the apparent need for precision. Recent work has provided insight into the magnitude of molecular noise, as well as the relationship between noise, transcriptional circuits and epigenetic modifications in a variety of cell types. These processes and their interplay will also govern gene expression patterns in the different CD4+ cell types, and the determination of their cellular fates. PMID:22498241

  12. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion.

    Science.gov (United States)

    Cattoglio, Claudia; Maruggi, Giulietta; Bartholomae, Cynthia; Malani, Nirav; Pellin, Danilo; Cocchiarella, Fabienne; Magnani, Zulma; Ciceri, Fabio; Ambrosi, Alessandro; von Kalle, Christof; Bushman, Frederic D; Bonini, Chiara; Schmidt, Manfred; Mavilio, Fulvio; Recchia, Alessandra

    2010-01-01

    The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+) hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction. PMID:21203516

  13. The developmental fate of green fluorescent mouse embryonic germ cells in chimeric embryos

    Institute of Scientific and Technical Information of China (English)

    XUXIN; SUMIOSUGANO; 等

    1999-01-01

    Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.

  14. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  15. Fates of Microcystis aeruginosa Cells and Associated Microcystins in Sediment and the Effect of Coagulation Process on Them

    Directory of Open Access Journals (Sweden)

    Xiaoguo Chen

    2013-12-01

    Full Text Available During toxic Microcystis aeruginosa blooms, large amounts of cells can enter sediment through natural settlement, and coagulation treatment used to control water blooms can enhance the accumulation of cells. However, the current understanding of the fates of these cells and associated microcystins (MCs, as well as the effect of coagulation treatment on these factors, is limited. The results of the present study show that Microcystis aeruginosa cells in sediment were steadily decomposed under experimental conditions, and that they completely disappeared within 28 days. The major MCs released from settled cells were immediately degraded in sediment, and microbial degradation may be the main mechanism involved in this process. Coagulation treatment with PAC (polyaluminium chloride + sepiolite can efficiently remove Microcystis aeruginosa cells from the water column and prevent their re-invasion. Furthermore, coagulation treatment with PAC + sepiolite had no significant effect on the release and decomposition of MCs and, thus, will not enhance the MCs pollution. However, coagulation treatment can accelerate the nutrient cycle by enhancing the settlement of cells. More attention should be paid to the effect on nutrient cycle when coagulation treatment is used for restoration of aquatic ecosystems.

  16. Dominant effects of Δ40p53 on p53 function and melanoma cell fate

    OpenAIRE

    Takahashi, Rie; Markovic, Svetomir; Scrable, Heidi

    2013-01-01

    The p53 gene encodes 12 distinct isoforms some of which can alter p53 activity in the absence of genomic alteration. Endogenous p53 isoforms have been identified in cancers; however, the function of these isoforms remains unclear. In melanoma, the frequency of p53 mutations is relatively low compared to other cancers suggesting that these isoforms may play a larger role in regulating p53 activity. We hypothesized that p53 function and therefore cell fate might be altered by the presence of Δ4...

  17. Estrogen receptor coregulators and pioneer factors: The orchestrators of mammary gland cell fate and development

    Directory of Open Access Journals (Sweden)

    Bramanandam eManavathi

    2014-08-01

    Full Text Available The 17-beta estradiol (E2, a steroid hormone, which play critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor alpha and beta (ERs. The activity of ERs depends on the coordinate activity of ligand binding, posttranslational modification, and importantly their interaction with their partner proteins called ‘coregulators’. Because majority of breast cancers are ERalpha positive and coregulators are proved to be crucial for ER transcriptional activity, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, in addition to these coregulators, the other ER partner proteins ‘pioneering factors’ also seems to contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator- and pioneering factor-mediated action on ER functions, particularly their role in mammary gland cell fate and development.

  18. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  19. Gene Regulatory Network Analysis Reveals Differences in Site-specific Cell Fate Determination in Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Gokhan eErtaylan

    2014-12-01

    Full Text Available Neurogenesis - the generation of new neurons - is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ lining the walls of the lateral ventricles; and the subgranular zone (SGZ of the dentate gyrus of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a and Nr3c1.We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report thirty-one candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar - Pax6 in SVZ and Sox2 - Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact.Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.

  20. DMPD: Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function and fate. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15691589 Nitric oxide and cell viability in inflammatory cells: a role for NO inmac...(.png) (.svg) (.html) (.csml) Show Nitric oxide and cell viability in inflammatory cells: a role for NO inma...ty in inflammatory cells: a role for NO inmacrophage function and fate. Authors Bosca L, Zeini M, Traves PG,

  1. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  2. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.

    Directory of Open Access Journals (Sweden)

    Kristen N Pollizzi

    Full Text Available mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.

  3. The neural stem cell fate determinant TRIM32 regulates complex behavioral traits

    Directory of Open Access Journals (Sweden)

    Anna-Lena eHillje

    2015-03-01

    Full Text Available In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ – olfactory bulb (OB system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add specific properties to information processing by modulating the existing local circuitry of already established mature neurons. Hippocampal neurogenesis has been suggested to play a role in spatial-navigation learning, spatial memory and spatial pattern separation. Cumulative evidences implicate that adult-born OB neurons contribute to learning processes and odor memory. We recently demonstrated that the cell fate determinant TRIM32 is upregulated in differentiating neuroblasts of the SVZ-OB system in the adult mouse brain. The absence of TRIM32 leads to increased progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated OB neurons. Here, we present novel data from behavioral studies showing that such an enhancement of OB neurogenesis not necessarily leads to increased olfactory performance but in contrast even results in impaired olfactory capabilities. In addition, we show at the cellular level that TRIM32 protein levels increase during differentiation of neural stem cells. At the molecular level, several metabolic intermediates that are connected to glycolysis, glycine or cysteine metabolism are deregulated in TRIM32 knockout mice brain tissue. These metabolomics pathways are directly or indirectly linked to anxiety or depression like behavior. In summary, our study provides comprehensive data on how the impairment of neurogenesis caused by the loss of the cell fate determinant TRIM32 causes a decrease of olfactory performance as well as a deregulation of metabolomic pathways that are linked to

  4. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan; Luo, Jian; Xu, Bin; Zhao, Jianfu

    2009-06-15

    Acid mine drainage (AMD) is often accompanied with elevated concentrations of arsenic, in the forms of arsenite, As(III), and/or arsenate, As(V), due to the high affinity of arsenic for sulfide mineral ores. This review summarizes the major geochemical processes controlling the release, speciation, fate, and distribution of inorganic arsenic in mine drainage and natural systems. Arsenic speciation depends highly on redox potential and pH of the solution, and arsenite can be oxidized to the less toxic arsenate form. Homogeneous oxidation of arsenite occurs rather slowly while its heterogeneous oxidation on mineral surfaces can greatly enhance the reaction rates. Little evidence suggests that precipitation reaction limits the concentrations of arsenic in natural water, while co-precipitation may lead to rapid arsenic removal when large amount of iron hydroxides precipitate out of the aqueous phase upon neutralization of the mine drainage. Both arsenate and arsenite adsorb on common metal oxides and clay minerals through formation of inner-sphere and/or outer-sphere complexes, controlling arsenic concentration in natural water bodies. Arsenite adsorbs less strongly than arsenate in the typical pH range of natural water and is more mobile. Part of the adsorbed arsenic species can be exchanged by common anions (e.g., PO(4)(3-) and SO(4)(2-)), especially phosphate, which leads to their re-mobilization. Understanding the geochemistry of arsenic is helpful for predicting its mobility and fate in AMD and natural systems, and for designing of cost-effective remediation/treatment strategies to reduce the occurrence and risk of arsenic contamination. PMID:19070955

  5. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ming Zhan

    Full Text Available Embryonic stem cells (ESCs are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs, and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  6. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  7. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea.

    Science.gov (United States)

    Ikeya, T; Hayashi, S

    1999-10-01

    The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the branches. A high level of MAP kinase activation is also limited to the tip of the branches. Restriction of such cell specialization events to the tip is essential for tracheal tubulogenesis. Here we show that Notch signaling plays crucial roles in the singling out process of the fusion cell. We found that Notch is activated in tracheal cells by Branchless signaling through stimulation of &Dgr; expression at the tip of tracheal branches and that activated Notch represses the fate of the fusion cell. In addition, Notch is required to restrict activation of MAP kinase to the tip of the branches, in part through the negative regulation of Branchless expression. Notch-mediated lateral inhibition in sending and receiving cells is thus essential to restrict the inductive influence of Branchless on the tracheal tubulogenesis. PMID:10498681

  8. Association between Tumorigenic Potential and the Fate of Cancer Cells in a Syngeneic Melanoma Model

    Science.gov (United States)

    Krelin, Yakov; Berkovich, Liron; Amit, Moran; Gil, Ziv

    2013-01-01

    The self-renewal potential of a cancer cell can be estimated by using particular assays, which include xenotransplantation in immunocompromised animals or culturing in non-adherent serum-free stem-cells media (SCM). However, whether cells with self-renewal potential actually contribute to disease is unknown. Here we investigated the tumorigenic potential and fate of cancer cells in an in-vivo melanoma model. We examined cell lines which were derived from the same parental line: a non-metastatic cell line (K1735/16), a metastatic cell line (K1735/M4) and a cell line which was selected in non-adherent conditions (K1735/16S). All cell lines exhibited similar proliferation kinetics when grown on culture plates. K1735/16 cells grown in soft agar or in suspension non-adherent conditions failed to form colonies or spheroids, whereas the other cell lines showed prominent colonogenicity and spheroid formation capacity. By using sphere limiting dilution analysis (SLDA) in serum-free media, K1735/16S and K1735/M4 cells grown in suspension were capable of forming spheroids even in low frequencies of concentrations, as opposed to K1735/16 cells. The tumorigenic potential of the cell lines was determined in SCID mice using intra footpad injections. Palpable tumors were evident in all mice. In agreement with the in-vitro studies, the K1735/M4 cell line exhibited the highest growth kinetics, followed by the K1735/16S cell line, whereas the K1735/16 cell line had the lowest tumor growth potential (P<0.001). In contrast, when we repeated the experiments in syngeneic C3H/HeN mice, the K1735/16 cell line produced macroscopic tumors 30–100 days after injection, whereas K1735/M4 and K1735/16S derived tumors regressed spontaneously in 90–100% of mice. TUNEL analysis revealed significantly higher number of apoptotic cells in K1735/16S and K1735/M4 cell line-derived tumors compared to K1735/16 tumors (P<0.001). The models we have examined here raised the possibility, that cells with

  9. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de [Department of Neurosurgery, University Hospital, Leipzig (Germany); Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany); Glien, Anja; Groba, Claudia; Schlichting, Nadine [Department of Neurosurgery, University Hospital, Leipzig (Germany); Kamprad, Manja [Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig (Germany); Meixensberger, Juergen [Department of Neurosurgery, University Hospital, Leipzig (Germany); Milosevic, Javorina [Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany)

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  10. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    Science.gov (United States)

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. PMID:27107701

  11. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    International Nuclear Information System (INIS)

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment

  12. [Fate and balance of bulk blending controlled release fertilizer nitrogen under continuous cropping of mustard].

    Science.gov (United States)

    Zhang, Pan-Pan; Fan, Xiao-Lin

    2012-10-01

    Under the conditions of applying water soluble fertilizer and its bulk blending with controlled release fertilizer (BB-CRF), and by using micro-lysimeter, this paper quantitatively studied the nitrogen (N) uptake by mustard, the soil N losses from N2O emission, leaching and others, and the N residual in soil in three rotations of continuously cropped mustard. In the treatment of BB-CRF with 25% of controlled release nitrogen, the N uptake by mustard increased with rotations, and the yield by the end of the experiment was significantly higher than that in the treatment of water soluble fertilizer. The cumulated N2O emission loss and the N leaching loss were obviously higher in treatment water soluble fertilizer than in treatment BB-CRF. NO3(-)-N was the primary form of N in the leachate. In relative to water soluble fertilizer, BB-CRF altered the fates of fertilizer nitrogen, i.e., the N uptake by mustard and the N residual in soil increased by 75.4% and 76.0%, and the N leaching loss and other apparent N losses decreased by 27.1% and 66.3%, respectively. The application of BB-CRF could be an effective way to reduce the various losses of fertilizer N while increase the fertilizer N use efficiency, and the controlled release fertilizer is the environmentally friendly fertilizer with the property of high N use efficiency. PMID:23359937

  13. Asymmetric Localization of Cdx2 mRNA during the First Cell-Fate Decision in Early Mouse Development

    Directory of Open Access Journals (Sweden)

    Maria Skamagki

    2013-02-01

    Full Text Available A longstanding question in mammalian development is whether the divisions that segregate pluripotent progenitor cells for the future embryo from cells that differentiate into extraembryonic structures are asymmetric in cell-fate instructions. The transcription factor Cdx2 plays a key role in the first cell-fate decision. Here, using live-embryo imaging, we show that localization of Cdx2 transcripts becomes asymmetric during development, preceding cell lineage segregation. Cdx2 transcripts preferentially localize apically at the late eight-cell stage and become inherited asymmetrically during divisions that set apart pluripotent and differentiating cells. Asymmetric localization depends on a cis element within the coding region of Cdx2 and requires cell polarization as well as intact microtubule and actin cytoskeletons. Failure to enrich Cdx2 transcripts apically results in a significant decrease in the number of pluripotent cells. We discuss how the asymmetric localization and segregation of Cdx2 transcripts could contribute to multiple mechanisms that establish different cell fates in the mouse embryo.

  14. Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung

    OpenAIRE

    Jhingran, Anupam; Mar, Katrina B.; Kumasaka, Debra K.; Sue E Knoblaugh; Ngo, Lisa Y.; Segal, Brahm H; Iwakura, Yoichiro; Lowell, Clifford A.; Hamerman, Jessica A.; Lin, Xin; Tobias M Hohl

    2012-01-01

    Fluorescence can be harnessed to monitor microbial fate and to investigate functional outcomes of individual microbial cell-host cell encounters at portals of entry in native tissue environments. We illustrate this concept by introducing fluorescent Aspergillus reporter (FLARE) conidia that simultaneously report phagocytic uptake and fungal viability during cellular interactions with the murine respiratory innate immune system. Our studies using FLARE conidia reveal stepwise and cell-type-spe...

  15. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  16. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    Science.gov (United States)

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration.

  17. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Kian Leong Lee

    2011-06-01

    Full Text Available Nodal and Activin are morphogens of the TGFbeta superfamily of signaling molecules that direct differential cell fate decisions in a dose- and distance-dependent manner. During early embryonic development the Nodal/Activin pathway is responsible for the specification of mesoderm, endoderm, node, and mesendoderm. In contradiction to this drive towards cellular differentiation, the pathway also plays important roles in the maintenance of self-renewal and pluripotency in embryonic and epiblast stem cells. The molecular basis behind stem cell interpretation of Nodal/Activin signaling gradients and the undertaking of disparate cell fate decisions remains poorly understood. Here, we show that any perturbation of endogenous signaling levels in mouse embryonic stem cells leads to their exit from self-renewal towards divergent differentiation programs. Increasing Nodal signals above basal levels by direct stimulation with Activin promotes differentiation towards the mesendodermal lineages while repression of signaling with the specific Nodal/Activin receptor inhibitor SB431542 induces trophectodermal differentiation. To address how quantitative Nodal/Activin signals are translated qualitatively into distinct cell fates decisions, we performed chromatin immunoprecipitation of phospho-Smad2, the primary downstream transcriptional factor of the Nodal/Activin pathway, followed by massively parallel sequencing, and show that phospho-Smad2 binds to and regulates distinct subsets of target genes in a dose-dependent manner. Crucially, Nodal/Activin signaling directly controls the Oct4 master regulator of pluripotency by graded phospho-Smad2 binding in the promoter region. Hence stem cells interpret and carry out differential Nodal/Activin signaling instructions via a corresponding gradient of Smad2 phosphorylation that selectively titrates self-renewal against alternative differentiation programs by direct regulation of distinct target gene subsets and Oct4

  18. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  19. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate.

    Science.gov (United States)

    Lecca, Davide; Fumagalli, Marta; Ceruti, Stefania; Abbracchio, Maria P

    2016-08-01

    In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377726

  20. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    Science.gov (United States)

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  1. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct.

    Science.gov (United States)

    Terakawa, Jumpei; Rocchi, Altea; Serna, Vanida A; Bottinger, Erwin P; Graff, Jonathan M; Kurita, Takeshi

    2016-07-01

    Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate. PMID:27164167

  2. Data integration for identification of important transcription factors of STAT6-mediated cell fate decisions.

    Science.gov (United States)

    Jargosch, M; Kröger, S; Gralinska, E; Klotz, U; Fang, Z; Chen, W; Leser, U; Selbig, J; Groth, D; Baumgrass, R

    2016-01-01

    Data integration has become a useful strategy for uncovering new insights into complex biological networks. We studied whether this approach can help to delineate the signal transducer and activator of transcription 6 (STAT6)-mediated transcriptional network driving T helper (Th) 2 cell fate decisions. To this end, we performed an integrative analysis of publicly available RNA-seq data of Stat6-knockout mouse studies together with STAT6 ChIP-seq data and our own gene expression time series data during Th2 cell differentiation. We focused on transcription factors (TFs), cytokines, and cytokine receptors and delineated 59 positively and 41 negatively STAT6-regulated genes, which were used to construct a transcriptional network around STAT6. The network illustrates that important and well-known TFs for Th2 cell differentiation are positively regulated by STAT6 and act either as activators for Th2 cells (e.g., Gata3, Atf3, Satb1, Nfil3, Maf, and Pparg) or as suppressors for other Th cell subpopulations such as Th1 (e.g., Ar), Th17 (e.g., Etv6), or iTreg (e.g., Stat3 and Hif1a) cells. Moreover, our approach reveals 11 TFs (e.g., Atf5, Creb3l2, and Asb2) with unknown functions in Th cell differentiation. This fact together with the observed enrichment of asthma risk genes among those regulated by STAT6 underlines the potential value of the data integration strategy used here. Thus, our results clearly support the opinion that data integration is a useful tool to delineate complex physiological processes. PMID:27420972

  3. Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate

    Directory of Open Access Journals (Sweden)

    Priya Srikanth

    2015-09-01

    Full Text Available Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1 as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11 translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.

  4. Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate.

    Science.gov (United States)

    Srikanth, Priya; Han, Karam; Callahan, Dana G; Makovkina, Eugenia; Muratore, Christina R; Lalli, Matthew A; Zhou, Honglin; Boyd, Justin D; Kosik, Kenneth S; Selkoe, Dennis J; Young-Pearse, Tracy L

    2015-09-01

    Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1) as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11) translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development. PMID:26299970

  5. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate.

    Science.gov (United States)

    Varaljay, Vanessa A; Robidart, Julie; Preston, Christina M; Gifford, Scott M; Durham, Bryndan P; Burns, Andrew S; Ryan, John P; Marin, Roman; Kiene, Ronald P; Zehr, Jonathan P; Scholin, Christopher A; Moran, Mary Ann

    2015-07-01

    The 'bacterial switch' is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate (DMSP) to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere. Yet which ecological or physiological factors might control the bacterial switch remains a topic of considerable debate. Here we report the first field observations of dynamic changes in expression of DMSP pathway genes by a single marine bacterial species in its natural environment. Detection of taxon-specific gene expression in Roseobacter species HTCC2255 during a month-long deployment of an autonomous ocean sensor in Monterey Bay, CA captured in situ regulation of the first gene in each DMSP pathway (dddP and dmdA) that corresponded with shifts in the taxonomy of the phytoplankton community. Expression of the demethylation pathway was relatively greater during a high-DMSP-producing dinoflagellate bloom, and expression of the cleavage pathway was greater in the presence of a mixed diatom and dinoflagellate community [corrected].These field data fit the prevailing hypothesis for bacterial DMSP gene regulation based on bacterial sulfur demand, but also suggest a modification involving oxidative stress response, evidenced as upregulation of catalase via katG, when DMSP is demethylated. PMID:25700338

  6. The fate of allogenic radiation sterilized bone grafts controlled by the electron spin resonance spectrometry

    International Nuclear Information System (INIS)

    The normal fate of bone grafts is their resorption and substitution by the own host's bone tissue. This phenomenon described as creeping substitution process was controlled using biopsies from the grafted region in allogenic experimental system. Electron spin resonance (ESR) spectrometry was used for independent evaluation of resorption and substitution processes. The measurements were based on the process of induction in the hydroxyapatite (HA) crystals of bone mineral of stable paramagnetic centers which can be detected by ESR spectrometry. The loss of total amount of spins connected with the paramagnetic centers expressed in percent describes the kinetics of resorption. The changes in the concentration of spins due to the ''dilution'' of spins implanted with the graft by the nonirradiated ingrowing host's own bone describe the kinetics of the substitution process. Allogenic bone of calvaria was grafted orthotopically into rabbits after lyophilization and radiation sterilization with a dose of 3.5 Mrads. The process of graft's rebuilding was evaluated using the described ESR method. The application of the described technique in the human clinic is possible. (author)

  7. Neuregulin3 alters cell fate in the epidermis and mammary gland

    Directory of Open Access Journals (Sweden)

    Ashworth Alan

    2007-09-01

    Full Text Available Abstract Background The Neuregulin family of ligands and their receptors, the Erbb tyrosine kinases, have important roles in epidermal and mammary gland development as well as during carcinogenesis. Previously, we demonstrated that Neuregulin3 (Nrg3 is a specification signal for mammary placode formation in mice. Nrg3 is a growth factor, which binds and activates Erbb4, a receptor tyrosine kinase that regulates cell proliferation and differentiation. To understand the role of Neuregulin3 in epidermal morphogenesis, we have developed a transgenic mouse model that expresses Nrg3 throughout the basal layer (progenitor/stem cell compartment of mouse epidermis and the outer root sheath of developing hair follicles. Results Transgenic females formed supernumerary nipples and mammary glands along and adjacent to the mammary line providing strong evidence that Nrg3 has a role in the initiation of mammary placodes along the body axis. In addition, alterations in morphogenesis and differentiation of other epidermal appendages were observed, including the hair follicles. The transgenic epidermis is hyperplastic with excessive sebaceous differentiation and shows striking similarities to mouse models in which c-Myc is activated in the basal layer including decreased expression levels of the adhesion receptors, α6-integrin and β1-integrin. Conclusion These results indicate that the epidermis is sensitive to Nrg3 signaling, and that this growth factor can regulate cell fate of pluripotent epidermal cell populations including that of the mammary gland. Nrg3 appears to act, in part, by inducing c-Myc, altering the proliferation and adhesion properties of the basal epidermis, and may promote exit from the stem cell compartment. The results we describe provide significant insight into how growth factors, such as Nrg3, regulate epidermal homeostasis by influencing the balance between stem cell renewal, lineage selection and differentiation.

