WorldWideScience

Sample records for cell death mechanisms

  1. Cell death signalling mechanisms in heart failure

    OpenAIRE

    Mughal, Wajihah; Kirshenbaum, Lorrie A.

    2011-01-01

    In 2003, cardiovascular disease was the most costly disease in Canada, and it is still on the rise. The loss of properly functioning cardiomyocytes leads to cardiac impairment, which is a consequence of heart failure. Therefore, understanding the pathways of cell death (necrosis and apoptosis) has potential implications for the development of therapeutic strategies. In addition, the role of B-cell lymphoma-2 family members is discussed and the importance of mitochondria in directing cell deat...

  2. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  3. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Ch(a)vez-Gal(a)n L; Arenas-Del Angel MC; Zenteno E; Ch(a)vez R; Lascurain R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lyric molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis.

  4. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  5. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    OpenAIRE

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and ani...

  6. Investigating cell death mechanisms in Amyotrophic lateral sclerosis using transcriptomics

    Directory of Open Access Journals (Sweden)

    Paul Roy Heath

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis is a motor neuron disease characterised by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the determination of patterns of cell death in the degenerating tissues. This work has examined gene expression at the level of the tissue and individual cell types in both sporadic and familial forms of the disease. In addition, further studies have examined the differential vulnerability of neuronal cells in different regions of the central nervous system. Model systems have also provided further information to help unravel the mechanisms that lead to death of the motor neurons in disease and also provided novel insights. In this review we shall describe the methods that have been used in these investigations and describe how they have contributed to our knowledge of the cell death mechanisms in ALS.

  7. Molecular mechanisms of cell death in intervertebral disc degeneration (Review).

    Science.gov (United States)

    Zhang, Fan; Zhao, Xueling; Shen, Hongxing; Zhang, Caiguo

    2016-06-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  8. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  9. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.

    Science.gov (United States)

    Shimada, Kenichi; Skouta, Rachid; Kaplan, Anna; Yang, Wan Seok; Hayano, Miki; Dixon, Scott J; Brown, Lewis M; Valenzuela, Carlos A; Wolpaw, Adam J; Stockwell, Brent R

    2016-07-01

    Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain uncharted. Here we surveyed the landscape of pharmacologically accessible cell death mechanisms. In an examination of 56 caspase-independent lethal compounds, modulatory profiling showed that 10 compounds induced three different types of regulated non-apoptotic cell death. Optimization of one of those ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis has been found to occur when the lipid-repair enzyme GPX4 is inhibited. FIN56 promoted degradation of GPX4. FIN56 also bound to and activated squalene synthase, an enzyme involved in isoprenoid biosynthesis, independent of GPX4 degradation. These discoveries show that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes. PMID:27159577

  10. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    cycle regulatory activites. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

  11. The mechanism of radiation-induced interphase death of lymphoid cells: A new hypothesis

    International Nuclear Information System (INIS)

    The interphase death of irradiated rat thymocytes depends on their concentration during postirradiation incubation. The kinetics of pycnosis and cell death determined with the trypan blue exclusion test in the samples with the highest cell concentration (1-2 x 10(7) cells/ml) is consistent with the data available in the literature, whereas the samples with the lowest concentration (2 x 10(5) cells/ml) undergo almost no pycnosis and death after irradiation with doses up to 50 Gy. On the basis of these results, we suggest a new mechanism of interphase death involving an interaction between irradiated thymocytes and the fraction of thymus cells possessing cytocidal activity. The observed correlation between the cytocidal activity and interphase death of thymocytes from animals of different ages favors our mechanism. It was found that the inhibitors which prevent the conjugation of killer cells and their targets do not influence interphase death, while the substances which block the secretion of cytotoxic factors or their action on the target membrane do protect from interphase death. Thus we suggest that the irradiation activates the killer cells to secrete some cytotoxic factors which induce pycnosis and interphase death of thymocytes

  12. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Yuan-Soon [School of Medical Technology, Taipei Medical University, Taipei (Taiwan); Liou, Hung-Bin; Lin, Yu-Ping; Guo, How-Ran; Ho, Sheng-Yow; Lee, Ching-Chang; Wang, Ying-Jan [Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan (Taiwan); Lin, Jen-Kun; Pan, Min-Hsiung [Institute of Biochemistry, National Taiwan University, Medical College, Taipei (Taiwan); Jeng, Jiiang-Huei [School of Dentistry, National Taiwan University and Hospital, Medical College, Taipei (Taiwan)

    2002-08-01

    Nitric oxide (NO) is an environmental pollutant found in smog and cigarette smoke. Recently, NO has been discovered to act as a molecular messenger, mediating various physiological functions. However, when an excess of NO is present, cytotoxic and mutagenic effects can also be induced. The reaction of NO with superoxide results in the formation of peroxynitrite (ONOO{sup -}), which decomposes into the hydroxyl radical and nitrogen dioxide. Both of them are potent oxidant species that may initiate and propagate lipid peroxidation. In the present study, we examined the effects of NO and ONOO{sup -} on the induction of lipid peroxidation and cell death mechanisms in rats and in A549 pulmonary epithelial cells. The results showed that ONOO{sup -} is able to induce lipid peroxidation in pulmonary epithelial cells in a dose-dependent manner. 8-Epi-prostaglandin F{sub 2{alpha}} can serve as a good biomarker of lipid peroxidation both in vitro and in vivo. Postmitotic apoptosis was found in A549 cells exposed to NO, whereas ONOO{sup -} induced cell death more characteristic of necrosis than apoptosis. Apoptosis that occurred in cells may be related to the dysfunction of mitochondria, the release of cytochrome c into cytosol, and the activation of caspase-9. The relationship between caspase activation and the cleavage of other death substrates during postmitotic apoptosis in A549 cells needs further investigation. (orig.)

  13. Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

    OpenAIRE

    Oh, Su-Jin; Ryu, Chung-Kyu; Baek, So-Young; Lee, Hyunah

    2011-01-01

    Background EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of ...

  14. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    OpenAIRE

    Xuanbin Wang; Yibin Feng; Ning Wang; Fan Cheung; Hor Yue Tan; Sen Zhong; Charlie Li; Seiichi Kobayashi

    2014-01-01

    Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and...

  15. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    Science.gov (United States)

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  16. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    Science.gov (United States)

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores. PMID:26054380

  17. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xuanbin Wang

    2014-01-01

    Full Text Available Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.

  18. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  19. Molecular mechanisms of radiation death of lymphoid cells

    International Nuclear Information System (INIS)

    A study was made of the process of poly-ADP-ribosylation of proteins in cells of radioresistant and radiosensitive fractions of mouse thymus lymphocytes after irradiation of isolated cells with a dose of 2.5 Gy. It was shown that activation of ADP-ribosylation of proteins occurred simultaneously with the formation of single-strand DNA breaks in thymocytes, and the degree of activation in radioresistant and radiosensitive fractions was nearly the same

  20. The mechanism of pneumolysin-induced cochlear hair cell death in the rat.

    Science.gov (United States)

    Beurg, Maryline; Hafidi, Aziz; Skinner, Liam; Cowan, Graeme; Hondarrague, Yannick; Mitchell, Tim J; Dulon, Didier

    2005-10-01

    Streptoccocus pneumoniae infection can result in local and systemic diseases such as otitis media, pneumonia and meningitis. Sensorineural hearing loss associated with this infection is mediated by the release of an exotoxin, pneumolysin. The goal of the present study was to characterize the mechanisms of pneumolysin toxicity in cochlear hair cells in vitro. Pneumolysin induced severe damage in cochlear hair cells, ranging from stereocilia disorganization to total cell loss. Surprisingly, pneumolysin-induced cell death preferentially targeted inner hair cells. Pneumolysin triggered in vitro cell death by an influx of calcium. Extracellular calcium appeared to enter the cell through a pore formed by the toxin. Buffering intracellular calcium with BAPTA improved hair cell survival. The mitochondrial apoptotic pathway involved in pneumolysin-induced cell death was demonstrated by the use of bongkrekic acid. Binding of pneumolysin to the hair cell plasma membrane was required to induce cell death. Increasing external calcium reduced cell toxicity by preventing the binding of pneumolysin to hair cell membranes. These results showed the significant role of calcium both in triggering pneumolysin-induced hair cell apoptosis and in preventing the toxin from binding to its cellular target. PMID:16051626

  1. Cell Death Inducing Microbial Protein Phosphatase Inhibitors—Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Rune Kleppe

    2015-10-01

    Full Text Available Okadaic acid (OA and microcystin (MC as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS and activation of Ca2+/calmodulin kinase II (CaM-KII. New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity.

  2. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    Science.gov (United States)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  3. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  4. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    Science.gov (United States)

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. PMID:27178802

  5. Investigation of epothilone B-induced cell death mechanisms in human epithelial cancer cells -in consideration of combined treatment with ionizing radiation.

    Science.gov (United States)

    Baumgart, Tonja; Kriesen, Stephan; Neels, Oliver; Hildebrandt, Guido; Manda, Katrin

    2015-07-01

    Epothilone B was shown to have promising chemo- and radiosensitizing effects on cells, but the mechanisms underlying cell death remain ambiguous. The aim of the study was to examine selected cell death pathways on the basis of FaDu and A549 cells. Western blot analyses were used for investigation of specific apoptotic markers. Immunofluorescence imaging and flow cytometry were utilized for examination of cell death mechanisms. DNA-staining was used for studying influence of epothilone B on micronucleus rate. We showed that epothilone B can initiate cell death via apoptosis and mitotic catastrophe, but induction of cell death was cell type specific. PMID:25919223

  6. Preprogrammed and programmed cell death mechanisms of apoptosis: UV-induced immediate and delayed apoptosis

    International Nuclear Information System (INIS)

    Equitoxic doses (10% clonogenic survival) of UV radiation (UVR) from the three waveband regions, i.e. UVA1 (340-400 nm), UVB (290-320 nm) and UVC (200-290 nm), were shown to induce immediate or delayed apoptosis in L5178Y-R murine lymphoma cells. Membrane and DNA damage were shown to be the most probable initiators of UVA1-induced immediate or UVR-induced delayed apoptosis, respectively. These UV-induced apoptotic processes appeared to utilize two different ''core'' biochemical mechanisms; however, one core mechanism could be initiated at two distinct sites (e.g. membrane or DNA) and result in disparate kinetics. In an attempt to resolve this mechanistic issue, the dependence on macromolecular synthesis of each UV-induced apoptotic mechanism was investigated. In the absence of UVR, inhibition of either transcription (actinomycin D) or translation (cycloheximide) induced apoptosis in a concentration-and time-dependent manner. These results suggest that an apoptotic mechanism exists that does not require macromolecular synthesis postinsult (constitutive). The UVR data demonstrate that UVA-1 induced immediate apoptosis utilizes this constitutive mechanism (preprogrammed), while UVR-induced delayed apoptosis utilizes the well-known inducible mechanism (programmed). Therefore, there are two different core biochemical mechanisms of apoptotic death available to each cell: preprogrammed (constitutive) and programmed (inducible) cell death. (Author)

  7. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Directory of Open Access Journals (Sweden)

    Petter Storm

    Full Text Available Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2, preventing the changes in free cellular Na(+ and K(+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  8. Structural modifications of mitochondria-targeted chlorambucil alter cell death mechanism but preserve MDR evasion.

    Science.gov (United States)

    Jean, Sae Rin; Pereira, Mark P; Kelley, Shana O

    2014-08-01

    Multidrug resistance (MDR) remains one of the major obstacles in chemotherapy, potentially rendering a multitude of drugs ineffective. Previously, we have demonstrated that mitochondrial targeting of DNA damaging agents is a promising tool for evading a number of common resistance factors that are present in the nucleus or cytosol. In particular, mitochondria-targeted chlorambucil (mt-Cbl) has increased potency and activity against resistant cancer cells compared to the parent compound chlorambucil (Cbl). However, it was found that, due to its high reactivity, mt-Cbl induces a necrotic type of cell death via rapid nonspecific alkylation of mitochondrial proteins. Here, we demonstrate that by tuning the alkylating activity of mt-Cbl via chemical modification, the rate of generation of protein adducts can be reduced, resulting in a shift of the cell death mechanism from necrosis to a more controlled apoptotic pathway. Moreover, we demonstrate that all of the modified mt-Cbl compounds effectively evade MDR resulting from cytosolic GST-μ upregulation by rapidly accumulating in mitochondria, inducing cell death directly from within. In this study, we systematically elucidated the advantages and limitations of targeting alkylating agents with varying reactivity to mitochondria. PMID:24922525

  9. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    Science.gov (United States)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to

  10. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  11. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    International Nuclear Information System (INIS)

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  12. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  13. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    Science.gov (United States)

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  14. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer

    OpenAIRE

    Sun, Yiming; Zhe LIU; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-01-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration...

  15. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    2010-06-01

    Full Text Available Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK cells and canine fibroma cells (A72 displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.Keywords: canine parvovirus, apoptosis, necrosis, nanoparticle, virotherapy

  16. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  17. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    Science.gov (United States)

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate

  18. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model.

    Science.gov (United States)

    Douville, Nicholas J; Zamankhan, Parsa; Tung, Yi-Chung; Li, Ran; Vaughan, Benjamin L; Tai, Cheng-Feng; White, Joshua; Christensen, Paul J; Grotberg, James B; Takayama, Shuichi

    2011-02-21

    Studies using this micro-system demonstrated significant morphological differences between alveolar epithelial cells (transformed human alveolar epithelial cell line, A549 and primary murine alveolar epithelial cells, AECs) exposed to combination of solid mechanical and surface-tension stresses (cyclic propagation of air-liquid interface and wall stretch) compared to cell populations exposed solely to cyclic stretch. We have also measured significant differences in both cell death and cell detachment rates in cell monolayers experiencing combination of stresses. This research describes new tools for studying the combined effects of fluid mechanical and solid mechanical stress on alveolar cells. It also highlights the role that surface tension forces may play in the development of clinical pathology, especially under conditions of surfactant dysfunction. The results support the need for further research and improved understanding on techniques to reduce and eliminate fluid stresses in clinical settings. PMID:21152526

  19. Mechanism of thymineless death

    International Nuclear Information System (INIS)

    Interest in the consequences of stressing the dUTPase and UrA-DNA glycosylase mechanisms in vivo led the authors to reconsider observations on the effects of thymidylate deprivation. A model of thymidylate deficiency was used produced by treatment of cultured animal cells (human lymphoblasts) with MTX in presence of purine and amino acid suppliments. The dUrd nucleotide pools were labeled under steady state conditions with tracer amounts of tritium-dUrd; unlabeled dUTP was added at the time of cid extraction of intracellular pools and re-isolated free of contaminants. The studies indicate that limiting deoxythymidylate unleashes the biosynthetic pathway for synthesis of deoxyuridylate, overcoming the dUTPase mechanism that ordinarily prevents Ura from entering DNA

  20. Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, Mohammad [Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Alatar, Abdulrahman A. [Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Hegazy, Ahmad K. [Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Department of Botany, Faculty of Science, Cairo University, Giza (Egypt); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Agricultural Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh 202002 (India)

    2013-04-15

    Highlights: ► First report on mechanism of NiO-NPs induced apoptosis in tomato roots cells. ► NiO-NPs trigger the release of caspase-3 proteases from mitochondria. ► Flow cytometry data validated oxidative burst and mitochondrial dysfunction. ► NiO-NPs at varying concentrations induced imbalance in antioxidant enzymes. ► Damage to DNA signifies the toxic potential of NiO-NPs to plants. -- Abstract: Nickel oxide nanoparticles (NiO-NPs) in the concentration range of 0.025–2.0 mg/ml were examined for the induction of oxidative stress, mitochondrial dysfunction, apoptosis/necrosis in tomato seedling roots, as an in vivo model for nanotoxicity assessment in plants. Compared to the control, catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) and lipid peroxidation (LPO) in 2.0 mg/ml NiO-NPs treatments exhibited 6.8, 3.7, 1.7 and 2.6-fold higher activities of antioxidative enzymes. At 2.0 mg/ml, 122% and 125.4% increase in intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) of seedling roots confirmed the oxidative stress and mitochondrial dysfunction. Comet assay exhibited a significant increase in the number of apoptotic (21.8%) and necrotic (24.0%) cells in 2.0 mg/ml treatment groups vis-á-vis in control 7% apoptotic and 9.6% of necrotic cells were observed. Flow cytometric analysis revealed 65.7% of apoptotic/necrotic cell populations and 2.14-fold higher caspase-3 like protease activity were recorded in 2.0 mg/ml treatment groups. Ultrastructure analysis revealed NiO-NPs translocation, nuclear condensation, abundance in peroxisomes and degenerated mitochondrial cristae. The dissolution of Ni ions from NiO-NPs signifies its potential to induce cell death presumably by Ni ions, triggering the mitochondrial dependent intrinsic apoptotic pathway.

  1. Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death

    International Nuclear Information System (INIS)

    Highlights: ► First report on mechanism of NiO-NPs induced apoptosis in tomato roots cells. ► NiO-NPs trigger the release of caspase-3 proteases from mitochondria. ► Flow cytometry data validated oxidative burst and mitochondrial dysfunction. ► NiO-NPs at varying concentrations induced imbalance in antioxidant enzymes. ► Damage to DNA signifies the toxic potential of NiO-NPs to plants. -- Abstract: Nickel oxide nanoparticles (NiO-NPs) in the concentration range of 0.025–2.0 mg/ml were examined for the induction of oxidative stress, mitochondrial dysfunction, apoptosis/necrosis in tomato seedling roots, as an in vivo model for nanotoxicity assessment in plants. Compared to the control, catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) and lipid peroxidation (LPO) in 2.0 mg/ml NiO-NPs treatments exhibited 6.8, 3.7, 1.7 and 2.6-fold higher activities of antioxidative enzymes. At 2.0 mg/ml, 122% and 125.4% increase in intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) of seedling roots confirmed the oxidative stress and mitochondrial dysfunction. Comet assay exhibited a significant increase in the number of apoptotic (21.8%) and necrotic (24.0%) cells in 2.0 mg/ml treatment groups vis-á-vis in control 7% apoptotic and 9.6% of necrotic cells were observed. Flow cytometric analysis revealed 65.7% of apoptotic/necrotic cell populations and 2.14-fold higher caspase-3 like protease activity were recorded in 2.0 mg/ml treatment groups. Ultrastructure analysis revealed NiO-NPs translocation, nuclear condensation, abundance in peroxisomes and degenerated mitochondrial cristae. The dissolution of Ni ions from NiO-NPs signifies its potential to induce cell death presumably by Ni ions, triggering the mitochondrial dependent intrinsic apoptotic pathway

  2. Mechanisms of apoptotic cell death of lymphocytes in aging and in Alzheimer's disease

    OpenAIRE

    Schindowski, Katharina

    2007-01-01

    Aging and age-related diseases are becoming more and more important for our society and our health care system. Alzheimer's disease (AD) is a disorder that destroys some parts of the brain and is characterized by global cognitive decline including a progressive irreversible loss of memory, orientation, and reasoning. “Healthy aging”, therefore, is one of the major aims for modern medicine. Apoptosis, or programmed cell death, plays an important role for example in fetal development, as well a...

  3. Mitochondria: pharmacological manipulation of cell death

    OpenAIRE

    Bouchier-Hayes, Lisa; Lartigue, Lydia; Newmeyer, Donald D.

    2005-01-01

    Cell death by apoptosis or necrosis is often important in the etiology and treatment of disease. Since mitochondria play important roles in cell death pathways, these organelles are potentially prime targets for therapeutic intervention. Here we discuss the mechanisms through which mitochondria participate in the cell death process and also survey some of the pharmacological approaches that target mitochondria in various ways.

  4. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death.

    Science.gov (United States)

    Singh, Nitu; Senapati, Sanjib; Bose, Kakoli

    2016-01-01

    High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis. PMID:26906543

  5. Glutathione in Cancer Cell Death

    International Nuclear Information System (INIS)

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

  6. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  7. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted. PMID:26028028

  8. Different Mechanisms of Cell Death in Radiosensitive and Radioresistant P53 Mutated Head and Neck Squamous Cell Carcinoma Cell Lines Exposed to Carbon Ions and X-Rays

    International Nuclear Information System (INIS)

    Purpose: We initiated studies on the mechanisms of cell death in head and neck squamous cell carcinoma cell lines (HNSCC) since recent clinical trials have shown that local treatment of HNSCC by carbon hadrontherapy is less efficient than it is in other radioresistant cancers. Methods and Materials: Two p53-mutated HNSCC cell lines displaying opposite radiosensitivity were used. Different types of cell death were determined after exposure to carbon ions (33.6 and 184 keV/μm) or X-rays. Results: Exposure to radiation with high linear energy transfer (LET) induced clonogenic cell death for SCC61 (radiosensitive) and SQ20B (radioresistant) cells, the latter systematically showing less sensitivity. Activation of an early p53-independent apoptotic process occurred in SCC61 cells after both types of irradiation, which increased with time, dose and LET. In contrast, SQ20B cells underwent G2/M arrest associated with Chk1 activation and Cdc2 phosphorylation. This inhibition was transient after X-rays, compared with a more prolonged and LET-dependent accumulation after carbon irradiation. After release, a LET-dependent increase of polyploid and multinucleated cells, both typical signs of mitotic catastrophe, was identified. However, a subpopulation of SQ20B cells was able to escape mitotic catastrophe and continue to proliferate. Conclusions: High LET irradiation induced distinct types of cell death in HNSCC cell lines and showed an increased effectiveness compared with X-rays. However, the reproliferation of SQ20B may explain the potential locoregional recurrence observed among some HNSCC patients treated by hadrontherapy. An adjuvant treatment forcing the tumor cells to enter apoptosis may therefore be necessary to improve the outcome of radiotherapy.

  9. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death

    OpenAIRE

    Nitu Singh; Sanjib Senapati; Kakoli Bose

    2016-01-01

    High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and bioph...

  10. Cell death in the cardiovascular system

    OpenAIRE

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2006-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the norm...

  11. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  12. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies.

    Science.gov (United States)

    Gebremeskel, Simon; Johnston, Brent

    2015-12-01

    Chemotherapy has historically been thought to induce cancer cell death in an immunogenically silent manner. However, recent studies have demonstrated that therapeutic outcomes with specific chemotherapeutic agents (e.g. anthracyclines) correlate strongly with their ability to induce a process of immunogenic cell death (ICD) in cancer cells. This process generates a series of signals that stimulate the immune system to recognize and clear tumor cells. Extensive studies have revealed that chemotherapy-induced ICD occurs via the exposure/release of calreticulin (CALR), ATP, chemokine (C-X-C motif) ligand 10 (CXCL10) and high mobility group box 1 (HMGB1). This review provides an in-depth look into the concepts and mechanisms underlying CALR exposure, activation of the Toll-like receptor 3/IFN/CXCL10 axis, and the release of ATP and HMGB1 from dying cancer cells. Factors that influence the impact of ICD in clinical studies and the design of therapies combining chemotherapy with immunotherapy are also discussed. PMID:26486085

  13. 15-Deoxy-Δ12,14-prostaglandin J2 induces renal epithelial cell death through NF-κB-dependent and MAPK-independent mechanism

    International Nuclear Information System (INIS)

    The peroxisome proliferator-activated receptor-γ (PPARγ) ligand 15d-PGJ2 induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-κB in opossum kidney (OK) cell death induced by 15d-PGJ2. Treatment of OK cells with 15d-PGJ2 resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ2 increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ2-induced cell death was also prevented by these antioxidants, suggesting that the cell death was associated with ROS generation. The PPARγ antagonist GW9662 did not prevent the 15d-PGJ2-induced cell death. 15d-PGJ2 caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ2-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ2 inhibited the NF-κB transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-κB subunit p65 and impairment in DNA binding. Inhibition of NF-κB with a NF-κB specific inhibitor pyrrolidinecarbodithioate and transfection with IκBα (S32A/36A) caused cell death. These results suggest that the 5d-PGJ2-induced OK cell death was associated with ROS production and NF-κB inhibition, but not with MAPK activation

  14. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    International Nuclear Information System (INIS)

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms. (paper)

  15. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  16. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms

    Institute of Scientific and Technical Information of China (English)

    Ying-jia ZHONG; Yong QIN; Lin-chuan; LIAO Xia WANG; Fang SHI; Xue-lian ZHENG; Qiong WANG; Lan YANG; Hong SUN; Fan HE; Lin ZHANG; Yong LIN

    2011-01-01

    To investigate the anticancer effect of crocetin,a major ingredient in saffron,and its underlying mechanisms.Methods:Cervical cancer cell line HeLa,non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine.Cell proliferation was examined using MTT assay.Cell cycle distribution and sub-G1 fraction were analyzed using flow cytometric analysis after propidium iodide staining.Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry.Cell death was measured based on the release of lactate dehydrogenase (LDH).The expression levels of p53 and p21wAF1/Cip1 as well as caspase activation were examined using Western blot analysis.Results:Treatment of the 3 types of cancer cells with crocetin (60-240 μmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner.Crocetin (240 μmol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21WAF1/Cip1 induction.Crocetin (120-240 μmoVL) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner.In the 3 types of cancer cells,crocetin (60 μmol/L) significantly enhanced the cytotoxicity induced by vincristine (1 μmol/L).Furthermore,this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR.Conclusion:Ccrocetin is a potential anticancer agent,which may be used as a chemotherapeutic drug or as a chemosensitizer for vin-cristine.