  8. Feedback from each retinal neuron population drives expression of subsequent fate determinant genes without influencing the cell cycle exit timing.

    Science.gov (United States)

    Kei, Jeremy Ng Chi; Dudczig, Stefanie; Currie, Peter D; Jusuf, Patricia R

    2016-09-01

    During neurogenesis, progenitors balance proliferation and cell cycle exit together with expression of fate determinant genes to ensure that the correct number of each of these neuron types is generated. Although intrinsic gene expression acting cell autonomously within each progenitor drives these processes, the final number of neurons generated is also influenced by extrinsic cues, representing a potential avenue to direct neurogenesis in developmental disorders or regenerative settings without the requirement to change intrinsic gene expression. Thus, it is important to understand which of these stages of neurogenesis are amenable to such extrinsic influences. Additionally, all types of neurons are specified in a highly conserved histogenic order, although its significance is unknown. This study makes use of conserved patterns of neurogenesis in the relatively simple yet highly organized zebrafish retina model, in which such histogenic birth order is well characterized. We directly visualize and quantify birth dates and cell fate determinant expression in WT vs. environments lacking different neuronal populations. This study shows that extrinsic feedback from developing retinal neurons is important for the temporal expression of intrinsic fate determinants but not for the timing of birth dates. We found no changes in cell cycle exit timing but did find a significant delay in the expression of genes driving the generation only of later- but not earlier-born cells, suggesting that the robustness of this process depends on continuous feedback from earlier-formed cell types. Thus, extrinsic cues selectively influence cell fate determinant progression, which may explain the function of the retinal histogenic order observed. J. Comp. Neurol. 524:2553-2566, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850379

  9. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    OpenAIRE

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding...

  10. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an...

  11. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo

    Science.gov (United States)

    Tang, Xingchun; Liu, Yuan; Sun, Meng-xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical–basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical–basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical–basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical–basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical–basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  12. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical-basal axis of the embryo.

    Science.gov (United States)

    Tang, Xingchun; Liu, Yuan; He, Yuqing; Ma, Ligang; Sun, Meng-Xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical-basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical-basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical-basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical-basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical-basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  13. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  14. Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2013-07-01

    Full Text Available Cell fate determination in the progeny of mammary epithelial stem/progenitor cells remains poorly understood. Here, we have examined the role of the mitotic kinase Aurora A (AURKA in regulating the balance between basal and luminal mammary lineages. We find that AURKA is highly expressed in basal stem cells and, to a lesser extent, in luminal progenitors. Wild-type AURKA expression promoted luminal cell fate, but expression of an S155R mutant reduced proliferation, promoted basal fate, and inhibited serial transplantation. The mechanism involved regulation of mitotic spindle orientation by AURKA and the positioning of daughter cells after division. Remarkably, this was NOTCH dependent, as NOTCH inhibitor blocked the effect of wild-type AURKA expression on spindle orientation and instead mimicked the effect of the S155R mutant. These findings directly link AURKA, NOTCH signaling, and mitotic spindle orientation and suggest a mechanism for regulating the balance between luminal and basal lineages in the mammary gland.

  15. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate.

    Science.gov (United States)

    Ragni, E; Lommel, M; Moro, M; Crosti, M; Lavazza, C; Parazzi, V; Saredi, S; Strahl, S; Lazzari, L

    2016-01-01

    Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD. PMID:26245304

  16. Neuronal Cell Fate Specification by the Convergence of Different Spatiotemporal Cues on a Common Terminal Selector Cascade.

    Directory of Open Access Journals (Sweden)

    Hugo Gabilondo

    2016-05-01

    Full Text Available Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate.

  17. Neuronal Cell Fate Specification by the Convergence of Different Spatiotemporal Cues on a Common Terminal Selector Cascade.

    Science.gov (United States)

    Gabilondo, Hugo; Stratmann, Johannes; Rubio-Ferrera, Irene; Millán-Crespo, Irene; Contero-García, Patricia; Bahrampour, Shahrzad; Thor, Stefan; Benito-Sipos, Jonathan

    2016-05-01

    Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate. PMID:27148744

  18. Role of SCHIZORIZA in asymmetric cell division, cell fate segregation and specification in Arabidopsis root development

    NARCIS (Netherlands)

    Jansweijer, V.M.A.

    2013-01-01

    Multicellular organisms develop their large variety of cell types from just one single cell, the zygote. Both plants and animals use asymmetric cell division to establish a multicellular body plan How different cell and tissue types are determined, how patterns are created and maintained, and which

  19. Modulation of rabbit corneal epithelial cells fate using embryonic stem cell extract

    OpenAIRE

    Zhan, Weijiao; Liu, Zhiping; Liu, Ying; Ke, Qicheng; Ding, Yuanyuan; Lu, Xiaoyan; Wang, Zhichong

    2010-01-01

    Purpose To develop a new culture system to cultivate differentiated autologous cells in vitro for cell therapy and tissue engineering. Methods After incubation in murine embryonic stem cell (ESC) extract for 1 h, streptolysin-O (SLO) permeabilized cells were resealed with CaCl2 and continually cultured for weeks. The morphological study was analyzed by light microscopy. Isolated colonies were selected and expanded to establish cell lines. Octamer-4 (Oct-4), stage-specific embryonic antigen-1 ...

  20. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554. ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  1. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids. Whereas studies about the design of fuel ...

  2. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.Whereas studies about the design of fuel ce...

  3. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  4. Modulation of rabbit corneal epithelial cells fate using embryonic stem cell extract

    Science.gov (United States)

    Zhan, Weijiao; Liu, Zhiping; Liu, Ying; Ke, Qicheng; Ding, Yuanyuan; Lu, Xiaoyan

    2010-01-01

    Purpose To develop a new culture system to cultivate differentiated autologous cells in vitro for cell therapy and tissue engineering. Methods After incubation in murine embryonic stem cell (ESC) extract for 1 h, streptolysin-O (SLO) permeabilized cells were resealed with CaCl2 and continually cultured for weeks. The morphological study was analyzed by light microscopy. Isolated colonies were selected and expanded to establish cell lines. Octamer-4 (Oct-4), stage-specific embryonic antigen-1 (SSEA-1), transformation-related protein 63 (p63), ATP-binding cassette subfamily G, member 2 (ABCG2), and cytokeratin3 (K3) were detected by indirect immunofluorescent staining. Oct-4, K3, and p63 were also detected by RT–PCR analysis. To examine the stemness characteristics of the induced cells, both alkaline phosphatase (AKP) staining and tumorigenicity detection were performed, respectively. Results Reprogramming was induced in corneal epithelial cells. The reprogrammed cells showed characteristics similar to ESCs in the early weeks, including colony formation, positive AKP staining, and multi-potential differentiation in vivo. Oct-4 and SSEA1 protein expression was upregulated. However, these changes were not persistent or stable. With the passage of time, the colonies became flat. The ESC markers were downregulated, while epithelial cell related proteins gradually increased. Conclusions Less terminal differentiated rabbit corneal epithelial cells could be induced to a more pluripotent state with embryonic stem cell extract (ESC-E). These cells have the potential to return to the beginning of their own lineage and obtain the ability of long-term growth. Our findings indicate that this culture system can generate low-immunogenic autologous cells for use in regenerative medicine. PMID:20664691

  5. Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall

    Science.gov (United States)

    Takahashi, T.; Goto, T.; Miyama, S.; Nowakowski, R. S.; Caviness, V. S. Jr

    1999-01-01

    Neurons destined for each region of the neocortex are known to arise approximately in an "inside-to-outside" sequence from a pseudostratified ventricular epithelium (PVE). This sequence is initiated rostrolaterally and propagates caudomedially. Moreover, independently of location in the PVE, the neuronogenetic sequence in mouse is divisible into 11 cell cycles that occur over a 6 d period. Here we use a novel "birth hour" method that identifies small cohorts of neurons born during a single 2 hr period, i.e., 10-20% of a single cell cycle, which corresponds to approximately 1.5% of the 6 d neuronogenetic period. This method shows that neurons arising with the same cycle of the 11 cycle sequence in mouse have common laminar fates even if they arise from widely separated positions on the PVE (neurons of fields 1 and 40) and therefore arise at different embryonic times. Even at this high level of temporal resolution, simultaneously arising cells occupy more than one cortical layer, and there is substantial overlap in the distributions of cells arising with successive cycles. We demonstrate additionally that the laminar representation of cells arising with a given cycle is little if at all modified over the early postnatal interval of histogenetic cell death. We infer from these findings that cell cycle is a neuronogenetic counting mechanism and that this counting mechanism is integral to subsequent processes that determine cortical laminar fate.

  6. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold.

    Science.gov (United States)

    Yoon, Wan Hee; Meinhardt, Hans; Montell, Denise J

    2011-09-01

    Patterns of cell fates generated by morphogens are critically important for normal development; however, the mechanisms by which graded morphogen signals are converted into all-or-none cell fate responses are incompletely understood. In the Drosophila ovary, high and sustained levels of the secreted morphogen Unpaired (Upd) specify the migratory border-cell population by activating the signal transducer and activator of transcription (STAT). A lower or transient level of STAT activity specifies a non-migratory population of follicle cells. Here we identify miR-279 as a component of a feedback pathway that further dampens the response in cells with low levels of JAK/STAT activity. miR-279 directly repressed STAT, and loss of miR-279 mimicked STAT gain-of-function or loss of Apontic (Apt), a known feedback inhibitor of STAT. Apt was essential for miR-279 expression in non-migratory follicle cells, whereas another STAT target, Ken and Barbie (Ken), downregulated miR-279 in border cells. Mathematical modelling and simulations of this regulatory circuit including miR-279, Apt and Ken supported key roles for miR-279 and Apt in generating threshold responses to the Upd gradient. PMID:21857668

  7. Adrenomedullin as a Growth and Cell Fate Regulatory Factor for Adult Neural Stem Cells

    OpenAIRE

    Sonia Martínez-Herrero; Ignacio M Larráyoz; Laura Ochoa-Callejero; Josune García-Sanmartín; Alfredo Martínez

    2012-01-01

    The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin...

  8. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    Science.gov (United States)

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. PMID:27044662

  9. Cytoplasmic NOTCH and membrane-derived β-catenin link cell fate choice to epithelial-mesenchymal transition during myogenesis

    Science.gov (United States)

    Sieiro, Daniel; Rios, Anne C; Hirst, Claire E; Marcelle, Christophe

    2016-01-01

    How cells in the embryo coordinate epithelial plasticity with cell fate decision in a fast changing cellular environment is largely unknown. In chick embryos, skeletal muscle formation is initiated by migrating Delta1-expressing neural crest cells that trigger NOTCH signaling and myogenesis in selected epithelial somite progenitor cells, which rapidly translocate into the nascent muscle to differentiate. Here, we uncovered at the heart of this response a signaling module encompassing NOTCH, GSK-3β, SNAI1 and β-catenin. Independent of its transcriptional function, NOTCH profoundly inhibits GSK-3β activity. As a result SNAI1 is stabilized, triggering an epithelial to mesenchymal transition. This allows the recruitment of β-catenin from the membrane, which acts as a transcriptional co-factor to activate myogenesis, independently of WNT ligand. Our results intimately associate the initiation of myogenesis to a change in cell adhesion and may reveal a general principle for coupling cell fate changes to EMT in many developmental and pathological processes. DOI: http://dx.doi.org/10.7554/eLife.14847.001 PMID:27218451

  10. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    Science.gov (United States)

    Liu, Ying; Giannopoulou, Eugenia G.; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C. David; Rafii, Shahin; Seandel, Marco

    2016-01-01

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. PMID:27117588

  11. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Indian Academy of Sciences (India)

    Mani Arora; Arga Chandrashekar Anil; Karl Burgess; Jane Delany; Ehsan Mesbahi

    2015-12-01

    The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first green alga, the `ancestral green flagellate'. Relatively large-celled unicellular eukaryotic phytoflagellates (such as Tetraselmis and Scherffelia), traditionally placed in Prasinophyceae but now considered as members of Chlorodendrophyceae (core Chlorophyta), have retained some primitive characteristics of prasinophytes. These organisms share several ultrastructural features with the other core chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae as the evolutionary link between cellular individuality and cellular cooperation has been largely unstudied. Here, we show that clonal populations of a unicellular chlorophyte, Tetraselmis indica, consist of morphologically and ultrastructurally variant cells which arise through asymmetric cell division. These cells also differ in their physiological properties. The structural and physiological differences in the clonal cell population correlate to a certain extent with the longevity and function of cells.

  12. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first...

  13. Controlling Self-Renewal and Differentiation of Stem Cells via Mechanical Cues

    OpenAIRE

    Nava, Michele M.; Raimondi, Manuela T.; Riccardo Pietrabissa

    2012-01-01

    The control of stem cell response in vitro, including self-renewal and lineage commitment, has been proved to be directed by mechanical cues, even in the absence of biochemical stimuli. Through integrin-mediated focal adhesions, cells are able to anchor onto the underlying substrate, sense the surrounding microenvironment, and react to its properties. Substrate-cell and cell-cell interactions activate specific mechanotransduction pathways that regulate stem cell fate. Mechanical factors, incl...

  14. Control of apoptosis by asymmetric cell division.

    Science.gov (United States)

    Hatzold, Julia; Conradt, Barbara

    2008-04-01

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well. PMID:18399720

  15. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    Science.gov (United States)

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  16. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues.

    Science.gov (United States)

    Mann, Thomas H; Seth Childers, W; Blair, Jimmy A; Eckart, Michael R; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  17. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels.

    Science.gov (United States)

    Bosman, Erika A; Lawson, Kirstie A; Debruyn, Joke; Beek, Lisette; Francis, Annick; Schoonjans, Luc; Huylebroeck, Danny; Zwijsen, An

    2006-09-01

    Smad5 is an intracellular mediator of bone morphogenetic protein (Bmp) signalling. It is essential for primordial germ cell (PGC) development, for the development of the allantois and for amnion closure, as demonstrated by loss of Bmp signalling. By contrast, the appearance of ectopic PGC-like cells and regionalized ectopic vasculogenesis and haematopoiesis in thickened Smad5(m1/m1) amnion are amnion defects that have not been associated with loss of Bmp signalling components. We show that defects in amnion and allantois can already be detected at embryonic day (E) 7.5 in Smad5 mutant mice. However, ectopic Oct4-positive (Oct4(+)) and alkaline phosphatase-positive (AP(+)) cells appear suddenly in thickened amnion at E8.5, and at a remote distance from the allantois and posterior primitive streak, suggesting a change of fate in situ. These ectopic Oct4(+), AP(+) cells appear to be Stella negative and hence cannot be called bona fide PGCs. We demonstrate a robust upregulation of Bmp2 and Bmp4 expression, as well as of Erk and Smad activity, in the Smad5 mutant amnion. The ectopic expression of several Bmp target genes in different domains and the regionalized presence of cells of several Bmp-sensitive lineages in the mutant amnion suggest that different levels of Bmp signalling may determine cell fate. Injection of rBMP4 in the exocoelom of wild-type embryos can induce thickening of amnion, mimicking the early amnion phenotype in Smad5 mutants. These results support a model in which loss of Smad5 results paradoxically in gain of Bmp function defects in the amnion. PMID:16887830

  18. Elucidating the fate, transport and processes controlling carbon on the landscape: Biogeochemistry tools for the 21st century

    Science.gov (United States)

    McFarlane, K. J.; Keiluweit, M.; Nico, P. S.; Ognibene, T.; Mayali, X.; Nuccio, E.; Weber, P. K.; Pett-Ridge, J.; Guilderson, T. P.

    2013-12-01

    Globally, more carbon is stored belowground as soil organic matter than in terrestrial vegetation and the atmosphere combined. A critical scientific question is how soils serve as sources and sinks for atmospheric carbon dioxide (CO2) and how these sinks will evolve with expected changes in atmospheric CO2 concentrations, climate, and land-use. Carbon initially enters belowground soil pools as plant detritus, roots, and root exudates. Once in the soil, this organic matter serves as a substrate for decomposer organisms including soil animals, bacteria, and fungi. Most of this carbon is consumed and respired as CO2, but some is converted to microbial biomass and byproducts, which may leave the soil as dissolved organic carbon, be used as a substrate by other microbes, or be stabilized within the soil mineral matrix. Mechanisms that result in the stabilization of soils include: climate stabilization, physical protection within aggregates and organo-mineral complexes, and protection of potential substrates due to physiochemical barriers. These processes, which span broad temporal and spatial scales, are poorly constrained in many dynamic land surface models. At LLNL, we have developed a suite of analytical tools that allow us to follow the movement of carbon at the cell to landscape scale, including: ';Chip-SIP', ';STXM-SIMS', and new sample interfaces for accelerator mass spectrometry (AMS). Experiments, field-based and in vivo, allow us to further the mechanistic understanding of factors that control the fate, transport, and sequestration potential of belowground carbon. The Chip-SIP approach allows us to interrogate which microbial species in a complex community incorporate specific substrates (e.g. cellulose) in order to understand the production of biofuels and better elucidate energy and carbon transfers in wetlands and soils. To disentangle the complex interactions at soil-microbial-film-mineral interfaces with minimal disruption we are using a combination of

  19. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  20. CAM and cell fate targeting: molecular and energetic insights into cell growth and differentiation.

    Science.gov (United States)

    Ventura, Carlo

    2005-09-01

    Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM) offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence-based CAM. PMID:16136206

  1. CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2005-01-01

    Full Text Available Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence–based CAM.

  2. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  3. Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung

    Directory of Open Access Journals (Sweden)

    Anupam Jhingran

    2012-12-01

    Full Text Available Fluorescence can be harnessed to monitor microbial fate and to investigate functional outcomes of individual microbial cell-host cell encounters at portals of entry in native tissue environments. We illustrate this concept by introducing fluorescent Aspergillus reporter (FLARE conidia that simultaneously report phagocytic uptake and fungal viability during cellular interactions with the murine respiratory innate immune system. Our studies using FLARE conidia reveal stepwise and cell-type-specific requirements for CARD9 and Syk, transducers of C-type lectin receptor and integrin signals, in neutrophil recruitment, conidial uptake, and conidial killing in the lung. By achieving single-event resolution in defined leukocyte populations, the FLARE method enables host cell profiling on the basis of pathogen uptake and killing and may be extended to other pathogens in diverse model host organisms to query molecular, cellular, and pharmacologic mechanisms that shape host-microbe interactions.

  4. Neuronal cell fate decisions:  O2 and CO2 sensing neurons require egl-13/Sox5

    DEFF Research Database (Denmark)

    Gramstrup Petersen, Jakob; Pocock, Roger David John

    2013-01-01

    We recently conducted a study that aimed to describe the differentiation mechanisms used to generate O2 and CO2 sensing neurons in C. elegans. We identified egl-13/Sox5 to be required for the differentiation of both O2 and CO2 sensing neurons. We found that egl-13 functions cell autonomously to...... drive O2 and CO2 sensing neuron fate and is therefore essential for O2 and CO2 sensing-induced behaviors. Through systematic dissection of the egl-13 promoter we identified upstream regulators of egl-13 and proposed a model of how differentiation of O2 and CO2 sensing neurons is regulated. In this...

  5. Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element.

    Science.gov (United States)

    Delavat, François; Mitri, Sara; Pelet, Serge; van der Meer, Jan Roelof

    2016-06-14

    Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer. PMID:27247406

  6. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  7. Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors.

    Directory of Open Access Journals (Sweden)

    Luisa Salvatori

    Full Text Available An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC. However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44(+CD24(- phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications.

  8. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    Science.gov (United States)

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development. PMID:25176574

  9. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources.

    Science.gov (United States)

    Malkoske, Tyler; Tang, Yulin; Xu, Wenying; Yu, Shuili; Wang, Hongtao

    2016-11-01

    Tetrabromobisphenol A (TBBPA), a high use brominated flame retardant (BFR), raising concerns of widespread pollution and harm to human and ecological health. BFR manufacturing, TBBPA-based product manufacturing, e-waste recycling, and wastewater treatment plants have been identified as the main emission point sources. This paper discusses the occurrence, distribution, and fate of TBBPA from source to the environment. After release to the environment, TBBPA may undergo adsorption, photolysis, and biological degradation. Exposure of humans and biota is also discussed along with the role of treatment and regulations in reducing release of TBBPA to the environment and exposure risks. In general this review found stronger enforcement of existing legislation, and investment in treatment of e-waste plastics and wastewater from emission point sources could be effective methods in reducing release and exposure of TBBPA in the environment. PMID:27325014

  10. Evaluation and characterization of mechanisms controlling fate and effects of Army smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McKinley, J.P.; Mi, Shu-mei W.; McFadden, K.M.

    1990-08-01

    The primary objective of this study was to characterize the fate and response of soil and biotic components of the terrestrial environment to aerosols, deposited brass, and brass in combination with fog oil. Important physical, chemical, and biotic aspects were investigated using an environmental wind tunnel. Air/surface deposition rates were determined for foliar and soil surfaces, both in the absence and presence of fog oil. Deposition velocities for foliage ranged from 0.1 to 1.0 cm/s at wind speeds of 2 to 10 mph, respectively. Foliar contact toxicity was assessed using five different types of terrestrial vegetation representative of Army training sites and surrounding environments. No significant foliar contact toxicity was observed for brass. The weathering and chemistry of brass aerosols deposited and amended to soils was assessed, along with the impacts of acid precipitation and moisture regimes on weathering rates. Rates of brass weathering and the fate of solubilized Cu and Zn are discussed. The influence of soil weathering processes and brass solubilization on seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after 160 days of soil incubation. The effects were proportional to soil-loading levels. Influence of soil weathering processes and contaminant solubilization on soil microbiological activities indicated that soil dehydrogenase activity was more susceptible to impacts than was phosphatase activity or microbial biomass. Nitrifying bacteria and heterotrophic bacteria were not significantly affected by brass. Invertebrates (earthworms) associated with soil contaminated with brass were only slightly impacted, and only at loading rates >445 {mu}g/cm{sup 2}.

  11. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate

    OpenAIRE

    Pryzhkova, Marina V; Aria, Indrat; Cheng, Qingsu; Harris, Greg M.; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2014-01-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CN...

  12. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage.

    Science.gov (United States)

    Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J

    2016-04-01

    Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate. PMID:26805026

  13. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  14. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  15. The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells.

    Directory of Open Access Journals (Sweden)

    Yingyue Yang

    2009-04-01

    Full Text Available Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP. We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs, particularly the bantam miRNA (bantam, are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation.

  16. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo

    OpenAIRE

    Tang, Xingchun; Liu, Yuan; He, Yuqing; Ma, Ligang; Sun, Meng-xiang

    2012-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical–basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspen...

  17. A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina

    Directory of Open Access Journals (Sweden)

    He Rong-Qiao

    2007-06-01

    Full Text Available Abstract Background Otx genes, orthologues of the Drosophila orthodenticle gene (otd, play crucial roles in vertebrate brain development. In the Xenopus eye, Xotx2 and Xotx5b promote bipolar and photoreceptor cell fates, respectively. The molecular basis of their differential action is not completely understood, though the carboxyl termini of the two proteins seem to be crucial. To define the molecular domains that make the action of these proteins so different, and to determine whether their retinal abilities are shared by Drosophila OTD, we performed an in vivo molecular dissection of their activity by transfecting retinal progenitors with several wild-type, deletion and chimeric constructs of Xotx2, Xotx5b and otd. Results We identified a small 8–10 amino acid divergent region, directly downstream of the homeodomain, that is crucial for the respective activities of XOTX2 and XOTX5b. In lipofection experiments, the exchange of this 'specificity box' completely switches the retinal activity of XOTX5b into that of XOTX2 and vice versa. Moreover, the insertion of this box into Drosophila OTD, which has no effect on retinal cell fate, endows it with the specific activity of either XOTX protein. Significantly, in cell transfection experiments, the diverse ability of XOTX2 and XOTX5b to synergize with NRL, a cofactor essential for vertebrate rod development, to transactivate the rhodopsin promoter is also switched depending on the box. We also show by GST-pull down that XOTX2 and XOTX5b differentially interact with NRL, though this property is not strictly dependent on the box. Conclusion Our data provide molecular evidence on how closely related homeodomain gene products can differentiate their functions to regulate distinct cell fates. A small 'specificity box' is both necessary and sufficient to confer on XOTX2 and XOTX5b their distinct activities in the developing frog retina and to convert the neutral orthologous OTD protein of Drosophila

  18. Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.

    Science.gov (United States)

    Bots, Pieter; Shaw, Samuel; Law, Gareth T W; Marshall, Timothy A; Mosselmans, J Frederick W; Morris, Katherine

    2016-04-01

    The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments. PMID:26913955

  19. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia

    OpenAIRE

    Dai, D.; Li, L.; Huebner, A; H. Zeng; Guevara, E; Claypool, D J; Liu, A.; Chen, J.

    2012-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP...

  20. Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior.

    Science.gov (United States)

    Bobis-Wozowicz, Sylwia; Kmiotek, Katarzyna; Sekula, Malgorzata; Kedracka-Krok, Sylwia; Kamycka, Elzbieta; Adamiak, Marta; Jankowska, Urszula; Madetko-Talowska, Anna; Sarna, Michal; Bik-Multanowski, Miroslaw; Kolcz, Jacek; Boruczkowski, Dariusz; Madeja, Zbigniew; Dawn, Buddhadeb; Zuba-Surma, Ewa K

    2015-09-01

    Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration. PMID:26031404

  1. Emerging Stem Cell Controls: Nanomaterials and Plasma Effects

    Directory of Open Access Journals (Sweden)

    F. F. Borghi

    2013-01-01

    Full Text Available Stem cells (SC are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology.

  2. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration.

    Science.gov (United States)

    Xu, Jin; Cui, Jiaxi; Del Campo, Aranzazu; Shin, Chong Hyun

    2016-02-01

    The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. PMID:26845333

  3. Four and a Half LIM Domains 1b (Fhl1b Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration.

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-02-01

    Full Text Available The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b, which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration.

  4. Modulation of Embryonic Mesenchymal Progenitor Cell Differentiation via Control over Pure Mechanical Modulus in Electrospun Nanofibers

    OpenAIRE

    Nam, Jin; Johnson, Jed; Lannutti, John; Agarwal, Sudha

    2010-01-01

    As the potential range of stem cell applications in tissue engineering continues to grow, appropriate scaffolding choice is necessary to create tightly defined artificial microenvironments for each target organ. These microenvironments determine stem cell fate via control over differentiation. In this study, we examined the specific effects of scaffold stiffness on embryonic mesenchymal progenitor cell behavior. Mechanically distinct scaffolds having identical microstructure and surface chemi...

  5. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate

    Science.gov (United States)

    Pryzhkova, Marina V.; Aria, Indrat; Cheng, Qingsu; Harris, Greg M.; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2016-01-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CNT arrays. hPSCs cultured as colonies in conditions supporting self-renewal demonstrated the morphology and marker expression of undifferentiated hPSCs. Conditions inducing spontaneous differentiation lead to hPSC commitment to all three embryonic germ layers as assessed by immunostaining and RT-PCR analysis. Strikingly, the physical characteristics of CNT arrays favored mesodermal specification of hPSCs. This is contradictory to the behavior of hPSCs on traditional tissue culture plastic which promotes the development of ectoderm. Altogether, these results demonstrate the potential of CNT arrays to be used in the generation of new platforms that allow for precise control of hPSC differentiation by tuning the characteristics of their physical microenvironment. PMID:24690530

  6. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate.

    Science.gov (United States)

    Pryzhkova, Marina V; Aria, Indrat; Cheng, Qingsu; Harris, Greg M; Zan, Xingjie; Gharib, Morteza; Jabbarzadeh, Ehsan

    2014-06-01

    We investigated the biological response of human pluripotent stem cells (hPSCs) cultured on a carbon nanotube (CNT) array-based substrate with the long term goal to direct hPSC germ layer specification for a wide variety of tissue engineering applications. CNT arrays were fabricated using a chemical vapor deposition system allowing for control over surface roughness and mechanical stiffness. Our results demonstrated that hPSCs readily attach to hydrophilized and extracellular matrix coated CNT arrays. hPSCs cultured as colonies in conditions supporting self-renewal demonstrated the morphology and marker expression of undifferentiated hPSCs. Conditions inducing spontaneous differentiation lead to hPSC commitment to all three embryonic germ layers as assessed by immunostaining and RT-PCR analysis. Strikingly, the physical characteristics of CNT arrays favored mesodermal specification of hPSCs. This is contradictory to the behavior of hPSCs on traditional tissue culture plastic which promotes the development of ectoderm. Altogether, these results demonstrate the potential of CNT arrays to be used in the generation of new platforms that allow for precise control of hPSC differentiation by tuning the characteristics of their physical microenvironment. PMID:24690530

  7. The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity.

    Science.gov (United States)

    Caviglia, Sara; Luschnig, Stefan

    2013-03-01

    Cells at the tips of budding branches in the Drosophila tracheal system generate two morphologically different types of seamless tubes. Terminal cells (TCs) form branched lumenized extensions that mediate gas exchange at target tissues, whereas fusion cells (FCs) form ring-like connections between adjacent tracheal metameres. Each tracheal branch contains a specific set of TCs, FCs, or both, but the mechanisms that select between the two tip cell types in a branch-specific fashion are not clear. Here, we show that the ETS domain transcriptional repressor anterior open (aop) is dispensable for directed tracheal cell migration, but plays a key role in tracheal tip cell fate specification. Whereas aop globally inhibits TC and FC specification, MAPK signaling overcomes this inhibition by triggering degradation of Aop in tip cells. Loss of aop function causes excessive FC and TC specification, indicating that without Aop-mediated inhibition, all tracheal cells are competent to adopt a specialized fate. We demonstrate that Aop plays a dual role by inhibiting both MAPK and Wingless signaling, which induce TC and FC fate, respectively. In addition, the branch-specific choice between the two seamless tube types depends on the tracheal branch identity gene spalt major, which is sufficient to inhibit TC specification. Thus, a single repressor, Aop, integrates two different signals to couple tip cell fate selection with branch identity. The switch from a branching towards an anastomosing tip cell type may have evolved with the acquisition of a main tube that connects separate tracheal primordia to generate a tubular network. PMID:23444354

  8. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems

    OpenAIRE

    Roinas, Georgios; Mant, Catherine; Williams, John B.

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads...

  9. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-09-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  10. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition.

    Science.gov (United States)

    Lizama, Carlos O; Hawkins, John S; Schmitt, Christopher E; Bos, Frank L; Zape, Joan P; Cautivo, Kelly M; Borges Pinto, Hugo; Rhyner, Alexander M; Yu, Hui; Donohoe, Mary E; Wythe, Joshua D; Zovein, Ann C

    2015-01-01

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output. PMID:26204127

  11. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro

    International Nuclear Information System (INIS)

    Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptake of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.

  12. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix

    Science.gov (United States)

    Li, Changjun; Zhen, Gehua; Chai, Yu; Xie, Liang; Crane, Janet L.; Farber, Emily; Farber, Charles R.; Luo, Xianghang; Gao, Peisong; Cao, Xu; Wan, Mei

    2016-01-01

    Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell–ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration. PMID:27126736

  13. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    OpenAIRE

    She, Wenjing; Baroux, Célia

    2015-01-01

    Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organ...

  14. Nkx2.2 and Nkx2.9 Are the Key Regulators to Determine Cell Fate of Branchial and Visceral Motor Neurons in Caudal Hindbrain

    OpenAIRE

    Jarrar, Wassan; Dias, Jose M.; Ericson, Johan; Arnold, Hans-Henning; Holz, Andreas

    2015-01-01

    Cranial motor nerves in vertebrates are comprised of the three principal subtypes of branchial, visceral, and somatic motor neurons, which develop in typical patterns along the anteroposterior and dorsoventral axes of hindbrain. Here we demonstrate that the formation of branchial and visceral motor neurons critically depends on the transcription factors Nkx2.2 and Nkx2.9, which together determine the cell fate of neuronal progenitor cells. Disruption of both genes in mouse embryos results in ...

  15. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    Science.gov (United States)

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation. PMID:20147375

  16. Fate of Mammalian Cochlear Hair Cells and Stereocilia after Loss of the Stereocilia

    OpenAIRE

    Jia, Shuping; Yang, Shiming; Guo, Weiwei; David Z Z He

    2009-01-01

    Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle ...

  17. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    Science.gov (United States)

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants. PMID:24569267

  18. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  19. IRF4 at the crossroads of effector T-cell fate decision.

    Science.gov (United States)

    Huber, Magdalena; Lohoff, Michael

    2014-07-01

    Interferon regulatory factor 4 (IRF4) is a transcription factor that is expressed in hematopoietic cells and plays pivotal roles in the immune response. Originally described as a lymphocyte-specific nuclear factor, IRF4 promotes differentiation of naïve CD4(+) T cells into T helper 2 (Th2), Th9, Th17, or T follicular helper (Tfh) cells and is required for the function of effector regulatory T (eTreg) cells. Moreover, IRF4 is essential for the sustained differentiation of cytotoxic effector CD8(+) T cells, for CD8(+) T-cell memory formation, and for differentiation of naïve CD8(+) T cells into IL-9-producing (Tc9) and IL-17-producing (Tc17) CD8(+) T-cell subsets. In this review, we focus on recent findings on the role of IRF4 during the development of CD4(+) and CD8(+) T-cell subsets and the impact of IRF4 on T-cell-mediated immune responses in vivo. PMID:24782159

  20. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  1. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    Science.gov (United States)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  2. Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration

    OpenAIRE

    Colnot, Céline

    2008-01-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results...

  3. Expression Levels of Histone Deacetylases Determine the Cell Fate of Hematopoietic Progenitors*

    OpenAIRE

    Wada, Taeko; Kikuchi, Jiro; Nishimura, Noriko; Shimizu, Rumi; Kitamura, Toshio; Furukawa, Yusuke

    2009-01-01

    Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and...

  4. FATE OF EMBRYONIC STEM CELLS TRANSPLANTED INTO THE DEAFENED MAMMALIAN COCHLEA

    OpenAIRE

    Coleman, B.; Hardman, J; Coco, A.; Epp, S; Silva, M; Crook, J; Shepherd, R

    2006-01-01

    Spiral ganglion neurons (SGNs), the primary afferent neurons of the cochlea, degenerate following a sensorineural hearing loss (SNHL) due to lack of trophic support normally received from hair cells. Cell transplantation is emerging as a potential strategy for inner ear rehabilitation, as injected cells may be able to replace damaged SGNs in the deafened cochlea. An increase in the number of surviving SGNs may result in improved efficacy of cochlear implants (CIs). We examined the survival of...

  5. Use of Tritiated Thymidine to Study the Origin and Fate of Inflammatory Cells

    International Nuclear Information System (INIS)

    In a series of experiments mice were injected with tritiated thymidine at various times following a challenging injection of either tetanus or diphtheria toxoid and the number and proportion of mononuclear cells synthesizing DNA at the site of injection determined. It was noted that the increase in mononuclear inflammatory cells was not preceded by a similar decrease in cells synthesizing DNA. This indicates that the majority of inflammatory mononuclear cells must migrate into the inflamed area, presumably from the blood vessels. Inflammatory cells labelled with tritiated thymidine were injected into the site of inflammation, and autopsies performed at various times. Labelled cells were found not only in the inflammatory area, but in the spleen, bone marrow and lymph nodes. These experiments indicate that as the inflammation subsides, inflammatory cells pass back into the lymphatic and blood vascular systems and eventually some find their way to the hemopoietic tissues of the body. Experiments will be reported indicating formation of plasma cells by inflammatory mononuclear cells. These findings will be discussed in relation to hemopoiesis. (author)

  6. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    OpenAIRE

    Sofia Baptista; Charlène Lasgi; Caroline Benstaali; Nuno Milhazes; Fernanda Borges; Carlos Fontes-Ribeiro; Fabienne Agasse; Ana Paula Silva

    2014-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM) decreased DG stem cell self-renewal, while 1 nM...

  7. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain.

    Science.gov (United States)

    Heyn, Chris; Ronald, John A; Ramadan, Soha S; Snir, Jonatan A; Barry, Andrea M; MacKenzie, Lisa T; Mikulis, David J; Palmieri, Diane; Bronder, Julie L; Steeg, Patricia S; Yoneda, Toshiyuki; MacDonald, Ian C; Chambers, Ann F; Rutt, Brian K; Foster, Paula J

    2006-11-01

    Metastasis (the spread of cancer from a primary tumor to secondary organs) is responsible for most cancer deaths. The ability to follow the fate of a population of tumor cells over time in an experimental animal would provide a powerful new way to monitor the metastatic process. Here we describe a magnetic resonance imaging (MRI) technique that permits the tracking of breast cancer cells in a mouse model of brain metastasis at the single-cell level. Cancer cells that were injected into the left ventricle of the mouse heart and then delivered to the brain were detectable on MR images. This allowed the visualization of the initial delivery and distribution of cells, as well as the growth of tumors from a subset of these cells within the whole intact brain volume. The ability to follow the metastatic process from the single-cell stage through metastatic growth, and to quantify and monitor the presence of solitary undivided cells will facilitate progress in understanding the mechanisms of brain metastasis and tumor dormancy, and the development of therapeutics to treat this disease. PMID:17029229

  8. ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate

    Energy Technology Data Exchange (ETDEWEB)

    Masse, Julie [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France); Piquet-Pellorce, Claire [Universite de Rennes 1, 35043 Rennes cedex, EA 4427 SeRAIC (France); Viet, Justine; Guerrier, Daniel; Pellerin, Isabelle [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France); Deschamps, Stephane, E-mail: stephane.deschamps@univ-rennes1.fr [CNRS UMR 6061, Institut de Genetique et Developpement de Rennes (IGDR), Rennes (France); Universite de Rennes 1, 35043 Rennes cedex (France)

    2011-08-01

    The nuclear zinc finger protein ZFPIP/Zfp462 is an important factor involved in cell division during the early embryonic development of vertebrates. In pluripotent P19 cells, ZFPIP/Zfp462 takes part in cell proliferation, likely via its role in maintaining chromatin structure. To further define the function of ZFPIP/Zfp462 in the mechanisms of pluripotency and cell differentiation, we constructed a stable P19 cell line in which ZFPIP/Zfp462 knockdown is inducible. We report that ZFPIP/Zfp462 was vital for mitosis and self-renewal in pluripotent P19 cells. Its depletion induced substantial decreases in the expression of the pluripotency genes Nanog, Oct4 and Sox2 and was associated with the transient expression of specific neuronal differentiation markers. We also demonstrated that ZFPIP/Zfp462 expression appears to be unnecessary after neuronal differentiation is induced in P19 cells. Taken together, our results strongly suggest that ZFPIP/Zfp462 is a key chromatin factor involved in maintaining P19 pluripotency and in the early mechanisms of neural differentiation but that it is dispensable in differentiated P19 cells.

  9. Imaging and fate of stem cells labeled with superparamgnetic nanoparticles in brain and spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    Iowa, 2004. s. 17. [Stem Cell Biology Development and Plasticity A Growth Factor and Signal Transduction Symposium. 16.09.2004-19.09.2004, Iowa] R&D Projects: GA MŠk LN00A065 Keywords : stem cells * nanoparticles Subject RIV: FH - Neurology

  10. ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate

    International Nuclear Information System (INIS)

    The nuclear zinc finger protein ZFPIP/Zfp462 is an important factor involved in cell division during the early embryonic development of vertebrates. In pluripotent P19 cells, ZFPIP/Zfp462 takes part in cell proliferation, likely via its role in maintaining chromatin structure. To further define the function of ZFPIP/Zfp462 in the mechanisms of pluripotency and cell differentiation, we constructed a stable P19 cell line in which ZFPIP/Zfp462 knockdown is inducible. We report that ZFPIP/Zfp462 was vital for mitosis and self-renewal in pluripotent P19 cells. Its depletion induced substantial decreases in the expression of the pluripotency genes Nanog, Oct4 and Sox2 and was associated with the transient expression of specific neuronal differentiation markers. We also demonstrated that ZFPIP/Zfp462 expression appears to be unnecessary after neuronal differentiation is induced in P19 cells. Taken together, our results strongly suggest that ZFPIP/Zfp462 is a key chromatin factor involved in maintaining P19 pluripotency and in the early mechanisms of neural differentiation but that it is dispensable in differentiated P19 cells.

  11. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  12. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    Full Text Available BACKGROUND: Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma. METHODOLOGY/PRINCIPAL FINDINGS: Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment. CONCLUSIONS/SIGNIFICANCE: We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some Ob

  13. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    Science.gov (United States)

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  14. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma

    OpenAIRE

    Ries, Christian; von Baumgarten, Louisa; Schichor, Christian; Berninger, Benedikt; Popp, Tanja; Neth, Peter; Goldbrunner, Roland; Kienast, Yvonne; Winkler, Frank; Jochum, Marianne; Egea, Virginia

    2010-01-01

    Abstract Bone marrow-derived human mesenchymal stem cells (hMSCs) have become valuable candidates for cell-based therapeutical applications including neuroregenerative and anti-tumor strategies. Yet, the molecular mechanisms that control hMSC transdifferentiation to neural cells and hMSC tropism toward glioma remain unclear. Here, we demonstrate that hMSCs incubated with 50 ng/ml TNF-? acquired astroglial cell morphology without affecting proliferation which was increased at 5 ng/m...

  15. Diverse spatio-temporal dynamical patterns of p53 and cell fate decisions

    Science.gov (United States)

    Clairambault, Jean; Eliaš, Ján

    2016-06-01

    The protein p53 as a tumour suppressor protein accumulates in cells in response to DNA damage and transactivates a large variety of genes involved in apoptosis, cell cycle regulation and numerous other processes. Recent biological observations suggest that specific spatio-temporal dynamical patterns of p53 may be associated with specific cellular response, and thus the spatio-temporal heterogeneity of the p53 dynamics contributes to the overall complexity of p53 signalling. Reaction-diffusion equations taking into account spatial representation of the cell and motion of the species inside the cell can be used to model p53 protein network and could be thus of some help to biologists and pharmacologists in anticancer treatment.

  16. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    OpenAIRE

    Ana Mafalda Baptista Tadeu; Samantha Lin; Lin Hou; Lisa Chung; Mei Zhong; Hongyu Zhao; Valerie Horsley

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify severa...

  17. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-01-01

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage. PMID:27041648

  18. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  19. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations.

    Science.gov (United States)

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection. PMID:20444588

  20. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    Science.gov (United States)

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  1. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology

    Science.gov (United States)

    Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.