  17. Necrosis, a regulated mechanism of cell death La necrosis, un mecanismo regulado de muerte celular

    Directory of Open Access Journals (Sweden)

    Mauricio Rojas López

    2010-05-01

    Full Text Available

    Three types of cellular death have been defined by morphological and biochemical criteria: apoptosis, necrosis and autophagy. Apoptosis is a regulated cell death, mainly mediated by caspases; autophagy induces degradation of intracellular damaged organelles through the formation of vesicles that fuse with hydrolytic vacuoles.

     

    Necrosis has been traditionally defined by the rupture the cytoplasmic membrane with subsequent release of intracellular material, triggering localized inflammatory Intrinsic cellular activities and the events preceding cellular collapse are critical to determine the type of tissue damage.

     

    The fact that all three types of cellular death can coexist in any organ and tissue with different availabilities of ATP, suggests that necrosis can be conceived as an active event and that to some extent it may be regulated. Alterations in the structure of proteins and in the

  18. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur, E-mail: kmrahman@med.wayne.edu [Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2011-07-19

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  19. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Directory of Open Access Journals (Sweden)

    KM Wahidur Rahman

    2011-07-01

    Full Text Available Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C and its dimeric product, 3,3´-diindolylmethane (DIM, have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  20. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    International Nuclear Information System (INIS)

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics

  1. Artesunate induces necrotic cell death in schwannoma cells

    OpenAIRE

    Button, R W; Lin, F.; Ercolano, E; Vincent, J H; Hu, B.; Hanemann, C O; Luo, S

    2014-01-01

    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely ...

  2. A Combined Chemical and Magneto-Mechanical Induction of Cancer Cell Death by the Use of Functionalized Magnetic Iron Nanowires

    KAUST Repository

    Martinez Banderas, Aldo

    2016-04-01

    Cancer prevails as one of the most devastating diseases being at the top of death causes for adults despite continuous development and innovation in cancer therapy. Nanotechnology may be used to achieve therapeutic dosing, establish sustained-release drug profiles, and increase the half-life of drugs. In this context, magnetic nanowires (NWs) have shown a good biocompatibility and cellular internalization with a low cytotoxic effect. In this thesis, I induced cancer cell death by combining the chemotherapeutic effect of iron NWs functionalized with Doxorubicin (DOX) with mechanical disturbance under a low frequency alternating magnetic field. Two different agents, APTES and BSA, were separately used for coating NWs permitting further functionalization with DOX. Internalization was qualitatively and quantitatively assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal reflection analysis, BSA formulations demonstrate to have a higher internalization degree and a broader distribution within the cells in comparison to APTES formulations. Both groups of functionalized NWs generated a comparable cytotoxic effect in MDA-MB-231 breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by the free DOX (~95% at the same concentration) and non-functionalized NWs formulations (~10% at the same NWs concentration). A synergistic cytotoxic effect is obtained when a low frequency magnetic field (1 mT, 10 Hz) is applied to cells treated with the two formulations that is again comparable (~70% at the highest concentration). Furthermore, the cytotoxic effect of both groups of coated NWs without the drug increased notoriously when the field is applied (~25% at the highest concentration tested). Here, a novel bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical

  3. A Review on Novel Breast Cancer Therapies: Photodynamic Therapy and Plant Derived Agent Induced Cell Death Mechanisms.

    Science.gov (United States)

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi

    2016-01-01

    This review article presents an extensive examination of risk factors for breast cancer, treatment strategies with special attention to photodynamic therapy and natural product based treatments. Breast cancer remains the most commonly occurring cancer in women worldwide and the detection, treatment, and prevention are prominent concerns in public health. Background information on current developments in treatment helps to update the approach towards risk assessment. Breast cancer risk is linked to many factors such as hereditary, reproductive and lifestyle factors. Minimally invasive Photodynamic therapy (PDT) can be used in the management of various cancers; it uses a light sensitive drug (a photosensitizer, PS) and a light of visible wavelength, to destroy targeted cancer cells. State of the art analyses has been carried out to investigate advancement in the search for the cure and control of cancer progression using natural products. Traditional medicinal plants have been used as lead compounds for drug discovery in modern medicine. Both PDT and plant derived drugs induce cell death via different mechanisms including apoptosis, necrosis, autophagy, cell cycle regulation and even the regulation of various cell signalling pathways. PMID:26499768

  4. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K;

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found......) and Na(+),K(+),2Cl(-)-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in i......MEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-alpha or the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage...

  5. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    International Nuclear Information System (INIS)

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibition of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: ► 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. ► Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. ► JNK and Bim are required for efavirenz- and 8-hydroxyefavirenz-mediated cell death. ► Efavirenz and 8-hydroxyefavirenz may

  6. Apoptosis: A Review of Programmed Cell Death

    OpenAIRE

    Elmore, Susan

    2007-01-01

    The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions incl...

  7. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    Science.gov (United States)

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  8. Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism

    OpenAIRE

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent as...

  9. Plant Proteases Involved in Regulated Cell Death.

    Science.gov (United States)

    Zamyatnin, A A

    2015-12-01

    Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death. PMID:26878575

  10. Zinc chelation: a metallothionein 2A's mechanism of action involved in osteosarcoma cell death and chemotherapy resistance

    OpenAIRE

    Habel, N; Hamidouche, Z; Girault, I; Patiño-García, A; Lecanda, F. (Fernando); Marie, P. J.; Fromigué, O.

    2013-01-01

    Osteosarcoma is the most common primary tumor of bone occurring in children and adolescents. The histological response to chemotherapy represents a key clinical factor related to survival. We previously showed that statins exhibit antitumor effects in vitro, inducing apoptotic cell death, reducing cell migration and invasion capacities and strengthening cytotoxic effects in combination with standard drugs. Comparative transcriptomic analysis between control and statin-treated cells revealed s...

  11. Phosphate and Succinate Use Different Mechanisms to Inhibit Sugar-induced Cell Death in Yeast: INSIGHT INTO THE CRABTREE EFFECT*

    OpenAIRE

    Lee, Yong Joo; Burlet, Elodie; Galiano, Floyd; Circu, Magdalena L.; Aw, Tak Yee; Williams, B. Jill; Witt, Stephan N.

    2011-01-01

    Stationary-phase Saccharomyces cerevisiae cells transferred from spent rich media into water live for weeks, whereas the same cells die within hours if transferred into water with 2% glucose in a process called sugar-induced cell death (SICD). Our hypothesis is that SICD is due to a dysregulated Crabtree effect, which is the phenomenon whereby glucose transiently inhibits respiration and ATP synthesis. We found that stationary-phase cells in glucose/water consume 21 times more O2 per cell tha...

  12. Cell death proteomics database: consolidating proteomics data on cell death.

    Science.gov (United States)

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  13. Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms

    DEFF Research Database (Denmark)

    Sigurðsson, Haraldur H; Olesen, Christina Wilkens; Dybboe, Rie;

    2015-01-01

    UNLABELLED: Despite the frequent expression of N-terminally truncated ErbB2 (ΔNErbB2/p95HER2) in breast cancer and its association with Herceptin resistance and poor prognosis, it remains poorly understood how ΔNErbB2 affects chemotherapy-induced cell death. Previously it was shown that ΔNErbB2...... upregulates acid extrusion from MCF-7 breast cancer cells and that inhibition of the Na(+)/H(+) exchanger (SLC9A1/NHE1) strongly sensitizes ΔNErbB2-expressing MCF-7 cells to cisplatin chemotherapy. The aim of this study was to identify the mechanism through which ΔNErbB2 regulates cisplatin-induced breast...... cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin...

  14. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  15. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  16. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153

    International Nuclear Information System (INIS)

    Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation were quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter timepoints. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly different from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals.

  17. Mechanism of RPE cell death in α-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux.

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    Full Text Available Absence of α-crystallins (αA and αB in retinal pigment epithelial (RPE cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1 MRP1 mediates GSH and GSSG efflux in RPE cells; 2 MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3 the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.

  18. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    Science.gov (United States)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  19. Calcium-Dependent and Independent Mechanisms of Capsaicin Receptor (TRPV1)-Mediated Cytokine Production and Cell Death in Human Bronchial Epithelial Cells

    OpenAIRE

    Reilly, Christopher A.; Johansen, Mark E.; Lanza, Diane L.; Lee, Jeewoo; Lim, Ju-Ok; Yost, Garold S.

    2005-01-01

    Activation of the capsaicin receptor (VR1 or TRPV1) in bronchial epithelial cells by capsaicinoids and other vanilloids promotes pro-inflammatory cytokine production and cell death. The purpose of this study was to investigate the role of TRPV1-mediated calcium flux from extracellular sources as an initiator of these responses and to define additional cellular pathways that control cell death. TRPV1 antagonists and reduction of calcium concentrations in treatment solutions attenuated calcium ...

  20. TNF α and reactive oxygen species in necrotic cell death

    Institute of Scientific and Technical Information of China (English)

    Michael J Morgan; You-Sun Kim; Zheng-gang Liu

    2008-01-01

    Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFa indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells.

  1. The deaths of a cell: how language and metaphor influence the science of cell death.

    Science.gov (United States)

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. PMID:25085023

  2. Genetic regulation of programmed cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Programmed cell death plays an important role in maintaining homeostasis during animal development, and has been conserved in animals as different as nematodes and humans. Recent studies of Drosophila have provided valuable information toward our understanding of genetic regulation of death. Different signals trigger the novel death regulators rpr, hid, and grim, that utilize the evolutionarily conserved iap and ark genes to modulate caspase function. Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms. The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidate the mechanisms underlying regulation of programmed cell death.

  3. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Rueda Bo R

    2003-02-01

    Full Text Available Abstract The microvasculature of the corpus luteum (CL, which comprises greater than 50% of the total number of cells in the CL, is thought to be the first structure to undergo degeneration via apoptosis during luteolysis. These studies compared the apoptotic potential of various cytokines (tumor necrosis factor α, TNFα; interferon gamma, IFNγ; soluble Fas ligand, sFasL, a FAS activating antibody (FasAb, and the luteolytic hormone prostaglandin F2α (PGF2α on CL-derived endothelial (CLENDO cells. Neither sFasL, FasAb nor PGF2α had any effect on CLENDO cell viability. Utilizing morphological and biochemical parameters it was evident that TNFα and IFNγ initiated apoptosis in long-term cultures. However, TNFα was the most potent stimulus for CLENDO cell apoptosis at early time points. Unlike many other studies described in non-reproductive cell types, TNFα induced apoptosis of CLENDO cells occurs in the absence of inhibitors of protein synthesis. TNFα-induced death is typically associated with acute activation of distinct intracellular signaling pathways (e.g. MAPK and sphingomyelin pathways. Treatment with TNFα for 5–30 min activated MAPKs (ERK, p38, and JNK, and increased ceramide accumulation. Ceramide, a product of sphingomyelin hydrolysis, can serve as an upstream activator of members of the MAPK family independently in numerous cell types, and is a well-established pro-apoptotic second messenger. Like TNFα, treatment of CLENDO cells with exogenous ceramide significantly induced endothelial apoptosis. Ceramide also activated the JNK pathway, but had no effect on ERK and p38 MAPKs. Pretreatment of CLENDO cells with glutathione (GSH, an intracellular reducing agent and known inhibitor of reactive oxygen species (ROS or TNFα-induced apoptosis, significantly attenuated TNFα-induced apoptosis. It is hypothesized that TNFα kills CLENDO cells through elevation of reactive oxygen species, and intracellular signals that promote

  4. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    International Nuclear Information System (INIS)

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7–14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  5. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Damodaran, T.V., E-mail: tdamodar@nccu.edu [Dept of Medicine, Duke University Medical Center, Durham, NC (United States); Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Dept of Biology, North Carolina Central University, Durham, NC 27707 (United States); Attia, M.K. [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Abou-Donia, M.B., E-mail: donia@mc.duke.edu [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States)

    2011-11-15

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  6. Regulated cell death and adaptive stress responses.

    Science.gov (United States)

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  7. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms.

    Science.gov (United States)

    Siewert, Bianka; van Rixel, Vincent H S; van Rooden, Eva J; Hopkins, Samantha L; Moester, Miriam J B; Ariese, Freek; Siegler, Maxime A; Bonnet, Sylvestre

    2016-07-25

    The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 μm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins. PMID:27373895

  8. [Cell death in malignant tumors. Relevance of cell death regulation for metastasis].

    Science.gov (United States)

    Roth, W

    2015-11-01

    Defects in the regulation of cell death are important causes for both the development and therapy resistance of malignant tumors. Several distinct, molecularly defined types of cell death are known, such as apoptosis, anoikis, and necroptosis. Moreover, the specific triggering of cell death plays an important role in the prevention of metastasis. The results of recent studies have shown that various types of cell death are pivotal at different steps of the metastasis cascade, in order to prevent cellular detachment, migration, invasion, intravasation, extravasation and the establishment of micrometastasis and macrometastasis. At the subcellular level, numerous links exist between cell death regulation and metastasis, specifically regarding signaling pathways and individual proteins with dual or multiple functions. As an example, the decoy receptor 3 protein (DcR3) functions both as an anti-apoptotic protein and as a direct promotor of invasion and migration of tumor cells. In summary, the specific triggering of cell death plays a pivotal role for the prevention of metastasis. On the other hand, the stepwise process of metastasis represents a mechanism of selection resulting in established metastases with a multiresistant phenotype which corresponds to the clinical observation that many metastasized cancers are therapy resistant. In the future, innovative diagnostic tests to individually predict the resistance pattern and possibilities to overcome resistance are urgently needed. PMID:26400565

  9. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping;

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  10. Role of polyphenols in cell death control.

    Science.gov (United States)

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols. PMID:22584012

  11. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.;

    2011-01-01

    cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  12. A Novel Cell Death Gene Acts to Repair Patterning Defects in Drosophila melanogaster

    OpenAIRE

    Tanaka, Kentaro M.; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-01-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development.

  13. Cu(II)-coumestrol interaction leads to ROS-mediated DNA damage and cell death: a putative mechanism for anticancer activity.

    Science.gov (United States)

    Zafar, Atif; Singh, Swarnendra; Naseem, Imrana

    2016-07-01

    Phytoestrogens have attracted considerable interest as natural alternatives to hormone replacement therapy and their potential as cancer therapeutic agents. Among phytoestrogens, coumestrol has shown multipharmacological properties such as antiinflammatory, neuroprotective, osteoblastic differentiation and anticancer. Though several studies have described anticancer effects of coumestrol, a clear underlying molecular mechanism has not been elucidated. Unlike normal cells, cancer cells contain elevated copper levels that play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper in cancer cells can serve as effective anticancer strategy. Using human peripheral lymphocytes, we assessed lipid peroxidation, protein carbonylation, reactive oxygen species (ROS) generation, DNA damage and apoptosis by coumestrol in the presence of exogenously added Cu(II) in cells to simulate malignancy-like condition. Results showed that Cu(II)-coumestrol interaction leads to lipid peroxidation and protein carbonylation (markers of oxidative stress), DNA fragmentation and apoptosis in treated lymphocytes. Further, incubation of lymphocytes with ROS scavengers and membrane-permeant copper chelator, neocuproine, resulted in inhibition of DNA damage and apoptosis. This suggests that coumestrol engages in redox cycling of Cu(II) to generate ROS that leads to DNA fragmentation and apoptosis. In conclusion, this is the first report showing that coumestrol targets cellular copper to induce prooxidant death in malignant cells. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of coumestrol. These findings will provide significant insights into the development of new chemical molecules with better copper-chelating and prooxidant properties against cancer cells. PMID:27260464

  14. Cell death regulates muscle fiber number.

    Science.gov (United States)

    Sarkissian, Tatevik; Arya, Richa; Gyonjyan, Seda; Taylor, Barbara; White, Kristin

    2016-07-01

    Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself. PMID:27131625

  15. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism.

    Science.gov (United States)

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  16. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    JianZhang; XuemeiXu; YongLiu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  17. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism.

    Science.gov (United States)

    Zubair, Haseeb; Azim, Shafquat; Khan, Husain Yar; Ullah, Mohammad Fahad; Wu, Daocheng; Singh, Ajay Pratap; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach. PMID:27331811

  18. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  19. The control and execution of programmed cell death

    International Nuclear Information System (INIS)

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectively manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  20. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism.

    Science.gov (United States)

    Jayakumar, A R; Bak, L K; Rama Rao, K V; Waagepetersen, H S; Schousboe, A; Norenberg, M D

    2016-02-01

    Traumatic brain injury (TBI) is a devastating neurological disorder that usually presents in acute and chronic forms. Brain edema and associated increased intracranial pressure in the early phase following TBI are major consequences of acute trauma. On the other hand, neuronal injury, leading to neurobehavioral and cognitive impairments, that usually develop months to years after single or repetitive episodes of head trauma, are major consequences of chronic TBI. The molecular mechanisms responsible for TBI-induced injury, however, are unclear. Recent studies have suggested that early mitochondrial dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events contribute to the development of neuronal injury. Cell viability was assayed using the release of the cytoplasmic enzyme lactate dehydrogenase (LDH), together with fluorescence-based cell staining (calcein and ethidium homodimer-1 for live and dead cells, respectively). Trauma had no effect on the LDH release in neurons from 1 to 18 h. However, a significant increase in LDH release was detected at 24 h after trauma. Similar findings were identified when traumatized neurons were stained with fluorescent markers. Additionally (13)C-labeling of glutamate showed a small, but statistically significant decrease at 14 h after trauma. However, trauma had no effect on the cycling ratio of the TCA cycle at any time-period examined. These findings indicate that trauma does not cause a disturbance in oxidative metabolism of any of the substrates used for neurons. Accordingly, such metabolic disturbance does not appear to contribute to the neuronal death in the early stages following trauma. PMID:26729365

  1. Programmed cell death during quinoa perisperm development

    OpenAIRE

    López-Fernández, María Paula; Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucle...

  2. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia;

    2006-01-01

    overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO for their...... growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... polyamine homeostasis may negatively affect cell proliferation and eventually lead to cell death by apoptosis if putrescine levels become too high....

  3. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of...... cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...

  4. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    International Nuclear Information System (INIS)

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future. (paper)

  5. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  6. On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disc models

    Directory of Open Access Journals (Sweden)

    Andrea eMalandrino

    2015-02-01

    Full Text Available Capturing patient- or condition-specific intervertebral disc (IVD properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disc degenerative changes are often modelled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disc geometries. Accordingly, we explored the ability of continuum tissue models to simulate disc degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disc cell nutrition, a potentially important actor in disc tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disc geometry on cell viability. While classic disc poromechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favoured by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disc degeneration.

  7. Extraction of Peptidoglycan from L. paracasei subp. Paracasei X12 and Its Preliminary Mechanisms of Inducing Immunogenic Cell Death in HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Pei-Jun Tian

    2015-08-01

    Full Text Available L. paracasei subp. paracasei X12 was previously isolated from a Chinese traditional fermented cheese with anticancer activities and probiotic potential. Herein, the integral peptidoglycan (X12-PG was extracted by a modified trichloroacetic acid (TCA method. X12-PG contained the four representative amino acids Asp, Glu, Ala and Lys, and displayed the similar lysozyme sensitivity, UV-visible scanning spectrum and molecular weight as the peptidoglycan standard. X12-PG could induce the production of apoptotic bodies observed by transmission electron microscopy (TEM. X12-PG could significantly induced the translocation of calreticulin (CRT and the release of high mobility group box 1 protein (HMGB1, the two notable hallmarks of immunogenic cell death (ICD, with the endoplastic reticulum (ER damaged and subsequently intracellular [Ca2+] elevated. Our findings implied that X12-PG could induce the ICD of HT-29 cells through targeting at the ER. The present results may enlighten the prospect of probiotics in the prevention of colon cancer.

  8. Caspase dependence of the death of neonatal retinal ganglion cells induced by axon damage and induction of autophagy as a survival mechanism

    Directory of Open Access Journals (Sweden)

    C. Sternberg

    2010-10-01

    Full Text Available We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively. Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.

  9. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  10. Expression of programmed death 1 ligand 1 on periodontal tissue cells as a possible protective feedback mechanism against periodontal tissue destruction

    OpenAIRE

    Zhang, Jiehua; Wang, Chieh-Mei; Zhang, Ping; Wang, Xiaoqian; Chen, Jiao; Yang, Jun; LU, WANLU; ZHOU, WENJIE; YUAN, WENWEN; Yun FENG

    2016-01-01

    Programmed death 1 ligand 1 (PD-L1) is a negative co-stimulatory molecule in immune responses. Previous reports have indicated that inflammatory cytokines can upregulate the expression of PD-L1 in tumor cells, which in turn suppresses host immune responses. Periodontitis is characterized by persistent inflammation of the periodontium, which is initiated by infection with oral bacteria and results in damage to cells and the matrices of the periodontal connective tissues. In the present study, ...

  11. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  12. Cell death in the developing vertebrate retina.

    Science.gov (United States)

    Vecino, Elena; Hernández, María; García, Mónica

    2004-01-01

    Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species. PMID:15558487

  13. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  14. Inflammasomes as polyvalent cell death platforms.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Lamkanfi, Mohamed

    2016-06-01

    Inflammasomes are multi-protein platforms that are organized in the cytosol to cope with pathogens and cellular stress. The pattern recognition receptors NLRP1, NLRP3, NLRC4, AIM2 and Pyrin all assemble canonical platforms for caspase-1 activation, while caspase-11-dependent inflammasomes respond to intracellular Gram-negative pathogens. Inflammasomes are chiefly known for their roles in maturation and secretion of the inflammatory cytokines interleukin-(IL)1β and IL18, but they can also induce regulated cell death. Activation of caspases 1 and 11 in myeloid cells can trigger pyroptosis, a lytic and inflammatory cell death mode. Pyroptosis has been implicated in secretion of IL1β, IL18 and intracellular alarmins. Akin to these factors, it may have beneficial roles in controlling pathogen replication, but become detrimental in the context of chronic autoinflammatory diseases. Inflammasomes are increasingly implicated in induction of additional regulated cell death modes such as pyronecrosis and apoptosis. In this review, we overview recent advances in inflammasome-associated cell death research, illustrating the polyvalent roles of these macromolecular platforms in regulated cell death signaling. PMID:27048821

  15. The intersection of cell death and inflammasome activation.

    Science.gov (United States)

    Vince, James E; Silke, John

    2016-06-01

    Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes. PMID:27066895

  16. Rate of death of hypoxic cells in multicell spheroids

    International Nuclear Information System (INIS)

    The rate of death of hypoxic cells was measured in multicell spheroids, which are considered to model in vitro the microenvironments surrounding such cells within solid tumors. Two types of experiments were performed: (1) All of the cells in spheroids were made hypoxic (less than 100 ppM O2) and the total number of viable cells was determined by clonogenic assay at later times up to 7 days. The rate of death of cells appeared biphasic. At least 15% of the cells died within the first 6 hr. The rate of development of histological changes in the spheroids suggested that the innermost cells were most sensitive. The more peripheral layers of cells died much more slowly so that there was still about 5% survival and a significant number of histologically normal cells at 6 days. Changes in the glucose concentration in the medium (from one-third to three times normal) during exposure to hypoxia had little effect on the survival time of these outer cells. (2) The cells in the inner half of spheroids grown in 20% O2 were made hypoxic by equilibrating the growth medium with 5% O2, and the number of resistant hypoxic cells at different times later was determined after a radiation dose of 3500 rad. The number of surviving clonogenic cells after this dose of radiation decreased with a half-time for cell death of 3 hr. These results indicate that the rate of death of hypoxic cells in the central regions of spheroids is much more rapid than has been reported for monolayer cultures, although the resistance of the outer cells is similar to or greater than monolayers. Since spheroids may model the necrosis and other microenvironments near chronically hypoxic cells in tumors, the relatively rapid rate of death of hypoxic cells demonstrated here must be considered in evaluating their contribution to the size of the radiation-resistant hypoxic fraction and possible mechanisms which might contribute to the phenomenon of reoxygenation

  17. Modulation of cell death in age-related diseases.

    Science.gov (United States)

    Tezil, Tugsan; Basaga, Huveyda

    2014-01-01

    Aging is a stage of life of all living organisms. According to the free-radical theory, aging cells gradually become unable to maintain cellular homeostasis due to the adverse effects of reactive oxygen species (ROS). ROS can cause irreversible DNA mutations, protein and lipid damage which are increasingly accumulated in the course of time if cells could not overcome these effects by the antioxidant defence system. Accrued damaged molecules in cells may either induce cellular death or contribute to develop various pathologies. Hence, programmed cell death mechanisms, apoptosis and autophagy, play a vital role in the aging process. Although they are strictly controlled by various interconnected signalling pathways, alterations in their regulations may contribute to severe pathologies including cancer, Alzheimer's and Parkinson's diseases. In this review, we summarized our current understanding and hypotheses regarding oxidative stress and age-related dysregulation of cell death signalling pathways. PMID:24079770

  18. A novel cell death gene acts to repair patterning defects in Drosophila melanogaster.

    Science.gov (United States)

    Tanaka, Kentaro M; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-06-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development. PMID:24671768

  19. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  20. α-Synuclein and neuronal cell death

    Directory of Open Access Journals (Sweden)

    Cookson Mark R

    2009-02-01

    Full Text Available Abstract α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.