    2014-08-01

    The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI

  2. SOX17 is a Critical Specifier of Human Primordial Germ Cell Fate

    OpenAIRE

    Irie, Naoko; Weinberger, Leehee; Tang, Walfred W. C.; KOBAYASHI, Toshihiro; Viukov, Sergey; Manor, Yair S.; Dietmann, Sabine; Hanna, Jacob H.; Surani, M. Azim

    2014-01-01

    We thank Rick Livesey and his lab for help with the culture of hESCs; Sohei Kitazawa and Janet Shipley for the TCam-2 cells; Nigel Miller and Andy Riddell for cell sorting, Roger Barker, Xiaoling He, and Pam Tyers for collection of human embryos; and Charles Bradshaw for help with bioinformatics. We thank members of the Surani and Hanna labs for important discussions and technical help. N.I. is supported by Grant-in-Aid for fellows of the JSPS and by BIRAX (the Britain Israe...

  3. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2016-07-01

    Full Text Available The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been proposed as a powerful model for studying basic steps of hematopoiesis and immune responses. Here, I provide a broad overview of H. medicinalis hematopoiesis and I highlight the benefits of using leech as a model.

  4. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Science.gov (United States)

    Faas, Marijke M.; de Vos, Paul; Verfaillie, Catherine M.

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (5AZA) CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions. PMID:27403168

  5. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility.

    Science.gov (United States)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; F Maitz, Manfred; Zhao, Anshan

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. PMID:27127049

  6. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts.

    Science.gov (United States)

    Sambathkumar, Rangarajan; Kalo, Eric; Van Rossom, Rob; Faas, Marijke M; de Vos, Paul; Verfaillie, Catherine M

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (5AZA) CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions. PMID:27403168

  7. Imaging the fate of implanted stem cells in brain and spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    Innsbruck : organizátor, 2003, s. 1. [FENS Winter School 2003. Kitzbuehel (AT), 07.12.2003-14.12.2003] R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906 Keywords : Stem cells * spinal cord injury Subject RIV: FH - Neurology

  8. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates

    Directory of Open Access Journals (Sweden)

    Mattia Quattrocelli

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs hold great potential not only for human but also for veterinary purposes. The equine industry must often deal with health issues concerning muscle and cartilage, where comprehensive regenerative strategies are still missing. In this regard, a still open question is whether equine iPSCs differentiate toward muscle and cartilage, and whether donor cell type influences their differentiation potential. We addressed these questions through an isogenic system of equine iPSCs obtained from myogenic mesoangioblasts (MAB-iPSCs and chondrogenic mesenchymal stem cells (MSC-iPSCs. Despite similar levels of pluripotency characteristics, the myogenic differentiation appeared enhanced in MAB-iPSCs. Conversely, the chondrogenic differentiation was augmented in MSC-iPSCs through both teratoma and in vitro differentiation assays. Thus, our data suggest that equine iPSCs can differentiate toward the myogenic and chondrogenic lineages, and can present a skewed differentiation potential in favor of the source cell lineage.

  9. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Dietrich, Nikolaj; Pasini, Diego;

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Pol...

  10. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rangarajan Sambathkumar

    2016-01-01

    Full Text Available Reprogramming can occur by the introduction of key transcription factors (TFs as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi Trichostatin A (TSA combined with a chromatin remodeling medium (CRM induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi 5-azacytidine (5AZA CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.

  11. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases.

    Directory of Open Access Journals (Sweden)

    Aroa Relaño-Ginès

    Full Text Available Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.

  12. Upon impact: the fate of adhering Pseudomonas fluorescens cells during nanofiltration.

    Science.gov (United States)

    Habimana, Olivier; Semião, Andrea J C; Casey, Eoin

    2014-08-19

    Nanofiltration (NF) is a high-pressure membrane filtration process increasingly applied in drinking water treatment and water reuse processes. NF typically rejects divalent salts, organic matter, and micropollutants. However, the efficiency of NF is adversely affected by membrane biofouling, during which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural damage and collapse. These results were confirmed by fluorescent staining, flow cytometry, and scanning electron microscopy. This present study offers a "first-glimpse" of cell damage and death during the initial phases of bacterial adhesion to NF membranes and raises a key question about the role of this observed phenomena during early-stage biofilm formation under permeate flux and cross-flow conditions. PMID:25072514

  13. Tracking Cell Fate with Synthetic Memory and Pulse Detecting Transcriptional Circuits

    OpenAIRE

    Inniss, Mara Christine

    2014-01-01

    Synthetic biology aims to engineer biological systems to meet new challenges and teach us more about natural biological systems. These pursuits range from the building of relatively simple transcriptional circuits, to engineering the metabolism of an organism, to reconstructing entire genomes. While we are still emerging from the foundational stages of this new field, we are already using engineered cells to discover underlying biological mechanisms, develop new therapeutics, and produce natu...

  14. rBMP Represses Wnt Signaling and Influences Skeletal Progenitor Cell Fate Specification During Bone Repair

    OpenAIRE

    Minear, Steve; Leucht, Philipp; Miller, Samara; Helms, Jill A.

    2010-01-01

    Bone morphogenetic proteins (BMPs) participate in multiple stages of the fetal skeletogenic program from promoting cell condensation to regulating chondrogenesis and bone formation through endochondral ossification. Here, we show that these pleiotropic functions are recapitulated when recombinant BMPs are used to augment skeletal tissue repair. In addition to their well-documented ability to stimulate chondrogenesis in a skeletal injury, we show that recombinant BMPs (rBMPs) simultaneously su...

  15. Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates

    OpenAIRE

    Maier, Esther; von Hofsten, Jonas; Nord, Hanna; Fernandes, Marie; Paek, Hunki; Hébert, Jean M.; Gunhaga, Lena

    2010-01-01

    The olfactory sensory epithelium and the respiratory epithelium are derived from the olfactory placode. However, the molecular mechanisms regulating the differential specification of the sensory and the respiratory epithelium have remained undefined. To address this issue, we first identified Msx1/2 and Id3 as markers for respiratory epithelial cells by performing quail chick transplantation studies. Next, we established chick explant and intact chick embryo assays of sensory/respiratory epit...

  16. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    Science.gov (United States)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  17. Cell cycle control in Alphaproteobacteria.

    Science.gov (United States)

    Collier, Justine

    2016-04-01

    Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions. PMID:26871482

  18. Migration, fate and in vivo imaging of adult stem cells in the CNS

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Jendelová, Pavla

    2007-01-01

    Roč. 14, - (2007), s. 1336-1342. ISSN 1350-9047 R&D Projects: GA AV ČR KAN201110651; GA MŠk 1M0538; GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/1594 Grant ostatní: GA MZd(CZ) NR8339; EU(DE) 512146; EU(FR) 518233 Institutional research plan: CEZ:AV0Z50390703 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : Mesenchymal stem cells * Contrast agents * Nanoparticles Subject RIV: FH - Neurology Impact factor: 8.254, year: 2007

  19. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  20. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    Science.gov (United States)

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. PMID:20435458

  1. Regulation of Cell Fate Determination by Single-Repeat R3 MYB Transcription Factors in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [Northeast Normal University, Changchun, China; Chen, Jay [ORNL

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYB are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis.

  2. Hydrological and Biogeochemical Controls on the Fate of Dissolved Organic Matter in Large Drainage Networks: The Pulse-Shunt Concept

    Science.gov (United States)

    Saiers, J. E.; Raymond, P. A.; Sobczak, W. V.; Hoyle, J. B.

    2014-12-01

    Dissolved organic matter (DOM) is central to the ecology and chemistry of inland waters as an energy and nutrient source, transporter of heavy metals and other pollutants, and a control on light attenuation. In this research, we examine the manner in which hydrologic variation interacts with biogeochemical processes to affect the utilization and concentrations of DOM throughout streams and rivers of a large drainage basin. The Pulse-Shunt Concept (PSC) forms the framework for our analysis. The PSC is based, in part, on field observations of pulsed inputs of terrestrial DOM to streams of headwater catchments during high-discharge events that are associated with rainfall and snowmelt. The pulse is followed by the shunt, which occurs as rising flows rapidly transmit terrestrially derived DOM from headwater streams to larger streams and rivers of the drainage network. Owing to the reduction in channel residence times, the shunt perturbs the downstream gradient in DOM lability and compositional diversity established under base-flow conditions, leading to the riverine export of biochemically reactive DOM that has retained its terrestrial signature. We explore the fate of terrestrial DOM subsidies in context of the PSC by developing a simple model that routes water and DOM through an idealized 200,000 km2 basin. This basin is drained by a dendritic channel network comprised of 30,000 first- through seventh-order streams that ultimately feed a 500-km long, eighth-order river. Published scaling laws are used to specify the numbers, lengths, and connectivities of the stream segments, while the routing algorithm describes the precipitation-induced delivery of terrestrial DOM to headwater reaches and the down-network changes in DOM concentrations resulting from rate-limited decomposition and mixing of waters from different reaches. Results of model simulations conducted to date underscore the dominant contribution of low-frequency precipitation events to the annual subsidy of

  3. Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities.

    Science.gov (United States)

    Chen, Sisi; Bremer, Andrew W; Scheideler, Olivia J; Na, Yun Suk; Todhunter, Michael E; Hsiao, Sonny; Bomdica, Prithvi R; Maharbiz, Michel M; Gartner, Zev J; Schaffer, David V

    2016-01-01

    Recreating heterotypic cell-cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell-cell signalling networks, we prepared heterotypic cell-cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals. PMID:26754526

  4. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate

    OpenAIRE

    Zheng, Ye; Josefowicz, Steven; Chaudhry, Ashutosh; Peng, Xiao P.; Forbush, Katherine; Rudensky, Alexander Y.

    2010-01-01

    Immune homeostasis is dependent on tight control over the size of a population of regulatory T (Treg) cells capable of suppressing over-exuberant immune responses. The Treg cell subset is comprised of cells that commit to the Treg lineage by upregulating the transcription factor Foxp3 either in the thymus (tTreg) or in the periphery (iTreg)1,2. Considering a central role for Foxp3 in Treg cell differentiation and function3,4, we proposed that conserved non-coding DNA sequence (CNS) elements a...

  5. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten;

    The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition of...... turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture...... fate of SOC such as amounts and composition of soil organic matter (SOM), distribution of SOC in density fractions and aggregates as well as soil physical and chemical properties. NMR analysis provided an in-depth characterization of SOM quality, showing large similarities in chemical composition among...

  6. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by interaction with the mammary microenvironment.

    Directory of Open Access Journals (Sweden)

    Corinne A Boulanger

    Full Text Available Experiments were conducted to redirect mouse Embryonic Stem (ES cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads. When normal mammary gland growth occurs, we find ES cells (LacZ+ progeny interspersed with normal mammary cell progeny in the mammary epithelial structures. We demonstrate that these progeny, marked by LacZ expression, differentiate into multiple epithelial subtypes including steroid receptor positive luminal cells and myoepithelial cells indicating that the ES cells are capable of epithelial multipotency in this context but do not form teratomas. In addition, in secondary transplants, ES cell progeny proliferate, contribute apparently normal mammary progeny, maintain their multipotency and do not produce teratomas.

  7. Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells

    DEFF Research Database (Denmark)

    Basse, P; Hokland, P; Heron, I;

    1988-01-01

    arrested and, to a large extent, destroyed in the lungs, which contain the first capillary bed that iv injected tumor cells meet. After LV injection the initial distribution of the tumor cells, which depends on the distribution of cardiac output at the time of injection, was estimated by use of...

  8. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    Science.gov (United States)

    Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-01-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  9. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning.

    Science.gov (United States)

    Hunter, Ginger L; Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-07-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  10. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    Science.gov (United States)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  11. Thymic and Postthymic Regulation of Naïve CD4+ T-Cell Lineage Fates in Humans and Mice Models

    Directory of Open Access Journals (Sweden)

    José E. Belizário

    2016-01-01

    Full Text Available Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs. At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1, T-helper 2 (Th2, T-helper 9 (Th9, T-helper 17 (Th17, follicular helper T-cell (Tfh, and induced T-regulatory cells (iTregs, such as the regulatory type 1 cells (Tr1 and transforming growth factor-β- (TGF-β- producing CD4+ T-cells (Th3. Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.

  12. Thymic and Postthymic Regulation of Naïve CD4+ T-Cell Lineage Fates in Humans and Mice Models

    Science.gov (United States)

    Belizário, José E.; Brandão, Wesley; Rossato, Cristiano; Peron, Jean Pierre

    2016-01-01

    Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.

  13. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their Mr, sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine

  14. Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse; Licht, Tine Rask

    2006-01-01

    The fate and effect of Bacillus cereus F4433/73R in the intestine of human-flora-associated rats was studied using bacteriological culturing techniques and PCR-denaturing gradient gel electrophoresis in combination with cell assays and immunoassays for detection of enterotoxins. In faecal samples...... from animals receiving vegetative cells, only few B. cereus cells were detected. Spores survived the gastric barrier well, and were in some cases detected up to 2 weeks after ingestion. Selective growing revealed no major changes in the intestinal flora during passage of B. cereus. However, denaturing...... gradient gel electrophoresis analysis with universal 16S rRNA gene primers revealed significant changes in the intestinal microbiota of animals dosed with spores. Vero cell assays and a commercial kit (BCET-RPLA) did not reveal any enterotoxin production from B. cereus F4433/73R in the intestinal tract....

  15. Nitrogen transport within an agricultural landscape: insights on how hydrology, biogeochemistry, and the landscape intersect to control the fate and transport of nitrogen in the Mississippi Delta

    Science.gov (United States)

    Barlow, Jeannie R.; Kröger, Robert

    2014-01-01

    Nitrogen (N) is a ubiquitous contaminant throughout agricultural landscapes due to both the application of inorganic and organic fertilizers to agricultural fields and the general persistence of nitrate (NO3 ) in oxygenated aqueous environments (Denver et al. 2010; Domagalski et al. 2008; Green et al. 2008; Coupe 2001; Nolan and Stoner 2000). In order to understand why excess N occurs various hydrologic systems (environments), it is important to consider potential sources, the locations of these sources in the watershed, and the timing of the application of sources with respect to the movement of water. To learn how to manage N in a watershed, it is necessary to identify and quantify flow paths and biogeochemical conditions, which ultimately combine to determine transport and fate. If sources, transport mechanisms, and biogeochemical controls were uniformly distributed, it would be possible to manage N uniformly throughout a watershed. However, uniform conditions are rare to nonexistent in the natural world and in the landscape altered for agricultural production. In order to adjust management activities on the landscape to have the greatest effect, it is important to understand the fate and transport N within the intersection of hydrology and biogeochemistry, that is, to understand the extent and duration of the hydrologic and biogeochemical controls as N is routed through and among each hydrologic compartment.

  16. The fate of Müller’s glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation

    OpenAIRE

    Lewis, Geoffrey P.; Chapin, Ethan A.; Luna, Gabriel; Linberg, Kenneth A.; Fisher, Steven K.

    2010-01-01

    Purpose To study the fate of Müller’s glia following experimental retinal detachment, using a “pulse/chase” paradigm of bromodeoxyuridine (BrdU) labeling for the purpose of understanding the role of Müller cell division in subretinal scar formation. Methods Experimental retinal detachments were created in pigmented rabbit eyes, and 3 days later 10 µg of BrdU was injected intravitreally. The retinas were harvested 4 h after the BrdU was administered (i.e., day 3) or on days 4, 7, and 21 post d...

  17. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs

    Directory of Open Access Journals (Sweden)

    Valentina Iadevaia

    2015-09-01

    Full Text Available Post-transcriptional control of gene expression is mediated by RNA-binding proteins (RBPs and small non-coding RNAs (e.g., microRNAs that bind to distinct elements in their mRNA targets. Here, we review recent examples describing the synergistic and/or antagonistic effects mediated by RBPs and miRNAs to determine the localisation, stability and translation of mRNAs in mammalian cells. From these studies, it is becoming increasingly apparent that dynamic rearrangements of RNA-protein complexes could have profound implications in human cancer, in synaptic plasticity, and in cellular differentiation.

  18. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis. PMID:26825610

  19. New insights into the epigenetic control of satellite cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Epigenetics finely tunes gene expression at a functionallevel without modifying the DNA sequence, therebycontributing to the complexity of genomic regulation.Satellite cells (SCs) are adult muscle stem cells thatare important for skeletal post-natal muscle growth,homeostasis and repair. The understanding of theepigenome of SCs at different stages and of themultiple layers of the post-transcriptional regulationof gene expression is constantly expanding. Dynamicinteractions between different epigenetic mechanismsregulate the appropriate timing of muscle-specific geneexpression and influence the lineage fate of SCs. Inthis review, we report and discuss the recent literatureabout the epigenetic control of SCs during the myogenicprocess from activation to proliferation and from theircommitment to a muscle cell fate to their differentiationand fusion to myotubes. We describe how the coordinatedactivities of the histone methyltransferasefamilies Polycomb group (PcG), which represses theexpression of developmentally regulated genes, andTrithorax group, which antagonizes the repressive activityof the PcG, regulate myogenesis by restricting geneexpression in a time-dependent manner during eachstep of the process. We discuss how histone acetylationand deacetylation occurs in specific loci throughoutSC differentiation to enable the time-dependent transcriptionof specific genes. Moreover, we describe themultiple roles of microRNA, an additional epigeneticmechanism, in regulating gene expression in SCs, byrepressing or enhancing gene transcription or translationduring each step of myogenesis. The importance ofthese epigenetic pathways in modulating SC activationand differentiation renders them as promising targetsfor disease interventions. Understanding the mostrecent findings regarding the epigenetic mechanismsthat regulate SC behavior is useful from the perspectiveof pharmacological manipulation for improving muscleregeneration and for promoting muscle homeostasisunder

  20. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    International Nuclear Information System (INIS)

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results

  1. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  2. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling.

    OpenAIRE

    Jones, A W; Z. Yao; Vicencio, J. M.; Karkucinska-Wieckowska, A.; Szabadkai, G.

    2012-01-01

    Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and...

  3. Stromal control of chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Seke Etet PF

    2013-09-01

    Full Text Available Paul Faustin Seke Etet,1 Armel Herve Nwabo Kamdje,2 Jeremie Mbo Amvene,2 Yousef Aldebasi,3 Mohammed Farahna,1 Lorella Vecchio41Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 2Department of Medicine, University of Ngaoundere, Ngaoundere, Cameroon; 3Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 4Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, Pavia, ItalyAbstract: In the ongoing efforts to develop therapies against chronic lymphocytic leukemia (CLL, stromal factors allowing malignant cells to escape spontaneous and chemotherapy-mediated apoptosis, giving way to relapses, have been abundantly investigated. Bone marrow adherent cell types, collectively referred to as stromal cells, appear to be key players in such escape, mainly because CLL malignant cells, which rapidly undergo spontaneous apoptosis when cultured in vitro, survive, migrate, and resist cytotoxic agents in co-culture with bone marrow stromal cells. CLL displays variable clinical courses according to well-defined prognostic factors induced on malignant B-cells (CLL cells or expressed by the transformed bone marrow stromal microenvironment. Particularly, a critical pathogenic role is played by proinflammatory factors, adhesion molecules, and signaling molecules involved in cell fate and stemness, such as Notch, Wnt, sonic Hedgehog, phosphoinositide 3-kinase (PI3K, protein kinase B (Akt, and the B-cell CLL/lymphoma 2 (Bcl-2 family of regulator proteins. As herein discussed, these molecules probably form a complex network favoring CLL cell survival, proliferation, and chemoresistance to anticancer therapy. Characterizing the sets of signaling pathways involved in the interactions between stromal cells and CLL cells may provide new tools for CLL clinical phenotyping and for re-sensitizing chemotherapy resistant cells

  4. Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells.

    Science.gov (United States)

    Weel, J F; van Putten, J P

    1991-01-01

    We investigated the fate of the major outer membrane protein of Neisseria gonorrhoeae, P.IA, during gonococcal infection of Chang conjunctiva epithelial cells by using immunoelectron microscopy. Probing of P.IA epitopes with mono- and polyclonal antibodies revealed variable, fixation-dependent P.IA epitope exposure in the gonococci used as an inoculum in the infection experiments. Detection of invariable exposed P.IA epitopes in cryosections of infected epithelial cells with a polyclonal antiserum revealed unaltered P.IA exposure on the bacterial membranes during early attachment of the bacteria to the eukaryotic cells. Upon entry of the bacteria into the host cells, however, labelling was extended to membraneous structures that intercalated between the bacteria and the host cell surface, and, occasionally, to the host cell plasma membrane. The latter observation is consistent with the suggested active role of P.I. in the uptake process (as shown in 1985 by E.C. Gotschlich). Once inside the epithelial cells, both morphologically intact and disintegrating bacteria could be distinguished. The disintegration of the bacteria was accompanied by a loss of P.IA immunoreactivity. PMID:1725221

  5. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations

    Directory of Open Access Journals (Sweden)

    Yoshiko Yuji

    2008-07-01

    Full Text Available Abstract Background Osteoblasts and adipocytes are derived from a common mesenchymal progenitor and an inverse relationship between expression of the two lineages is seen with certain experimental manipulations and in certain diseases, i.e., osteoporosis, but the cellular pathway(s and developmental stages underlying the inverse relationship is still under active investigation. To determine which precursor mesenchymal cell types can differentiate into adipocytes, we compared the effects of BRL-49653 (BRL, a selective ligand for peroxisome proliferators-activated receptor (PPARγ, a master transcription factor of adipogenesis, on osteo/adipogeneis in two different osteoblast culture models: the rat bone marrow (RBM versus the fetal rat calvaria (RC cell system. Results BRL increased the number of adipocytes and corresponding marker expression, such as lipoprotein lipase, fatty acid-binding protein (aP2, and adipsin, in both culture models, but affected osteoblastogenesis only in RBM cultures, where a reciprocal decrease in bone nodule formation and osteoblast markers, e.g., osteopontin, alkaline phosphatase (ALP, bone sialoprotein, and osteocalcin was seen, and not in RC cell cultures. Even though adipocytes were histologically undetectable in RC cultures not treated with BRL, RC cells expressed PPAR and CCAAT/enhancer binding protein (C/EBP mRNAs throughout osteoblast development and their expression was increased by BRL. Some single cell-derived BRL-treated osteogenic RC colonies were stained not only with ALP/von Kossa but also with oil red O and co-expressed the mature adipocyte marker adipsin and the mature osteoblast marker OCN, as well as PPAR and C/EBP mRNAs. Conclusion The data show that there are clear differences in the capacity of BRL to alter the fate choices of precursor cells in stromal (RBM versus calvarial (RC cell populations and that recruitment of adipocytes can occur from multiple precursor cell pools (committed preadipocyte

  6. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  7. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  8. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Fiete Haack

    2015-03-01

    Full Text Available Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs, which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model's predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and

  9. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells.