  1. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  2. Time-Lapse Imaging of Cell Death.

    Science.gov (United States)

    Wallberg, Fredrik; Tenev, Tencho; Meier, Pascal

    2016-03-01

    The best approach to distinguish between necrosis and apoptosis is time-lapse video microscopy. This technique enables a biological process to be photographed at regular intervals over a period, which may last from a few hours to several days, and can be applied to cells in culture or in vivo. We have established two time-lapse microscopy methods based on different ways of calculating cell death: semiautomated and automated. In the semiautomated approach, cell death can be visualized by staining with combinations of Alexa Fluor 647-conjugated Annexin V and Sytox Green (SG), or Annexin V(FITC) and Propidium iodide (PI). The automated method is similar except that all cells are labeled with dyes. This allows faster quantification of data. To this end Cell Tracker Green is used to label all cells at time zero in combination with PI and Alexa Fluor 647-conjugated Annexin V. Necrotic cell death is accompanied by either simultaneous labeling with Annexin V and PI or SG (double-positive), or direct PI or SG staining. Additionally, necrotic cells display characteristic morphology, such as cytoplasmic swelling. In contrast to necrosis where membrane permeabilization is an early event, cells that die by apoptosis lose their membrane permeability relatively late. Therefore, the time between Annexin V staining and PI or SG uptake (double-positive) can be used to distinguish necrosis from apoptosis. This protocol describes the analysis of cell death by time-lapse imaging of HT1080 and L929 cells stained with these dyes, but it can be readily adapted to other cell types of interest. PMID:26933245

  3. Evaluation of the efficacy & biochemical mechanism of cell death induction by Piper longum extract selectively in in-vitro and in-vivo models of human cancer cells.

    Directory of Open Access Journals (Sweden)

    Pamela Ovadje

    Full Text Available Currently chemotherapy is limited mostly to genotoxic drugs that are associated with severe side effects due to non-selective targeting of normal tissue. Natural products play a significant role in the development of most chemotherapeutic agents, with 74.8% of all available chemotherapy being derived from natural products.To scientifically assess and validate the anticancer potential of an ethanolic extract of the fruit of the Long pepper (PLX, a plant of the piperaceae family that has been used in traditional medicine, especially Ayurveda and investigate the anticancer mechanism of action of PLX against cancer cells.Following treatment with ethanolic long pepper extract, cell viability was assessed using a water-soluble tetrazolium salt; apoptosis induction was observed following nuclear staining by Hoechst, binding of annexin V to the externalized phosphatidyl serine and phase contrast microscopy. Image-based cytometry was used to detect the effect of long pepper extract on the production of reactive oxygen species and the dissipation of the mitochondrial membrane potential following Tetramethylrhodamine or 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine chloride staining (JC-1. Assessment of PLX in-vivo was carried out using Balb/C mice (toxicity and CD-1 nu/nu immunocompromised mice (efficacy. HPLC analysis enabled detection of some primary compounds present within our long pepper extract.Our results indicated that an ethanolic long pepper extract selectively induces caspase-independent apoptosis in cancer cells, without affecting non-cancerous cells, by targeting the mitochondria, leading to dissipation of the mitochondrial membrane potential and increase in ROS production. Release of the AIF and endonuclease G from isolated mitochondria confirms the mitochondria as a potential target of long pepper. The efficacy of PLX in in-vivo studies indicates that oral administration is able to halt the growth of colon cancer

  4. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  5. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan; Tsitsigiannis, Dimitrios I; Petersen, Nikolaj H T; Mattsson, Ole; Jørgensen, Lise Bolt; Jones, Jonathan D G; Mundy, John; Petersen, Morten

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...

  6. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.

  7. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  8. Colorectal Cancer Stem Cells and Cell Death

    International Nuclear Information System (INIS)

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool

  9. Necroptosis: an alternative cell death program defending against cancer.

    Science.gov (United States)

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-04-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL) protein. Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. PMID:26968619

  10. Cell-nonautonomous regulation of C. elegans germ cell death by kri-1.

    Science.gov (United States)

    Ito, Shu; Greiss, Sebastian; Gartner, Anton; Derry, W Brent

    2010-02-23

    Programmed cell death (or apoptosis) is an evolutionarily conserved, genetically controlled suicide mechanism for cells that, when deregulated, can lead to developmental defects, cancers, and degenerative diseases. In C. elegans, DNA damage induces germ cell death by signaling through cep-1/p53, ultimately leading to the activation of CED-3/caspase. It has been hypothesized that the major regulatory events controlling cell death occur by cell-autonomous mechanisms, that is, within the dying cell. In support of this, genetic studies in C. elegans have shown that the core apoptosis pathway genes ced-4/APAF-1 and ced-3/caspase are required in cells fated to die. However, it is not known whether the upstream signals that activate apoptosis function in a cell-autonomous manner. Here we show that kri-1, an ortholog of KRIT1/CCM1, which is mutated in the human neurovascular disease cerebral cavernous malformation, is required to activate DNA damage-dependent cell death independently of cep-1/p53. Interestingly, we find that kri-1 regulates cell death in a cell-nonautonomous manner, revealing a novel regulatory role for nondying cells in eliciting cell death in response to DNA damage. PMID:20137949

  11. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism

    OpenAIRE

    Rotin, Lianne E.; Gronda, Marcela; Maclean, Neil; Hurren, Rose; Wang, Xiaoming; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L.; Minden, Mark D.; Slassi, Malik; Schimmer, Aaron D.

    2015-01-01

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and there...

  12. CSR1 induces cell death through inactivation of CPSF3.

    Science.gov (United States)

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  13. Modeling cell-death patterning during biofilm formation

    International Nuclear Information System (INIS)

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation. (paper)

  14. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    Science.gov (United States)

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  15. Regulated cell death in diagnostic histopathology.

    Science.gov (United States)

    Skenderi, Faruk; Vranic, Semir; Damjanov, Ivan

    2015-01-01

    Regulated cell death (RCD) is a controlled cellular process, essential for normal development, tissue integrity and homeostasis, and its dysregulation has been implicated in the pathogenesis of various conditions including developmental and immunological disorders, neurodegenerative diseases, and cancer. In this review, we briefly discuss the historical perspective and conceptual development of RCD, we overview recent classifications and some of the key players in RCD; finally we focus on current applications of RCD in diagnostic histopathology. PMID:26009238

  16. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  17. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  18. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  19. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  20. Induction of cell death by chemotherapeutic methylating agents

    International Nuclear Information System (INIS)

    The mechanism of cell death induced by O6 MeG has been investigated and inhibition of homologous recombination as a strategy for sensitization of tumor cells against methylating agents SN1. Dependence of the cell cycle was determined toxic responses triggered by O''6 MeG and evaluated by proliferation assays if apoptotic cells have originated exclusively from the second post-treatment cycle. Dependence of O''6 MeG was found at DSB formation. The activation of the control points of the cell cycle and induction of apoptosis is generated during the second cell cycle. Additionally, a portion of the cells has been determined that triggers apoptosis in subsequent generations in the second cell cycle. Inhibition of homologous recombination has been a reasonable strategy to increase SN1 alkylating agent effectiveness. Evidence has been provided in NHEJ dependent inhibition of DNA-PK that not significantly sensitizes the glioblastoma cells against temozolomide

  1. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  2. Metal-accelerated oxidation in plant cell death

    Energy Technology Data Exchange (ETDEWEB)

    Czuba, M. (National Research Council, Ottawa, Ontario (Canada))

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  3. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  4. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus.

    Science.gov (United States)

    Xia, Mao; Meng, Gang; Jiang, Aiqin; Chen, Aiping; Dahlhaus, Meike; Gonzalez, Patrick; Beltinger, Christian; Wei, Jiwu

    2014-06-15

    Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MV-Edm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy. PMID:25004098

  5. Programmed cell death and its role in inflammation

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Ge-Ning Jiang; Peng Zhang; Jie Fan

    2015-01-01

    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.

  6. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. PMID:24296078

  7. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were foun

  8. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    Science.gov (United States)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  9. The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors.

    Science.gov (United States)

    Bagniewska-Zadworna, A; Arasimowicz-Jelonek, M

    2016-03-01

    Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence. PMID:26332667

  10. Death-associated Protein Kinase Mediated Cell Death Modulated by Interaction with DANGER

    OpenAIRE

    Kang, Bingnan N.; Ahmad, Abdullah S.; Saleem, Sofiyan; Patterson, Randen L.; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H.

    2010-01-01

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21-domain containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after ...

  11. Programmed Cell Death in Unicellular Phytoplankton.

    Science.gov (United States)

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  12. General mechanism for amplitude death in coupled systems

    Science.gov (United States)

    Resmi, V.; Ambika, G.; Amritkar, R. E.

    2011-10-01

    We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is known that when two systems are coupled directly, they can synchronize under suitable conditions. When an indirect feedback coupling through an environment or an external system is introduced in them, it is found to induce a tendency for antisynchronization. We show that, for sufficient strengths, these two competing effects can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the transitions can be of two types—continuous and discontinuous. By choosing a variety of dynamics, for example, periodic, chaotic, hyperchaotic, and time-delay systems, we illustrate that this mechanism is quite general and works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings, and for different damped dynamics of the environment.

  13. Role of phosphoinositide 3-kinase in the autophagic death of serum-deprived PC12 cells.

    Science.gov (United States)

    Guillon-Munos, A; van Bemmelen, M X P; Clarke, P G H

    2005-10-01

    The death of serum-deprived undifferentiated PC12 cells shows both autophagic and apoptotic features. Since it is still controversial whether the autophagy is instrumental in the cell death or a mere epiphenomenon, we tested the effects of inhibiting the autophagy by a variety of phosphoinositide 3-kinase inhibitors, and provided evidence that the autophagy, or a related trafficking event, is indeed instrumental in the cell death. Furthermore, by comparing the effects of PI3-K inhibition and caspase-inhibition on autophagic and apoptotic cellular events, we showed that in this case the autophagic and apoptotic mechanisms mediate cell death by parallel pathways and do not act in series. PMID:16151638

  14. Radiotracer studies on molecular mechanisms of death and resuscitation

    International Nuclear Information System (INIS)

    Tracer techniques and artificial circulation were applied to rabbits after death by anoxia and deep hypothermia in order to study molecular mechanisms. 60 min after death the biosynthesis and disintegration of protein RNA and DNA practically stopped in all organs. In animals cooled post mortem the process of biosynthesis and degradation of protein, RNA and DNA, as well as the physiological functions of the whole organism, were restored. (author)

  15. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  16. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  17. Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control

    OpenAIRE

    Kubli, Dieter A.; Gustafsson, Åsa B.

    2012-01-01

    Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release pro-death proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant ...

  18. Regulating the reapers: activating metacaspases for programmed cell death.

    Science.gov (United States)

    Lam, Eric; Zhang, Yi

    2012-08-01

    Research during the past two decades has revealed that specialized cysteine proteases act as conserved initiators or executioners for programmed cell death (PCD) in eukaryotes. Caspases were first identified as common regulators of PCD in metazoans, whereas the role of metacaspases (MCs) as regulators of cellular suicide in plants has only been shown genetically in the past several years. Together with recent biochemical and molecular characterizations of some of the representative MCs from different model systems, multiple mechanisms that can mediate the post-translational regulation of these proteases are beginning to emerge. Further elucidation of these regulatory pathways and definition of the downstream degradomes targeted by MCs should lead to a better understanding of cell death control in plants, protozoans, and fungi. PMID:22658651

  19. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto; Svensson, Birte; Emnéus, Jenny; Dufva, Martin; Finnie, Christine

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments to...... approach in vivo conditions. Microfluidics also allow implementation of a wide range of electrochemical or optical assays for online, real-time, parallel analysis of important parameters such as redox activity, O2 and H2O2 concentration, extracellular pH, cell viability and enzyme activity1,2. Currently...

  20. CSR1 induces cell death through inactivation of CPSF3

    OpenAIRE

    Zhu, Z-H; Yu, YP; Shi, Y-K; Nelson, JB; Luo, J-H

    2008-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRN...

  1. Selective Induction of Cancer Cell Death by Targeted Granzyme B

    Directory of Open Access Journals (Sweden)

    Robert A. Jabulowsky

    2013-02-01

    Full Text Available The potential utility of immunotoxins for cancer therapy has convincingly been demonstrated in clinical studies. Nevertheless, the high immunogenicity of their bacterial toxin domain represents a critical limitation, and has prompted the evaluation of cell-death inducing proteins of human origin as a basis for less immunogenic immunotoxin-like molecules. In this review, we focus on the current status and future prospects of targeted fusion proteins for cancer therapy that employ granzyme B (GrB from cytotoxic lymphocytes as a cytotoxic moiety. Naturally, this serine protease plays a critical role in the immune defense by inducing apoptotic target cell death upon cleavage of intracellular substrates. Advances in understanding of the structure and function of GrB enabled the generation of chimeric fusion proteins that carry a heterologous cell binding domain for recognition of tumor-associated cell surface antigens. These hybrid molecules display high selectivity for cancer cells, with cell killing activities similar to that of corresponding recombinant toxins. Recent findings have helped to understand and circumvent intrinsic cell binding of GrB and susceptibility of the enzyme to inhibition by serpins. This now allows the rational design of optimized GrB derivatives that avoid sequestration by binding to non-target tissues, limit off-target effects, and overcome resistance mechanisms in tumor cells.

  2. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  3. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  4. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    Science.gov (United States)

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  5. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  6. Molecular Mechanism of Cinnamomum verum Component Cuminaldehyde Inhibits Cell Growth and Induces Cell Death in Human Lung Squamous Cell Carcinoma NCI-H520 Cells In Vitro and In Vivo.

    Science.gov (United States)

    Yang, Shu-Mei; Tsai, Kuen-Daw; Wong, Ho-Yiu; Liu, Yi-Heng; Chen, Ta-Wei; Cherng, Jonathan; Hsu, Kwang-Ching; Ang, Yao-Uh; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the effects and the molecular mechanisms of cuminaldehyde (CuA), a constituent of the bark of Cinnamomum verum, on human lung squamous cell carcinoma NCI-H520 cells. Specifically, cell viability was evaluated by colorimetric assay; cytotoxicity by LDH release; apoptosis was determined by Western blotting, and morphological analysis with, acridine orange and neutral red stainings and comet assay; topoisomerase I activity was assessed using assay based upon DNA relaxation and topoisomerase II by DNA relaxation plus decatentation of kinetoplast DNA; lysosomal vacuolation and volume of acidic compartments (VAC) were evaluated with neutral red staining. The results show that CuA suppressed proliferation and induced apoptosis as indicated by an up-regulation of pro-apoptotic bax and bak genes and a down-regulation of anti-apoptotic bcl-2 and bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase 3 and 9, and morphological characteristics of apoptosis, including blebbing of the plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and comet with elevated tail intensity and moment. In addition, CuA also induced lysosomal vacuolation with increased VAC, cytotoxicity, as well as suppressions of both topoisomerase I and II activities in a dose-dependent manner. Further study revealed the growth-inhibitory effect of CuA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of CuA against NCI-H520 cells is accompanied by downregulations of proliferative control involving apoptosis and both topoisomerase I and II activities, and upregulation of lysosomal with increased VAC and cytotoxicity. Similar effects were found in other cell lines, including human lung adenocarcinoma A549 cells and colorectal adenocarcinoma COLO 205 (results not

  7. Proliferation and cell death in the midgut of the stingless bee Melipona quadrifasciata anthidioides (Apidae, Meliponini) during metamorphosis

    OpenAIRE

    Cruz, Lilian; Araújo, Vinícius; Queiroz Fialho, Maria; Serrão, José; Neves, Clóvis

    2013-01-01

    This study quantitatively compared proliferation and cell death in the remodeling of the midgut epithelium in Melipona quadrifasciata anthidioides during metamorphosis to elucidate the renewal mechanism of the midgut in bees during postembryonic development. An anti-phosphohistone H3 antibody was used to mark mitotic cells. An apoptotic cell marking kit was used (Apo-TRACE®) to identify cells undergoing the process of cell death. The ultrastructural aspects of cell death were also analyzed. T...

  8. Analysis of cell death inducing compounds

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn;

    2007-01-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds......), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the...... three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the...

  9. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine

    OpenAIRE

    Randhawa, H; Kibble, K; Zeng, H.; Moyer, MP; Reindl, KM

    2013-01-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concen...

  10. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    International Nuclear Information System (INIS)

    The FNK protein, constructed from anti-apoptotic Bcl-xL with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34+ cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  11. Programmed cell death: a way of life for plants.

    OpenAIRE

    Greenberg, J T

    1996-01-01

    Cell death in higher plants has been widely observed in predictable patterns throughout development and in response to pathogenic infection. Genetic, biochemical, and morphological evidence suggests that these cell deaths occur as active processes and can be defined formally as examples of programmed cell death (PCD). Intriguingly, plants have at least two types of PCD, an observation that is also true of PCD in animals [Schwartz, L. M., Smith, W.W., Jones, M. E. E. & Osborne, B. A. (1993) Pr...

  12. Senescence and programmed cell death : substance or semantics?

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2004-01-01

    The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show

  13. Autophagy Induction Protects Against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress

    OpenAIRE

    Xi-Ming Yuan; Nargis Sultana; Nabeel Siraj; Ward, Liam J.; Bijar Ghafouri; Wei Li

    2016-01-01

    7-Oxysterols are major toxic components in oxidized low-density lipoprotein and human atheroma lesions, which cause lysosomal membrane permeabilization (LMP) and cell death. Autophagy may function as a survival mechanism in this process. Here, we investigated whether 7-oxysterols mixed in an atheroma-relevant proportion induce autophagy, whether autophagy induction influences 7-oxysterol-mediated cell death, and the underlying mechanisms, by focusing on cellular lipid levels, oxidative stress...

  14. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga; Svensson, Birte; Emnéus, Jenny; Dufva, Martin; Finnie, Christine

    Programmed cell death (PCD) is a highly regulated process in which cells are dismantled. Reactive oxygen species (ROS) are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD are only poorly understood in plant cells compared to in animal cells (Gechev, Tsanko...

  15. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  16. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  17. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  18. Actin as deathly switch? How auxin can suppress cell-death related defence.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chang

    Full Text Available Plant innate immunity is composed of two layers--a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death.

  19. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL......The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early in the...

  20. Analysis of cell death inducing compounds.

    Science.gov (United States)

    Spicker, Jeppe S; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn; Brunak, Søren

    2007-11-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds, three toxins (ANIT, DMN and NMF) and three non-toxins (Caeruelein, Dinitrophenol and Rosiglitazone). We identified three gene transcripts with exceptional predictive performance towards liver toxicity and/or changes in histopathology. The three genes were: glucokinase regulatory protein (GCKR), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the literature and the novel finding represents a putative hepatotoxicity biomarker. PMID:17503021

  1. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine.

    Science.gov (United States)

    Randhawa, H; Kibble, K; Zeng, H; Moyer, M P; Reindl, K M

    2013-09-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concentration-dependent manners, but was not toxic toward normal colon mucosal cells at concentrations below 10 μM. Acute (0-60 min) and prolonged (24h) exposure of HT-29 cells to PPLGM resulted in phosphorylation of ERK. To investigate whether ERK signaling was involved in PPLGM-mediated cell death, we treated HT-29 cells with the MEK inhibitor U0126, prior to treating with PPLGM. We found that U0126 attenuated PPLGM-induced activation of ERK and partially protected against PPLGM-induced cell death. These results suggest that PPLGM works, at least in part, through the MEK/ERK pathway to result in colon cancer cell death. A more thorough understanding of the molecular mechanisms by which PPLGM induces colon cancer cell death will be useful in developing therapeutic strategies to treat colon cancer. PMID:23603476

  2. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  3. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    Science.gov (United States)

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (PGH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (PGH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. PMID:27129619

  4. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  5. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    Science.gov (United States)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  6. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  7. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana.

    Science.gov (United States)

    Kuroyanagi, Miwa; Yamada, Kenji; Hatsugai, Noriyuki; Kondo, Maki; Nishimura, Mikio; Hara-Nishimura, Ikuko

    2005-09-23

    Some compatible pathogens secrete toxins to induce host cell death and promote their growth. The toxin-induced cell death is a pathogen strategy for infection. To clarify the executioner of the toxin-induced cell death, we examined a fungal toxin (fumonisin B1 (FB1))-induced cell death of Arabidopsis plants. FB1-induced cell death was accompanied with disruption of vacuolar membrane followed by lesion formation. The features of FB1-induced cell death were completely abolished in the Arabidopsis vacuolar processing enzyme (VPE)-null mutant, which lacks all four VPE genes of the genome. Interestingly, an inhibitor of caspase-1 abolished FB1-induced lesion formation, as did a VPE inhibitor. The VPE-null mutant had no detectable activities of caspase-1 or VPE in the FB1-treated leaves, although wild-type leaves had the caspase-1 and VPE activities, both of which were inhibited by a caspase-1 inhibitor. gammaVPE is the most essential among the four VPE homologues for FB1-induced cell death in Arabidopsis leaves. Recombinant gammaVPE recognized a VPE substrate with Km = 30.3 microm and a caspase-1 substrate with Km = 44.2 microm, which is comparable with the values for mammalian caspase-1. The gammaVPE precursor was self-catalytically converted into the mature form exhibiting caspase-1 activity. These in vivo and in vitro analyses demonstrate that gammaVPE is the proteinase that exhibits a caspase-1 activity. We show that VPE exhibiting a caspase-1 activity is a key molecule in toxin-induced cell death. Our findings suggest that a susceptible response of toxin-induced cell death is caused by the VPE-mediated vacuolar mechanism similar to a resistance response of hypersensitive cell death (Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) Science 305, 855-858). PMID:16043487

  8. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  9. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    International Nuclear Information System (INIS)

    Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with

  10. A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

    OpenAIRE

    Jürgen Brojatsch; Heriberto Lima; Alak K Kar; Jacobson, Lee S.; Stefan M Muehlbauer; Kartik Chandran; Felipe Diaz-Griffero

    2014-01-01

    Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the p...

  11. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism

    DEFF Research Database (Denmark)

    Jayakumar, A R; Bak, L K; Rama Rao, K V;

    2016-01-01

    dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events...

  12. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    Science.gov (United States)

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  13. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  14. Calcium and cell death signaling in neurodegeneration and aging

    Directory of Open Access Journals (Sweden)

    Soraya Smaili

    2009-09-01

    Full Text Available Transient increase in cytosolic (Cac2+ and mitochondrial Ca2+ (Ca m2+ are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes maylead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.Aumentos transientes no cálcio citosólico (Ca c2+ e mitocondrial (Ca m2+ são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca c2+ e do Ca m2+ podem contribuir para o estresse oxidativo ea morte celular. Muitos eventos estão relacionados ao aumentono Ca c2+, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca c2+ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de

  15. Programmed Cell Death and Postharvest Deterioration of Horticultural Produce

    NARCIS (Netherlands)

    Woltering, E.J.; Iakimova, E.T.

    2010-01-01

    Programmed cell death (PCD) is a process where cells or tissues are broken down in an orderly and predictable manner, whereby nutrients are re-used by other cells, tissues or plant parts. The process of (petal) senescence shows many similarities to autophagic PCD in animal cells including a massive

  16. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  17. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H2O2-induced PC12 cell death. H2O2-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H2O2-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-XL and caspase-3. The accumulation of intracellular ROS in H2O2-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H2O2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H2O2-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  18. Sesamol protects human embryonic kidney cells from radiation induced cell death: a potential radioprotective agent

    International Nuclear Information System (INIS)

    Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. In our earlier studies, we have demonstrated that sesamol protected DNA (plasmid and calf thymus) and V79 cells from radiation induced cell death and the effect was higher (DMF=2) in comparison to melatonin (DMF=1.3). This prompted us to study, sesamol mediated radioprotection in detail to understand the mechanism of action. We have chosen human embryonic kidney (HEK) cells to understand the mechanism of radioprotection. The HEK cells were treated with sesamol before exposure of g rays (60Co teletherapy, Bhabhatron II) in the radiation dose range 0-7 Gy for clonogenic survival. Toxicity, antioxidant enzyme activity other biochemical assays were performed. Flow cytometric analysis (FACS Calibre, BD, USA) was used to determine the apoptotic population and mitochondrial membrane potential (Rh 123, JC-1). ROS was determined using DCFHDA. Cell cycle analysis, caspase 3 activity and cytochrome C were also measured. Results suggested that sesamol protected HEK cells from cell death. The dose modifying factor for sesamol was 1.3, whereas the alpha protection factor was 2. Sesamol inhibited radiation induced cell cycle arrest in G2/M phase; ROS generation and depolarization of mitochondrial membrane potential and caspase-3 activity. Sesamol inhibited damage of critical cellular components (protein, lipids, membrane and amino acid) and maintained the redox status of cells. The results will be helpful in understanding the mechanistic aspects and development of sesamol based radioprotector. (author)

  19. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  20. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    OpenAIRE

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs...

  1. Death for survival: what do we know about innate immunity and cell death in insects?

    Directory of Open Access Journals (Sweden)

    DM Cooper

    2011-09-01

    Full Text Available Insects are the most diverse and prolific animal group on Earth, and as such, important lessons can be taken from the elements that contribute to their evolutionary success. This review examines insect immunity and how insects combat infection with the pathogens they encounter: bacteria, viruses, fungi and parasites. Structural barriers, cellular and humoral responses and cell death all respond to specific immunological threats and contribute to the robust repertoire of immune strategies employed by insects. We discuss the strategies used by insects to combat pathogen infection and focus on what is currently known about cell death and its role in insect immunity.

  2. Plant programmed cell death and the point of no return

    NARCIS (Netherlands)

    Doorn, van W.G.

    2005-01-01

    The point of no return during programmed cell death (PCD) is defined as the step beyond which the cell is irreversibly committed to die. Some plant cells can be saved before this point by inducing the formation of functional chloroplasts. A visibly senescent tissue will then become green again and l

  3. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  4. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  5. Anti-Yo Antibody Uptake and Interaction with Its Intracellular Target Antigen Causes Purkinje Cell Death in Rat Cerebellar Slice Cultures: A Possible Mechanism for Paraneoplastic Cerebellar Degeneration in Humans with Gynecological or Breast Cancers

    OpenAIRE

    Greenlee, John E.; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L.; Tsunoda, Ikuo; Carlson, Noel G.

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental quest...

  6. Bax-induced cell death in Candida albicans.

    Science.gov (United States)

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  7. Crotamine and crotoxin interact with tumor cells and trigger cell death

    International Nuclear Information System (INIS)

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using 125I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both 125I-Crtx and 125I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  8. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    Directory of Open Access Journals (Sweden)

    Henrick Horita

    Full Text Available BACKGROUND: Acute myelogenous leukemia (AML is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. METHODS AND FINDINGS: In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. CONCLUSIONS: We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  9. The Mechanism of Safrole-Induced [Ca²⁺]i Rises and Non-Ca²⁺-Triggered Cell Death in SCM1 Human Gastric Cancer Cells.

    Science.gov (United States)

    Hung, Tzu-Yi; Chou, Chiang-Ting; Sun, Te-Kung; Liang, Wei-Zhe; Cheng, Jin-Shiung; Fang, Yi-Chien; Li, Yih-Do; Shieh, Pochuen; Ho, Chin-Man; Kuo, Chun-Chi; Lin, Jia-Rong; Kuo, Daih-Huang; Jan, Chung-Ren

    2015-10-31

    Safrole is a carcinogen found in plants. The effect of safrole on cytosolic free Ca²⁺ concentrations ([Ca²⁺](i)) and viability in SCM1 human gastric cancer cells was explored. The Ca²⁺-sensitive fluorescent dye fura-2 was applied to measure [Ca²⁺](i). Safrole at concentrations of 150-450 μM induced a [Ca²⁺](i) rise in a concentration-dependent manner. The response was reduced by 60% by removing extracellular Ca²⁺. Safrole-evoked Ca²⁺ entry was not altered by nifedipine, econazole, SKF96365, and protein kinase C activator or inhibitor. In Ca²⁺-free medium, treatment with the endoplasmic reticulum Ca²⁺ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished safrole-evoked [Ca²⁺](i) rises. Conversely, treatment with safrole abolished thapsigargin or BHQ-evoked [Ca²⁺](i) rises. Inhibition of phospholipase C (PLC) with U73122 abolished safrole-induced [Ca²⁺](i) rises. At 250-550 μM, safrole decreased cell viability concentration-dependently, which was not reversed by chelating cytosolic Ca²⁺ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that safrole (350-550 μM) induced apoptosis concentration-dependently. These studies suggest that in SCM1 human gastric cancer cells, safrole induced [Ca²⁺](i) rises by inducing PLC-dependent Ca²⁺ release from the endoplasmic reticulum and Ca²⁺ influx via non-store-operated Ca²⁺ entry pathways. Safrole-induced cell death may involve apoptosis. PMID:26387654

  10. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    Science.gov (United States)

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  11. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  12. The Apoptosome: Heart and Soul of the Cell Death Machine

    Directory of Open Access Journals (Sweden)

    Arul M. Chinnaiyan

    1999-04-01

    Full Text Available Apoptosis is a fundamental biologic process by which metazoan cells orchestrate their own self-demise. Genetic analyses of the nematode C elegans identified three core components of the suicide apparatus which include CED-3, CED-4, and CED-9. An analogous set of core constituents exists in mammalian cells and includes caspase-9, Apaf-1, and bcl-2/xL, respectively. CED-3 and CED-4, along with their mammalian counterparts, function to kill cells, whereas CED-9 and its mammalian equivalents protect cells from death. These central components biochemically intermingle in a ternary complex recently dubbed the “apoptosome.” The C elegans protein EGL-1 and its mammalian counterparts, pro-apoptotic members of the bcl-2 family, induce cell death by disrupting apoptosome interactions. Thus, EGL-1 may represent a primordial signal integrator for the apoptosome. Various biochemical processes including oligomerization, adenosine triphosphate ATP/dATP binding, and cytochrome c interaction play a role in regulating the ternary death complex. Recent studies suggest that cell death receptors, such as CD95, may amplify their suicide signal by activating the apoptosome. These mutual associations by core components of the suicide apparatus provide a molecular framework in which diverse death signals likely interface. Understanding the apoptosome and its cellular connections will facilitate the design of novel therapeutic strategies for cancer and other disease states in which apoptosis plays a pivotal role.

  13. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  14. Cell Death and Inflammatory Bowel Diseases: Apoptosis, Necrosis, and Autophagy in the Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Tiago Nunes

    2014-01-01

    Full Text Available Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn’s disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases.

  15. Interaction of CSR1 with XIAP reverses inhibition of caspases and accelerates cell death.

    Science.gov (United States)

    Zheng, Zhong-Liang; Tan, Lang-Zhu; Yu, Yan P; Michalopoulos, George; Luo, Jian-Hua

    2012-08-01

    Cellular Stress Response 1 (CSR1) is a tumor suppressor gene that is located at 8p21, a region that is frequently deleted in prostate cancer as well as a variety of human malignancies. Previous studies have indicated that the expression of CSR1 induces cell death. In this study, we found that CSR1 interacts with X-linked Inhibitor of Apoptosis Protein (XIAP), using yeast two-hybrid screening analyses. XIAP overexpression has been found in many human cancers, and forced expression of XIAP blocks apoptosis. Both in vitro and in vivo analyses indicated that the C-terminus of CSR1 binds XIAP with high affinity. Through a series of in vitro recombinant protein-binding analyses, the XIAP-binding motif in CSR1 was determined to include amino acids 513 to 572. Targeted knock-down of XIAP enhanced CSR1-induced cell death, while overexpression of XIAP antagonized CSR1 activity. The binding of CSR1 with XIAP enhanced caspase-9 and caspase-3 protease activities, and CSR1-induced cell death was dramatically reduced on expression of a mutant CSR1 that does not bind XIAP. However, a XIAP mutant that does not interact with caspase-9 had no impact on CSR1-induced cell death. These results suggest that cell death is induced when CSR1 binds XIAP, preventing the interaction of XIAP with caspases. Thus, this study may have elucidated a novel mechanism by which tumor suppressors induce cell death. PMID:22683311

  16. Programmed cell death in plants: A chloroplastic connection

    OpenAIRE

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that ...

  17. Photothermal reshaping of gold nanorods prevents further cell death

    International Nuclear Information System (INIS)

    The combined use of phosphatidylcholine passivated gold nanorods (PC-NRs) and pulsed near-infrared (near-IR) irradiation resulted in cell death. Pulsed near-IR laser irradiation also induced reshaping of PC-NRs into spherical nanoparticles. Since reshaped particles showed no absorption in the near-IR region, successive laser irradiation did not affect cells. Photo-reshaping of PC-NRs is expected to be advantageous in preventing unwanted cell damage following destruction of target cells

  18. Diagnosis of Cell Death by Means of Infrared Spectroscopy

    OpenAIRE

    Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana

    2009-01-01

    Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis induc...

  19. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    International Nuclear Information System (INIS)

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization

  20. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  1. Mitochondrial regulation of cell death: a phylogenetically conserved control

    Directory of Open Access Journals (Sweden)

    Lorenzo Galluzzi

    2016-02-01

    Full Text Available Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death.

  2. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Hongming Ma

    2015-07-01

    Full Text Available West Nile virus (WNV causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s. In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD pathway suggests that this might be the primary driver of WNV-induced cell death.

  3. Bromocriptine induces parapoptosis as the main type of cell death responsible for experimental pituitary tumor shrinkage

    International Nuclear Information System (INIS)

    Bromocriptine (Bc) produces pituitary tumoral mass regression which induces the cellular death that was classically described as apoptosis. However, recent works have related that other mechanisms of cell death could also be involved in the maintenance of physiological and pathological pituitary homeostasis. The aim of this study was to evaluate and characterize the different types of cell death in the involution induced by Bc in experimental rat pituitary tumors. The current study demonstrated that Bc induced an effective regression of estrogen induced pituitary tumors by a mechanism identified as parapoptosis. This alternative cell death was ultrastructurally recognized by extensive cytoplasmic vacuolization and an increased cell electron density, represented around 25% of the total pituitary cells counted. Furthermore, the results obtained from biochemical assays did not correspond to the criteria of apoptosis or necrosis. We also investigated the participation of p38, ERK1/2 and PKCδ in the parapoptotic pathway. An important observation was the significant increase in phosphorylated forms of these MAPKs, the holoenzyme and catalytic fragments of PKCδ in nuclear fractions after Bc administration compared to control and estrogen treated rats. Furthermore, the immunolocalization at ultrastructural level of these kinases showed a similar distribution pattern, with a prevalent localization at nuclear level in lactotrophs from Bc treated rats. In summary, we determined that parapoptosis is the predominant cell death type involved in the regression of pituitary tumors in response to Bc treatment, and may cause the activation of PKCδ, ERK1/2 and p38.

  4. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Science.gov (United States)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  5. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    International Nuclear Information System (INIS)

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2+) or negative (COOH-) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  6. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  7. Mechanism for Clofarabine Inducing Autophagic Death of Acute Myelocytic Leukemia Cell U937%氯法拉滨诱导U937细胞自噬性死亡的机制

    Institute of Scientific and Technical Information of China (English)

    李程亮; 刘海波; 张梅; 贺鹏程

    2013-01-01

    本研究旨在探讨氯法拉滨诱导急性髓系白血病(AML)细胞U937自噬性死亡的机制.不同浓度氯法拉滨作用U937细胞24、48 h后,用MTT法计算细胞生长抑制率及氯法拉滨半数抑制浓度(IC50),流式细胞术检测细胞自噬率的变化;Western blot方法检测细胞自噬相关蛋白Beclin1的表达变化.结果表明,0.01和0.15 μmol/L氯法拉滨作用U937细胞48 h,增殖抑制率分别为(46.92±4.24)%和(86.10±1.16)%,IC50为0.022 μmol/L,与对照组比较差异有统计学意义(P<0.05).0.01和0.1μmol/L氯法拉滨作用U937细胞48 h,自噬率分别为(11.0033±1.4387)%和(59.4133±3.5409)%,且呈剂量依赖性增强(r=0.99);随药物浓度的增加,Beclin 1表达逐渐上调,与对照组比较差异有统计学意义(P<0.05).结论:氯法拉滨对U937细胞有明显的增殖抑制作用,且存在剂量依赖性,其作用机制可能是通过上调Beclin 1的蛋白表达诱导U937细胞自噬性死亡.%To explore the mechanism of autophagic death of acute myelocytic leukemia cell U937 induced by clofarabine, the MTT bioassay was used to analyze the growth inhibitory effect and half inhibition concentration on U937 incubated in vitro with different concentrations of clofarabine for 24 and 48 hours, and the flow cytometry was used to detect the autophagy rate of U937. The expression of Beclin 1 in U937 treated by clofarabine for 48h was meaused by Western blot. The results indicated that when U937 cells were treated with 0. 01 μmol/L and 0.15 μmol/L clofarabine for 48 hours, the proliferation inhibition rate was 46. 92% ±4. 24% and 86. 10% ± 1. 16% , and the half inhibition concentration of clofarabine was 0.022 μmol/L. With 0.01 μmol/L and 0.1μmol/L clofarabine on U937 for 48 hours, the autophagy rate was 11.0033% ±1.4387% and 59.4133% ±3.5409% ,and increased in dose-dependent manner(r = 0.99). Meanwhile the Beclin 1 was upregulated along with increase of clofarabine concentration, as

  8. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj;

    2005-01-01

    JDP2 is a ubiquitously expressed nuclear protein that efficiently represses the activity of the transcription factor AP-1. Thus far, all studies of JDP2 function have relied on the ectopic expression of the protein. In this study, we use a different approach: depletion of JDP2 from cells. Specific...... depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  9. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    Science.gov (United States)

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors. PMID:26801872

  10. Cell death and autophagy: Cytokines, drugs, and nutritional factors

    International Nuclear Information System (INIS)

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 μM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-π and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fesues, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 μM), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 μM TAM, autophagy predominant; 7-9 μM, apoptosis predominant; 15 μM, necrosis. These phenomena might be

  11. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  12. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Haixia Zhuang

    2016-04-01

    Full Text Available Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3 positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs. Cisatracurium lowered HUVEC viability to 0.16 (OD490 at 100 µM and to 0.05 (OD490 after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01. Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype MEF (mouse embryonic fibroblast (p < 0.01 but was unaffected in Atg5 KO (Knockout MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury.

  13. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  14. Programmed Cell Death During Female Gametophyte Development

    Energy Technology Data Exchange (ETDEWEB)

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  15. Mitochondrion-mediated cell death: Dissecting yeast apoptosis for a better understanding of neurodegeneration

    Directory of Open Access Journals (Sweden)

    Ralf J Braun

    2012-11-01

    Full Text Available Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species, and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  16. Quantum algorithm for programmed cell death of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover

  17. Pathways to ischemic neuronal cell death: are sex differences relevant?

    Directory of Open Access Journals (Sweden)

    McCullough Louise D

    2008-06-01

    Full Text Available Abstract We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2 is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients.

  18. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death.

    Directory of Open Access Journals (Sweden)

    Rafael Luis Kessler

    Full Text Available The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50/72 h or killing all cells within 24 hours (EC(100/24 h. Incubation with inhibitors at the EC(50/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50/72 h. By contrast, treatment with SBIs at the EC(100/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP, culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.

  19. Cell death along single microfluidic channel after freeze-thaw treatments

    OpenAIRE

    Li, Yuhui; Wang, Fen; Wang, Hao

    2010-01-01

    Cryotherapy is a prospective green method for malignant tumor treatment. At low temperature, the cell viability relates with the cooling rate, temperature threshold, freezing interface, as well as ice formation. In clinical applications, the growth of ice ball must reach a suitable size as cells could not be all killed at the ice periphery. The cell death ratio at the ice periphery is important for the control of the freezing destruction. The mechanisms of cryoinjury around the ice periphery ...

  20. Role of mitochondria on muscle cell death and meat tenderization.

    Science.gov (United States)

    Sierra, Verónica; Oliván, Mamen

    2013-05-01

    The possibility that mitochondria are involved in cellular dysfunction is particularly high in situations associated with increases in free radical activity, like hypoxia or ischemia; therefore its potential role in the muscle post-mortem metabolism is reviewed. In the dying muscle, different routes of cell death catabolism (apoptosis, autophagy) may occur having great influence on the process of conversion of muscle into meat. Mitochondria are the first and also one of the main organelles affected by post-mortem changes; therefore they are decisive in the subsequent cellular responses influencing the pathway to cell demise and thus, the final meat quality. Depending on the cell death programme followed by muscle cells after exsanguination, diverse proteases would be activated to a different extent, which is also reviewed in order to understand how they affect meat tenderization. This review also summarizes recent patents relating cell death processes and meat tenderness. Further research is encouraged as there is still a need of knowledge on cell death post-mortem processes to increase our understanding of the conversion of muscle into meat. PMID:23432120

  1. Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity.

    Science.gov (United States)

    Roque-Navarro, Lourdes; Chakrabandhu, Krittalak; de León, Joel; Rodríguez, Sandra; Toledo, Carlos; Carr, Adriana; de Acosta, Cristina Mateo; Hueber, Anne-Odile; Pérez, Rolando

    2008-07-01

    Gangliosides have been involved in multiple cellular processes such as growth, differentiation and adhesion, and more recently as regulators of cell death signaling pathways. Some of these molecules can be considered as tumor-associated antigens, in particular, N-glycolyl sialic acid-containing gangliosides, which are promising candidates for cancer-targeted therapy because of their low expression in normal human tissues. In this study, we provided the molecular and cellular characterization of a novel cell death mechanism induced by the anti-NGcGM3 14F7 monoclonal antibody (mAb) in L1210 murine tumor cell line but not in mouse normal cells (B and CD4(+) T lymphocytes) that expressed the antigen. Impairment of ganglioside synthesis in tumor cells abrogated the 14F7 mAb cytotoxic effect; however, exogenous reincorporation of the ganglioside did not restore tumor cell sensitivity to 14F7 mAb-induced cytotoxicity. 14F7 F(ab')(2) but not Fab fragments retained the cytotoxic capacity of the whole mAb. By contrary, other mAb, which recognizes N-glycolylated gangliosides, did not show any cytotoxic effect. These mAbs showed quite different capacities to bind NGcGM3-positive cell lines measured by binding inhibition experiments. Interestingly, this complement-independent cell death mechanism did not resemble apoptosis, because no DNA fragmentation, caspase activation, or Fas mediation were observed. However, NGcGM3 ganglioside-mediated 14F7 mAb-induced cell death was accompanied by cellular swelling, membrane lesion formation, and cytoskeleton activation, suggesting an oncosis-like phenomenon. This novel mechanism of cell death lets us to support further therapeutic approaches using NGcGM3 as a molecular target for antibody-based cancer immunotherapy. PMID:18645013

  2. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  3. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    OpenAIRE

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 ...

  4. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Gopinath Rajadinakaran

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  5. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    Science.gov (United States)

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-01

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  6. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    Science.gov (United States)

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  7. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Hydrogen peroxide (H2O2 produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.

  8. Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms

    Directory of Open Access Journals (Sweden)

    K.K. Sakane

    2014-01-01

    Full Text Available Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2 enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.

  9. Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms

    International Nuclear Information System (INIS)

    Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival

  10. Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, K.K. [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP (Brazil); Monteiro, C.J.; Silva, W.; Silva, A.R. [Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Santos, P.M. [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP (Brazil); Lima, K.F. [Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Moraes, K.C.M. [Instituto de Biociências, Departamento de Biologia, Universidade Estadual Paulista ‘‘Júlio de Mesquita Filho’’, Rio Claro, SP (Brazil)

    2013-11-29

    Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.

  11. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    Science.gov (United States)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  12. Connexin 43 Channels Protect Osteocytes against Oxidative Stress-Induced Cell Death

    OpenAIRE

    Kar, Rekha; Riquelme, Manuel A.; Werner, Sherry; Jiang, Jean X.

    2013-01-01

    The increased osteocyte death by oxidative stress (OS) during aging is a major cause contributing to the impairment of bone quality and bone loss. However, the underlying molecular mechanism is largely unknown. Here, we showed that H2O2 induced cell death of primary osteocytes and osteocytic MLO-Y4 cells, and also caused dose-dependent decrease expression of gap junction and hemichannel-forming connexin 43 (Cx43). The decrease of Cx43 expression was also demonstrated with the treatment of oth...

  13. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    International Nuclear Information System (INIS)

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg2+) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg2+ intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3

  14. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  15. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  16. Defense mechanisms of normal and tumor cells

    International Nuclear Information System (INIS)

    This paper reviews the protective systems of normal and tumor cells against chemical and radiation injury. The glutathione redox cycle is an important cell defense system that can be compromised by various chemical modifiers. Acute cell injury can involve the glutathione pools of both the cytosol and the mitochondria. Intracellular calcium may have a role in cell death following acute cell injury but extracellular calcium does not seem to initiate the events leading to cell death. Changes in the glutathione redox status affects the distribution of intracellular calcium and the protein thiol-disulfide redox status. Formation of glutathione protein-mixed disulfides is discussed in terms of a possible protective mechanism against oxidative injury. 46 references

  17. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tabuchi

    2014-05-01

    Full Text Available Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF, we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I and Atf4 and Hspa5 (for Up-II. Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells.

  18. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  19. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  20. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H2O2) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H2O2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  1. Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain.

    Science.gov (United States)

    Chen, Fang; Ding, Xicheng; Ding, Ying; Xiang, Zuoshuang; Li, Xinna; Ghosh, Debashis; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M; He, Yongqun

    2011-06-01

    Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B. suis primarily infects pigs and is pathogenic to humans. The macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Our studies showed that smooth virulent B. suis strain 1330 (S1330) prevented programmed cell death of infected macrophages and rough attenuated B. suis strain VTRS1 (a vaccine candidate) induced strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cells infected with S1330 or VTRS1. In total 17,685 probe sets were significantly regulated based on the effects of strain, time and their interactions. A miniTUBA dynamic Bayesian network analysis predicted that VTRS1-induced macrophage cell death was mediated by a proinflammatory gene (the tumor necrosis factor alpha [TNF-α] gene), an NF-κB pathway gene (the IκB-α gene), the caspase-2 gene, and several other genes. VTRS1 induced significantly higher levels of transcription of 40 proinflammatory genes than S1330. A Mann-Whitney U test confirmed the proinflammatory response in VTRS1-infected macrophages. Increased production of TNF-α and interleukin 1β (IL-1β) were also detected in the supernatants in VTRS1-infected macrophage cell culture. Hyperphosphorylation of IκB-α was observed in macrophages infected with VTRS1 but not S1330. The important roles of TNF-α and IκB-α in VTRS1-induced macrophage cell death were further confirmed by individual inhibition studies. VTRS1-induced macrophage cell death was significantly inhibited by a caspase-2 inhibitor but not a caspase-1 inhibitor. The role of caspase-2 in regulating the programmed cell death of VTRS1-infected macrophages was confirmed in another study using caspase-2-knockout mice. In summary, VTRS1

  2. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  3. Non-chemotoxic induction of cancer cell death using magnetic nanowires

    KAUST Repository

    Contreras, Maria

    2015-03-01

    In this paper, we show that magnetic nanowires with weak magnetic fields and low frequencies can induce cell death via a mechanism that does not involve heat production. We incubated colon cancer cells with two concentrations (2.4 and 12 μg/mL) of nickel nanowires that were 35 nm in diameter and exposed the cells and nanowires to an alternating magnetic field (0.5 mT and 1 Hz or 1 kHz) for 10 or 30 minutes. This low-power field exerted a force on the magnetic nanowires, causing a mechanical disturbance to the cells. Transmission electron microscopy images showed that the nanostructures were internalized into the cells within 1 hour of incubation. Cell viability studies showed that the magnetic field and the nanowires separately had minor deleterious effects on the cells; however, when combined, the magnetic field and nanowires caused the cell viability values to drop by up to 39%, depending on the strength of the magnetic field and the concentration of the nanowires. Cell membrane leakage experiments indicated membrane leakage of 20%, suggesting that cell death mechanisms induced by the nanowires and magnetic field involve some cell membrane rupture. Results suggest that magnetic nanowires can kill cancer cells. The proposed process requires simple and low-cost equipment with exposure to only very weak magnetic fields for short time periods. © 2015 Contreras et al.