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M

    2015-03-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model's predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  10. Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions

    Directory of Open Access Journals (Sweden)

    Ali Khademhosseini

    2011-06-01

    Full Text Available As our population ages, there is a greater need for a suitable supply of engineered tissues to address a range of debilitating ailments. Stem cell based therapies are envisioned to meet this emerging need. Despite significant progress in controlling stem cell differentiation, it is still difficult to engineer human tissue constructs for transplantation. Recent advances in micro- and nanofabrication techniques have enabled the design of more biomimetic biomaterials that may be used to direct the fate of stem cells. These biomaterials could have a significant impact on the next generation of stem cell based therapies. Here, we highlight the recent progress made by micro- and nanoengineering techniques in the biomaterials field in the context of directing stem cell differentiation. Particular attention is given to the effect of surface topography, chemistry, mechanics and micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural stem cells.

  11. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  12. Chemo-mechanical control of neural stem cell differentiation

    Science.gov (United States)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  13. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed. PMID:26939438

  14. Estrogen-Related Receptors and the control of bone cell fate.

    Science.gov (United States)

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2016-09-01

    Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. PMID:26206717

  15. Unraveling the regulatory connections between two controllers of breast cancer cell fate

    OpenAIRE

    Lee, Jinho; Tiwari, Abhinav; Shum, Victor; Mills, Gordon B.; Mancini, Michael A.; Igoshin, Oleg A; Balázsi, Gábor

    2014-01-01

    Estrogen receptor alpha (ERα) expression is critical for breast cancer classification, high ERα expression being associated with better prognosis. ERα levels strongly correlate with that of GATA binding protein 3 (GATA3), a major regulator of ERα expression. However, the mechanistic details of ERα–GATA3 regulation remain incompletely understood. Here we combine mathematical modeling with perturbation experiments to unravel the nature of regulatory connections in the ERα–GATA3 network. Through...

  16. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  17. Long-Term Fate Mapping Using Conditional Lentiviral Vectors Reveals a Continuous Contribution of Radial Glia-Like Cells to Adult Hippocampal Neurogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Sarah-Ann Aelvoet

    Full Text Available Newborn neurons are generated throughout life in two neurogenic regions, the subventricular zone and the hippocampal dentate gyrus. Stimulation of adult neurogenesis is considered as an attractive endogenous repair mechanism to treat different neurological disorders. Although tremendous progress has been made in our understanding of adult hippocampal neurogenesis, important questions remain unanswered, regarding the identity and the behavior of neural stem cells in the dentate gyrus. We previously showed that conditional Cre-Flex lentiviral vectors can be used to label neural stem cells in the subventricular zone and to track the migration of their progeny with non-invasive bioluminescence imaging. Here, we applied these Cre-Flex lentiviral vectors to study neurogenesis in the dentate gyrus with bioluminescence imaging and histological techniques. Stereotactic injection of the Cre-Flex vectors into the dentate gyrus of transgenic Nestin-Cre mice resulted in specific labeling of the nestin-positive neural stem cells. The labeled cell population could be detected with bioluminescence imaging until 9 months post injection, but no significant increase in the number of labeled cells over time was observed with this imaging technique. Nevertheless, the specific labeling of the nestin-positive neural stem cells, combined with histological analysis at different time points, allowed detailed analysis of their neurogenic potential. This long-term fate mapping revealed that a stable pool of labeled nestin-positive neural stem cells continuously contributes to the generation of newborn neurons in the mouse brain until 9 months post injection. In conclusion, the Cre-Flex technology is a valuable tool to address remaining questions regarding neural stem cell identity and behavior in the dentate gyrus.

  18. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis

    OpenAIRE

    Bellis, Julien; Duluc, Isabelle; Romagnolo, Béatrice; Perret, Christine; Faux, Maree C.; Dujardin, Denis; Formstone, Caroline; Lightowler, Sally; Ramsay, Robert G.; Freund, Jean-Noël; De Mey, Jan R.

    2012-01-01

    The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit t...

  19. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  20. Programming of marginal zone B-cell fate by basic Kruppel-like factor (BKLF/KLF3).

    Science.gov (United States)

    Turchinovich, Gleb; Vu, Thi Thanh; Frommer, Friederike; Kranich, Jan; Schmid, Sonja; Alles, Melanie; Loubert, Jean-Baptiste; Goulet, Jean-Philippe; Zimber-Strobl, Ursula; Schneider, Pascal; Bachl, Jürgen; Pearson, Richard; Crossley, Merlin; Agenès, Fabien; Kirberg, Jörg

    2011-04-01

    Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation. PMID:21297003

  1. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    NARCIS (Netherlands)

    Espinosa, Nieves; Zimmermann, Yannick-Serge; Reis Benatto, Dos Gisele A.; Lenz, Markus; Krebs, Frederik C.

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and z

  2. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Zimmermann, Yannick-Serge; Benatto, Gisele Alves dos Reis;

    2016-01-01

    The emission of silver and zinc to the aqueous environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mechanical damage under natural weather conditions in Denmark. We find the emission of silver and...... zinc to the environment through precipitated water for damaged solar cells, and also observed failure and emission from an initially undamaged device in an experiment that endured for 6 months. In the case of the damaged cells, we found that the drinking water limits for Ag were only exceeded on a few...

  3. Optimal control strategies of eradicating invisible glioblastoma cells after conventional surgery.

    Science.gov (United States)

    de Los Reyes V, Aurelio A; Jung, Eunok; Kim, Yangjin

    2015-05-01

    Glioblastoma, the most aggressive type of brain cancer, has median survival time of 1 year after diagnosis. It is characterized by alternating modes of rapid proliferation and aggressive invasion in response to metabolic stress in the microenvironment. A particular microRNA, miR-451, and its downstream signalling molecules, AMPK complex, are known to be key determinants in switching cell fate. These components form a core control system determining a balance between cell growth and migration which is regulated by fluctuating glucose levels in the microenvironment. An important factor from the treatment point of view is that low levels of glucose affect metabolism and activate cell migration through the miR-451-AMPK control system, creating 'invisible' migratory cells and making them inaccessible by conventional surgery. In this work, we apply optimal control theory to deal with the problem of maintaining upregulated miR-451 levels that prevent cell infiltration to surrounding brain tissue and thus induce localization of these cancer cells at the surgical site. The model also considers the effect of a drug that blocks inhibitive pathways of miR-451 from AMPK complex. Glucose infusion control and drug infusion control are chosen to represent dose rates of glucose and drug intravenous administrations, respectively. The characteristics of optimal control lead us to investigate the structure of optimal intravenous infusion regimen under various circumstances and predict best clinical outcomes with minimum expense possible. PMID:25833239

  4. Fate of pollutants

    International Nuclear Information System (INIS)

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  5. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Zimmermann, Yannick-Serge; Benatto, Gisele Alves dos Reis; Lenz, Markus; Krebs, Frederik C

    2016-01-01

    zinc to the environment through precipitated water for damaged solar cells, and also observed failure and emission from an initially undamaged device in an experiment that endured for 6 months. In the case of the damaged cells, we found that the drinking water limits for Ag were only exceeded on a few...

  6. Recent advances in phytoplasma research: from genetic diversity and genome evolution to pathogenic redirection of plant stem cell fate

    Science.gov (United States)

    Parasitizing phloem sieve cells and being transmitted by insects, phytoplasmas are a unique group of cell wall-less bacteria responsible for numerous plant diseases worldwide. Due to difficulties in establishing axenic culture of phytoplasmas, phenotypic characters suitable for conventional microbia...

  7. Do glial cells control pain?

    OpenAIRE

    Suter, Marc R; Wen, Yeong-Ray; Decosterd, Isabelle; Ji, Ru-Rong

    2007-01-01

    Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer’s and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not onl...

  8. Control of Robotic Welding Cell

    OpenAIRE

    Zabukovec, Andraž

    2013-01-01

    Industrial robots are common place in most modern manufacturing plants because the people running these factories are interested in reducing the plants’ dependence on a human workforce and to simultaneously improve productivity and quality. The thesis presents the operation of a robot welding cell project, which was developed at YASKAWA Ristro d.o.o. for the customer Akrapovič. The sub systems of the robot welding cell will be detailed in the thesis including the following topics; safety c...

  9. The Association of a Variant in the Cell Cycle Control Gene CCND1 and Obesity on the Development of Asthma in the Swiss SAPALDIA Study

    OpenAIRE

    Thun, Gian Andri; Imboden, Medea; Berger, Wolfgang; Rochat, Thierry; Probst-Hensch, Nicole M

    2013-01-01

    OBJECTIVE: The molecular mechanisms underlying the association between obesity (BMI ≥ 30 kg/m(2)) and asthma are poorly understood. Since shifts in the fate of bronchial cells due to low-grade systemic inflammation may provide a possible explanation, we investigated whether two of the best documented functional variants in cell cycle control genes modify the obesity-asthma association. METHODS: We genotyped 5930 SAPALDIA cohort participants for the single-nucleotide polymorphisms (SNPs) rs...

  10. Mechanisms of daughter cell-size control during cell division.

    Science.gov (United States)

    Kiyomitsu, Tomomi

    2015-05-01

    Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. PMID:25548067

  11. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  12. Chromatin “pre-pattern” and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm

    OpenAIRE

    Xu, Cheng-Ran; Zaret, Kenneth S.

    2012-01-01

    Understanding the basis for multipotency, whereby stem cells and other progenitors can differentiate into certain tissues and not others, provides insights into the mechanism of cell programming in development, homeostasis, and disease. We recently reported a screen of diverse chromatin marks to obtain clues about chromatin states in the multipotent embryonic endoderm. Genetic and pharmacologic tests of certain marks’ function demonstrated that the relevant chromatin modifying factors modulat...

  13. Cell and Tissue Organization in the Circulatory and Ventilatory Systems Volume 1 Signaling in Cell Organization, Fate, and Activity, Part A Cell Structure and Environment

    CERN Document Server

    Thiriet, Marc

    2011-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning.  The present volume is devoted to cellular events that allow adaptation to environmental conditions, particularly mechanotransduction. It begins with cell organization and a survey of cell types in the vasculatur...

  14. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  15. Control points within the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  16. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets.

    Science.gov (United States)

    Mahmoudifard, Matin; Soleimani, Masoud; Hatamie, Shadie; Zamanlui, Soheila; Ranjbarvan, Parviz; Vossoughi, Manouchehr; Hosseinzadeh, Simzar

    2016-01-01

    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were cultured in the following and their proliferation and differentiation behavior studied by MTT, Real-Time PCR assays and 4', 6-diamidino-2-phenylindole (DAPI) staining. The cultured cells on composite nanofibrous PAN/PANI-CSA/G confirmed a higher proliferation and differentiation value compared to other groups including PAN/PANI-CSA/GO and PAN/PANI-CSA scaffolds. Furthermore, the higher stiffness of the former scaffold showed a lower cell spreading as a function of stem cell activation into more proliferative cells. It is supposed that the enhanced conductivity value in addition to relative higher stiffness of the PAN/PANI-CSA/G composite nanofibers plays a favorable role for proliferation and differentiation of satellite cells. PMID:26962722

  17. Controllability analysis of decentralised linear controllers for polymeric fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2005-10-10

    This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)

  18. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  19. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material

    Science.gov (United States)

    Barbieri, Manuela; Carrera, Jesús; Sanchez-Vila, Xavier; Ayora, Carlos; Cama, Jordi; Köck-Schulmeyer, Marianne; López de Alda, Miren; Barceló, Damià; Tobella Brunet, Joana; Hernández García, Marta

    2011-11-01

    The natural processes occurring in subsurface environments have proven to effectively remove a number of organic pollutants from water. The predominant redox conditions revealed to be one of the controlling factors. However, in the case of organic micropollutants the knowledge on this potential redox-dependent behavior is still limited. Motivated by managed aquifer recharge practices microcosm experiments involving aquifer material, settings potentially feasible in field applications, and organic micropollutants at environmental concentrations were carried out. Different anaerobic redox conditions were promoted and sustained in each set of microcosms by adding adequate quantities of electron donors and acceptors. Whereas denitrification and sulfate-reducing conditions are easily achieved and maintained, Fe- and Mn-reduction are strongly constrained by the slower dissolution of the solid phases commonly present in aquifers. The thorough description and numerical modeling of the evolution of the experiments, including major and trace solutes and dissolution/precipitation of solid phases, have been proven necessary to the understanding of the processes and closing the mass balance. As an example of micropollutant results, the ubiquitous beta-blocker atenolol is completely removed in the experiments, the removal occurring faster under more advanced redox conditions. This suggests that aquifers constitute a potentially efficient alternative water treatment for atenolol, especially if adequate redox conditions are promoted during recharge and long enough residence times are ensured.

  20. THE FATE OF MDACH1-EXPRESSING CELLS IN THE DORSAL PART OF THE LATERAL VENTRICLES FOLLOWING FOCAL CEREBRAL ISCHEMIA

    Czech Academy of Sciences Publication Activity Database

    Anděrová, Miroslava; Pivoňková, Helena; Honsa, Pavel

    2013-01-01

    Roč. 61, Supplement 1 (2013), S125-S126. ISSN 0894-1491. [European Meeting on Glial Cell Function in Health and Disease /11./. 03.07.2013-06.07.2013, Berlin] Institutional support: RVO:68378041 Keywords : cerebral ischemia * neuroscience * MDACH1 Subject RIV: FH - Neurology

  1. THE FATE OF MDACH1-EXPRESSING CELLS IN THE DORSAL PART OF THE LATERAL VENTRICLES FOLLOWING FOCAL CEREBRAL ISCHEMIA

    Czech Academy of Sciences Publication Activity Database

    Butenko, Olena; Benešová, Jana; Mikešová, M.; Honsa, Pavel; Džamba, Dávid; Kriška, Ján; Rusňáková, Vendula; Kubista, Mikael; Anděrová, Miroslava

    2013-01-01

    Roč. 61, Supplement 1 (2013), S207-S207. ISSN 0894-1491. [European Meeting on Glial Cell Function in Health and Disease /11./. 03.07.2013-06.07.2013, Berlin] Institutional support: RVO:68378041 Keywords : neuroscience * astrocyte Subject RIV: FH - Neurology

  2. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  3. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic ß cell fate in response to cytokines

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Tonnesen, Morten Fog; Madsen, Andreas Nygaard; Hagedorn, Peter; Friberg, Josefine; Grunnet, Lars Groth; Heller, R Scott; Nielsen, Anja Østergren; Størling, Joachim; Baeyens, Luc; Anker-Kitai, Leeat; Qvortrup, Klaus; Bouwens, Luc; Efrat, Shimon; Aalund, Mogens; Andrews, Nancy C; Billestrup, Nils; Karlsen, Allan E; Holst, Birgitte; Pociot, Flemming; Mandrup-Poulsen, Thomas

    2012-01-01

    knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells...

  4. Tracking the fate of her4 expressing cells in the regenerating retina using her4:Kaede zebrafish.

    Science.gov (United States)

    Wilson, Stephen G; Wen, Wen; Pillai-Kastoori, Lakshmi; Morris, Ann C

    2016-04-01

    The Basic-Helix-Loop-Helix-Orange (bHLH-O) transcription factor Hairy-related 4 (her4) is a downstream effector of Notch-Delta signaling that represses expression of typically pro-neural genes in proliferative domains of the central nervous system. Notch-Delta signaling in the retina has been shown to increase in response to injury and influences neuroprotective properties of Müller glia. In contrast to mammals, teleost fish are able to regenerate retinal neurons in response to injury. In zebrafish, her4 is upregulated in the regenerating neural retina in response to both acute and chronic photoreceptor damage, but the contribution of her4 expressing cells to neurogenesis following acute or chronic retinal damage has remained unexplored. Here we investigate the role of her4 in the regenerating retina in a background of chronic, rod-specific degeneration as well as following acute light damage. We demonstrate that her4 is expressed in the persistently neurogenic ciliary marginal zone (CMZ), as well as in small subsets of slowly proliferating Müller glia in the inner nuclear layer (INL) of the central retina. We generated a transgenic line of zebrafish that expresses the photoconvertible Kaede reporter driven by a her4 promoter and validated that expression of the transgene faithfully recapitulates endogenous her4 expression. Lineage tracing analysis revealed that her4-expressing cells in the INL contribute to the rod lineage, and her4 expressing cells in the CMZ are capable of generating any retinal cell type except rod photoreceptors. Our results indicate that her4 is involved in a replenishing pathway that maintains populations of stem cells in the central retina, and that the magnitude of the her4-associated proliferative response mirrors the extent of retinal damage. PMID:26616101

  5. Profiling a gut microbiota-generated catechin metabolite's fate in human blood cells using a metabolomic approach.

    Science.gov (United States)

    Mülek, Melanie; Fekete, Agnes; Wiest, Johannes; Holzgrabe, Ulrike; Mueller, Martin J; Högger, Petra

    2015-10-10

    The microbial catechin metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1) has been found in human plasma samples after intake of maritime pine bark extract (Pycnogenol). M1 has been previously shown to accumulate in endothelial and blood cells in vitro after facilitated uptake and to exhibit anti-inflammatory activity. The purpose of the present research approach was to systematically and comprehensively analyze the metabolism of M1 in human blood cells in vitro and in vivo. A metabolomic approach that had been successfully applied for drug metabolite profiling was chosen to detect 19 metabolite peaks of M1 which were subsequently further analyzed and validated. The metabolites were categorized into three levels of identification according to the Metabolomics Standards Initiative with six compounds each confirmed at levels 1 and 2 and seven putative metabolites at level 3. The predominant metabolites were glutathione conjugates which were rapidly formed and revealed prolonged presence within the cells. Although a formation of an intracellular conjugate of M1 and glutathione (M1-GSH) was already known two GSH conjugate isomers, M1-S-GSH and M1-N-GSH were observed in the current study. Additionally detected organosulfur metabolites were conjugates with oxidized glutathione and cysteine. Other biotransformation products constituted the open-chained ester form of M1 and a methylated M1. Six of the metabolites determined in in vitro assays were also detected in blood cells in vivo after ingestion of the pine bark extract by two volunteers. The present study provides the first evidence that multiple and structurally heterogeneous polyphenol metabolites can be generated in human blood cells. The bioactivity of the M1 metabolites and their contribution to the previously determined anti-inflammatory effects of M1 now need to be elucidated. PMID:26025814

  6. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria: Implications for the evolution of gastrulation

    Directory of Open Access Journals (Sweden)

    Kumburegama Shalika

    2011-01-01

    Full Text Available Abstract Background Gastrulation is a uniquely metazoan character, and its genesis was arguably the key step that enabled the remarkable diversification within this clade. The process of gastrulation involves two tightly coupled events during embryogenesis of most metazoans. Morphogenesis produces a distinct internal epithelial layer in the embryo, and this epithelium becomes segregated as an endoderm/endomesodermal germ layer through the activation of a specific gene regulatory program. The developmental mechanisms that induced archenteron formation and led to the segregation of germ layers during metazoan evolution are unknown. But an increased understanding of development in early diverging taxa at the base of the metazoan tree may provide insights into the origins of these developmental mechanisms. Results In the anthozoan cnidarian Nematostella vectensis, initial archenteron formation begins with bottle cell-induced buckling of the blastula epithelium at the animal pole. Here, we show that bottle cell formation and initial gut invagination in Nematostella requires NvStrabismus (NvStbm, a maternally-expressed core component of the Wnt/Planar Cell Polarity (PCP pathway. The NvStbm protein is localized to the animal pole of the zygote, remains asymmetrically expressed through the cleavage stages, and becomes restricted to the apical side of invaginating bottle cells at the blastopore. Antisense morpholino-mediated NvStbm-knockdown blocks bottle cell formation and initial archenteron invagination, but it has no effect on Wnt/ß-catenin signaling-mediated endoderm cell fate specification. Conversely, selectively blocking Wnt/ß-catenin signaling inhibits endoderm cell fate specification but does not affect bottle cell formation and initial archenteron invagination. Conclusions Our results demonstrate that Wnt/PCP-mediated initial archenteron invagination can be uncoupled from Wnt/ß-catenin-mediated endoderm cell fate specification in

  7. Regulatory T-Cell (Treg) Hybridoma as a Novel Tool to Study Foxp3 Regulation and Treg Fate1

    OpenAIRE

    Sharma, Rahul; Sung, Sun-Sang J; Ju, Chiao-Ying A.; Umesh, S. Deshmukh; Fu, Shu Man; Ju, Shyr-Te

    2011-01-01

    The CD25+Foxp3+ regulatory T-cells (Treg) that had lost CD25 and Foxp3 in vivo (ex-Treg) exist but are difficult to study. We generated antigen (Ag)-specific Treg hybridomas from iTreg clones (iTreg-hyb) using iTreg of DO11.10.Foxp3-GFP mice and presented evidence that they behave like ex-Treg. The iTreg-hyb displayed little CD25 and Foxp3-GFP but strong expression could be induced with OVA323–339 in the presence of Ag-presenting cells, rIL-2 and rTGF-β1. They displayed all of the iTreg-assoc...