  4. Cell-Based Chemical Genetic Screen Identifies Damnacanthal as an Inhibitor of HIV-1 Vpr Induced Cell Death

    OpenAIRE

    Kamata, Masakazu; Wu, Raymond P.; An, Dong Sung; Saxe, Jonathan P; Damoiseaux, Robert; Phelps, Michael E.; Huang, Jing; Chen, Irvin S. Y.

    2006-01-01

    Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified Damnacanthal (Dam), a component of non...

  5. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  6. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death

    OpenAIRE

    Lilibeth Lanceta; Mattingly, Jacob M.; Chi Li; Eaton, John W.

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably in...

  7. Cloning of murine BRI3 gene and study on its function for inducing cell death

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To understand the molecular mechanism of TNFα effects, the cDNA of murine BRI3 gene was cloned from the total RNA of murine brain endothelial cells (bEnd.3)treated with hTNFα by using the suppression subtractive hybridization (SSH) and the RT-PCR method. The fusion expression vector harbouring BRI3 gene and enhanced green fluorescence protein (EGFP) thus obtained were designated as pEGFP/I3. Then pEGFP/I3 was transiently transfected into L929 cells and the fusion protein EGFP/I3 was localized in cytoplasm. It is found that the expression of EGFP/I3 could induce cell death in L929 cells detected by TUNEL method and flow cytometry. And the overexpression of Bci-2 in L929 cells can block cell death induced by EGFP/I3, indicating that murine BRI3 gene might related to the TNFα mediated cytotoxicity.

  8. New steroidal aromatase inhibitors: Suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death

    Directory of Open Access Journals (Sweden)

    Roleira Fernanda MF

    2008-07-01

    Full Text Available Abstract Background Aromatase, the cytochrome P-450 enzyme (CYP19 responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI, which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells. Results The new steroids inhibit hormone-dependent proliferation of MCF-7aro cells in a time and dose-dependent manner, causing cell cycle arrest in G0/G1 phase and inducing cell death with features of apoptosis and autophagic cell death. Conclusion Our in vitro studies showed that the two steroidal AIs, 3a and 4a, are potent inhibitors of breast cancer cell proliferation. Moreover, it was also shown that the antiproliferative effects of these two steroids on MCF-7aro cells are mediated by disrupting cell cycle progression, through cell cycle arrest in G0/G1 phase and induction of cell death, being the dominant mechanism autophagic cell death. Our results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer.

  9. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  10. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA2, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA2 activity, leading to avoidance of non-apoptotic cell death

  11. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers

  12. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    International Nuclear Information System (INIS)

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death

  13. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  14. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    Science.gov (United States)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  15. Cell death and signal transduction pathways in Alzheimer's disease : The role of presenilin 1

    OpenAIRE

    Popescu, Bogdan O

    2004-01-01

    Mutated presenilins (PSs) may cause familial Alzheimer's disease (FAD) by altering neuronal signal transduction pathways, by increasing AP production or by triggering a number of proapoptotic mechanisms. The present thesis explores mechanisms by which PSs regulate signal transduction and cell death with relevance to AD. Paper I explored the complex proteolytic processing of wild-type (WT) and FAD presenilin 1 (PS1) exon 9 deleted mutant (deltaE9 PS1) during apoptosis. PS...

  16. Intracellular Ca2+ thresholds that determine survival or death of energy-deprived cells.

    OpenAIRE

    Dong, Z.; Saikumar, P; Griess, G A; Weinberg, J. M.; Venkatachalam, M. A.

    1998-01-01

    Increase of intracellular ionized or free Ca2+ is thought to play a central role in cell death due to ATP depletion. However, concurrently operative mechanisms of injury that do not require intracellular Ca2+ increases have made it difficult to test this hypothesis or to determine the concentrations at which intracellular Ca2+ becomes lethal. The predominant Ca2+-independent mechanism of injury during ATP depletion involves the loss of cellular glycine. This type of damage can be fully inhibi...

  17. Capsaicinoids Cause Inflammation and Epithelial Cell Death through Activation of Vanilloid Receptors

    OpenAIRE

    Reilly, Christopher A.; Taylor, Jack L.; Lanza, Diane L.; Carr, Brian A.; Crouch, Dennis J.; Yost, Garold S.

    2003-01-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammatio...

  18. Cell Death in the Myocardium: My Heart Won’t Go On

    OpenAIRE

    Orogo, Amabel M.; Gustafsson, Åsa B.

    2013-01-01

    Loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. With fewer myocytes, the heart is unable to sustain efficient contraction. Much attention has been focused on understanding mechanisms of cell death in myocytes with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Both necrosis and apoptosis contribute to loss of myocytes, and this loss of cells is a hallmark of cardiac pathologies, including ischemia/reper...

  19. Comedo-ductal carcinoma in situ: A paradoxical role for programmed cell death

    OpenAIRE

    Shekhar, Malathy P. V.; Tait, Larry; Pauley, Robert J.; Wu, Gen Sheng; Santner, Steven J.; Nangia-Makker, Pratima; Shekhar, Varun; Nassar, Hind; Visscher, Daniel W.; Heppner, Gloria H.; Miller, Fred R.

    2008-01-01

    Comedo-DCIS is a histologic subtype of preinvasive breast neoplasia that is characterized by prominent apoptotic cell death and has greater malignant potential than other DCIS subtypes. We investigated the mechanisms of apoptosis in comedo-DCIS and its role in conversion of comedo-DCIS to invasive cancer. Clinical comedo-DCIS excisions and the MCF10DCIS.com human breast cancer model which produces lesions resembling comedo-DCIS were analyzed. Apoptotic luminal and myoepithelial cells were ide...

  20. Cell death in the injured brain: roles of metallothioneins

    DEFF Research Database (Denmark)

    Pedersen, Mie Ø; Larsen, Agnete; Stoltenberg, Meredin; Penkowa, Milena

    2009-01-01

    In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive...... provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients....... oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential...

  1. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  2. Microscopic analysis of cell death by metabolic stress-induced autophagy in prostate cancer

    Science.gov (United States)

    Changou, Chun; Cheng, R. Holland; Bold, Richard; Kung, Hsing-Jien; Chuang, Frank Y. S.

    2013-02-01

    Autophagy is an intracellular recycling mechanism that helps cells to survive against environmental stress and nutritional starvation. We have recently shown that prostate cancers undergo metabolic stress and caspase-independent cell death following exposure to arginine deiminase (ADI, an enzyme that degrades arginine in tissue). The aims of our current investigation into the application of ADI as a novel cancer therapy are to identify the components mediating tumor cell death, and to determine the role of autophagy (stimulated by ADI and/or rapamycin) on cell death. Using advanced fluorescence microscopy techniques including 3D deconvolution and superresolution structured-illumination microscopy (SIM), we show that prostate tumor cells that are killed after exposure to ADI for extended periods, exhibit a morphology that is distinct from caspase-dependent apoptosis; and that autophagosomes forming as a result of ADI stimulation contain DAPI-stained nuclear material. Fluorescence imaging (as well as cryo-electron microscopy) show a breakdown of both the inner and outer nuclear membranes at the interface between the cell nucleus and aggregated autophagolysosomes. Finally, the addition of N-acetyl cysteine (or NAC, a scavenger for reactive oxygen species) effectively abolishes the appearance of autophagolysosomes containing nuclear material. We hope to continue this research to understand the processes that govern the survival or death of these tumor cells, in order to develop methods to improve the efficacy of cancer pharmacotherapy.

  3. Cell death is involved in sexual dimorphism during preimplantation development.

    Science.gov (United States)

    Oliveira, C S; Saraiva, N Z; Lima, M R de; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  4. Neuroprotective effects of pramipexole against tunicamycin-induced cell death in PC12 cells.

    Science.gov (United States)

    Nakayama, Hitoshi; Zhao, Jing; Ei-Fakhrany, Amany; Isosaki, Minoru; Satoh, Hiroyasu; Kyotani, Yoji; Yoshizumi, Masanori

    2009-12-01

    1. Pramipexole (PPX), a dopamine D2 and D3 receptor agonist, exerts neuroprotective effects via both dopamine receptor-mediated and non-dopaminergic mechanisms. In the present study, we demonstrate that PPX reduces the toxicity of tunicamycin, a typical endoplasmic reticulum (ER) stressor, in PC12h cells, a subline of PC12 cells. 2. The PC12h cells were treated with 300 micromol / L PPX in the presence of 0.5 micromol / L tunicamycin for 24 h. The neuroprotective effects of PPX against tunicamycin-induced cell death were evaluated using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, Hoechst 33258 staining and western blot analysis. 3. Tunicamycin (0.2, 0.3 and 0.5 microg / mL) dose-dependently decreased MTT activity and increased LDH release from PC12h cells. Treatment with 300 micromol / L PPX rescued the tunicamycin-induced decrease in cell viability. 4. Spiperone (10 micromol / L), a dopamine D2 and D4 receptor antagonist, had no effect on PPX neuroprotection against tunicamycin in these cells. Marker proteins of ER stress and apoptosis are known to be upregulated by tunicamycin, but we detected no significant effects of PPX on these factors. 5. In conclusion, we speculate that a combination of several mechanisms may be involved in PPX-induced neuroprotection. PMID:19515063

  5. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ira O Racoma

    Full Text Available Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action. Thymoquinone (TQ is the bioactive compound of the Nigella sativa seed oil. TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival. Exposure to TQ caused an increase in the recruitment and accumulation of the microtubule-associated protein light chain 3-II (LC3-II. TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization, as determined by a specific loss of red acridine orange staining. Lysosome membrane permeabilization resulted in a leakage of cathepsin B into the cytosol, which mediates caspase-independent cell death that can be prevented by pre-treatment with a cathepsin B inhibitor. TQ induced apoptosis, as determined by an increase in PI and Annexin V positive cells. However, apoptosis appears to be caspase-independent due to failure of the caspase inhibitor z-VAD-FMK to prevent cell death and absence of the typical apoptosis related signature DNA fragmentation. Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a

  6. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  7. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  8. Programmed cell death 1 ligand 1 expression in osteosarcoma

    OpenAIRE

    Shen, Jacson K.; Cote, Gregory M.; Choy, Edwin; Yang, Pei; Harmon, David; Schwab, Joseph; Nielsen, G. Petur; Chebib, Ivan; Ferrone, Soldano; Wang, Xinhui; Wang, Yangyang; Mankin, Henry; Francis J. Hornicek; Duan, Zhenfeng

    2014-01-01

    Programmed cell death 1 ligand 1 (PD-L1, B7H1) is a cell-surface protein that suppresses the cytotoxic CD8+ T cell-mediated immune response. PD-L1 expression and its clinical relevance in sarcomas are not well understood. Therefore, we sought to measure RNA expression levels for PD-L1 in 38 clinically annotated osteosarcoma tumor samples, and aimed to determine if PD-L1 expression correlates with clinical features and tumor-infiltrating T-lymphocytes (TILs). Quantitative real-time RT-PCR for ...

  9. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death.

    Science.gov (United States)

    Kar, Rekha; Riquelme, Manuel A; Werner, Sherry; Jiang, Jean X

    2013-07-01

    The increased osteocyte death by oxidative stress (OS) during aging is a major cause contributing to the impairment of bone quality and bone loss. However, the underlying molecular mechanism is largely unknown. Here, we show that H₂O₂ induced cell death of primary osteocytes and osteocytic MLO-Y4 cells, and also caused dose-dependent decreased expression of gap junction and hemichannel-forming connexin 43 (Cx43). The decrease of Cx43 expression was also demonstrated with the treatment of other oxidants, rotenone and menadione. Antioxidant reversed the effects of oxidants on Cx43 expression and osteocyte cell death. Cx43 protein was also much lower in the osteocytes from 20-month-old as opposed to the 5-week-old or 20-week old mice. Dye transfer assay showed that H₂O₂ reduced the gap junction intercellular communication (GJIC). In contrast to the effect on GJIC, there was a dose-dependent increase of hemichannel function by H₂O₂, which was correlated with the increased cell surface expression of Cx43. Cx43(E2) antibody, an antibody that specifically blocks Cx43 hemichannel activity but not gap junctions, completely blocked dye uptake induced by H₂O₂ and further exacerbated H₂O₂-induced osteocytic cell death. In addition, knockdown of Cx43 expression by small interfering RNA (siRNA) increased the susceptibility of the cells to OS-induced death. Together, our study provides a novel cell protective mechanism mediated by osteocytic Cx43 channels against OS. PMID:23456878

  10. In vitro apoptotic cell death during erythroid differentiation.

    Science.gov (United States)

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  11. p31comet-Induced Cell Death Is Mediated by Binding and Inactivation of Mad2.

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Shin

    Full Text Available Mad2, a key component of the spindle checkpoint, is closely associated with chromosomal instability and poor prognosis in cancer. p31comet is a Mad2-interacting protein that serves as a spindle checkpoint silencer at mitosis. In this study, we showed that p31comet-induced apoptosis and senescence occur via counteraction of Mad2 activity. Upon retroviral transduction of p31comet, the majority of human cancer cell lines tested lost the ability to form colonies in a low-density seeding assay. Cancer cells with p31comet overexpression underwent distinct apoptosis and/or senescence, irrespective of p53 status, confirming the cytotoxicity of p31comet. Interestingly, both cytotoxic and Mad2 binding activities were eliminated upon deletion of the C-terminal 30 amino acids of p31comet. Point mutation or deletion of the region affecting Mad2 binding additionally abolished cytotoxic activity. Consistently, wild-type Mad2 interacting with p31comet, but not its non-binding mutant, inhibited cell death, indicating that the mechanism of p31comet-induced cell death involves Mad2 inactivation. Our results clearly suggest that the regions of p31comet affecting interactions with Mad2, including the C-terminus, are essential for induction of cell death. The finding that p31comet-induced cell death is mediated by interactions with Mad2 that lead to its inactivation is potentially applicable in anticancer therapy.

  12. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    Science.gov (United States)

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  13. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  14. Triggering cell death by nanographene oxide mediated hyperthermia

    International Nuclear Information System (INIS)

    Graphene oxide (GO) has been proposed as an hyperthermia agent for anticancer therapies due to its near-infrared (NIR) optical absorption ability which, with its small two-dimensional size, could have a unique performance when compared to that of any other nanoparticle. Nevertheless, attention should be given to the hyperthermia route and the kind of GO–cell interactions induced in the process. The hyperthermia laser irradiation parameters, such as exposure time and laser power, were investigated to control the temperature rise and consequent damage in the GOs containing cell culture medium. The type of cell damage produced was evaluated as a function of these parameters. The results showed that cell culture temperature (after irradiating cells with internalized GO) increases preferentially with laser power rather than with exposure time. Moreover, when laser power is increased, necrosis is the preferential cell death leading to an increase of cytokine release to the medium. (paper)

  15. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  16. Glucococorticoid-Induced Death of Pancreatic Beta Cells: An Organized Chaos

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2015-01-01

    Full Text Available Glucocorticoids (GC are renowned for their pleiotropic effects in all organ systems, their ubiquitous use in numerous clinical settings, and the abundant adverse effects they may exert, particularly in the endocrine-metabolic sphere. Although hyperglycemia and insulin resistance are well-defined GC-induced diabetogenic phenomena, an added component of direct injury to pancreatic β cells (PBC may also participate in this scenario. Indeed, the apoptotic capacity of GC is widely recognized, and PBC do not escape this situation. No unified pathway has been characterized regarding GC-induced cell death; instead, it appears to depend on the specific machinery of each cell type, determining a great heterogeneity in GC-dependent apoptotic mechanisms among different tissues. In PBC, GC can induce the expression or activation of pro-apoptotic proteins (Bax, BAD, p38, repress anti-apoptotic proteins (Bcl-2, deactivate pro-survival mechanisms (cAMP-PKA signaling and sensitize the cell to death induced by oxidative stress, fatty acids, hyperglycemia and cytokines. Although proliferative pathways (TGF-β, H-ras are activated simultaneously – and an increase in PBC mass may be observed initially – pro-apoptotic and anti-proliferative mechanisms appear to eventually overcome their pro-survival counterparts, due to their synergic and aggregative action. Key molecules such as p38 and the cAMP-PKA system may be promising therapeutic targets in the prevention of GC-induced cell death.

  17. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention.

    Science.gov (United States)

    Devinsky, Orrin; Hesdorffer, Dale C; Thurman, David J; Lhatoo, Samden; Richerson, George

    2016-09-01

    Sudden unexpected death in epilepsy (SUDEP) can affect individuals of any age, but is most common in younger adults (aged 20-45 years). Generalised tonic-clonic seizures are the greatest risk factor for SUDEP; most often, SUDEP occurs after this type of seizure in bed during sleep hours and the person is found in a prone position. SUDEP excludes other forms of seizure-related sudden death that might be mechanistically related (eg, death after single febrile, unprovoked seizures, or status epilepticus). Typically, postictal apnoea and bradycardia progress to asystole and death. A crucial element of SUDEP is brainstem dysfunction, for which postictal generalised EEG suppression might be a biomarker. Dysfunction in serotonin and adenosine signalling systems, as well as genetic disorders affecting cardiac conduction and neuronal excitability, might also contribute. Because generalised tonic-clonic seizures precede most cases of SUDEP, patients must be better educated about prevention. The value of nocturnal monitoring to detect seizures and postictal stimulation is unproven but warrants further study. PMID:27571159

  18. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors.

    Science.gov (United States)

    Reilly, Christopher A; Taylor, Jack L; Lanza, Diane L; Carr, Brian A; Crouch, Dennis J; Yost, Garold S

    2003-05-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results

  19. Pneumolysin causes neuronal cell death through mitochondrial damage

    OpenAIRE

    Braun, Johann S.; Hoffmann, Olaf; Schickhaus, Miriam; Freyer, Dorette; Dagand, Emilie; Bermpohl, Daniela; Mitchell, Tim J.; Bechmann, Ingo; Weber, Joerg R.

    2007-01-01

    Bacterial toxins such as pneumolysin are key mediators of cytotoxicity in infections. Pneumolysin is a pore-forming toxin released by Streptococcus pneumoniae, the major cause of bacterial meningitis. We found that pneumolysin is the pneumococcal factor that accounts for the cell death pathways induced by live bacteria in primary neurons. The pore-forming activity of pneumolysin is essential for the induction of mitochondrial damage and apoptosis. Pneumolysin colocalized with mitochondrial me...

  20. Cell Death Characterization In Tumor Constructs Using Irreversible Electroporation

    OpenAIRE

    Prokop, Katherine Jane

    2013-01-01

    Cell Death Characterization in Tumor Constructs Using Irreversible Electroporation Katherine Jane Prokop ABSTRACT Pancreatic and prostate cancer are both prevalent cancers in the United States with pancreatic being one of the most aggressive of all cancers and prostate cancer being one of the most common, ranking as the number one cancer in men. Treatment of both cancers can be quite challenging as the anatomy of the pancreas and prostate, as well as the development and diagnos...

  1. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga;

    Programmed cell death (PCD) is a highly regulated process in which cells are dismantled. Reactive oxygen species (ROS) are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD are only poorly understood in plant cells compared to in animal cells (Gechev, Tsanko......, et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors such...... as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust...

  2. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death

    Directory of Open Access Journals (Sweden)

    Chakrabarti Lisa

    2009-07-01

    Full Text Available Abstract Purkinje cells are a class of specialized neurons in the cerebellum, and are among the most metabolically active of all neurons, as they receive immense synaptic stimulation, and provide the only efferent output from the cerebellum. Degeneration of Purkinje cells is a common feature of inherited ataxias in humans and mice. To understand Purkinje neuron degeneration, investigators have turned to naturally occurring Purkinje cell degeneration phenotypes in mice to identify key regulatory proteins and cellular pathways. The Purkinje cell degeneration (pcd mouse is a recessive mutant characterized by complete and dramatic post-natal, cell autonomous Purkinje neuron degeneration and death. As the basis of Purkinje cell death in pcd is unresolved, and contradictory data has emerged for the role of autophagy in Purkinje cell degeneration, we studied the mechanism of Purkinje cell death in pcd mice. BAX null status did not suppress Purkinje neuron death in pcd mice, indicating that classic apoptosis is not responsible for Purkinje cell loss. Interestingly, LC3 Western blot analysis and GFP-LC3 immunostaining of degenerating pcd cerebellum revealed activation of the autophagy pathway. Ultrastructural studies confirmed increased autophagy pathway activity in Purkinje cells, and yielded evidence for mitophagy, in agreement with LC3 immunoblotting of cerebellar fractions. As p62 levels were decreased in pcd cerebellum, our findings suggest that pcd Purkinje cell neurons can execute effective autophagy. However, our results support a role for dysregulated autophagy activation in pcd, and suggest that increased or aberrant mitophagy contributes to the Purkinje cell degeneration in pcd mice.

  3. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    Energy Technology Data Exchange (ETDEWEB)

    Hojka-Osinska, Anna, E-mail: hojka@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Ziolo, Ewa, E-mail: ziolo@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Rapak, Andrzej, E-mail: rapak@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  4. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    International Nuclear Information System (INIS)

    Highlights: ► The combination of fenretinide and indomethacin induces a high level of cell death. ► Apoptotic pathway is caspase-independent. ► Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug–indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  5. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  6. Induction of Cancer Cell Death by Isoflavone: The Role of Multiple Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fazlul H. Sarkar

    2011-10-01

    Full Text Available Soy isoflavones have been documented as dietary nutrients broadly classified as “natural agents” which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR, p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials.

  7. MnSOD upregulation induces autophagic programmed cell death in senescent keratinocytes.

    Directory of Open Access Journals (Sweden)

    Emeric Deruy

    Full Text Available Senescence is a state of growth arrest resulting mainly from telomere attrition and oxidative stress. It ultimately leads to cell death. We have previously shown that, in keratinocytes, senescence is induced by NF-kappaB activation, MnSOD upregulation and H(2O(2 overproduction. We have also shown that senescent keratinocytes do not die by apoptosis but as a result of high macroautophagic activity that targets the primary vital cell components. Here, we investigated the mechanisms that activate this autophagic cell death program. We show that corpses occurring at the senescence plateau display oxidatively-damaged mitochondria and nucleus that colocalize with autophagic vacuoles. The occurrence of such corpses was decreased by specifically reducing the H(2O(2 level with catalase, and, conversely, reproduced by overexpressing MnSOD or applying subtoxic doses of H(2O(2. This H(2O(2-induced cell death did occur through autophagy since it was accompanied by an accumulation of autophagic vesicles as evidenced by Lysotracker staining, LC3 vesiculation and transmission electron microscopy. Most importantly, it was partly abolished by 3-methyladenine, the specific inhibitor of autophagosome formation, and by anti-Atg5 siRNAs. Taken together these results suggest that autophagic cell death is activated in senescent keratinocytes because of the upregulation of MnSOD and the resulting accumulation of oxidative damages to nucleus and mitochondria.

  8. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2α and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  9. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells.

    Science.gov (United States)

    Sen, Nilkantha; Das, Benu Brata; Ganguly, Agneyo; Banerjee, Bijoylaxhmi; Sen, Tanusree; Majumder, Hemanta K

    2006-11-01

    Leishmaniasis presents a spectrum of diseases ranging from benign cutaneous lesions to the often-fatal visceralizing form. Luteolin, a dietary flavone induces apoptosis-like death in both promastigote and amastigote forms of Leishmania, the causative agent of the diseases. Here, we have elucidated the mechanism of action of luteolin by analyzing the mitochondrial and cytosolic changes associated with apoptosis-like death of leishmanial cells. In Leishmania donovani, treatment with luteolin induces the loss of both maxicircles and minicircles which resulted in the formation of dyskinetoplastid cells. The loss of mitochondrial DNA causes reduction in the activities of complex I, II, III, and IV of electron transport chain. However, the mitochondrial ATPase activity of complex V remains almost unaltered during treatment with luteolin but the sensitivity to oligomycin is lost. The inactivation of ETC complex is associated with decrease in mitochondrial as well as glycolytic ATP production, which is responsible for depolarization of Deltapsi(m) and alteration in mitochondrial structure. This event is followed by the release of cytochrome c from mitochondria in mt-DNA depleted leishmanial cells and causes an activation of caspase like proteases. Collectively our results provide the first insight into the mechanistic pathway of apoptosis-like death where inhibition of glycolytic ATP production is an essential event responsible for depolarization of Deltapsi(m) in mt-DNA depleted cells to propagate apoptosis-like death in leishmanial cells. PMID:16707127

  10. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    Science.gov (United States)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  11. Sudden death of a patient with pulmonary Langerhans cell histiocytosis.