  8. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion

    OpenAIRE

    Cattoglio, Claudia; Maruggi, Giulietta; Bartholomae, Cynthia; Malani, Nirav; Pellin, Danilo; Cocchiarella, Fabienne; Magnani, Zulma; Ciceri, Fabio; Ambrosi, Alessandro; von Kalle, Christof; Bushman, Frederic D.; Bonini, Chiara; Schmidt, Manfred; MAVILIO, Fulvio; Recchia, Alessandra

    2010-01-01

    The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and p...

  9. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A. [Emory-MED; (Keele); (Scripps)

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  10. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: Evidence for an involvement of the neonatal Fc receptor.

    Science.gov (United States)

    Deissler, Heidrun L; Lang, Gerhard K; Lang, Gabriele E

    2016-02-01

    Bevacizumab is one of the VEGF-binding proteins that are established in clinical practice to treat various ocular diseases. In view of therapeutic long-term application, potential accumulation of the antibody in retinal cells gave reason for safety concerns. Internalization of considerable amounts of bevacizumab by retinal endothelial (REC) and pigment epithelial cells has been observed which may affect their important functions. Therefore we investigated the transport and intracellular localization of bevacizumab in immortalized bovine REC (iBREC) in detail, considering possible roles of vesicles and receptors mediating uptake and intracellular transport. By performing transcytosis assays with iBREC monolayers cultivated on porous membrane inserts, we demonstrated that bevacizumab was transported efficiently through a tight monolayer from the lower to the upper chamber or vice versa. When added to the lower chamber in excess, the internalized antibody was transported through the cells, but it was also recycled to be set free at the same side of the cell into a bevacizumab-free environment. The rates of both processes strongly depended on the concentration of fetal bovine serum (FBS) in the environment. This observation is important because in vivo REC might be exposed to varying amounts of serum, e.g. in patients with macular edema. FBS also affected the intracellular localization of bevacizumab as shown by analyses of subcellular fractions and direct immunofluorescence staining. When iBREC were cultivated in low-serum medium, most of the antibody was found in the fraction of cytoskeleton proteins and spots of high intensity of bevacizumab-specific staining close to the nuclei were observed. Cultivation in medium with FBS resulted in internalized bevacizumab predominately found in the membrane/organelle fraction in addition to its weaker association with proteins from the cytoskeleton and uniform staining of the cell. Bevacizumab-specific staining close to the

  11. Control of differentiation of melanoma cells

    International Nuclear Information System (INIS)

    To develop the method to induce the appearance of differentiation in amelanotic melanoma, experimental control of differentiation in B-16 melanoma cells of mice was discussed. Human melanoma cells and yellow melanin pigment cells useful for a fundamental study of radiotherapy for cancer were cultured and were differentiated into some lines. Melanotic B-16 cells and amelanotic B-16 cells were irradiated with thermal neutron (neutron: 2.7 x 1012, γ-dose: 32.3 rad) after they were cultured in culture solution containing 10 γ/ml of 10B-dopa for 13 hours. A fine structure 5 hours after the irradiation in one of 5 experimental cases showed aggregated disintegration of melanin pigment particles, markedly deformed and fragmentized nucleus, and structural changes in cell membrane. (Tsunoda, M.)

  12. Controlled regular locomotion of algae cell microrobots.

    Science.gov (United States)

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications. PMID:27206511

  13. P2X7 Receptor as a Key Player in Oxidative Stress-Driven Cell Fate in Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Saurabh Chatterjee

    2015-01-01

    Full Text Available Incidences of nonalcoholic fatty liver disease parallels increase in the global obesity epidemic. NAFLD has been shown to be associated with risks of cardiometabolic disorders and kidney disturbances. It is accompanied by insulin and leptin resistance that complicate the diagnosis and treatment of this public health menace. Though significant research is underway for understanding the molecular mechanisms of NAFLD and its subsequent inflammatory and fibrotic manifestations like nonalcoholic steatohepatitis, the role of purinergic receptors has been unclear. It is increasingly being recognized that damage associated molecular patterns like NAD and ATP that are released from injured cells via hepatocellular injury either by oxidative stress or lipotoxicity from steatosis activate the purinergic receptor. Based on evidence from inflammatory responses in the airways and vasculature and autoimmune complications in humans and rodents, it is beyond doubt that hepatocellular inflammation such as that seen in NASH can result from the activation of purinergic receptors. This event can result in the formation of inflammasomes and can be an important pathway for the progression of NASH. The present review evaluates the current knowledge of the role of oxidative stress and its signaling via P2X7 receptors in hepatocellular injury that might contribute to the NASH pathophysiology.

  14. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells.

    Science.gov (United States)

    Sun, Jianbo; Keim, Celia D; Wang, Jiguang; Kazadi, David; Oliver, Paula M; Rabadan, Raul; Basu, Uttiya

    2013-08-15

    Programmed mutagenesis of the immunoglobulin locus of B lymphocytes during class switch recombination (CSR) and somatic hypermutation requires RNA polymerase II (polII) transcription complex-dependent targeting of the DNA mutator activation-induced cytidine deaminase (AID). AID deaminates cytidine residues on substrate sequences in the immunoglobulin (Ig) locus via a transcription-dependent mechanism, and this activity is stimulated by the RNA polII stalling cofactor Spt5 and the 11-subunit cellular noncoding RNA 3'-5' exonucleolytic processing complex RNA exosome. The mechanism by which the RNA exosome recognizes immunoglobulin locus RNA substrates to stimulate AID DNA deamination activity on its in vivo substrate sequences is an important question. Here we report that E3-ubiquitin ligase Nedd4 destabilizes AID-associated RNA polII by a ubiquitination event, leading to generation of 3' end free RNA exosome RNA substrates at the Ig locus and other AID target sequences genome-wide. We found that lack of Nedd4 activity in B cells leads to accumulation of RNA exosome substrates at AID target genes and defective CSR. Taken together, our study links noncoding RNA processing following RNA polII pausing with regulation of the mutator AID protein. Our study also identifies Nedd4 as a regulator of noncoding RNAs that are generated by stalled RNA polII genome-wide. PMID:23964096

  15. The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning

    Directory of Open Access Journals (Sweden)

    Hime Gary R

    2008-10-01

    Full Text Available Abstract Background Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined. Results We have investigated the expression and developmental function of dSTIM in Drosophila and shown that dSTIM is widely expressed in embryonic and larval tissues. Using the UAS-Gal4 induction system, we have expressed full-length dSTIM protein and a dsRNAi construct in different tissues. We demonstrate an essential role for dSTIM in larval development and survival, and a tissue-specific role in specification of mechanosensory bristles in the notum and specification of wing vein thickness. Conclusion Our studies show that dSTIM regulates growth and patterning of imaginal discs and indicate potential interactions with the Notch and Wingless signaling pathways. These interactions may be relevant to studies implicating STIM family proteins in tumorigenesis.

  16. Control of cell volume in skeletal muscle.

    Science.gov (United States)

    Usher-Smith, Juliet A; Huang, Christopher L-H; Fraser, James A

    2009-02-01

    Regulation of cell volume is a fundamental property of all animal cells and is of particular importance in skeletal muscle where exercise is associated with a wide range of cellular changes that would be expected to influence cell volume. These complex electrical, metabolic and osmotic changes, however, make rigorous study of the consequences of individual factors on muscle volume difficult despite their likely importance during exercise. Recent charge-difference modelling of cell volume distinguishes three major aspects to processes underlying cell volume control: (i) determination by intracellular impermeant solute; (ii) maintenance by metabolically dependent processes directly balancing passive solute and water fluxes that would otherwise cause cell swelling under the influence of intracellular membrane-impermeant solutes; and (iii) volume regulation often involving reversible short-term transmembrane solute transport processes correcting cell volumes towards their normal baselines in response to imposed discrete perturbations. This review covers, in turn, the main predictions from such quantitative analysis and the experimental consequences of comparable alterations in extracellular pH, lactate concentration, membrane potential and extracellular tonicity. The effects of such alterations in the extracellular environment in resting amphibian muscles are then used to reproduce the intracellular changes that occur in each case in exercising muscle. The relative contributions of these various factors to the control of cell volume in resting and exercising skeletal muscle are thus described. PMID:19133959

  17. Dermatan Sulfate Interacts with Dead Cells and Regulates CD5+ B-Cell Fate: Implications for a Key Role in Autoimmunity

    OpenAIRE

    Wang, Julia Y.; Lee, Jongmin; Yan, Ming; Rho, Jung-hyun; Roehrl, Michael H. A.

    2011-01-01

    CD5+ (B-1a) B cells play pivotal roles in autoimmunity through expression of autoreactive B-cell receptors and production of autoantibodies. The mechanism underlying their positive selection and expansion is currently unknown. This study demonstrates that dermatan sulfate (DS) expands the B-1a cell population and augments the specific antibody response to an antigen when it is in complex with DS. DS displays preferential affinity for apoptotic and dead cells, and DS-stimulated cell cultures p...

  18. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway

    Directory of Open Access Journals (Sweden)

    In Kyoung Mah

    2015-11-01

    Full Text Available The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate.

  19. [Do hormones determine our fate?].

    Science.gov (United States)

    Vermeulen, A

    1994-01-01

    The hormonal system is a communication system between cells and organs. Hence it is not surprising that it influences almost all physiological functions and, at least partially, our behaviour and fate. The sexual phenotype is determined by the sex hormones. Normally, the phenotype is in accordance with gonadal and genetic sex, but occasionally, as a consequence of enzymatic defects in the biosynthesis of sex hormones or of androgen resistance, gonadal and genetic sex are in discordance with the phenotype, the latter determining generally the civil sex and the sex of rearing. Whereas the gender role is generally determined by the sex of rearing and the phenotype, itself under hormonal influence, homo- and transsexuality constitute notorious exceptions to this rule. Although several authors consider homo- and transsexuality to be the consequence of an impairment in androgenic impregnation in the perinatal period, there are at present no convincing arguments for an hormonal origin for either homo- or transsexuality, although such a possibility can't be excluded either. Besides their role in psychosexual behaviour, sex hormones play also a role in our life expectancy. Indeed, although maximal life expectancy of man is genetically determined, a major determinant of individual life expectancy is cardiovascular pathology. The latter is partly responsible for the difference in life expectancy between men and women, cardiovascular mortality increasing rapidly at menopause and being halved by oestrogen replacement therapy. Also atherogenesis as such is, to a large extend, under hormonal control. Indeed insulin resistance and hyperinsulinism, which develop as a corollary of the aging process, is an important cause of atherosclerosis as well as of hypertension. Other hormones also play an important role in our behaviour. We can mention here the role of the thyroid hormones in the physical and mental development of children as well as in the regression of the intellectual

  20. Cell shape regulation through mechanosensory feedback control.

    Science.gov (United States)

    Mohan, Krithika; Luo, Tianzhi; Robinson, Douglas N; Iglesias, Pablo A

    2015-08-01

    Cells undergo controlled changes in morphology in response to intracellular and extracellular signals. These changes require a means for sensing and interpreting the signalling cues, for generating the forces that act on the cell's physical material, and a control system to regulate this process. Experiments on Dictyostelium amoebae have shown that force-generating proteins can localize in response to external mechanical perturbations. This mechanosensing, and the ensuing mechanical feedback, plays an important role in minimizing the effect of mechanical disturbances in the course of changes in cell shape, especially during cell division, and likely in other contexts, such as during three-dimensional migration. Owing to the complexity of the feedback system, which couples mechanical and biochemical signals involved in shape regulation, theoretical approaches can guide further investigation by providing insights that are difficult to decipher experimentally. Here, we present a computational model that explains the different mechanosensory and mechanoresponsive behaviours observed in Dictyostelium cells. The model features a multiscale description of myosin II bipolar thick filament assembly that includes cooperative and force-dependent myosin-actin binding, and identifies the feedback mechanisms hidden in the observed mechanoresponsive behaviours of Dictyostelium cells during micropipette aspiration experiments. These feedbacks provide a mechanistic explanation of cellular retraction and hence cell shape regulation. PMID:26224568

  1. Wnt signaling and stem cell control

    Institute of Scientific and Technical Information of China (English)

    Roel Nusse

    2008-01-01

    Wnt signaling has been implicated in the control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state.As currently understood,Wnt proteins bind to receptors of the Frizzled and LRP families on the cell surface.Through several cytoplasmic relay components,the signal is transduced to B-catenin,which then enters the nucleus and forms a complex with TCF to activate transcription of Wnt target genes.Wnts can also signal through tyrosine kinase receptors,in particular the ROR and RYK receptors,leading to alternative modes of Wnt signaling.During the growth of tissues,these ligands and receptors are dynamically expressed,often transcriptionally controlled by Wnt signals themselves,to ensure the right balance between proliferation and differentiation.Isolated Wnt proteins are active on a variety of stem cells,including neural,mammary and embryonic stem cells.In general,Wnt proteins act to maintain the undifferentiated state of stem cells,while other growth factors instruct the cells to proliferate.These other factors include FGF and EGF,signaling through tyrosine kinase pathways.

  2. Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate.

    Science.gov (United States)

    Orth, James D; Tang, Yangzhong; Shi, Jade; Loy, Clement T; Amendt, Christiane; Wilm, Claudia; Zenke, Frank T; Mitchison, Timothy J

    2008-11-01

    Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest in monopolar mitosis. Subsequent events, however, differed greatly between cell types. Normal diploid cells mostly slipped from mitosis and arrested in tetraploid G(1), with little cell death. Several cancer cell lines died either during mitotic arrest or following slippage. Contrary to prevailing views, mitotic slippage was not required for death, and the duration of mitotic arrest correlated poorly with the probability of death in most cell lines. We also assayed drug reversibility and long-term responses after transient drug exposure in MCF7 breast cancer cells. Although many cells divided after drug washout during mitosis, this treatment resulted in lower survival compared with washout after spontaneous slippage likely due to chromosome segregation errors in the cells that divided. Our analysis shows that K5Is cause cancer-selective cell killing, provides important kinetic information for understanding clinical responses, and elucidates mechanisms of drug sensitivity versus resistance at the level of phenotype. PMID:18974392

  3. Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis

    Directory of Open Access Journals (Sweden)

    A Aguirre

    2012-07-01

    Full Text Available Smart biomaterials play a key role when aiming at successful tissue repair by means of regenerative medicine approaches, and are expected to contain chemical as well as mechanical cues that will guide the regenerative process. Recent advances in the understanding of stem cell biology and mechanosensing have shed new light onto the importance of the local microenvironment in determining cell fate. Herein we report the biological properties of a bioactive, biodegradable calcium phosphate glass/polylactic acid composite biomaterial that promotes bone marrow-derived endothelial progenitor cell (EPC mobilisation, differentiation and angiogenesis through the creation of a controlled bone healing-like microenvironment. The angiogenic response is triggered by biochemical and mechanical cues provided by the composite, which activate two synergistic cell signalling pathways: a biochemical one mediated by the calcium-sensing receptor and a mechanosensitive one regulated by non-muscle myosin II contraction. Together, these signals promote a synergistic response by activating EPCs-mediated VEGF and VEGFR-2 synthesis, which in turn promote progenitor cell homing, differentiation and tubulogenesis. These findings highlight the importance of controlling microenvironmental cues for stem/progenitor cell tissue engineering and offer exciting new therapeutical opportunities for biomaterial-based vascularisation approaches and clinical applications.

  4. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll...... cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that...

  5. Fate Mapping Mammalian Corneal Epithelia.

    Science.gov (United States)

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  6. PRDM16 Controls a Brown Fat/Skeletal Muscle Switch

    OpenAIRE

    Seale, Patrick; Bjork, Bryan; Yang, Wenli; Kajimura, Shingo; Kuang, Shihuan; Scime, Anthony; Devarakonda, Srikripa; Chin, Sherry; Conroe, Heather M.; Erdjument-Bromage, Hediye; Tempst, Paul; Rudnicki, Michael A.; Beier, David R; Spiegelman, Bruce M.

    2008-01-01

    Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. We show here by in vivo fate mapping that brown but not white fat cells arise from precursors that express myf5, a gene previously thought to be expressed only in the myogenic lineage. Notably, the transcriptional regulator, PRDM16 controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a...

  7. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  8. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  9. Electric field control of the cell orientation

    Science.gov (United States)

    Westman, Christopher; Sabirianov, Renat

    2008-03-01

    Many physiological processes depend on the response of biological cells to external forces. The natural electric field at a wound controls the orientation of the cell and its division.[1] We model the cell as an elongated elliptical particle with given Young's modulus with surface charge distribution in the external electric field. Using this simple theoretical model that includes the forces due to electrostatics and the elasticity of cells, we calculated analytically the response of the cell orientation and its dynamics in the presence of time varying electric field. The calculations reflect many experimentally observed features. Our model predicts the response of the cellular orientation to a sinusoidally varying applied electric field as a function of frequency similar to recent stress-induced effects.[2] *Bing Song, Min Zhao, John V. Forrester, and Colin D. McCaig, ``Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo'', PNAS 2002, vol. 99 , 13577-13582. *R. De, A. Zemel, and S.A. Safran, ``Dynamics of cell orientation'', Nature Physics 2007, vol.3, 655.

  10. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers

    Science.gov (United States)

    Koh, Dong-Chan; Mayer, Bernhard; Lee, Kwang-Sik; Ko, Kyung-Seok,

    2010-10-01

    Sources and transformation processes of nitrate in groundwater from shallow aquifers were investigated in an agricultural area in the mid-western part of South Korea using a multi-tracer approach including δ 2H and δ 18O values of water, δ 15N and δ 18O values of nitrate, Cl/Br ratios and chlorofluorocarbons (CFCs). The study area was comprised of four land-use types with natural areas at higher altitudes, upland areas with fruit orchards, paddy fields and residential areas at lower elevations. The isotopic composition of water was suitable for distinguishing groundwater that had infiltrated in the higher elevation natural areas with lower δ 2H and δ 18O values from groundwater underneath paddy fields that was characterized by elevated δ 2H and δ 18O values due to evaporation. δ 18O-H 2O values and Cl - concentrations indicated that groundwater and contaminant sources were derived from three land-use types: natural areas, residential areas and paddy fields. Groundwater age determination based on CFCs showed that nitrate contamination of groundwater is primarily controlled by historic nitrogen loadings at least in areas with higher nitrate contamination. Nitrate sources were identified using the stable isotope composition of nitrate and Cl/Br ratios. Higher δ 15N-NO 3- values and Cl/Br ratios of 300 to 800 in residential areas indicated that waste water and septic effluents were major nitrate sources whereas lower δ 15N-NO 3- values and Cl/Br ratios of 100 to 700 in upland areas suggested that synthetic fertilizers constituted a major source of nitrate contamination of aquifers. With only few exceptions in the natural area, contributions of atmospheric nitrate were insignificant due to the resetting of δ 18O-NO 3- values via immobilization and re-mineralization of nitrate in the soil zone. In groundwater underneath paddy fields, 30% of samples had δ 18O-NO 3- values at least 2‰ higher than expected for nitrate formed by chemolithoautotrophic

  11. Fate of Shiga toxin-producing O157:H7 and non-O157:H7 Escherichia coli cells within blade-tenderized beef steaks after cooking on a commercial open-flame gas grill.

    Science.gov (United States)

    Luchansky, John B; Porto-Fett, Anna C S; Shoyer, Bradley A; Call, Jeffrey E; Schlosser, Wayne; Shaw, William; Bauer, Nathan; Latimer, Heejeong

    2012-01-01

    We compared the fate of cells of both Shiga toxin-producing Escherichia coli O157:H7 (ECOH) and Shiga toxin-producing non-O157:H7 E. coli (STEC) in blade-tenderized steaks after tenderization and cooking on a gas grill. In phase I, beef subprimal cuts were inoculated on the lean side with about 5.5 log CFU/g of a five-strain mixture of ECOH or STEC and then passed once through a mechanical blade tenderizer with the lean side facing up. In each of two trials, 10 core samples were removed from each of two tenderized subprimals and cut into six consecutive segments starting from the inoculated side. Ten total cores also were obtained from two nontenderized (control) subprimals, but only segment 1 (the topmost segment) was sampled. The levels of ECOH and STEC recovered from segment 1 were about 6.0 and 5.3 log CFU/g, respectively, for the control subprimals and about 5.7 and 5.0 log CFU/g, respectively, for the tenderized subprimals. However, both ECOH and STEC behaved similarly in terms of translocation, and cells of both pathogen cocktails were recovered from all six segments of the cores obtained from tenderized subprimals, albeit at lower levels in segments 2 to 6 than those found in segment 1. In phase II, steaks (2.54 and 3.81 cm thick) cut from tenderized subprimals were subsequently cooked (three steaks per treatment) on a commercial open-flame gas grill to internal temperatures of 48.9, 54.4, 60.0, 65.6, and 71.1°C. Regardless of temperature or thickness, we observed 2.0- to 4.1-log and 1.5- to 4.5-log reductions in ECOH and STEC levels, respectively. Both ECOH and STEC behaved similarly in response to heat, in that cooking eliminated significant numbers of both pathogen types; however, some survivors were recovered due, presumably, to uneven heating of the blade-tenderized steaks. PMID:22221356

  12. Feedback and Modularity in Cell Cycle Control

    Science.gov (United States)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  13. The Environmental Fate Simulator: A tool for predicting the degradation pathways of organic chemicals in groundwater aquifers

    Science.gov (United States)

    Development of the Environmental Fate Simulator (EFS): • High throughput computational system for providing molecular and environmental descriptors for consumption by EF&T models Requires:  Knowledge of the process science controlling chemical fate and transport  The abil...

  14. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  15. Role of polyphenols in cell death control.