    Science.gov (United States)

    Nakhla, Hassan; Jumbelic, Mary I

    2005-06-01

    We report a case of sudden death due to bilateral pneumothorax in a previously healthy 16-year-old adolescent white girl. She presented with sudden onset of shortness of breath followed by loss of consciousness. Postmortem chest radiograph showed bilateral pneumothoraces. Autopsy confirmed the bilateral pneumothorax and additionally showed emphysematous changes and bullae throughout the lung tissue. Microscopic sections of the lungs showed Langerhans cell histiocytosis. To the best of our knowledge, this is the first reported case of fatal presentation of pulmonary Langerhans cell histiocytosis. PMID:15913433

  12. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria, formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK, NF-B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti- and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3, essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins, block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as ``weak links” between various ``hubs” in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins, can act as ``hubs” in

  13. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  14. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    Science.gov (United States)

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  15. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water

    International Nuclear Information System (INIS)

    Arsenic contamination in drinking water is one of the biggest natural calamities, which has become an imperative threat to human health throughout the world. Abbreviation of erythrocyte lifespan leading to the development of anemia is a common sequel in arsenic exposed population. This study was undertaken to explore the mechanism of cell death in human erythrocytes during chronic arsenic exposure. Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals. Further distortion converted reversible echinocytes to irreversible spheroechinocytes. Arsenic toxicity increased membrane microviscosity along with an elevation of cholesterol/phospholipid ratio, which hampered the flexibility of red cell membrane and made them less deformable. Significant increase in the binding of merocyanine 540 with erythrocyte membrane due to arsenic exposure indicated disruption of lipid packing in the outer leaflet of the cell membrane resulting from altered transbilayer phospholipid asymmetry. Arsenic induced eryptosis was characterized by cell shrinkage and exposure of phosphatidylserine at the cell surface. Furthermore, metabolic starvation with depletion of cellular ATP triggered apoptotic removal of erythrocytes from circulation. Significant decrease in reduced glutathione content indicating defective antioxidant capacity was coupled with enhancement of malondialdehyde and protein carbonyl levels, which pointed to oxidative damage to erythrocyte membrane. Arsenic toxicity intervened into red cell membrane integrity eventually leading to membrane destabilization and hemoglobin release. The study depicted the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure

  16. Role of mitochondrial function in cell death and body metabolism.

    Science.gov (United States)

    Lee, Myung-Shik

    2016-01-01

    Mitochondria are the key players in apoptosis and necrosis. Mitochondrial DNA (mtDNA)-depleted r0 cells were resistant to diverse apoptosis inducers such as TNF-alpha, TNFSF10, staurosporine and p53. Apoptosis resistance was accompanied by the absence of mitochondrial potential loss or cytochrome c translocation. r0 cells were also resistant to necrosis induced by reactive oxygen species (ROS) donors due to upregulation of antioxidant enzymes such as manganese superoxide dismutase. Mitochondria also has a close relationship with autophagy that plays a critical role in the turnover of senescent organelles or dysfunctional proteins and may be included in 'cell death' category. It was demonstrated that autophagy deficiency in insulin target tissues such as skeletal muscle induces mitochondrial stress response, which leads to the induction of FGF21 as a 'mitokine' and affects the whole body metabolism. These results show that mitochondria are not simply the power plants of cells generating ATP, but are closely related to several types of cell death and autophagy. Mitochondria affect various pathophysiological events related to diverse disorders such as cancer, metabolic disorders and aging. PMID:27100503

  17. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    OpenAIRE

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol ...

  18. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death.

    Science.gov (United States)

    Martín-Flores, Núria; Romaní-Aumedes, Joan; Rué, Laura; Canal, Mercè; Sanders, Phil; Straccia, Marco; Allen, Nicholas D; Alberch, Jordi; Canals, Josep M; Pérez-Navarro, Esther; Malagelada, Cristina

    2016-07-01

    RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease. PMID:25876513

  19. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death

    International Nuclear Information System (INIS)

    Highlights: • Possible mechanism of inhibiting LNCaP cells proliferation by obacunone and obacunone glucoside is demonstrated for the first time. • Inhibition of LNCaP cells by limonoids though induction of programmed cell death, inhibition of cell signaling and inflammatory pathways. • Limonoids exhibited multi-mode inhibition of androgen expression in LNCaP cells. - Abstract: Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells

  20. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    Directory of Open Access Journals (Sweden)

    Sho W Suzuki

    Full Text Available Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA. We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  1. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    Directory of Open Access Journals (Sweden)

    Beatriz Sangiuliano

    2014-01-01

    Full Text Available Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP, damage-associated molecular-pattern (DAMP molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.

  2. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages.

    Science.gov (United States)

    Vitak, Nazarii; Hume, David A; Chappell, Keith J; Sester, David P; Stacey, Katryn J

    2016-06-01

    Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence. PMID:26828392

  3. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model.

    Science.gov (United States)

    Ardeljan, Christopher P; Ardeljan, Daniel; Abu-Asab, Mones; Chan, Chi-Chao

    2014-01-01

    The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope-particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death. PMID:25580276

  4. Immunogenic cell death by oncolytic herpes simplex virus type 1 in squamous cell carcinoma cells.

    Science.gov (United States)

    Takasu, A; Masui, A; Hamada, M; Imai, T; Iwai, S; Yura, Y

    2016-04-01

    Molecules essential for the induction of immunogenic cell death (ICD) are called damage-associated molecular patterns (DAMPs). The effects of oncolytic herpes simplex virus type 1 (HSV-1) on the production of DAMPs were examined in squamous cell carcinoma (SCC) cells. The cytopathic effects of HSV-1 RH2 were observed in mouse SCCVII cells infected at a high multiplicity of infection (MOI), and the amounts of viable cells were decreased. After being infected with RH2, ATP and high mobility group box 1 (HMGB1) were released extracellulary, while calreticulin (CRT) translocated to the cell membrane. A flow-cytometric analysis revealed an increase in the number of annexin-V and propidium iodide (PI)-stained cells; and the amount of cleaved poly (ADP-ribose) polymerase (PARP) was increased. The killing effect of RH2 was reduced by pan-caspase inhibitor z-VAD-fmk and the caspase-1 inhibitor z-YVAD-fmk, suggesting the involvement of apoptosis and pyroptosis. In C3H mice bearing synergic SCCVII tumors, the growth of tumors injected with the supernatant of RH2-infected cells was less than that of tumors injected with phosphate-buffered saline (PBS). These results indicate that oncolytic HSV-1 RH2 produces DAMPs from SCC cells to induce cell death. This may contribute to the enhancement of tumor immunity by oncolytic HSV-1. PMID:26987291

  5. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Toshihiko, E-mail: aki.legm@tmd.ac.jp [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  6. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    International Nuclear Information System (INIS)

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  7. YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-kB network.

    Science.gov (United States)

    Véquaud, Eloïse; Séveno, Céline; Loussouarn, Delphine; Engelhart, Lucie; Campone, Mario; Juin, Philippe; Barillé-Nion, Sophie

    2015-05-30

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. We herein show that YM155 exerts single agent toxicity on primary breast cancer cells grown in an ex vivo assay preserving tumor microenvironment. In vitro assays indicate that YM155 more efficiently triggers cell death in breast cancer cells (including these with stem-cell like properties) than in non tumorigenic mammary cells. YM155-induced cell death is critically dependent on autophagy and NF-kB but independent of p53 and it coïncides with DNA damage and a DNA damage response in p53-proficient cells. Our results point out a crosstalk between NF-kB and autophagy controlling YM155-induced death in breast cancer cells and argue for the potential use of YM155 as a genotoxic agent in breast cancer therapy. PMID:25974963

  8. Cell culture: Progenitor cells from human brain after death

    Science.gov (United States)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  9. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    OpenAIRE

    Lee Sun; Kim Yong-Jun; Kim Jee-Youn; Park Jae-Hoon

    2009-01-01

    Abstract Background The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenot...

  10. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  11. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    Science.gov (United States)

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-01

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases. PMID:25668154

  12. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Lee Sun

    2009-01-01

    Full Text Available Abstract Background The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Methods Hypoxia-resistant T98G (HRT98G cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. Results We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Conclusion Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G

  13. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  14. Maitotoxin-induced myocardial cell injury: Calcium accumulation followed by ATP depletion precedes cell death

    International Nuclear Information System (INIS)

    Maitotoxin, the most potent marine toxin, is known to increase the uptake and the accumulation of Ca2+ into cells, and was used in the present study to investigate the mechanisms of myocardial cell damage induced by Ca2+ overload. In cultured cardiomyocytes, isolated from 2-day-old rats, maitotoxin affected cell viability, as indicated by the leakage of the cytosolic enzyme lactate dehydrogenase (LDH) and of radiolabeled adenine nucleotides into the extracellular medium. Maitotoxin-induced leakage of LDH steadily increased between 30 min and 24 hr, and was preceded by a marked depletion of intracellular ATP. Addition of maitotoxin resulted in a rapid influx of extracellular Ca2+, as detected by preincubating the cells in the presence of 45Ca; this effect evolved in a few minutes, thus preceding the signs of cell death. Cytosolic levels of free Ca2+ ([Ca2+]i) were monitored by loading freshly isolated, suspended cardiomyocytes with the intracellular fluorescent probe fura-2; in these cells, maitotoxin induced a dose-dependent increase in [Ca2+]i, with a lag phase of less than a minute. All these effects of maitotoxin were inhibited by reducing Ca2+ concentration in the culture medium or by incubating the cells with the calcium-channel blocking drug verapamil. It is thus demonstrated that maitotoxin-induced cardiotoxicity is secondary to an inordinate influx of Ca2+ into the cells. It is also suggested that, in those conditions that lead to an inordinate accumulation of Ca2+ into myocardial cells, the unmatched demands of energy and the depletion of ATP play a primary role in the irreversible stage of cell damage

  15. Gossypol Induced Cell Death in DU 145 Prostate Cancer Cells

    OpenAIRE

    Kennelly, Susan

    2010-01-01

    Cancer Biology Tumourigenesis is a multistep process which includes the transformation of healthy cells into extremely malignant cells, caused by the disruption of normal tissue homeostasis. Hanahan and Weinberg propose that there are a common set of 'acquired capabilities' that most if not all cancers posses's in order to survive and proliferate despite changes in their normal cell physiology during cancer development (Hanahan and Weinberg, 2000). These "Hallmarks of Cancer", according to...

  16. Anhydrobiosis and programmed cell death in plants: Commonalities and Differences

    Directory of Open Access Journals (Sweden)

    Samer Singh

    2015-05-01

    Full Text Available Anhydrobiosis is an adaptive strategy of certain organisms or specialised propagules to survive in the absence of water while programmed cell death (PCD is a finely tuned cellular process of the selective elimination of targeted cell during developmental programme and perturbed biotic and abiotic conditions. Particularly during water stress both the strategies serve single purpose i.e., survival indicating PCD may also function as an adaptive process under certain conditions. During stress conditions PCD cause targeted cells death in order to keep the homeostatic balance required for the organism survival, whereas anhydrobiosis suspends cellular metabolic functions mimicking a state similar to death until reestablishment of the favourable conditions. Anhydrobiosis is commonly observed among organisms that have ability to revive their metabolism on rehydration after removal of all or almost all cellular water without damage. This feature is widely represented in terrestrial cyanobacteria and bryophytes where it is very common in both vegetative and reproductive stages of life-cycle. In the course of evolution, with the development of advanced vascular system in higher plants, anhydrobiosis was gradually lost from the vegetative phase of life-cycle. Though it is retained in resurrection plants that primarily belong to thallophytes and a small group of vascular angiosperm, it can be mostly found restricted in orthodox seeds of higher plants. On the contrary, PCD is a common process in all eukaryotes from unicellular to multicellular organisms including higher plants and mammals. In this review we discuss physiological and biochemical commonalities and differences between anhydrobiosis and PCD.

  17. Mitochondrial dynamics and cell death in heart failure.

    Science.gov (United States)

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  18. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    Science.gov (United States)

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  19. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells.

    Science.gov (United States)

    Yin, Shutao; Guo, Xiao; Li, Jinghua; Fan, Linghong; Hu, Hongbo

    2016-04-01

    Mycotoxins are secondary fungal metabolites that are capable of inducing a variety of toxic effects in animals and humans resulting from the consumption of the contaminated food. Understanding the mechanisms of the toxicities behind these mycotoxins is required to develop mechanism-based approach to counteract their toxic potential. Fumonisin B1 (FB1) is the most prevalent member of fumonisins that are a group of mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum. Kidney is one of the primary target organs for FB1 action. Using monkey kidney MARC-145 cells as an intro model, we found that FB1 induced caspase-independent programmed cell death accompanied with autophagy induction. Inhibition of autophagy by either chemical inhibitors or RNAi approach led to a significant reduction in cell death by FB1 exposure, indicating possible involvement of autophagy-mediated cell death in nephrotoxicity of FB1. Further mechanistic investigation revealed that activation of ERN1-MAPK8/9/10 axis played a critical role in autophagy induction and autophagy-mediated cell death by FB1 exposure. In addition, we demonstrated that disruption of sphingolipid metabolism was an apical event in FB1-induced ERN1-MAPK8/9/10-mediated autophagic cell death in MARC-145 cells. Lastly, we identified curcumin, a naturally occurring plant phenolic compound, as a possible anti-FB1 agent that can be used to protect kidney cells from FB1-induced cell death through inhibition of MAPK8/9/10 activation. PMID:25925693

  20. Molecular mechanisms mediating the neuroproyective effects of quinacrine and minocycline on cell death induced by the prion protein fragment 90-231 (hPrP90-231

    Directory of Open Access Journals (Sweden)

    V. Villa

    2011-01-01

    Full Text Available The effects of quinacrine and minocycline on the toxicity induced by hPrP90-231 were studied. By mild thermal denaturation, hPrP90-231 can be converted in a toxic PrPSc-like structure affecting the survival of SH-SY5Y cells. Quinacrine and minocycline prevented hPrP90-231-induced toxicity interfering with different mechanisms: protective effects of quinacrine are mediated by the binding to the fragment that abolished hPrP90-231 structural changes and cell internalization, whereas, minocycline reverted MAP kinase neurotoxic signaling exerted by the prion fragment.

  1. DIETARY PHYTOCHEMICALS INDUCE p53- AND CASPASE-INDEPENDENT CELL DEATH IN HUMAN NEUROBLASTOMA CELLS

    OpenAIRE

    Sukumari-Ramesh, Sangeetha; Bentley, J Nicole; Laird, Melissa D.; Singh, Nagendra; Vender, John R.; Dhandapani, Krishnan M.

    2011-01-01

    Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as asses...

  2. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  3. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    Science.gov (United States)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  4. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function*

    Science.gov (United States)

    Qaiser, Fatima; Trembley, Janeen H.; Kren, Betsy T.; Wu, Jing-Jiang; Naveed, A. Khaliq; Ahmed, Khalil

    2014-01-01

    CK2 (official acronym for casein kinase 2 or II) is a potent suppressor of apoptosis in response to diverse apoptotic stimuli —thus its molecular downregulation or activity inhibition results in potent induction of cell death. CK2 downregulation is known to impact mitochondrial apoptotic circuitry but the underlying mechanism(s) remain unclear. Utilizing prostate cancer cell lines subjected to CK2-specific inhibitors which cause loss of cell viability, we have found that CK2 inhibition in cells causes rapid early decrease in mitochondrial membrane potential (Δψm). Cells treated with the CK2 inhibitors TBB (4,5,6,7-tetrabromobenzotriazole) or TBCA (tetrabromocinnamic acid) demonstrate changes in Δψm which become apparent within 2 h, i.e., significantly prior to evidence of activation of other mitochondrial apoptotic signals whose temporal expression ensues subsequent to loss of Δψm. Further, we have demonstrated the presence of CK2 in purified mitochondria and it appears that the effect on Δψm evoked by inhibition of CK2 may involve mitochondrial localized CK2. Results also suggest that alterations in Ca2+ signaling may be involved in the CK2 mediated regulation of Δψm and mitochondrial permeability. Thus, we propose that a key mechanism of CK2 impact on mitochondrial apoptotic circuitry and cell death involves early loss of Δψm which may be a primary trigger for apoptotic signaling and cell death resulting from CK2 inhibition. PMID:25043911

  5. Cell-to-cell variability in cell death: can systems biology help us make sense of it all?

    OpenAIRE

    Xia, X; Owen, M. S.; Lee, R E C; Gaudet, S

    2014-01-01

    One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated...

  6. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed

  7. Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse.

    Directory of Open Access Journals (Sweden)

    Karla C S Queiroz

    Full Text Available It is now generally recognised that different modes of programmed cell death (PCD are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+/c-Kit(+/P-glycoprotein(+/MRP1(+ TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.

  8. Down-regulation of phosphoglucomutase 3 mediates sulforaphane-induced cell death in LNCaP prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Lee Hyo-Jeong

    2010-12-01

    Full Text Available Abstract Background Sulforaphane (SFN is an isothiocyanate found in cruciferous vegetables that exerts anti-oxidant, anti-inflammatory, anti-cancer and radio-sensitizing activities. Nonetheless, the mechanism responsible for SFN-induced cell death is not fully understood. In the present study, anti-cancer mechanism of SFN was elucidated in LNCaP prostate cancer cells. Results SFN exerted cytotoxicity and increased TUNEL positive cells in a concentration-dependent manner in LNCaP cells. Proteomics study revealed that levels of nine proteins including tubulin β-2, phosphoglucomutase-3 (PGM3, melanoma-derived leucine zipper containing extra-nuclear factor, activin A type I receptor precursor, smoothelin-A, KIA0073, hypothetical protein LOC57691 and two unnamed proteins were changed over 8 folds in SFN treated LNCaP cells compared to untreated control. We have further confirmed that SFN reduced PGM3 expression with western blotting and showed that PGM3 siRNA enhanced cytotoxicity demonstrated by cell morphology and TUNEL assays in LNCaP cells. Conclusion Taken together, these findings suggest that PGM3 plays a role in mediating SFN-induced cell death in LNCaP cells, and is a potential molecular therapeutic target for prostate cancer.

  9. Primary observations of the existence of Fas-like cytoplasmic death factor in plant cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main activity of Fas is to trigger cytoplasm death program in animal cells. In G2 pea, vacuole plays a pivotal role in inducing cell death in the cytoplasm of longday (LD) grown apical meristem cells. Expression patterns of the Fas in G2 pea cells revealed that the Fas is mainly localized in the vacuole of cells undergoing programmed cell death (PCD). The Fas expression is corresponding to the initiation of menadione-induced PCD in tobacco protoplasts.The results suggest the existence of the Fas-like mediated cytoplasmic death pathway in plant cells.``

  10. Regulation of cell survival and death during Flavivirus infections

    Institute of Scientific and Technical Information of China (English)

    Sounak; Ghosh; Roy; Beata; Sadigh; Emmanuel; Datan; Richard; A; Lockshin; Zahra; Zakeri

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic(Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause.

  11. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal Induces Cell Death in Human Cervical Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Adriana Uchoa

    2012-03-01

    Full Text Available Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL. Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer.

  12. Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

    OpenAIRE

    Lee, Yun-Jung; Won, Tae Joon; Hyung, Kyeong Eun; Lee, Mi Ji; Moon, Young-hye; Lee, Ik Hee; Go, Byung Sung; Hwang, Kwang Woo

    2014-01-01

    Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-...

  13. Programmed cell death of Ulmus pumila L. seeds during aging

    Institute of Scientific and Technical Information of China (English)

    Yulan ZHANG; Ming ZHANG; Fang LI; Xiaofeng WANG

    2008-01-01

    The programmed cell death (PCD) character-istics of Ulmus pumila L. seeds were investigated. The seeds were treated at a high temperature of 37℃ and 100% relative humidity for six days. DAPI (4'6-diami-dino-2-phenylindole) staining revealed that the aging treatment induced condensation and margination of chro-matin, as well as the formation of apoptotic bodies. DNA electrophoresis results of U. pumila seeds on an agarose gel showed a characteristic "ladder" pattern. Levels of electrolyte leakage of seed cells showed that membranes retained their integral form during almost the entire aging time. There was an immediate increase in the production rate of superoxide anion (O2-) and in the amount of hydrogen peroxide (H2O2), which remained at a μmol level. All of these common characteristics indicate that seed aging can be classified as PCD.

  14. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    Science.gov (United States)

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  15. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  16. Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Matthew Furgerson

    Full Text Available The main pathological hallmarks of Alzheimer's disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer's disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58 enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.

  17. Cell Death Atlas of the Postnatal Mouse Ventral Forebrain and Hypothalamus: Effects of Age and Sex

    Science.gov (United States)

    Ahern, Todd H.; Krug, Stefanie; Carr, Audrey V.; Murray, Elaine K.; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J.; Forger, Nancy G.

    2016-01-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. PMID:23296992

  18. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  19. Plant cell death and cellular alterations induced by ozone: Key studies in Mediterranean conditions

    International Nuclear Information System (INIS)

    An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O3 were recorded in crop and forest species. In contrast, visible O3 effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O3 injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O3 symptoms at the microscopic level and for a pre-visual diagnosis of O3 injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O3 sensitivity or tolerance. - Ozone-induced cell death is a frequent phenomenon in Mediterranean conditions, not only in the most sensitive crops but also in forest species.

  20. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    Directory of Open Access Journals (Sweden)

    María Almuedo-Castillo

    2014-06-01

    Full Text Available Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

  1. c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea.

    Science.gov (United States)

    Anttonen, Tommi; Herranen, Anni; Virkkala, Jussi; Kirjavainen, Anna; Elomaa, Pinja; Laos, Maarja; Liang, Xingqun; Ylikoski, Jukka; Behrens, Axel; Pirvola, Ulla

    2016-01-01

    Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation. It occurred acutely in glial-like supporting cells, inner hair cells, and the cells of the cochlear ion trafficking route, and was rapidly downregulated after exposures. Notably, death-prone outer hair cells lacked c-Jun phosphorylation. As phosphorylation was triggered also by nontraumatic noise levels and none of the cells showing this activation were lost, c-Jun phosphorylation is a biomarker for cochlear stress rather than an indicator of a death-prone fate of hair cells. Preconditioning with a mild noise exposure before a stronger traumatizing noise exposure attenuated the cochlear c-Jun stress response, suggesting that the known protective effect of sound preconditioning on hearing is linked to suppression of c-Jun activation. Finally, mice with mutations in the c-Jun N-terminal phosphoacceptor sites showed partial, but significant, hair cell protection. These data identify the c-Jun stress response as a paracrine mechanism that mediates outer hair cell death. PMID:27257624

  2. Modeling the role of p53 pulses in DNA damage- induced cell death decision

    Directory of Open Access Journals (Sweden)

    Cui Jun

    2009-06-01

    Full Text Available Abstract Background The tumor suppressor p53 plays pivotal roles in tumorigenesis suppression. Although oscillations of p53 have been extensively studied, the mechanism of p53 pulses and their physiological roles in DNA damage response remain unclear. Results To address these questions we presented an integrated model in which Ataxia-Telangiectasia Mutated (ATM activation and p53 oscillation were incorporated with downstream apoptotic events, particularly the interplays between Bcl-2 family proteins. We first reproduced digital oscillation of p53 as the response of normal cells to DNA damage. Subsequent modeling in mutant cells showed that high basal DNA damage is a plausible cause for sustained p53 pulses observed in tumor cells. Further computational analyses indicated that p53-dependent PUMA accumulation and the PUMA-controlled Bax activation switch might play pivotal roles to count p53 pulses and thus decide the cell fate. Conclusion The high levels of basal DNA damage are responsible for generating sustained pulses of p53 in the tumor cells. Meanwhile, the Bax activation switch can count p53 pulses through PUMA accumulation and transfer it into death signal. Our modeling provides a plausible mechanism about how cells generate and orchestrate p53 pulses to tip the balance between survival and death.

  3. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes.