    Science.gov (United States)

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols. PMID:22584012

  16. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size

    Science.gov (United States)

    Kinney, Melissa A.; Saeed, Rabbia; McDevitt, Todd C.

    2015-01-01

    The sensitivity of stem cells to environmental perturbations has prompted many studies which aim to characterize the influence of mechanical factors on stem cell morphogenesis and differentiation. Hydrodynamic cultures, often employed for large scale bioprocessing applications, impart complex fluid shear and transport profiles, and influence cell fate as a result of changes in media mixing conditions. However, previous studies of hydrodynamic cultures have been limited in their ability to distinguish confounding factors that may affect differentiation, including modulation of embryoid body size in response to changes in the hydrodynamic environment. In this study, we demonstrate the ability to control and maintain embryoid body (EB) size using a combination of forced aggregation formation and rotary orbital suspension culture, in order to assess the impact of hydrodynamic cultures on ESC differentiation, independent of EB size. Size-controlled EBs maintained at different rotary orbital speeds exhibited similar morphological features and gene expression profiles, consistent with ESC differentiation. The similar differentiation of ESCs across a range of hydrodynamic conditions suggests that controlling EB formation and resultant size may be important for scalable bioprocessing applications, in order to standardize EB morphogenesis. However, perturbations in the hydrodynamic environment also led to subtle changes in differentiation toward certain lineages, including temporal modulation of gene expression, as well changes in the relative efficiencies of differentiated phenotypes, thereby highlighting important tissue engineering principles that should be considered for implementation in bioreactor design, as well as for directed ESC differentiation. PMID:22609810

  17. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  18. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K;

    1986-01-01

    The fate of 257 consecutive patients (100 women) aged 36-85 years (mean 65) first seen with intermittent claudication in 1977 was analysed after a mean of 6.5 (SD 0.5) years. When first seen none of the patients complained of rest pain or had ulcers or gangrenous lesions on the feet. At follow up...... 113 of the patients (44%) had died. Causes of death were no different from those in the general population. Mortality was twice that of the general population matched for age and sex. Mortality among the men was twice that among the women. In men under 60 mortality was four times that expected. The...

  19. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  20. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression

    DEFF Research Database (Denmark)

    Kalisz, Mark; Winzi, Maria Karin; Bisgaard, Hanne Cathrine;

    2012-01-01

    TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1...

  1. Control and optimization in fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cells are electrochemical energy converters. They convert the chemical energy contained in the fuel into electricity while producing water and heat. Compared to the traditional energy converters, such as batteries and internal combustion engines, fuel cells are marked by high conversion efficiency and very low emissions.This work contains a computer study of optimization and control of fuel cells systems. An analytical study of the fuel (Hydrogen and air) supply system was performed taking into account compressor, cooling and humidification subsystems. In addition, the stack system, which consists of a lot of cells, was analyzed using the experimental equations of Nafion 117 membrane. The model of the whole system was then implemented in MATLAB/Simulink environment. The effect of the cathode pressure and the membrane water content on the polarization curves of the cell was examined. To validate the model, the responses of the model to step changes in the compressor voltage and the current drawn from the stack, were used. More attention was given to the net power which can be provided by the system, taking into account the power wasted by the compressor. (author)

  2. Modeling the Control of Planar Cell Polarity

    Science.gov (United States)

    Axelrod, Jeffrey D.; Tomlin, Claire J.

    2016-01-01

    A growing list of medically important developmental defects and disease mechanisms can be traced to disruption of the Planar Cell Polarity (PCP) pathway. The PCP system polarizes cells in epithelial sheets along an axis orthogonal to their apical-basal axis. Studies in the fruitfly, Drosophila, have led to the concept of a modular system controlling PCP. The components of the PCP signaling modules, and the effector systems with which they interact, function together to produce emergent patterns. Experimental methods allow the manipulation of individual PCP signaling molecules in specified groups of cells; these interventions not only perturb the polarization of the targeted cells at a subcellular level, but also perturb patterns of polarity at the multicellular level, often affecting nearby cells in characteristic ways. These kinds of experiments should, in principle, allow one to infer the architecture within and between modules, but the relationships between molecular interactions and tissue-level pattern are sufficiently complex that they defy intuitive understanding. Mathematical modeling has been an important tool to address these problems. This review explores the emergence of a local signaling hypothesis, and describes how a local intercellular signal, coupled with a directional cue, can give rise to global pattern. We will discuss the critical role mathematical modeling has played in guiding and interpreting experimental results, and speculate about future roles for mathematical modeling of PCP. Mathematical models at varying levels of abstraction have and are expected to continue contributing in distinct ways to understanding the regulation of PCP signaling. PMID:21755606

  3. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested

  4. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries.

    OpenAIRE

    Ai Tian; Hassina Benchabane; Zhenghan Wang; Yashi Ahmed

    2016-01-01

    Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the m...

  5. Spatio-temporal model of endogenous ROS and raft-dependent WNT/{beta}-catenin signaling driving cell fate commitment in human neural progenitor cells

    OpenAIRE

    Haack, F.; Lemcke, H.; Ewald, R.(Physikalisches Institut, Universität Bonn, Germany); Rharass, T.; Uhrmacher, A.M.

    2015-01-01

    Canonical WNT/{beta}-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/{beta}-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experiment...

  6. Modelling the fate of organic micropollutants in stormwater ponds

    OpenAIRE

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna; Mikkelsen, Peter Steen

    2011-01-01

    Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk ass...

  7. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    Science.gov (United States)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  8. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  9. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  10. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  11. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

    Directory of Open Access Journals (Sweden)

    Ksenia Smurova

    2016-02-01

    Full Text Available Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen, which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion.

  12. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis.

    Science.gov (United States)

    Li, Hui; Li, Qiming; Yu, Zhaoxiao; Zhou, Mingliang; Xie, Jianping

    2016-07-01

    PE/PPE family proteins are mycobacteria unique molecules, named after their N-terminal conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains. Mycobacterium tuberculosis (Mtb) PE family gene encoded cell surface proteins are previously reported to be involved in virulence and interaction with host. To explore the role of a novel PE member (PE13, Rv1195), M. smegmatis was used as surrogate host. The study showed that Rv1195 was a cell wall associated protein. Rv1195 can enhance the survival of recombinants under stress conditions such as H2O2, SDS, low pH. This is largely due to the upregulated transcription of Rv1195, since diverse stresses can increase the promoter activity of Rv1195 gene, consistent with enhanced survival within macrophages. Ms_Rv1195 infection also increased the production of interlukin-6 (IL-6) and IL-1β from macrophages, while decreased the secretion of suppressor of cytokine signaling 3 (SOCS3) in comparison with the vector-only control. The cell death was also precipitated by the Ms_Rv1195 infection. Inhibitors treatment showed that the p38-ERK-NF-κB axis was involved in the Rv1195 triggered change of IL-6 and IL-1β expression. In summary, we showed that PE13 (Rv1195) is a new PE family member actively engaged in the interaction between Mycobacterium and host, signaling through p38-ERK-NF-κB axis and apoptosis. PMID:27147522

  13. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based....... Further, an engineering methodology is defined. The three elements enablers, architecture and methodology constitutes the Cell Control Engineering concept which has been defined and evaluated through the implementation of two cell control systems for robot welding cells in production at ODENSE STEEL...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....

  14. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size

    OpenAIRE

    Kinney, Melissa A.; Saeed, Rabbia; McDevitt, Todd C.

    2012-01-01

    The sensitivity of stem cells to environmental perturbations has prompted many studies which aim to characterize the influence of mechanical factors on stem cell morphogenesis and differentiation. Hydrodynamic cultures, often employed for large scale bioprocessing applications, impart complex fluid shear and transport profiles, and influence cell fate as a result of changes in media mixing conditions. However, previous studies of hydrodynamic cultures have been limited in their ability to dis...

  15. Structure and Control Strategies of Fuel Cell Vehicle

    Institute of Scientific and Technical Information of China (English)

    宋建国; 张承宁; 孙逢春; 钟秋海

    2004-01-01

    The structure and kinds of the fuel cell vehicle (FCV) and the mathematical model of the fuel cell processor are discussed in detail. FCV includes many parts: the fuel cell thermal and water management, fuel supply, air supply and distribution, AC motor drive, main and auxiliary power management, and overall vehicle control system. So it requires different kinds of control strategies, such as the PID method, zero-pole method, optimal control method, fuzzy control and neural network control. Along with the progress of control method, the fuel cell vehicle's stability and reliability is up-and-up. Experiment results show FCV has high energy efficiency.

  16. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering.

    Science.gov (United States)

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J

    2011-08-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  17. System-level design of bacterial cell cycle control

    OpenAIRE

    McAdams, Harley H.; Shapiro, Lucy

    2009-01-01

    Understanding of the cell cycle control logic in Caulobacter has progressed to the point where we now have an integrated view of the operation of an entire bacterial cell cycle system functioning as a state machine. Oscillating levels of a few temporally-controlled master regulator proteins in a cyclical circuit drive cell cycle progression. To a striking degree, the cell cycle regulation is a whole cell phenomenon. Phospho-signaling proteins and proteases dynamically deployed to specific loc...

  18. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning. PMID:27229622

  19. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  20. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  1. MicroRNA Profiling Reveals Unique miRNA Signatures in IGF-1 Treated Embryonic Striatal Stem Cell Fate Decisions in Striatal Neurogenesis In Vitro

    Directory of Open Access Journals (Sweden)

    Soumya Pati

    2014-01-01

    Full Text Available The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF + bFGF-responsive cultured embryonic striatal stem cell (ESSC, while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons. In order to decipher the underlying regulatory microRNA (miRNAs in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.

  2. IL-10 produced by iTreg cells controls colitis and pathogenic ex-iTreg cells during immunotherapy1

    OpenAIRE

    Schmitt, Erica G.; Haribhai, Dipica; Williams, Jason B; Aggarwal, Praful; Jia, Shuang; Charbonnier, Louis-Marie; Yan, Ke; Lorier, Rachel; Turner, Amy; Ziegelbauer, Jennifer; Georgiev, Peter; Simpson, Pippa; Salzman, Nita H.; Hessner, Martin J.; Broeckel, Ulrich

    2012-01-01

    “Natural” regulatory T (nTreg) cells that express the transcription factor Foxp3 and produce IL-10 are required for systemic immunological tolerance. “Induced” Treg (iTreg) cells are non-redundant and essential for tolerance at mucosal surfaces, yet their mechanisms of suppression and stability are unknown. We investigated the role of iTreg cell-produced IL-10 and iTreg cell fate in a treatment model of inflammatory bowel disease. Colitis was induced in Rag1−/− mice by the adoptive transfer o...

  3. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development

    Directory of Open Access Journals (Sweden)

    Lyons Deirdre C

    2012-09-01

    Full Text Available Abstract Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage, and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise

  4. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  5. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1

    International Nuclear Information System (INIS)

    Highlights: ► DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. ► The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. ► The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27Kip1 and repressed p21Cip1, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21Cip1, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  6. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro Jinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  7. Biological cell controllable patch-clamp microchip

    Science.gov (United States)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  8. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm.

    Science.gov (United States)

    Grigorian, Melina; Mandal, Lolitika; Hakimi, Manuel; Ortiz, Irma; Hartenstein, Volker

    2011-05-01

    Blood progenitors arise from a pool of pluripotential cells ("hemangioblasts") within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters ("cardiogenic clusters") that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts. PMID:21382367

  9. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition.

    Directory of Open Access Journals (Sweden)

    Marina Garcia-Jove Navarro

    Full Text Available BACKGROUND: The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. CONCLUSION/SIGNIFICANCE: The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.

  10. Mitotic Control of Cancer Stem Cells

    OpenAIRE

    Venere, Monica; Miller, Tyler E.; Rich, Jeremy N.

    2013-01-01

    Cancer stem cells are self-renewing, tumorigenic cells at the apex of tumor hierarchies, and postulated to be quiescent in many tumor types. This issue of Cancer Discovery highlights a study that links the presentation of kinetochores within mitosis to an essential requirement for BUB1B/BubR1, broadening our understanding of the cell-cycle machinery in cancer stem cells.

  11. WHAT CONTROLS STEM CELL DEVELOPMENT-- CELL POTENTIAL OR LOCAL ENVIRONMENT?

    Science.gov (United States)

    In H. virescens, as in M. sexta and other lepidoptera, midgut development proceeds through the sequential proliferation and differentiation of the midgut stem cells. In larvae,the stem cells repeatedly differentiatiate to goblet, columnar, and to a lesser extent endocrine cells of the midgut; a res...

  12. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  13. The ETS domain transcriptional repressor Anterior open inhibits MAP kinase and Wingless signaling to couple tracheal cell fate with branch identity

    OpenAIRE

    Caviglia, S; Luschnig, S.

    2013-01-01

    Cells at the tips of budding branches in the Drosophila tracheal system generate two morphologically different types of seamless tubes. Terminal cells (TCs) form branched lumenized extensions that mediate gas exchange at target tissues, whereas fusion cells (FCs) form ring-like connections between adjacent tracheal metameres. Each tracheal branch contains a specific set of TCs, FCs, or both, but the mechanisms that select between the two tip cell types in a branch-specific fashion are not cle...

  14. The self-obsession of T cells: how TCR signaling thresholds affect fate decisions in the thymus and effector function in the periphery

    OpenAIRE

    Hogquist, Kristin A.; Jameson, Stephen C.

    2014-01-01

    Self-reactivity was once seen as a potential characteristic of T cells that was eliminated by clonal selection to protect the host from autoimmune pathology. We now appreciate that the T cell repertoire is in fact, broadly self-reactive, one could even say self-centered. The strength with which a T cell reacts to self ligands, and the environmental context that this reaction occurs in, influences almost every aspect of T cell biology: from development to differentiation to effector function. ...

  15. Thymic and Postthymic Regulation of Naïve CD4+ T-Cell Lineage Fates in Humans and Mice Models

    OpenAIRE

    Belizário, José E.; Wesley Brandão; Cristiano Rossato; Jean Pierre Peron

    2016-01-01

    Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes w...

  16. Promoting ectopic pancreatic fates: pancreas development and future diabetes therapies

    OpenAIRE

    Pearl, Esther J.; Horb, Marko E.

    2008-01-01

    Diabetes is a disease which could be treated more effectively with a better understanding of pancreas development. This review examines the role of master regulator genes driving crucial steps in pancreas development, from foregut specification to differentiation of the five endocrine cell types. The roles of Pdx1, Ptf1a, and Ngn3 are particularly examined as they are both necessary and sufficient for promoting pancreatic cell fates (Pdx1, Ptf1a) and endocrine cell development (Ngn3). The rol...

  17. Quantitative Analysis of the Fate of Gold Nanocages In Vitro and In Vivo after Uptake by U87-MG Tumor Cells

    OpenAIRE

    Cho, Eun Chul; Zhang, Yu; Cai, Xin; Moran, Christine M.; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Not always equal: When a mother cell that contains Au nanocages divides, the nanoparticles are unequally distributed between the two daughter cells. This unequal distribution of nanoparticles as well as their clearance from the cells (see picture) is quantitatively analyzed both in vitro and in vivo using two-photon microscopy and photoacoustic microscopy, respectively.

  18. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Wong, Gladys W; Lee, Sang-Yun;

    2009-01-01

    alphabeta and gammadelta T cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and gammadelta T cell receptor (gammadeltaTCR) play instructional roles in specifying the alphabeta and gammadelta T-lineag...

  19. PUF-8, a Pumilio Homolog, Inhibits the Proliferative Fate in the Caenorhabditis elegans Germline

    OpenAIRE

    Racher, Hilary; Hansen, Dave

    2012-01-01

    Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the proliferative fate of stem cells in the C. elegans germline. puf-8(0) strongly enhances overproliferatio...

  20. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition

    OpenAIRE

    Lizama, Carlos O.; Hawkins, John S.; Schmitt, Christopher E.; Bos, Frank L.; Zape, Joan P.; Cautivo, Kelly M.; Borges Pinto, Hugo; Rhyner, Alexander M.; Yu, Hui; Donohoe, Mary E; Wythe, Joshua D.; Zovein, Ann C.

    2015-01-01

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function l...

  1. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate.

    OpenAIRE

    Stefanovic, Sonia; Abboud, Nesrine; Désilets, Stéphanie; Nu, David; Cowan, Chad; Pucéat, Michel

    2009-01-01

    Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluri...

  2. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Directory of Open Access Journals (Sweden)

    W.C. Mak

    2015-06-01

    Full Text Available Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs. While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.

  3. Energy, control and DNA structure in the living cell

    DEFF Research Database (Denmark)

    Wijker, J.E.; Jensen, Peter Ruhdal; Gomes, A. Vaz;

    1995-01-01

    directly or via “storage” in an intermediate high energy form, i.e., highATPADP ratio or H+ ion gradient. Although maintenance of a sufficiently high ATPADP ratio is essential to overcome the thermodynamic burden of uphill processes, it is not clear to what degree enzymes that control this ratio also...... control cell physiology. Indeed, in the living cell homeostatic control mechanisms might exist for the free-energy transduction pathways so as to prevent perturbation of cellular function when the Gibbs energy supply is compromised. This presentation addresses the extent to which the intracellular ATP...... level is involved in the control of cell physiology, how the elaborate control of cell function may be analyzed theoretically and quantitatively, and if this can be utilized selectively to affect certain cell types....

  4. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  5. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute to...

  6. Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter

    OpenAIRE

    Suzuki, Shingo; Shuto, Tsuyoshi; Sato, Takashi; Kaneko, Masayuki; Takada, Tappei; Suico, Mary Ann; Cyr, Douglas M; Suzuki, Hiroshi; Kai, Hirofumi

    2014-01-01

    N-glycosylation of proteins in endoplasmic reticulum is critical for protein quality control. We showed here a post-translational N-glycosylation affected by the HRD1 E3 ubiquitin ligase. Both WT- and E3-defective C329S-HRD1 decreased the level of high mannose form of ABCG8, a protein that heterodimerizes with ABCG5 to control sterol balance. Meanwhile, HRD1 increased the non-glycosylated ABCG8 regardless of its E3 activity, thereby suppressing full maturation of ABCG5/8 transporter. Pulse ch...

  7. Study on the Architecture of Control System for Manufacturing Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The depiction of the agile manufacturing cell includes a synopsis of some of the change proficiencies obtained by the configuration. To achieve agile configuration, the cell control system for agile manufacturing must be rapidly and efficiently generated or modified. In this paper, the object-oriented architecture is defined that supports design and implementation of highly reconfigurable control systems for agile manufacturing cells, which is composed of database objects, control objects, and resource objects, so as to reduce costs and to increase the control system's agility with respect to changing environment.

  8. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic......The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology of the...

  9. Transcriptional control of stem cell maintenance in the Drosophila intestine

    OpenAIRE

    Bardin, Allison J.; Perdigoto, Carolina N.; Southall, Tony D.; Brand, Andrea H; Schweisguth, François

    2010-01-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhan...

  10. A parallel control architecture for industrial robot cells

    OpenAIRE

    Henrich, Dominik; Abegg, Frank; Wurll, Christian; Wörn, Heinz

    1998-01-01

    We present a parallel control architecture for industrial robot cells. It is based on closed functional components arranged in a flat communication hierarchy. The components may be executed by different processing elements, and each component itself may run on multiple processing elements. The system is driven by the instructions of a central cell control component. We set up necessary requirements for industrial robot cells and possible parallelization levels. These are met by the suggested ...

  11. Monitoring, chemical fate modelling and uncertainty assessment in combination: a tool for evaluating emission control scenarios for micropollutants in stormwater systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Birch, Heidi;

    2012-01-01

    Stormwater discharges can represent significant sources of micropollutants (MP), including heavy metals and xenobiotic organic compounds that may pose a toxicity risk to aquatic ecosystems. Control of stormwater quality and reduction of MP loads is therefore necessary for a sustainable stormwater...

  12. P2X4 receptors control the fate and survival of activated microglia%P2X4受体对活化的小胶质细胞的调控作用

    Institute of Scientific and Technical Information of China (English)

    Vázquez-Villoldo N; Domercq M; Martín A; Llop J; Gómez-Vallejo V; Matute C

    2014-01-01

    secretion and morpho-logical changes, as well as LPS-induced microglial cell death. Accordingly, neuroinflammation provoked by LPS injection in vivo induced a rapid microglial loss in the spinal cord that was totally prevented or potentiated by P2X4 receptor blockade or facilitation, respectively. Within the brain, microglia in the hippocampal dentate gyrus showed particular vulnerability to LPS-induced neuroinflammation. Thus, microglia processes in this re-gion retracted as early as 2 h after injection of LPS and died around 24 h later, two features which were prevented by blocking P2X4 receptors. Together, these data suggest that P2X4 receptors contribute to controlling the fate of activated microglia and its survival.

  13. Dictyostelium possesses highly diverged presenilin/γ-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/γ-secretase complex

    Science.gov (United States)

    McMains, Vanessa C.; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R.

    2010-01-01

    SUMMARY Presenilin (PS) is the catalytic moiety of the γ-secretase complex. PS and other γ-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate γ-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer’s disease, understanding essential elements within each γ-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate γ-secretase activity. We have identified highly diverged orthologs for each γ-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/γ-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-β peptides Aβ40 and Aβ42; strains deficient in γ-secretase cannot produce Aβ peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments α- and β-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active γ-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/γ-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  14. Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex.

    Science.gov (United States)

    McMains, Vanessa C; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R

    2010-01-01

    Presenilin (PS) is the catalytic moiety of the gamma-secretase complex. PS and other gamma-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate gamma-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer's disease, understanding essential elements within each gamma-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate gamma-secretase activity. We have identified highly diverged orthologs for each gamma-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/gamma-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-beta peptides Abeta(40) and Abeta(42); strains deficient in gamma-secretase cannot produce Abeta peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments alpha- and beta-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active gamma-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/gamma-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  15. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    NARCIS (Netherlands)

    Knoll, G.; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A.J.