    Science.gov (United States)

    Rigo, Antonella; Vinante, Fabrizio

    2016-08-01

    The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell. PMID:27278818

  4. AB158. Atorvastatin induces autophagic cell death in prostate cancer cells in vitro

    Science.gov (United States)

    He, Zhenhua; Wang, Zhiping

    2016-01-01

    Objective Although it is well known that apoptosis contributes to cancer cell death, the role of autophagy in cancer cell death has remained in dispute. Atorvastatin has been suggested to exhibit anti-cancer effects. The present study aimed to examine atorvastatin-induced autophagy-associated cell death and the autophagy-associated gene expression profile in the PC3 prostate carcinoma cell line. Methods The atorvastatin-induced process of autophagy in PC3 cells was determined via evaluation of the cellular expression levels of autophagosomal marker light-chain-3 (LC3)-II, using immunoblotting and counting of green fluorescent protein (GFP)-LC3-transfected autophagiccells. Apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and an MTT assay was used to evaluate cell viability. Total RNA of PC3 cells was isolated for characterization of the gene expression profile following atorvastatin treatment. Results Atorvastatin treatment of PC3 cells for 24 h increased the expression of GFP-LC3-II by >25% and expression continued for >72 h, while apoptosis was not significantly induced within this time period. Four genes associated with the autophagy machinery were also significantly upregulated. Conclusions In the presence of atorvastatin, autophagy may be unable to abrogate cell damage and may therefore contribute to cellular dysfunction, leading to autophagic/type II programmed cell death. In response to atorvastatin treatment, the expression of genes involved in autophagic mediating pathways may have a role in tumor suppression.

  5. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  6. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    Science.gov (United States)

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  7. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Directory of Open Access Journals (Sweden)

    Lepsch Lucilia B

    2009-02-01

    Full Text Available Abstract Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  8. Statins, Bcl-2 and Apoptosis: Cell Death or Cell Protection?

    OpenAIRE

    Wood, W. Gibson; Igbavboa, Urule; Muller, Walter E.; Gunter P. Eckert

    2013-01-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax) whereas, studies mainly using non-cancerous cells r...

  9. Sphingosine-1-phosphate in cell growth and cell death.

    Science.gov (United States)

    Spiegel, S; Cuvillier, O; Edsall, L C; Kohama, T; Menzeleev, R; Olah, Z; Olivera, A; Pirianov, G; Thomas, D M; Tu, Z; Van Brocklyn, J R; Wang, F

    1998-06-19

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, nerve growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP, and consequent regulation of different family members of mitogen-activated protein kinases (JNK versus ERK), is an important factor that determines whether a cell survives or dies. PMID:9668339

  10. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  11. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways.

    Science.gov (United States)

    Yu, Xiaoliang; He, Sudan

    2016-01-01

    Human herpes simplex virus (HSV) is a ubiquitous human pathogen that establishes a lifelong latent infection and is associated with mucocutaneous lesions. In multicellular organisms, cell death is a crucial host defense mechanism that eliminates pathogen-infected cells. Apoptosis is a well-defined form of programmed cell death executed by a group of cysteine proteases, called caspases. Studies have shown that HSV has evolved strategies to counteract caspase activation and apoptosis by encoding anti-apoptotic viral proteins such as gD, gJ, Us3, LAT, and the ribonucleotide reductase large subunit (R1). Recently, necroptosis has been identified as a regulated form of necrosis that can be invoked in the absence of caspase activity. Receptor-interacting kinase 3 (RIP3 or RIPK3) has emerged as a central signaling molecule in necroptosis; it is activated via interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIP1 (or RIPK1). There is increasing evidence that HSV R1 manipulates necroptosis via the RHIM-dependent inactivation or activation ofRIP3 in a species-specific manner. This review summarizes the current understanding of the interplay between HSV infection and cell death pathways, with an emphasis on apoptosis and necroptosis. PMID:27154074

  12. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline.

    Science.gov (United States)

    Lin, Shao Jian; Leng, Zhi Gen; Guo, Yu Hang; Cai, Lin; Cai, Yu; Li, Ning; Shang, Han Bing; Le, Wei-Dong; Zhao, Wei Guo; Wu, Zhe Bao

    2015-11-17

    Cabergoline (CAB), the first-line drug for treatment of prolactinomas, is effective in suppressing prolactin hypersecretion, reducing tumor size, and restoring gonadal function. However, mechanisms for CAB-mediated tumor shrinkage are largely unknown. Here we report a novel cytotoxic mechanism for CAB. CAB induced formation of autophagosome in rat pituitary tumor MMQ and GH3 cells at the early stage through inhibiting mTOR pathway, resulting in higher conversion rates of LC3-I to LC3-II, GFP-LC3 aggregation, and increased autophagosome formation. Interestingly, CAB treatment augmented lysosome acidification and resulted in impaired proteolytic degradation within autolysosomes. This blocked the autophagic flux, leading to the accumulation of p62 aggregation and undigested autolysosomes. Knockdown of ATG7, ATG5, or Becn1, could significantly rescue the CAB-mediated cell death of MMQ cells (p < 0.05). CAB-induced autophagy and blockade of autophagy flux participated in antitumoral action in vivo. In conclusion, our study provides evidence that CAB concomitantly induces autophagy and inhibits the autophagic flux, leading to autophagy-dependent cell death. These findings elucidate novel mechanisms for CAB action. PMID:26513171

  13. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  14. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    International Nuclear Information System (INIS)

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury

  15. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  16. High LET radiation enhances nocodazole induced cell death in HeLa cells through mitotic catastrophe and apoptosis

    International Nuclear Information System (INIS)

    To understand how human tumor cells respond to the combined treatment with nocodazole and high linear energy transfer (LET) radiation, alterations in cell cycle, mitotic disturbances and cell death were investigated in the present study. Human cervix carcinoma HeLa cells were exposed to nocodazole for 18 h immediately followed by high LET iron ion irradiation and displayed a sequence of events leading to DNA damages, mitotic aberrations, interphase restitution and endocycle as well as cell death. A prolonged mitotic arrest more than 10 h was observed following nocodazole exposure, no matter the irradiation was present or not. The occurrence of mitotic slippage following the mitotic arrest was only drug-dependent and the irradiation did not accelerate it. The amount of polyploidy cells was increased following mitotic slippage. No detectable G2 or G1 arrest was observed in cells upon the combined treatment and the cells reentered the cell cycle still harboring unrepaired cellular damages. This premature entry caused an increase of multipolar mitotic spindles and amplification of centrosomes, which gave rise to lagging chromosomal material, failure of cytokinesis and polyploidization. These mitotic disturbances and their outcomes confirmed the incidence of mitotic catastrophe and delayed apoptotic features displayed by terminal-transferased UTP- nick end-labeling (TUNEL) method after the combined treatment. These results suggest that the addition of high-LET iron ion irradiation to nocodazole enhanced mitotic catastrophe and delayed apoptosis in HeLa cells. These might be important cell death mechanisms involved in tumor cells in response to the treatment of antimitotic drug combined with high LET radiation. (author)

  17. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    Directory of Open Access Journals (Sweden)

    Fernandez Cabada T

    2012-03-01

    Full Text Available Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn, Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cancer

  18. Cell death, clearance and immunity in the skeletal muscle.

    Science.gov (United States)

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle. PMID:26868912

  19. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  20. Baicalein induces programmed cell death in Candida albicans.

    Science.gov (United States)

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( palbicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  1. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike Muscha; Recarti, Chiara; Namsolleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-01-01

    -peptide AT2 receptor agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial...... apoptotic pathway, i. e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our...

  2. Markov mean properties for cell death-related protein classification.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; González-Díaz, Humberto; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R

    2014-05-21

    The cell death (CD) is a dynamic biological function involved in physiological and pathological processes. Due to the complexity of CD, there is a demand for fast theoretical methods that can help to find new CD molecular targets. The current work presents the first classification model to predict CD-related proteins based on Markov Mean Properties. These protein descriptors have been calculated with the MInD-Prot tool using the topological information of the amino acid contact networks of the 2423 protein chains, five atom physicochemical properties and the protein 3D regions. The Machine Learning algorithms from Weka were used to find the best classification model for CD-related protein chains using all 20 attributes. The most accurate algorithm to solve this problem was K*. After several feature subset methods, the best model found is based on only 11 variables and is characterized by the Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.992 and the true positive rate (TP Rate) of 88.2% (validation set). 7409 protein chains labeled with "unknown function" in the PDB Databank were analyzed with the best model in order to predict the CD-related biological activity. Thus, several proteins have been predicted to have CD-related function in Homo sapiens: 3DRX-involved in virus-host interaction biological process, protein homooligomerization; 4DWF-involved in cell differentiation, chromatin modification, DNA damage response, protein stabilization; 1IUR-involved in ATP binding, chaperone binding; 1J7D-involved in DNA double-strand break processing, histone ubiquitination, nucleotide-binding oligomerization; 1UTU-linked with DNA repair, regulation of transcription; 3EEC-participating to the cellular membrane organization, egress of virus within host cell, class mediator resulting in cell cycle arrest, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle and apoptotic process. Other proteins from bacteria predicted as

  3. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1.

    Science.gov (United States)

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St J; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R; Dittmar, Gunnar; Cravatt, Benjamin F; Momma, Stefan; Lewin, Gary R; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-08-01

    Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. PMID:22820645

  4. Cell death along single microfluidic channel after freeze-thaw treatments.

    Science.gov (United States)

    Li, Yuhui; Wang, Fen; Wang, Hao

    2010-01-01

    Cryotherapy is a prospective green method for malignant tumor treatment. At low temperature, the cell viability relates with the cooling rate, temperature threshold, freezing interface, as well as ice formation. In clinical applications, the growth of ice ball must reach a suitable size as cells could not be all killed at the ice periphery. The cell death ratio at the ice periphery is important for the control of the freezing destruction. The mechanisms of cryoinjury around the ice periphery need thorough understanding. In this paper, a primary freeze-thaw control was carried out in a cell culture microchip. A series of directional freezing processes and cell responses was tested and discussed. The temperature in the microchip was manipulated by a thermoelectric cooler. The necrotic and apoptotic cells under different cryotreatment (duration of the freezing process, freeze-thaw cycle, postculture, etc.) were stained and distinguished by propidium iodide and fluorescein isothiocyanate (FITC)-Annexin V. The location of the ice front was recorded and a cell death boundary which was different from the ice front was observed. By controlling the cooling process in a microfluidic channel, it is possible to recreate a sketch of biological effect during the process of simulated cryosurgery. PMID:20644680

  5. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    International Nuclear Information System (INIS)

    Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies

  6. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  7. Tissue resident stem cells: till death do us part

    OpenAIRE

    2013-01-01

    Aging is accompanied by reduced regenerative capacity of all tissues and organs and dysfunction of adult stem cells. Notably, these age-related alterations contribute to distinct pathophysiological characteristics depending on the tissue of origin and function and thus require special attention in a type by type manner. In this paper, we review the current understanding of the mechanisms leading to tissue-specific adult stem cell dysfunction and reduced regenerative capacity with age. A compr...

  8. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna A Dunai

    Full Text Available For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3 and mixed lineage kinase domain-like protein (MLKL, as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribosepolymerase (PARP is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.

  9. Melatonina: modulador de morte celular Melatonin: cell death modulator

    Directory of Open Access Journals (Sweden)

    Cecília da Silva Ferreira

    2010-01-01

    Full Text Available A apoptose ou morte programada é um fenômeno biológico essencial para o desenvolvimento e manutenção de uma população celular. Neste processo, as células senescentes ou indesejáveis são eliminadas após ativação de um programa de morte celular, que envolve a participação de moléculas pró-apoptóticas (Fas, FasL, Bax, Caspases 2, 3, 6, 7, 8 e 9. A ativação destas moléculas provoca típicas alterações morfológicas como a retração celular, perda de aderência à matriz extracelular e às células vizinhas, condensação da cromatina, fragmentação do DNA e formação de corpos apoptóticos. Moléculas antiapoptóticas (Bcl2, FLIP bloqueiam o surgimento e a evolução destas alterações celulares e evitam a morte celular. É o equilíbrio entre moléculas pró e antiapoptóticas que assegura a homeostase tecidual. O descontrole da apoptose pode contribuir para o aparecimento de diversas doenças neoplásicas, autoimunes e neurodegenerativas. Diversos agentes indutores e inibidores de apoptose são reconhecidos como armas potenciais no combate a doenças relacionadas a distúrbios de proliferação e morte celular, dentre eles, destacam-se os hormônios. A melatonina tem sido relatada com importante ação antiápoptótica em diversos tecidos, modulando a expressão de agentes, reduzindo a entrada de cálcio na célula, bem como atenuando a produção de espécies reativas de oxigênio e de proteínas pró-apoptóticas, tal como, diminuição da Bax. O conhecimento de novos agentes capazes de atuar nas vias da apoptose é de grande valia para o desenvolvimento de futuras terapias no tratamento de diversas doenças. Assim, o objetivo dessa revisão é elucidar os principais aspectos da morte celular pela apoptose e o papel da melatonina neste processo.Apoptosis or programmed death is a biological phenomenon, which is essential for the development and maintenance of a cell population. In this process, senescent or damaged

  10. Fine-mapping of an Arabidopsis cell death mutation locus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An Arabidopsis cell death mutation locus was mapped to chromosome 2 between IGS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.

  11. Programmed cell death in developing human fetal CNS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The spatial and temporal distributions of programmed cell death (PCD) in developing central nervous system (CNS) of human fetuses ranging from 12 to 39 weeks of gestation were investigated using techniques of flow cytometry and terminal transferase-mediated nick end labeling (TUNEL). The results showed that PCD did occur in every representative brain region of all fetuses examined in different stages. It was found that there were two peaks of PCD appearing at the 12th and 39th weeks respectively, which suggested that the first peak of apoptosis may be involved in the selective elimination of neurons overproduced during the early development and the second may play an important role in establishing the correct neuronal circuitry.

  12. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  13. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells

    Directory of Open Access Journals (Sweden)

    Anne R. Diers

    2013-01-01

    Full Text Available Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC. CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

  14. Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153

    Directory of Open Access Journals (Sweden)

    Kim Seungwoo

    2013-01-01

    Full Text Available Abstract Background Cadmium(Cd, a heavy metal, which has a potent harmful effects, is a highly stress-inducible material that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER (so-called ER stress. The mechanism Cd induced cell death of neuroblastoma cells complex, involving cellular signaling pathways as yet incompletely defined but, in part, involving the generation of reactive oxygen species (ROS. Several studies have correlated GADD153 expression with cell death, but a mechanistic link between GADD153 and apoptosis has never been demonstrated. Results SH-SY5Y cells were treated Cd led to increase in intracellular ROS levels. ROS generation is not consistent with intracellular [Ca2+]. The exposure of neuroblastoma cells to Cd led to increase in intracellular GADD153 and Bak levels in a doses and time dependent manner. The induction of these genes by Cd was attenuated by NAC. Cd-induced apoptosis is decreased in GADD153 knockdown cells compared with normal cells. The effect of GADD153 on the binding of C/EBP to the Bak promoters were analyzed ChIP assay. Basal constitutive GADD153 recruitment to the –3,398/–3,380 region of the Bak promoter is observed in SH-SY5Y cells. Conclusions The exposure of SH-SY5Y cells to Cd led to increase in intracellular ROS levels in a doses and time dependent manner. The generation of ROS result in the induction of GADD153 is causative of cadmium-induced apoptosis. GADD153 regulates Bak expression by its binding to promoter region (between −3,398 and −3,380. Therefore, we conclude that GADD153 sensitizes cells to ROS through mechanisms that involve up-regulation of BAK and enhanced oxidant injury.

  15. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    Science.gov (United States)

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. PMID:27443785

  16. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration.

    Science.gov (United States)

    Viringipurampeer, Ishaq A; Metcalfe, Andrew L; Bashar, Abu E; Sivak, Olena; Yanai, Anat; Mohammadi, Zeinabsadat; Moritz, Orson L; Gregory-Evans, Cheryl Y; Gregory-Evans, Kevin

    2016-04-15

    The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease. PMID:27008885

  17. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Bo GAO; Yan-li JIA; Zheng-hong QIN

    2008-01-01

    Aim: To evaluate the contribution of an autophagic mechanism to the As2O3-induced death of human acute myeloid leukaemia cell line HL60 cells. Methods: The growth inhibition of HL60 cells induced by As2O3 was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazohum bromide colorimetric assay. The ac-tivation of autophagy was determined with monodansylcadaverine labeling and transmission electron microscope. The role of autophagy in the As2O3-induced death of HL60 cells was assessed using autophagic and lysosomal inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results: After treatment with As2O3, the proliferation of HL60 cells was significantly inhibited and the formation of autophagosomes increased. The blockade of autophagy maturation with the autophagy-specific inhibitor 3-methyladenine (3-MA) or the lysosome-neutraliz-ing agent NH4C11 h before As2O3 potentiated the As2O3-induced death of HL60 cells. In contrast, 3-MA attenuated As2O3-induced death when administered 30 min after As2O3. 3-MA and NH4Cl also inhibited As2O3-induced upregulation of microtubule-associated protein 1 light chain 3, the protein required for autophagy in mammalian cells. Following As2O3, lysosomes were activated as indicated by increased levels of cathepsins B and L. The apoptotic response of HL60 cells to As2O3 was suggested by the collapse of mitochondrial membrane potential, re-lease of cytochrome c from mitochondria, and the activation of caspase-3. Pre-treatment with 3-MA prior to As2O3 amplified these apoptotic signals, while post-treatment with 3-MA 30 min after As2O3 attenuated the apoptotic pathways. Conclusion: Autophagy plays complex roles in the As2O3-induced death of HL60 cells; it inhibits As2O3-induced apoptosis in the initiation stage, but amplifies the AS2O3-mediated apoptotic program if it is persistently activated.

  18. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.

    Science.gov (United States)

    Gui, M-Y; Ni, X-L; Wang, H-B; Liu, W-Z

    2016-09-01

    Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization. PMID:27259176

  19. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  20. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  1. Transglutaminase inhibition:A therapy to protect cells from death in neurodegeneration?

    Institute of Scientific and Technical Information of China (English)

    Martina; Iannaccone; Alessandro; Stefanile; Giulia; De; Vivo; Antonio; Martin; Enrica; Serretiello; Vittorio; Gentile

    2012-01-01

    Transglutaminases(TGs;E.C.2.3.2.13)are ubiquitous enzymes which catalyze post-translational modifications of proteins.TGs and TG-catalyzed post-translational modifications of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases.In particular,TG activity has been hypothesized to also be involved also in the molecular mechanisms responsible for human neurodegenerative diseases.In support of this hypothesis,Basso et al recently demonstrated that the TG inhibition protects against oxidative stress-induced neuronal death,suggesting that multiple TG isoforms participate in oxidative stress-induced cell death and that nonselective TG isoform inhibitors will be most effective in fighting oxidative death in neurological disorders.In this commentary,we discuss the possible molecular mechanisms by which TG activity could be involved in the pathogenesis of neurological diseases,with particular reference to neurodegenerative diseases,and the possible involvement of multiple TG isoforms expressed simultaneously in the nervous system in these diseases.Moreover,therapeutic strategies based on the use of selective or nonselective TG inhibitors for the amelioration of thesymptoms of patients with neurological diseases,characterized by aberrant TG activity,are also discussed.

  2. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  3. St John's Wort (Hypericum perforatum L. photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death.

    Directory of Open Access Journals (Sweden)

    Britta Kleemann

    Full Text Available Hypericin, an extract from St John's Wort (Hypericum perforatum L., is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel and pigmented (UCT Mel-1 melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375 and

  4. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  5. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  6. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  7. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    International Nuclear Information System (INIS)

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G1/S progression of palatal mesenchymal cells through upregulation of p21 Cip1, leading to Rb hypophospholylation. Thus, RA appears to cause G1 arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA

  8. Cell death triggered by alpha-emitting {sup 213}Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Christof; Schroeck, Hedwig; Seidenschwang, Sabine; Beck, Roswitha; Schwaiger, Markus; Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Schmid, Ernst [National Research Center for Environment and Health, Institute of Radiation Biology, GSF, Neuherberg (Germany); Abend, Michael [German Armed Forces, Institute of Radiobiology, Munich (Germany); Becker, Karl-Friedrich [Technische Universitaet Muenchen, Institute of Pathology, Munich (Germany); National Research Center for Environment and Health, Institute of Pathology, GSF, Neuherberg (Germany); National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany); Apostolidis, Christos; Nikula, Tuomo K. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Kremmer, Elisabeth [National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany)

    2005-03-01

    Radioimmunotherapy with {alpha}-particle-emitting nuclides, such as{sup 213}Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by {sup 213}Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of {sup 213}Bi-d9MAb targeting d9-E-cadherin and {sup 213}Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as {sup 213}Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and {sup 213}Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with {sup 213}Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of {alpha}-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific {sup 213}Bi-d9MAb compared with unspecific {sup 213}Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound {sup 213}Bi-immunoconjugates per cell exceeded 2 x 10{sup 4}, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by {sup 213}Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. {sup 213}Bi-immunoconjugates seem

  9. Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    International Nuclear Information System (INIS)

    Radioimmunotherapy with α-particle-emitting nuclides, such as213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of α-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2 x 104, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. 213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells. (orig.)

  10. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    OpenAIRE

    Beatriz Sangiuliano; Nancy Marcela Pérez; Moreira, Dayson F; Belizário, José E.

    2014-01-01

    Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules,...

  11. Genetic Variation in Cell Death Genes and Risk of Non-Hodgkin Lymphoma

    OpenAIRE

    Johanna M. Schuetz; Denise Daley; Jinko Graham; Berry, Brian R.; Gallagher, Richard P.; Connors, Joseph M; Gascoyne, Randy D.; Spinelli, John J.; Angela R Brooks-Wilson

    2012-01-01

    BACKGROUND: Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5(th) highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. MATERIALS AND METHODS: We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using...

  12. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation.

    Directory of Open Access Journals (Sweden)

    June-Woo Lee

    Full Text Available BACKGROUND: Echovirus 30 (Echo30 is one of the most frequently identified human enteroviruses (EVs causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE and MALDI-TOF/TOF Mass Spectrophotometric (MS analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death. CONCLUSIONS/SIGNIFICANCE: Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF domains (GEFD2 and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30.

  13. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  14. Inhibition of apoptic cell death induced by Pseudomonas syringae pv. Tabaci and mycotoxin fumonisin B1

    NARCIS (Netherlands)

    Iakimova, E.T.; Batchvorova, R.; Kapchina, V.; Popov, T.; Atanassov, A.; Woltering, E.J.

    2004-01-01

    The impact of programmed cell death (PCD) inhibitors on lesion formation and biochemical events in transgenic (ttr line) and non-transgenic (Nevrokop 1164) tobacco infected with Pseudomonas syringae pv. tabaci was tested. Programmed cell death in tomato cell culture was induced by Fumonisin B1 (FUM)

  15. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    International Nuclear Information System (INIS)

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells

  16. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  17. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, E.N.; Menck, C.F.M. [Sao Paulo Univ., SP (Brazil). Inst. de Biociencias

    1995-05-01

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author).

  18. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    International Nuclear Information System (INIS)

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author)

  19. Cyclic dinucleotides modulate human T-cell response through monocyte cell death.

    Science.gov (United States)

    Tosolini, Marie; Pont, Frédéric; Verhoeyen, Els; Fournié, Jean-Jacques

    2015-12-01

    Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes. PMID:26460927

  20. The Sarin-like Organophosphorus Agent bis (isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells.

    Science.gov (United States)

    Arima, Yosuke; Yoshimoto, Kanji; Namera, Akira; Makita, Ryosuke; Murata, Kazuhiro; Nagao, Masataka

    2016-03-01

    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression. PMID:27348899

  1. Cellular Pressure and Volume Regulation and Implications for Cell Mechanics

    OpenAIRE

    Jiang, Hongyuan; Sun, Sean X.

    2013-01-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it pr...

  2. Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1

    Science.gov (United States)

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-01-01

    Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

  3. Activation-induced and damage-induced cell death in aging human T cells.

    Science.gov (United States)

    Sikora, Ewa

    2015-11-01

    In multicellular organisms the proper system functionality is ensured by the balance between cell division, differentiation, senescence and death. This balance is changed during aging. Immunosenescence plays a crucial role in aging and leads to the shrinkage of T cell repertoire and the propensity to apoptosis. The elimination of expanded T cells at the end of immune response is crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting mature T lymphocytes, when activated via their antigen-specific receptor (TCR) and CD28 co-receptor, start to proliferate and then undergo the so called activation induced cell death (AICD), which mechanistically is triggered by the death receptor and leads to apoptosis. T lymphocytes, like other cells, are also exposed to damage, which can trigger the so called damage-induced cell death (DICD). It was hypothesized that oxidative stress and chronic antigenic load increasing with age reduced lymphocyte susceptibility to DICD and enhanced a proinflamatory status leading to increased AICD. However, data collected so far are inconsistent and does not support this assumption. Systematic and comprehensive studies are still needed for conclusive elucidation of the role of AICD and DICD in human immunosenescence, including the role of autophagy and necroptosis in the processes. PMID:25843236

  4. The mechanism of oligodendrocyte precursor cell death passway in hypoxic - ischemic brain damage.%缺氧缺血性脑损伤中的少突胶质前体细胞死亡通路机制

    Institute of Scientific and Technical Information of China (English)

    杨雪; 郝艳秋

    2011-01-01

    缺氧缺血性脑损伤( hypoxic - ischemic brain damage,HIBD)是围产期常见疾病,致病机制尚未完全明确,治疗困难,预后差.少突胶质前体细胞( Oligodendrocyte precursor cell,OPC)是HIBD的主要靶细胞之一.缺氧缺血可以通过凋亡、氧自由基、兴奋毒性损伤等途径引发OPC死亡.亚低温、神经营养因子、OPC移植等方法可以通过抑制凋亡、抗氧化应激、拮抗兴奋毒性损伤等机制用于临床治疗HIBD.%Hypoxic - ischemic brain damage is a common disease in perinatal period, and it's pathogenic mechanism is not defi-nite completly. It is difficult to treat HIBD and the prognosis is not ideal. Oligodendrocyte precursor cell is the main target of HIBD. Hypoxic - ischemia can induce OPC to die through apoptosis, oxygen radicals and exitotoxicity. Mild hypothermia, neurotrophic factors and OPC transplantation can be applied to treat HIBD through depressing apoptosis, confronting oxygen radicals and inhibitting exito-toxicity.

  5. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  6. Mechanically facilitated cell-cell electrofusion.

    OpenAIRE

    Jaroszeski, M. J.; Gilbert, R.; Fallon, P.G.; Heller, R

    1994-01-01

    Apparatus and methods were developed to enable mechanically facilitated cell-cell electrofusion to be performed. The apparatus and methods mechanically place cells in contact before fusion. The key component of this fusion system was a newly developed fusion chamber. The chamber was composed of two functionally identical electrodes that were housed in a multi-layer structure. The layers functioned as support for the electrodes. They also allowed adjustment of the distance between opposing ele...

  7. Activation of Cyclin-Dependent Kinase 5 Is a Consequence of Cell Death

    Directory of Open Access Journals (Sweden)

    Yixia Ye

    2009-01-01

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is similar to other Cdks but is activated during cell differentiation and cell death rather than cell division. Since activation of Cdk5 has been reported in many situations leading to cell death, we attempted to determine if it was required for any form of cell death. We found that Cdk5 is activated during apoptotic deaths and that the activation can be detected even when the cells continue to secondary necrosis. This activation can occur in the absence of Bim, calpain, or neutral cathepsins. The kinase is typically activated by p25, derived from p35 by calpain-mediated cleavage, but inhibition of calpain does not affect cell death or the activation of Cdk5. Likewise, RNAi-forced suppression of the synthesis of Cdk5 does not affect the incidence or kinetics of cell death. We conclude that Cdk5 is activated as a consequence of metabolic changes that are common to many forms of cell death. Thus its activation suggests processes during cell death that will be interesting or important to understand, but activation of Cdk5 is not necessary for cells to die.

  8. MicroRNA-351 Regulates Two-Types of Cell Death, Necrosis and Apoptosis, Induced by 5-fluoro-2'-deoxyuridine

    Science.gov (United States)

    Omi, Takuya; Yamamoto, Akihiro; Satake, Akito; Hiramoto, Akiko; Masutani, Mitsuko; Tanuma, Sei-ichi; Wataya, Yusuke; Kim, Hye-Sook

    2016-01-01

    Cell-death can be necrosis and apoptosis. We are investigating the mechanisms regulating the cell death that occurs on treatment of mouse cancer cell-line FM3A with antitumor 5-fluoro-2'-deoxyuridine (FUdR): necrosis occurs for the original clone F28-7, and apoptosis for its variant F28-7-A. Here we report that a microRNA (miR-351) regulates the cell death pattern. The miR-351 is expressed strongly in F28-7-A but only weakly in F28-7. Induction of a higher expression of miR-351 in F28-7 by transfecting an miRNA mimic into F28-7 resulted in a change of the death mode; necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in the morphology change, apoptosis to necrosis, in this death-by-FUdR. Possible mechanism involving lamin B1 in this miR-351’s regulatory action is discussed. PMID:27071035

  9. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  10. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  11. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death.

    Science.gov (United States)

    Costa, Blaise Mathias; Yao, Honghong; Yang, Lu; Buch, Shilpa

    2013-06-01

    While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determined by MTS and TUNEL assays. Microglial toxicity of cocaine was accompanied by an increase in the expression of cleaved caspase-3 as demonstrated by western blot assays. Furthermore, increased microglial toxicity was also associated with a concomitant increase in the production of intracellular reactive oxygen species, an effect that was ameliorated in cells pretreated with NADPH oxidase inhibitor apocynin, thus emphasizing the role of oxidative stress in this process. A novel finding of this study was the involvement of endoplasmic reticulum (ER) signaling mediators such as PERK, Elf2α, and CHOP, which were up regulated in cells exposed to cocaine. Reciprocally, blocking CHOP expression using siRNA ameliorated cocaine-mediated cell death. In conclusion these findings underscore the importance of ER stress in modulating cocaine induced microglial toxicity. Understanding the link between ER stress, oxidative stress and apoptosis could lead to the development of therapeutic strategies targeting cocaine-mediated microglial death/dysfunction. PMID:23404095

  12. Sphingolipid signalling: molecular basis and role in TNF-alpha-induced cell death.

    Science.gov (United States)

    Malagarie-Cazenave, Sophie; Andrieu-Abadie, Nathalie; Ségui, Bruno; Gouazé, Valérie; Tardy, Claudine; Cuvillier, Olivier; Levade, Thierry

    2002-12-01

    Various lipidic molecules serve as second messengers for transducing signals from the cell surface to the cell interior and trigger specific cellular responses. Sphingolipids represent a complex group of lipids that have recently emerged as new transducers in eukaryotic cells. Several sphingolipid molecules are able to modulate cell growth, differentiation and death. This review summarises current knowledge of the signalling functions of sphingolipids, especially in the regulation of tumour necrosis factor [alpha] (TNF-[alpha])-mediated cytotoxic effects. TNF-[alpha] is a multifaceted cytokine that controls a wide range of immune responses in mammals, including induction of programmed cell death (also called apoptosis). On the basis of recent observations, a working model is proposed for the molecular mechanisms underlying regulation of sphingolipid generation following TNF-[alpha] receptor 1 activation. The implications of these findings for the development of future pharmacological strategies to prevent the cytotoxic TNF-[alpha] response and subsequent cellular dysfunctions (as seen in various human diseases) are discussed. PMID:14987386

  13. Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells.

    Science.gov (United States)

    Paul-Samojedny, Monika; Łasut, Barbara; Pudełko, Adam; Fila-Daniłow, Anna; Kowalczyk, Małgorzata; Suchanek-Raif, Renata; Zieliński, Michał; Borkowska, Paulina; Kowalski, Jan

    2016-05-01

    Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor and it is characterized by a poor prognosis and short survival time. Current treatment strategies for GBM using surgery, chemotherapy and/or radiotherapy are ineffective. Thus new therapeutic strategies to target GBM are urgently needed. The effect of methylglyoxal (MGO) on the cell cycle, cell death and proliferation of human GBM cells was investigated. The T98G and U87MG cell lines were cultured in modified EMEM supplemented with 10% fetal bovine serum and maintained at 37°C in a humidified atmosphere of 5% CO2 in air. Cells were exposed to methylglyoxal (0.025mM) per 72h. The influence of MGO on T98G and U87MG cell cycle, proliferation and apoptosis was evaluated as well. Cell cycle phase distribution, proliferation, apoptosis were analyzed by flow cytometry. MGO causes changes in cell cycle and induces accumulation of G1/G0-phase cells and reduced fraction of cells in S and G2/M phases. We have also observed inhibition of cell proliferation and induction of apoptosis in cancer cells. We have also revealed that MGO induces senescence of U87MG but not T98G cells, but further studies are necessary in order to clarify and check mechanism of action of methylglyoxal and it Is a positive phenomenon for the treatment of GBM. PMID:27133062

  14. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  15. Effect of advanced glycation end-products on cell proliferation and cell death.

    Science.gov (United States)

    Peterszegi, G; Molinari, J; Ravelojaona, V; Robert, L

    2006-09-01

    The effect of advanced glycation end products (AGE-s) was studied on the proliferation and cell death of human skin fibroblasts in culture. Several AGE-products were prepared from proteins, a peptide and amino acids, using Glucose or Fructose, with or without Fe2+. The AGE preparations increased cell death at the 7th day, after only 72 hours of incubation. Some of these glycation products modified also proliferation. This effect of AGE-s was even maintained without these products in fresh medium for a second period of incubation up to 10 days from the start of the experiment. In order to explore the role of AGE-receptors, especially of AGE-receptor and of growth factor receptors (fibroblast and epidermal growth factors receptors), antibodies to these receptors were added to cell cultures and their effect on both cell death and proliferation were determined as for the AGE-s. These anti-receptor antibodies imitated to some extent the results obtained with AGE-s, producing increase of cell death and proliferation, followed above a certain concentration of antibodies by a decrease and a new increase or plateau. This might correspond to the internalization of the receptors followed by a re-expression on the cell membrane. The role of receptor-mediated Reactive Oxygen Species-production was also explored using scavengers: N-acetyl-cysteine (NAC), L-Carnosine, superoxide dismutase (SOD) and Catalase. Several of these scavengers decreased cell death, suggesting that Reactive Oxygen Species-production is partially involved in the observed phenomena. PMID:16919894

  16. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  17. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    Science.gov (United States)

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network. PMID:26506049

  18. Pyrvinium targets autophagy addiction to promote cancer cell death

    OpenAIRE

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that...

  19. Rational Development of a Cytotoxic Peptide to Trigger Cell Death

    OpenAIRE

    Boohaker, Rebecca J.; Zhang, Ge; Lee, Michael W; Nemec, Kathleen N.; Santra, Santimukul; Perez, J Manuel; Khaled, Annette R.

    2012-01-01

    Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many anti-microbial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the...

  20. Age-related differences in mechanism, cause, and location of trauma deaths

    DEFF Research Database (Denmark)

    Meisler, Rikke; Thomsen, Annemarie Bondegaard; Theilade, Peter;

    2011-01-01

    BACKGROUND: Trauma death has traditionally been described as primarily occurring in young men exposed to penetrating trauma or road traffic accidents. The epidemiology of trauma fatalities in Europe may change as a result of the increasing proportion of elderly patients. The goal of this study was...... to describe age-related differences in trauma type, mechanism, cause and location of death in a well-defined European region. METHODS: We prospectively registered all trauma patients and severe burn patients in eastern Denmark over 12 consecutive months. We analyzed all trauma fatalities in our...... region regarding the trauma type, mechanism, cause and location of death. RESULTS: A total of 2923 patients were registered, of which 292 (9.9%) died within 30 days. Mortality increased with age, with a mortality of 46.1% in patients older than 80 years old. Blunt trauma was the most frequent trauma type...

  1. Novel self-micellizing anticancer lipid nanoparticles induce cell death of colorectal cancer cells.

    Science.gov (United States)

    Sundaramoorthy, Pasupathi; Baskaran, Rengarajan; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Oh, Seung Hyun; Kyu Yoo, Bong; Kim, Hwan Mook

    2015-11-01

    In the present study, we developed a novel drug-like self-micellizing anticancer lipid (SMAL), and investigated its anticancer activity and effects on cell death pathways in human colorectal cancer (CRC) cell lines. Three self-assembled nanoparticles were prepared, namely, SMAL102 (lauramide derivative), SMAL104 (palmitamide derivative), and SMAL108 (stearamide derivative) by a thin-film hydration technique, and were characterized for physicochemical and biological parameters. SMAL102 were nanosized (160.23 ± 8.11 nm) with uniform spherical shape, while SMAL104 and SMAL108 did not form spherical shape but formed large size nanoparticles and irregular in shape. Importantly, SMAL102 showed a cytotoxic effect towards CRC cell lines (HCT116 and HT-29), and less toxicity to a normal colon fibroblast cell line (CCD-18Co). Conversely, SMAL104 and SMAL108 did not have an anti-proliferative effect on CRC cell lines. SMAL102 nanoparticles were actively taken up by CRC cell lines, localized in the cell membrane, and exhibited remarkable cytotoxicity in a concentration-dependent manner. The normal colon cell line showed significantly less cellular uptake and non-cytotoxicity as compared with the CRC cell lines. SMAL102 nanoparticles induced caspase-3, caspase-9, and PARP cleavage in HT-29 cells, indicating the induction of apoptosis; whereas LC3B was activated in HCT116 cells, indicating autophagy-induced cell death. Collectively, these results demonstrate that SMAL102 induced cell death via activation of apoptosis and autophagy in CRC cell lines. The present study could be a pioneer for further preclinical and clinical development of such compounds. PMID:26342325

  2. Macrophage Activation Redirects Yersinia-Infected Host Cell Death from Apoptosis to Caspase-1-Dependent Pyroptosis

    OpenAIRE

    Bergsbaken, Tessa; Cookson, Brad T.

    2007-01-01

    Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ− Yersinia pseudotuberculosis (Yptb). YopJ− Yptb-induced macrophage death was dependent on caspase-1 activat...

  3. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA

  4. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line;

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome...

  5. Modulation of Programmed Cell Death in a Model System of Xylogenic Zinnia (Zinnia Elegans) Cell Culture

    NARCIS (Netherlands)

    Yakimova, E.T.; Woltering, E.J.

    2009-01-01

    Programmed cell death is an integral part of the latest stage of differentiation of the tracheary elements of plant xylem vascular system. In this study, by applying a pharmacological approach with specific peptide inhibitors, we have elucidated the involvement of plant caspase-like proteases in cel

  6. Alternative pathways of programmed cell death are activated in cells with defective caspase-dependent apoptosis

    Czech Academy of Sciences Publication Activity Database

    Ondroušková, E.; Souček, Karel; Horváth, Viktor; Šmarda, J.

    2008-01-01

    Roč. 32, č. 4 (2008), s. 599-609. ISSN 0145-2126 R&D Projects: GA ČR(CZ) GA204/07/0834 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : apoptosis * autophagy * programmed cell death Subject RIV: BO - Biophysics Impact factor: 2.390, year: 2008

  7. Cell Death Pathways in Photodynamic Therapy of Cancer

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT

  8. Cell Death Pathways in Photodynamic Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    Michael R. Hamblin

    2011-06-01

    Full Text Available Photodynamic therapy (PDT is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2 are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  9. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  10. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    International Nuclear Information System (INIS)

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  11. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  12. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    Science.gov (United States)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  13. Activation of NAG-1 via JNK signaling revealed an isochaihulactone-triggered cell death in human LNCaP prostate cancer cells

    International Nuclear Information System (INIS)

    We explored the mechanisms of cell death induced by isochaihulactone treatment in LNCaP cells. LNCaP cells were treated with isochaihulactone and growth inhibition was assessed. Cell cycle profiles after isochaihulactone treatment were determined by flow cytometry. Expression levels of cell cycle regulatory proteins, caspase 9, caspase 3, and PARP were determined after isochaihulactone treatment. Signaling pathway was verified by inhibitors pre-treatment. Expression levels of early growth response gene 1 (EGR-1) and nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1) were determined to investigate their role in LNCaP cell death. NAG-1 expression was knocked down by si-NAG-1 siRNA transfection. Rate of cell death and proliferation were obtained by MTT assay. Isochaihulactone caused cell cycle arrest at G2/M phase in LNCaP cells, which was correlated with an increase of p53 and p21 levels and downregulation of the checkpoint proteins cdc25c, cyclin B1, and cdc2. Bcl-2 phosphorylation and caspase activation were also observed. Isochaihulactone induced phosphorylation of c-Jun-N-terminal kinase (JNK), and JNK inhibitor partially reduced isochaihulactone-induced cell death. Isochaihulactone also induced the expressions of EGR-1 and NAG-1. Expression of NAG-1 was reduced by JNK inhibitor, and knocking down of NAG-1 inhibited isochaihulactone-induced cell death. Isochaihulactone apparently induces G2/M cell cycle arrest via downregulation of cyclin B1 and cdc2, and induces cellular death by upregulation of NAG-1 via JNK activation in LNCaP cells

  14. Radiation induced cell death in cervical squamous cell carcinoma. An immunohistochemical and ultrastructural study

    International Nuclear Information System (INIS)

    To study the process of cell death in cervical squamous cell carcinoma (SCC) after radiation, an ultrastructural and immunohistochemical study was performed. Paraffin-embedded tissue blocks of biopsy samples pre- and post-radiation stage III SCC (n=15) were collected. Irradiation caused varying ultrastructural changes including nuclear and cytoplasmic disorganization suggesting cell necrosis. Immunohistochemically, the pre-radiation specimens showed no positive reaction for tumor necrosis factor-alpha (TNF-α), tumor necrosis factor-receptor (TNF-γ) or Fas. C-fos, p53 and bcl-2 showed positive reactions in only a few non-irradiated specimens. All of the irradiated specimens showed a positive reaction for TNF-α, and variable positive reactions were observed for TNF-γ, Fas, p53, c-fos and bcl-2. These results suggest that TNF-α, TNF-γ, and c-fos are responsible for radiation induced cell death in cervical SCC. (author)

  15. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway.

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-03-15

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  16. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin MD.; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  17. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2001-01-01

    A cDNA clone homologous to the human defender against apoptotic cell death (DAD1) gene, which is believed to be a conserved inhibitor of programmed cell death, was isolated from tomato (Lycopersicon esculentum cv. Prisca). The 351 basepairs open reading frame predicted a 116 amino acid protein seque

  18. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  19. Role of p53 in Cell Death and Human Cancers

    International Nuclear Information System (INIS)

    p53 is a nuclear transcription factor with a pro-apoptotic function. Since over 50% of human cancers carry loss of function mutations in p53 gene, p53 has been considered to be one of the classical type tumor suppressors. Mutant p53 acts as the dominant-negative inhibitor toward wild-type p53. Indeed, mutant p53 has an oncogenic potential. In some cases, malignant cancer cells bearing p53 mutations display a chemo-resistant phenotype. In response to a variety of cellular stresses such as DNA damage, p53 is induced to accumulate in cell nucleus to exert its pro-apoptotic function. Activated p53 promotes cell cycle arrest to allow DNA repair and/or apoptosis to prevent the propagation of cells with serious DNA damage through the transactivation of its target genes implicated in the induction of cell cycle arrest and/or apoptosis. Thus, the DNA-binding activity of p53 is tightly linked to its tumor suppressive function. In the present review article, we describe the regulatory mechanisms of p53 and also p53-mediated therapeutic strategies to cure malignant cancers

  20. Antagonism between curcumin and the topoisomerase II inhibitor etoposide: A study of DNA damage, cell cycle regulation and death pathways

    OpenAIRE

    Saleh, Ekram M; El-Awady, Raafat A.; Eissa, Nadia A.; Abdel-Rahman, Wael M.

    2012-01-01

    The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms.

  1. Distinct mathematical behavior of apoptotic versus non-apoptotic tumor cell death

    International Nuclear Information System (INIS)

    Purpose: The presence or absence of a p53-dependent apoptosis response has previously been shown to greatly influence radiosensitivity in tumor cells. Here, we examine clonogenic survival curves for two genetically related oncogene transformed cell lines differing in the presence or absence of p53 and apoptosis. Solid tumor radiosensitivity patterns have been previously described for these lines. Materials and Methods: Oncogene-transformed fibroblasts derived from E1A + Ras transfection of p53-wild-type or p53-null mouse embryonic fibroblasts were plated as single cells and irradiated at increasing radiation doses in single fractions from 1.5 to 11 Gy. Clonogenic cell survival assays were obtained. Survival data are fit to a linear-quadratic relationship: S = e-αD-βD2. Apoptosis was assessed and quantitated morphologically by staining with the fluorescent nuclear dye DAPI, by TUNEL assay for DNA fragmentation, and by measurement of apoptotic cysteine protease cleavage activity in cytosolic extracts. Results: Whereas radiation triggers massive apoptosis in the presence of p53, it produces no measurable DNA fragmentation, apoptotic cysteine protease cleavage activity, or morphological changes of apoptosis in the cells lacking p53. These contrasting mechanisms of death display dramatically different quantitative behavior: log-survival of apoptotic cells is linearly proportional to dose (S = e-αD), whereas survival of non-apoptotic (p53 null) is linear-quadratic with a significant quadratic contribution. The surviving fraction at 2 Gy (SF-2) for p53-null cells was 70% verses 12% for p53-intact cells. Conclusions: In this system, apoptosis appears to exhibit a dominance of single-event which produces a very high α/β ratio, and no significant shoulder; whereas non-apoptotic death in this system exhibits a comparatively small linear component, a low α/β ratio, and a larger shoulder

  2. Effect of Trace Elements in Alcohol Beverages on the Type of Radiation-induced Cell Death

    International Nuclear Information System (INIS)

    Developments of radioprotective agents are important issues for minimizing the troubles and the effective treatments in radiotherapy. But few agents are useful in clinical and practical fields. It was shown that trace elements in alcohol beverages might have radioprotective effect. In this study, the types of cell death of lymphocytes according to the commercial alcohol beverage was investigated. Normal healthy volunteers ingested distilled water, beer or soju containing 8.15 mg·dl-1 ethyl ahcohol, respectively. After 2 hours, their blood were sampled with their consents. Fraction of lymphocytes was isolated by density gradient method with Histopaque-1077 (Sigma) and irradiated with dose from 0.5 to 5 Gy. After 60 hour incubation, the cells were harvested and analysed by flow cytometry. Cell viability was decreased by dose dependent manner. Cell viability of beer group was reduced about 15% compared with control group. Apoptosis in soju group was reduced about 20% compared with control group. Apoptosis of beer and control groups are similar. Necrosis of soju group significantly increased about 35% compared with control group. Early apoptosis of beer group was increased compared with control group. Early apoptosis of soju group was decreased about 25% compared with control group. Late apoptosis of beer and control group was increased by dose dependent manner. Late apoptosis of soju group was increased about 20-30% compared with control group. Late apoptosis of soju was increased and the radioprotective effect of soju was minimal because late apoptosis induced the cell necrosis. In case of soju trace elements, total cell apoptosis was decreased about 20% and early cell apoptosis was remarkably low. In this case, mitotic cells death may be dominant mechanism. Therefore, trace elements in soju may not be effective radioprotective agents

  3. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    XU Chang-jie(徐昌杰); CHEN Kun-song(陈昆松); FERGUSON Ian B.

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple cell death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  4. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.

    Directory of Open Access Journals (Sweden)

    Victoria Ifeadi

    Full Text Available BACKGROUND: Death receptors (DR of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL

  5. Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells

    Directory of Open Access Journals (Sweden)

    Al-Daghri Nasser M

    2012-10-01

    Full Text Available Abstract Background Drugs used both in classical chemotherapy and the more recent targeted therapy do not have cancer cell specificity and, hence, cause severe systemic side effects. Tumors also develop resistance to such drugs due to heterogeneity of cell types and clonal selection. Several traditional dietary ingredients from plants, on the other hand, have been shown to act on multiple targets/pathways, and may overcome drug resistance. The dietary agents are safe and readily available. However, application of plant components for cancer treatment/prevention requires better understanding of anticancer functions and elucidation of their mechanisms of action. The current study focuses on the anticancer properties of fenugreek, a herb with proven anti-diabetic, antitumor and immune-stimulating functions. Method Jurkat cells were incubated with 30 to 1500 μg/mL concentrations of 50% ethanolic extract of dry fenugreek seeds and were followed for changes in viability (trypan blue assay, morphology (microscopic examination and autophagic marker LC3 transcript level (RT-PCR. Results Incubation of Jurkat cells with fenugreek extract at concentrations ranging from 30 to 1500 μg/mL for up to 3 days resulted in cell death in a dose- and time-dependent manner. Jurkat cell death was preceded by the appearance of multiple large vacuoles, which coincided with transcriptional up-regulation of LC3. GC-MS analysis of fenugreek extract indicated the presence of several compounds with anticancer properties, including gingerol (4.82%, cedrene (2.91%, zingerone (16.5%, vanillin (1.52% and eugenol (1.25%. Conclusions Distinct morphological changes involving appearance of large vacuoles, membrane disintegration and increased expression of LC3 transcripts indicated that fenugreek extract induced autophagy and autophagy-associated death of Jurkat cells. In addition to the already known apoptotic activation, induction of autophagy may be an additional mechanism

  6. Distinct mathematical behavior of apoptotic vs. non-apoptotic tumor cell death