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus-infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry, 24: 3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apica

  16. Monitoring, chemical fate modelling and uncertainty assessment in combination: a tool for evaluating emission control scenarios for micropollutants in stormwater systems

    OpenAIRE

    Mikkelsen, Peter Steen; Vezzaro, Luca; Birch, Heidi; Eriksson, Eva; Høg, H.-H.; Sharma, Anitha Kumari

    2012-01-01

    Stormwater discharges can represent significant sources of micropollutants (MP), including heavy metals and xenobiotic organic compounds that may pose a toxicity risk to aquatic ecosystems. Control of stormwater quality and reduction of MP loads is therefore necessary for a sustainable stormwater management in urban areas, but it is strongly hampered by the general lack of field data on these substances. A framework for combining field monitoring campaigns with dynamic MP modelling tools and ...

  17. Necdin Controls Proliferation of White Adipocyte Progenitor Cells

    OpenAIRE

    Fujiwara, Kazushiro; Hasegawa, Koichi; Ohkumo, Tsuyoshi; Miyoshi, Hiroyuki; Yoshikawa, Kazuaki; Tseng, Yu-Hua

    2012-01-01

    White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the mole...

  18. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Directory of Open Access Journals (Sweden)

    Su-Chiung Fang

    2006-10-01

    Full Text Available Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  19. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  20. Waveform control of fuel-cell inverter systems

    OpenAIRE

    Zhu, GR; Wang, KW; Tse, CK; Tan, SC

    2012-01-01

    Fuel-cell power systems comprising single-phase DC/AC inverters draw low-frequency AC ripple currents at twice the output frequency from the fuel cell. Such a 100/120 Hz ripple current may create instability in the fuel cell system, lowers its efficiency, and shortens the lifetime of fuel cell stack. This paper1 presents a waveform control method that can mitigate such a low-frequency ripple current from being drawn from the fuel cell while the fuel-cell system delivers AC power to the load t...

  1. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila.

    Science.gov (United States)

    Cattenoz, Pierre B; Popkova, Anna; Southall, Tony D; Aiello, Giuseppe; Brand, Andrea H; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  2. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9.

    Science.gov (United States)

    Esain, Virginie; Postlethwait, John H; Charnay, Patrick; Ghislain, Julien

    2010-01-01

    The mechanisms underlying the generation of neural cell diversity are the subject of intense investigation, which has highlighted the involvement of different signalling molecules including Shh, BMP and Wnt. By contrast, relatively little is known about FGF in this process. In this report we identify an FGF-receptor-dependent pathway in zebrafish hindbrain neural progenitors that give rise to somatic motoneurons, oligodendrocyte progenitors and differentiating astroglia. Using a combination of chemical and genetic approaches to conditionally inactivate FGF-receptor signalling, we investigate the role of this pathway. We show that FGF-receptor signalling is not essential for the survival or maintenance of hindbrain neural progenitors but controls their fate by coordinately regulating key transcription factors. First, by cooperating with Shh, FGF-receptor signalling controls the expression of olig2, a patterning gene essential for the specification of somatic motoneurons and oligodendrocytes. Second, FGF-receptor signalling controls the development of both oligodendrocyte progenitors and astroglia through the regulation of sox9, a gliogenic transcription factor the function of which we show to be conserved in the zebrafish hindbrain. Overall, for the first time in vivo, our results reveal a mechanism of FGF in the control of neural cell diversity. PMID:20023158

  3. Ataxia-telangiectasia cell extracts confer radioresistant DNA synthesis on control cells

    International Nuclear Information System (INIS)

    We have investigated in greater detail the radioresistant DNA synthesis universally observed in cells from patients with ataxia-telangiectasia (A-T). The approach employed in this study was to permeabilize cells with lysolecithin after gamma-irradiation and thus facilitate the introduction of cell extract into these cells. This permeabilization can be reversed by diluting the cells in growth medium. Cells treated in this way show the characteristic inhibition (control cells) or lack of it (A-T cells) after exposure to ionizing radiation. Introduction of A-T cells extracts into control cells prevented the radiation-induced inhibition of DNA synthesis normally observed in these cells. A-T cell extracts did not change the level of radioresistant DNA synthesis in A-T cells. Control cell extracts on the other hand did not influence the pattern of inhibition of DNA synthesis in either cell type. It seems likely that the agent involved is a protein because of its heat lability and sensitivity to trypsin digestion. It has a molecular weight (MW) in the range 20-30 000 D. The development of this assay system for a factor conferring radioresistant DNA synthesis on control cells provides a means of purifying this factor, and ultimately an approach to identifying the gene responsible

  4. Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton's jelly mesenchymal stem cells into cardiac progenitor cells.

    Science.gov (United States)

    Lin, Yun-Li; Chen, Chie-Pein; Lo, Chun-Min; Wang, Hwai-Shi

    2016-09-01

    Stem cell-based regenerative therapy has emerged as a promising treatment for myocardial infarction. The aim of this study is to develop stiffness-controlled collagen scaffolds to allow proliferation and differentiation of mesenchymal stem cell (MSCs) into cardiac progenitor cells. In this study transforming growth factor β2 (TGF-β2), was used to induce stem cell differentiation into cardiac lineage cells. Collagen scaffolds were cross-linked with cross-linkers, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and N-Hydroxysuccinimide (NHS). The results showed that collagen scaffolds cross-linked with 25/50 and 50/50 of EDC mM/NHS mM cross-linkers exhibited little difference in shape and size, the scaffold cross-linked with 50/50 of cross-linkers demonstrated better interconnectivity and higher Young's modulus (31.8 kPa) than the other (15.4 kPa). SEM observation showed that MSCs could grow inside the scaffolds and interact with collagen scaffolds. Furthermore, greater viability and cardiac lineage differentiation were achieved in MSCs cultured on stiffer scaffolds. The results suggest that three-dimensional type I collagen scaffolds with suitable cross-linking to adjust for stiffness can affect MSC fate and direct the differentiation of MSCs into cardiac progenitor cells with/without TGF-β2. These stiffness-controlled collagen scaffolds hold great potential as carriers for delivering MSCs differentiated cardiac progenitor cells into infracted hearts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2234-2242, 2016. PMID:27120780

  5. Intelligent Control Strategy of Fuel Cell Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Abolfazl Hajizadeh

    2011-05-01

    Full Text Available This paper deals a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle (FCHV structure. This method implements an on-line power management based on the neuro-fuzzy controller between dual power sources that consist of a battery bank and a fuel cell (FC. This structure included battery and fuel cell and its power train system include an Electric Motor (EM and vehicle dynamics. The proposed control method involves an intelligent controller which captures all of possible operation modes and predicts the driver intention. Moreover, there are local controllers to regulate the set points of each subsystems to reach the best performance and acceptable operation indexes. Simulation results of hybrid system illustrate improvement in the operation efficiency of the FCHV and the battery state of charge and fuel cell utilization factor have been maintained at a reasonable level.

  6. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    OpenAIRE

    Knoll, G.; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A. J.

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus- infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry. 24:3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposomal [3H]dipalmitoylphosphatidylcholine after rapid freezing or chemical fixation and further processi...

  7. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    OpenAIRE

    Knoll, G; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A J

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus-infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry, 24: 3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposomal [3H]dipalmitoylphosphatidylcholine after rapid freezing or chemical fixation and further processi...

  8. Fusion of liposomes with the plasma membrane of epithelial cells: fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    OpenAIRE

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus- infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry. 24:3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposomal [3H]dipalmitoylphosphatidylcholine after rapid freezing or chemical fixation and further processi...

  9. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Tsien, Roger Y

    2014-02-04

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.

  10. Optogenetic Control of Mouse Outer Hair Cells.

    Science.gov (United States)

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L

    2016-01-19

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. PMID:26789771

  11. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...... distinct NHL entities however, shortened survival seems to correlate with high expression of p27. For definitive assessment of the role played by p27 in lymphomagenesis, and the prognostic value of p27 in these tumors, further studies of distinct NHL entities are needed. This review addresses the function...

  12. Integrating transcriptional controls for plant cell expansion

    OpenAIRE

    Mockaitis, Keithanne; Estelle, Mark

    2004-01-01

    The plant hormones auxin and brassinosteroid promote cell expansion by regulating gene expression. In addition to independent transcriptional responses generated by the two signals, recent microarray analyses indicate that auxin and brassinosteroid also coordinate the expression of a set of shared target genes.

  13. The control of vascular endothelial cell injury.

    Science.gov (United States)

    Murota, S; Morita, I; Suda, N

    1990-01-01

    The mechanism by which MCI-186 showed a potent cytoprotective effect on the in vitro endothelial cell injury due to 15-HPETE was studied. Stimulation of human leukocytes with various chemical mediators such as TPA, f-Met-Leu-Phe, LTB4, etc. elicited the production of active oxygens, which could be detected by luminol-dependent chemiluminescence. Among the chemical mediators tested, TPA elicited the chemiluminescence the most, and f-Met-Leu-Phe and LTB4 came next. When the leukocytes were directly placed on a monolayer of cultured endothelial cells, followed by stimulating the leukocytes with TPA, severe endothelial cell injury was observed. The effect of TPA was dose dependent. There was good correlation between the active oxygen releasing activity and the cytotoxic activity. When the leukocytes were placed on a filter which was set apart from the monolayer of endothelial cell in a culture dish, and stimulated the leukocytes with TPA, no cytotoxicity was observed. These data strongly suggest that the substance responsible for the cytotoxicity must be a very labile and short-lived substance, presumably active oxygens. On the other hand, MCI-186 was found to have a complete quenching activity to the chemiluminescence due to active oxygens in the TPA-leukocyte system. Taken together, these factors indicate that the potent cytoprotective effect of MCI-186 may be due to its specific radical scavenging activity. PMID:2248437

  14. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  15. The nuclear pore complex acts as a master switch for nuclear and cell differentiation.

    Science.gov (United States)

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Cell differentiation is associated with the functional differentiation of the nucleus, in which alteration of the expression profiles of transcription factors occurs to destine cell fate. Nuclear transport machineries, such as importin-α, have also been reported as critical factors that induce cell differentiation. Using various fluorescence live cell imaging methods, including time-lapse imaging, FRAP analysis and live-cell imaging associated correlative light and electron microscopy (Live CLEM) of Tetrahymena, a unicellular ciliated protozoan, we have recently discovered that type switching of the NPC is the earliest detectable event of nuclear differentiation. Our studies suggest that this type switching of the NPC directs the fate of the nucleus to differentiate into either a macronucleus or a micronucleus. Our findings in this organism may provide new insights into the role of the NPC in controlling nuclear functions in general in eukaryotes, including controlling cell fate leading to cell differentiation in multicellular metazoa. PMID:26479399

  16. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas

    DEFF Research Database (Denmark)

    Liontos, Michalis; Niforou, Katerina; Velimezi, Georgia;

    2009-01-01

    Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies...... in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis...... in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network...

  17. Rac and Rho GTPases in cancer cell motility control

    Directory of Open Access Journals (Sweden)

    Parri Matteo

    2010-09-01

    Full Text Available Abstract Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  18. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Olson, Emilia S.; Whitney, Michael; Tsien, Roger

    2015-07-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  19. A direct computer control concept for mammalian cell fermentation processes

    OpenAIRE

    Büntemeyer, Heino; Marzahl, Rainer; Lehmann, Jürgen

    1994-01-01

    In the last 10 years, new assignments and the special demands of mammalian cells to the culture conditions caused the development of complex small scale fermentation setups. The use of continuous fermentation and cell retention devices requires appropriate process control systems. An arrangement for control and data-acquisition of complex laboratory-scale bioreactors is presented. The fundamental idea was the usage of a standard personal computer, which is connected to pumps, valves and senso...

  20. Control and Communication Network in Hybrid Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    朱元; 吴昊; 田光宇; 阳宪惠; 赵立安; 周伟波

    2004-01-01

    This paper describes the control and communication network in fuel cell vehicles, including both the protocol and the hardware.Based on the current protocol (ISO-11898 and SAE J1939), a new practical protocol is proposed and implemented for the control and communication network in fuel cell vehicles.To improve the reliability of data communication and to unify the network management, a new network system based on dual-port RAM is also implemented.

  1. SoftCell: Taking Control of Cellular Core Networks

    OpenAIRE

    Jin, Xin; Li, Li Erran; Vanbever, Laurent; Rexford, Jennifer

    2013-01-01

    Existing cellular networks suffer from inflexible and expensive equipment, and complex control-plane protocols. To address these challenges, we present SoftCell, a scalable architecture for supporting fine-grained policies for mobile devices in cellular core networks. The SoftCell controller realizes high-level service polices by directing traffic over paths that traverse a sequence of middleboxes, optimized to the network conditions and user locations. To ensure scalability, the core switche...

  2. Challenges in tissue engineering - towards cell control inside artificial scaffolds.

    Science.gov (United States)

    Emmert, M; Witzel, P; Heinrich, D

    2016-05-11

    Control of living cells is vital for the survival of organisms. Each cell inside an organism is exposed to diverse external mechano-chemical cues, all coordinated in a spatio-temporal pattern triggering individual cell functions. This complex interplay between external chemical cues and mechanical 3D environments is translated into intracellular signaling loops. Here, we describe how external mechano-chemical cues control cell functions, especially cell migration, and influence intracellular information transport. In particular, this work focuses on the quantitative analysis of (1) intracellular vesicle transport to understand intracellular state changes in response to external cues, (2) cellular sensing of external chemotactic cues, and (3) the cells' ability to migrate in 3D structured environments, artificially fabricated to mimic the 3D environment of tissue in the human body. PMID:27139622

  3. [Quality of life and fate].

    Science.gov (United States)

    Spaemann, C

    1992-01-01

    While the term "happiness of life", the "eudaimonia" of the greek philosophers, includes the good as such and therefore a metaphysical and moral component, the modern term of the "quality of life" is wholly defined by the criteria of a person's functional capacity and subjective wellbeing. The doctor's orientation by these criteria meets its limits, where he is confronted with fatality. This shows that we cannot really comprehend the quality of life without man's fundamental task of mastering his fate. PMID:1296397

  4. Targeting Homeostatic T Cell Proliferation to Control Beta-Cell Autoimmunity.

    Science.gov (United States)

    Vignali, Debora; Monti, Paolo

    2016-05-01

    Immunomodulation of the autoreactive T cell response is considered a major strategy to control beta-cell autoimmunity, both in the natural history of type 1 diabetes and in islet transplantation, which can be affected by autoimmunity recurrence. So far, these strategies have had modest results, prompting efforts to define novel cellular and molecular targets to control autoreactive T cell expansion and activation. Novel findings highlighted the important role of the homeostatic cytokine interleukin-7 in inducing proliferation and differentiation of autoreactive T cell clones that causes beta-cell autoimmunity. In this review, we discuss recent evidences and novel findings on the role of IL-7 mediated homeostatic T cell proliferation in the process of beta-cell destruction and evidences of how targeting IL-7 and its receptor could be an innovative and effective strategy to control beta-cell autoimmunity. PMID:26983628

  5. Itch expression by Treg cells controls Th2 inflammatory responses

    OpenAIRE

    Jin, Hyung-Seung; Park, Yoon; Elly, Chris; Liu, Yun-Cai

    2013-01-01

    Regulatory T (Treg) cells maintain immune homeostasis by limiting autoimmune and inflammatory responses. Treg differentiation, maintenance, and function are controlled by the transcription factor Foxp3. However, the exact molecular mechanisms underlying Treg cell regulation remain elusive. Here, we show that Treg cell–specific ablation of the E3 ubiquitin ligase Itch in mice caused massive multiorgan lymphocyte infiltration and skin lesions, chronic T cell activation, and the development of s...

  6. To NFκB or not to NFκB: The Dilemma on How to Inhibit a Cancer Cell Fate Regulator.

    Science.gov (United States)

    Sorriento, Daniela; Illario, Maddalena; Finelli, Rosa; Iaccarino, Guido

    2012-09-01

    Nuclear factor κB (NFκB) is a transcription factor that plays an important role in carcinogenesis as well as in the regulation of inflammatory response. NFκB is constitutively expressed in tumours where it induces the expression of genes which promote cell proliferation, apoptotic events, angiogenesis, invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NFκB activation that mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NFκB activity appears a potential therapeutic strategy for cancer treatment. In this review, we focus on the role of NFκB in carcinogenesis and summarize actual inhibitors of NFκB that could be potential therapeutic target in cancer therapy. PMID:23905066

  7. Quantitative determination of the intracellular fate of internalized plasma membrane in dissociated pituitary prolactin cells utilizing a radioiodinated cationic ferritin probe (CFI) and electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Dissociated anterior pituitary cells derived from estrogen-treated female rats were incubated with radioiodinated cationic ferritin (CFI) for 2 min and subsequently in the absence of CFI for varying periods of time up to 3 hr in order to quantitate, using electron microscopic autoradiography, the distribution of retrieved plasma membrane in these cells. Following a 2-min incubation with CFI, autoradiographic grains were found to be associated almost exclusively with the plasma membrane. With increasing periods of incubation in the absence of CFI, grain-density analysis revealed increasing levels of CFI in multiple intracellular organelles. The levels of CFI were greatest for the lysosomes, intermediate for the mature secretory granules, and least for the Golgi cisternae and immature secretory granules. These findings are consistent with the idea that a portion of the retrieved plasma membrane is degraded in lysosomes and that the remainder is recycled to organelles comprising the secretory pathway to be reutilized in successive waves of the secretory cycle

  8. [Lymphopoiesis supported by osteolineage cells].

    Science.gov (United States)

    Katayama, Yoshio

    2016-05-01

    Bone marrow(BM)and thymus are known as the primary lymphoid organs for B and T cells, respectively. However, the cell fate for T cell lineage commitment is already determined in the BM. Thus, the lymphopoiesis is critically controlled in the BM and, according to the recent advances in genetic mouse models, it appears that this process is strictly regulated by a series of osteolineage mesenchymal populations. PMID:27117616

  9. Shape control and compartmentalization in active colloidal cells.

    Science.gov (United States)

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation. PMID:26253763

  10. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  11. SHARPIN controls the development of regulatory T cells.

    Science.gov (United States)

    Redecke, Vanessa; Chaturvedi, Vandana; Kuriakose, Jeeba; Häcker, Hans

    2016-06-01

    SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be

  12. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  13. Energy, control and DNA structure in the living cell

    DEFF Research Database (Denmark)

    Wijker, J.E.; Jensen, Peter Ruhdal; Gomes, A. Vaz; Guiral, M.; Jongsma, A.P.M.; de Waal, A.; Hoving, S.; van Dooren, S.; van der Weijden, C.C.; van Workum, M.; van Heeswijk, W.C.; Molenaar, O.; Wielinga, Pieter; Richard, P.; Diderich, J.; Bakker, B.M.; Teusink, B.; Hemker, M.; Rohwer, J.M.; van der Gugten, A.A.; Kholodenko, B.N.; Westerhoff, H.V.

    Maintenance (let alone growth) of the highly ordered living cell is only possible through the continuous input of free energy. Coupling of energetically downhill processes (such as catabolic reactions) to uphill processes is essential to provide this free energy and is catalyzed by enzymes either...... control cell physiology. Indeed, in the living cell homeostatic control mechanisms might exist for the free-energy transduction pathways so as to prevent perturbation of cellular function when the Gibbs energy supply is compromised. This presentation addresses the extent to which the intracellular ATP...

  14. The control and execution of programmed cell death

    International Nuclear Information System (INIS)

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectively manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  15. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  16. Control assembly for controlling a fuel cell system during shutdown and restart

    Science.gov (United States)

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  17. Fate of Cajal-Retzius neurons in the postnatal mouse neocortex

    Directory of Open Access Journals (Sweden)

    Tara G Chowdhury

    2010-03-01

    Full Text Available Cajal-Retzius (CR neurons play a critical role in cortical neuronal migration, but their exact fate after the completion of neocortical lamination remains a mystery. Histological evidence has been unable to unequivocally determine whether these cells die or undergo a phenotypic transformation to become resident interneurons of Layer 1 in the adult neocortex. To determine their ultimate fate, we performed chronic in vivo two-photon imaging of identified CR neurons during postnatal development in mice that express the green fluorescent protein (GFP under the control of the early B-cell factor 2 (Ebf2 promoter. We find that, after birth, virtually all CR neurons in mouse neocortex express Ebf2. Although postnatal CR neurons undergo dramatic morphological transformations, they do not migrate to deeper layers. Instead, their gradual disappearance from the cortex is due to apoptotic death during the second postnatal week. A small fraction of CR neurons present at birth survive into adulthood. We conclude that, in addition to orchestrating cortical layering, a subset of CR neurons must play other roles beyond the third postnatal week.

  18. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  19. Cells on corrugations for pollution control

    International Nuclear Information System (INIS)

    Old cardboard boxes constitute 12% of landfills. White rot fungus can be grown on the boxes and buried in contaminated soil. The fungus needs air which is entrapped in the corrugations. The fungus is sensitive to large amounts of TNT but it is protected when inside the corrugations. Fast food containers are filling landfills. Lactic acid production needs air and the polymers are biodegradable. When corrugations are put in a half full rotary unit, holes in the valleys make drops, and mass transfer to drops is much higher than to a flat surface. A lab corrugator has been made from an old washing machine wringer, so other fibers can be corrugated. When the bacterium, Zymomonas mobilis is grown on Tyvek fiber, lead and six valent chromium are removed from wastewater in a few seconds. Zymomonas on rotating fibers converts sugar to alcohol in 10--15 minutes and when a light is shown into flat rotating discs, it hits a thin moving film to destroy dioxin. Salt on roads causes millions of dollars damage to bridges and cars but calcium magnesium acetate is not corrosive and can be made with cells on rotating fibers

  20. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise