WorldWideScience

Sample records for cell cycle-related mrnas

  1. Expression of cell cycle related genes in HL60 cells undergoing apoptosis by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [College of Medicine, Keimyung Univ., Taegu (Korea, Republic of); Park, In Kyu [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    1998-12-01

    To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. HL-60 cell line (promyelocytic leukemia cell line was grown in culture media and irradiated with 8 Gy by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16{sup INK4a}, p21{sup WAF1}, p27K{sup IP1}, E2F, PCNA and Rb). X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of phosphorylated retinoblastoma proteins (ppRb). Cyclin D1, PCNA, CDC1, CDK4 and p16{sup INK4a} protein underwent no significant change at any times after irradiation. There was not detected p21{sup WAF1} and p27{sup KIP1} protein. Cyclin A, B, C, mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin D1 mRNA increased immediately and then decreased with the lapse of time. CDK2 mRNA decreased at 3 h and increased at 6 h after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of p16{sup INK4a} and not detected in expressin of p21{sup WAF1} and p27{sup KIP1} mRNA. We suggest that entry into S phaso may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced apoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced

  2. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  3. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Science.gov (United States)

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  4. Translation dynamics of single mRNAs in live cells and neurons.

    Science.gov (United States)

    Wu, Bin; Eliscovich, Carolina; Yoon, Young J; Singer, Robert H

    2016-06-17

    Translation is the fundamental biological process converting mRNA information into proteins. Single-molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here, we report single-molecule imaging of nascent peptides (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single-molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 amino acids per second). In primary neurons, mRNAs are translated in proximal dendrites but repressed in distal dendrites and display "bursting" translation. This technology provides a tool with which to address the spatiotemporal translation mechanism of single mRNAs in living cells. PMID:27313041

  5. Cell cycle related proteins in hyperplasia of usual type in breast specimens of patients with and without breast cancer

    Directory of Open Access Journals (Sweden)

    Gobbi Helenice

    2006-07-01

    Full Text Available Abstract Background Hyperplasia of usual type (HUT is a common proliferative lesion associated with a slight elevated risk for subsequent development of breast cancer. Cell cycle-related proteins would be helpful to determine the putative role of these markers in the process of mammary carcinogenesis. The aim of this study was to analyze the expression of cell cycle related proteins in HUT of breast specimens of patients with and without breast cancer, and compare this expression with areas of invasive carcinomas. Results Immunohistochemical evaluation was performed using antibodies against cell cycle related proteins ER, PR, p53, p21, p63, and Ki-67 in hyperplasia of usual type (HUT in specimens of aesthetic reduction mammaplasty (ARM, in specimens of mammaplasty contralateral to breast cancer (MCC, and in specimens of invasive mammary carcinomas (IMC presenting HUT in the adjacent parenchyma. The results showed that the immunoexpression of ER, PR, p21, p53, p63, and KI-67 was similar in HUT from the three different groups. The p63 expression in myoepithelial cells showed discontinuous pattern in the majority of HUT, different from continuous expression in normal lobules. Nuclear expression of p53 and p21 was frequently higher expressed in IMC and very rare in HUT. We also found cytoplasmic expression of p21 in benign hyperplastic lesions and in neoplastic cells of IMC. Conclusion Our data failed to demonstrate different expression of cell cycle related proteins in HUT from patients with and without breast cancer. However, we found discontinuous expression of p63 in myoepithelial cells around HUT adjacent to carcinomas and cytoplasmic expression of p21 in epithelial cells of hyperplastic foci. Further studies are needed to determine how these subgroups relate to molecular abnormalities and cancer risk.

  6. Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes

    NARCIS (Netherlands)

    deVries, H; deJonge, JC; Schrage, C; vanderHaar, ME; Hoekstra, D

    1997-01-01

    In oligodendrocytes (OLG), the mRNAs for the various myelin proteins localize to different intracellular sites, Whereas the confinement of myelin basic protein (MBP) mRNA to the processes of the cell has been well established, we demonstrate that most other myelin mRNA species are mainly present in

  7. Down regulation of ribosomal protein mRNAs during neuronal differentiation of human NTERA2 cells.

    Science.gov (United States)

    Bévort, M; Leffers, H

    2000-10-01

    We have analysed the expression of 32 ribosomal protein (RP) mRNAs during retinoic acid induced neuronal differentiation of human NTERA2 cells. Except for a new S27 variant (S27v), all were down regulated both in selectively replated differentiated neurons and the most differentiated continuous cultures, i.e., non-replated cultures. However, the expression profiles of the individual RP mRNAs were different, most (L3, L7, L8, L10, L13, L23a, L27a, L36a, L39, P0, S2, S3, S3a, S4X, S6, S9, S12, S13, S16, S19, S20, S23, and S27a) exhibited a constant down regulation, whereas a few were either initially constant (L11, L32, S8, and S11) or up regulated (L6, L15, L17, L31, and S27y) and then down regulated. The expression of S27v remained elevated in the most differentiated continuous cultures but was down regulated in replated differentiated neurons. The down regulation of RP mRNAs was variable: the expression levels in differentiated replated neurons were between 10% (S3) and 90% (S11) of the levels in undifferentiated cells. The ratio between rRNA and RP mRNA changed during the differentiation; in differentiated neurons there were, on average, about half the number of RP mRNAs per rRNA as compared to undifferentiated cells. The expression profiles of a few translation-related proteins were also determined. EF1alpha1, EF1beta1, and EF1delta were down regulated, whereas the expression of the neuron and muscle specific EF1alpha2 increased. The reduction in the expression of RP mRNAs was coordinated with a reduction in the expression level of the proliferation marker PCNA. The expression levels of most RP mRNAs were lower in purified differentiated post-mitotic neurons than in the most differentiated continuous cultures, despite similar levels of PCNA, suggesting that both the differentiation state and the proliferative status of the cells affect the expression of RP mRNAs.

  8. Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber.

    Science.gov (United States)

    Fu, F Q; Mao, W H; Shi, K; Zhou, Y H; Yu, J Q

    2010-01-01

    We investigated the temporal and spatial changes in cell division, endoreduplication and expression of cell cycle-related genes in developing cucumber fruits at 0-20 days after anthesis (DAA). Cell division was intense at 0-4 DAA and then decreased until to 8 DAA. Meanwhile, endoreduplication started at 4 DAA and increased gradually to 20 DAA, accompanied by an increase in fruit weight. Cell division was mainly observed in the exocarp, while endoreduplication occurred mostly in the endocarp and pulp. Among the six cell cycle-related genes examined, two mitotic cyclin genes (CycA and CycB) and CDKB had the highest transcript levels within 2 DAA, while transcripts of two CycD3 genes and CDKA peaked at 4 DAA and 20 DAA, respectively. Naphthaleneacetic acid (NAA), N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and 24-epibrassinolide (EBR) all induced parthenocarpic growth as well as active cell division, and enhanced transcripts of cell cycle-related genes. In comparison, gibberellic acid (GA(3)) had little effect on the induction of parthenocarpy and transcripts of cell cycle-related genes. These results provide evidence for the important roles of cell division and endoreduplication during cucumber fruit development, and suggest the essential roles of cell cycle-related genes and plant growth substances in fruit development. PMID:20653892

  9. Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance

    Science.gov (United States)

    Alessandrini, A.; Croce, M. A.; Tiozzo, R.; Facci, P.

    2006-02-01

    We have monitored viscoelasticity variation of a cell population during the cell cycle by a Quartz Crystal Microbalance (QCM). Balb 3T3 fibroblasts were synchronized in the G0/G1 phase and seeded in a QCM chamber placed in a cell incubator. After cell sedimentation, the frequency signal was characterized by an amplitude modulation attributed to the viscoelasticity variation of the cells proliferating in phase. A control experiment with nonsynchronized cells showed a similar signal trend, but without significant modulation. Interestingly, the system resulted also to perform as a device sensitive to the effect of drugs affecting the cell cycle, such as colchicine.

  10. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ya-Chen; Hsu, Chiao-Yu [Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan (China); Yao, Ya-Li [Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Yang, Wen-Ming, E-mail: yangwm@nchu.edu.tw [Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.

  11. CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins

    Science.gov (United States)

    Suzuki, Toru; Kikuguchi, Chisato; Sharma, Sahil; Sasaki, Toshio; Tokumasu, Miho; Adachi, Shungo; Natsume, Tohru; Kanegae, Yumi; Yamamoto, Tadashi

    2015-01-01

    The CCR4-NOT complex is conserved in eukaryotes and is involved in mRNA metabolism, though its molecular physiological roles remain to be established. We show here that CNOT3-depleted mouse embryonic fibroblasts (MEFs) undergo cell death. Levels of other complex subunits are decreased in CNOT3-depleted MEFs. The death phenotype is rescued by introduction of wild-type (WT), but not mutated CNOT3, and is not suppressed by the pan-caspase inhibitor, zVAD-fluoromethylketone. Gene expression profiling reveals that mRNAs encoding cell death-related proteins, including receptor-interacting protein kinase 1 (RIPK1) and RIPK3, are stabilized in CNOT3-depleted MEFs. Some of these mRNAs bind to CNOT3, and in the absence of CNOT3 their poly(A) tails are elongated. Inhibition of RIPK1-RIPK3 signaling by a short-hairpin RNA or a necroptosis inhibitor, necrostatin-1, confers viability upon CNOT3-depleted MEFs. Therefore, we conclude that CNOT3 targets specific mRNAs to prevent cells from being disposed to necroptotic death. PMID:26437789

  12. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions. PMID:19622233

  13. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions.

  14. A versatile method for cell-specific profiling of translated mRNAs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda Thomas

    Full Text Available In Drosophila melanogaster few methods exist to perform rapid cell-type or tissue-specific expression profiling. A translating ribosome affinity purification (TRAP method to profile actively translated mRNAs has been developed for use in a number of multicellular organisms although it has only been implemented to examine limited sets of cell- or tissue-types in these organisms. We have adapted the TRAP method for use in the versatile GAL4/UAS system of Drosophila allowing profiling of almost any tissue/cell-type with a single genetic cross. We created transgenic strains expressing a GFP-tagged ribosomal protein, RpL10A, under the control of the UAS promoter to perform cell-type specific translatome profiling. The GFP::RpL10A fusion protein incorporates efficiently into ribosomes and polysomes. Polysome affinity purification strongly enriches mRNAs from expected genes in the targeted tissues with sufficient sensitivity to analyze expression in small cell populations. This method can be used to determine the unique translatome profiles in different cell-types under varied physiological, pharmacological and pathological conditions.

  15. AB109. Downregulation of tNASP inhibits proliferation through regulating cell cycle-related proteins and inactive ERK/MAPK signal pathway in renal cell carcinoma cells

    Science.gov (United States)

    Fang, Jianzheng; Wang, Hainan; Cheng, Gong; Wang, Shangqian; Deng, Yunfei; Song, Zhen; Xu, Aiming; Liu, Bianjiang; Wang, Zengjun

    2016-01-01

    Objective Nuclear auto-antigenic sperm protein (NASP), initially described as a highly auto-immunogenic testis and sperm-specific protein, is a histone chaperone that is proved to present in all dividing cells. NASP has two splice variants: testicular NASP (tNASP) and somatic form of NASP (sNASP). Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP. Up to now, little has been known about tNASP in renal cell carcinoma (RCC). In the present study, the molecular mechanism of tNASP in RCC was explored. Methods The expression level of tNASP in 16 paired human RCC specimens was determined. Downregulation of tNASP by small interfering RNA (siRNA) was transfected in RCC cell lines. The effect of downregulation of tNASP by siRNA on cell colony formation and proliferation was examined by colony formation assay and CCK-8 assay, cell cycle was analyzed by flow cytometry, and the expression of cyclin D1 and P21 were detected by Western blotting. ERK/MAPK signaling was also analyzed. Results tNASP has a relative high expression level in human RCC tissues. Via upregulation of P21 and downregulation of cyclinD1, silence of tNASP can inhibit cell proliferation, which induces cell cycle arrest. Furthermore, ERK signaling pathway is confirmed to mediate the regulation of cell cycle-related proteins caused by silence of tNASP. Conclusions Our research demonstrates that knockdown of tNASP effectively inhibits the proliferation and causes G1 phase arrest through ERK/MAPK signal pathway.

  16. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs

    Directory of Open Access Journals (Sweden)

    Svenja ePachernegg

    2013-12-01

    Full Text Available Ionotropic glutamate receptors (iGluRs do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells. We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs, by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (GluK2 to GluK5, AMPA receptors (GluA1, GluA3, and GluA4, and NMDA receptors (GluN1, and GluN2A to GluN2D. Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs and neural stem cells (NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for GluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express kainate receptors (GluK2 to GluK5, AMPA receptors (GluA3, and NMDA receptors (GluN1, and GluN2A to GluN2D at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs.

  17. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    Science.gov (United States)

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  18. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  19. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  20. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    Science.gov (United States)

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P patients with Lynch syndrome. PMID:23125224

  1. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Jordi Solana

    Full Text Available Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.

  2. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    Science.gov (United States)

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  3. Differential Expression of Proteins and mRNAs from Border Cells and Root Tips of Pea.

    Science.gov (United States)

    Brigham, L. A.; Woo, H. H.; Nicoll, S. M.; Hawes, M. C.

    1995-10-01

    Many plants release large numbers of metabolically active root border cells into the rhizosphere. We have proposed that border cells, cells produced by the root cap meristem that separate from the rest of the root upon reaching the periphery of the cap, are a singularly differentiated part of the root system that modulates the environment of the plant root by producing specific substances to be released into the rhizosphere. Proteins synthesized in border cells exhibit profiles that are very distinct from those of the root tip (root cap, root meristem, and adjacent cells). In vivo-labeling experiments demonstrate that 13% of the proteins that are abundant in preparations from border cells are undetectable in root tip preparations. Twenty-five percent of the proteins synthesized by border cells in a 1-h period are rapidly excreted into the incubation medium. Quantitative variation in levels of specific marker proteins, including glutamine synthetase, heat-shock protein 70, and isoflavone reductase, also occurs between border cells and cells in the root tip. mRNA differential-display assays demonstrate that these large qualitative and quantitative differences in protein expression are correlated with similarly distinct patterns of gene expression. These observations are consistent with the hypothesis that a major switch in gene expression accompanies differentiation into root border cells, as expected for cells with specialized functions in plant development.

  4. Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.

    Directory of Open Access Journals (Sweden)

    Jerome E Lee

    Full Text Available BACKGROUND: Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS: We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE and AU-rich (ARE elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1

  5. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Su, Ming-Wei; Yu, Sung-Liang; Lin, Wen-Chang; Tsai, Ching-Hui; Chen, Po-Hua; Lee, Yungling Leo

    2016-08-15

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. PMID:27321975

  6. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2016-10-15

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs

  7. mRNAs containing the unstructured 5' leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells.

    OpenAIRE

    Hann, L E; Gehrke, L

    1995-01-01

    Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nu...

  8. Lewis y Regulate Cell Cycle Related Factors in Ovarian Carcinoma Cell RMG-I in Vitro via ERK and Akt Signaling Pathways

    OpenAIRE

    Shulan Zhang; Qing Liu; Yingying Hao; Rui Hou; Bei Lin; Shuice Liu; Juanjuan Liu; Masao Iwamori; Dawo Liu

    2012-01-01

    Objective: To investigate the effect of Lewis y overexpression on the expression of proliferation-related factors in ovarian cancer cells. Methods: mRNA levels of cyclins, CDKs, and CKIs were measured in cells before and after transfection with the α1,2-fucosyltransferase gene by real-time PCR, and protein levels of cyclins, CDKs and CKIs were determined in cells before and after gene transfection by Western blot. Results: Lewis y overexpression led to an increase in both mRNA and protein exp...

  9. mRNAs containing the unstructured 5' leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells.

    Science.gov (United States)

    Hann, L E; Gehrke, L

    1995-01-01

    Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors. PMID:7609069

  10. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells.

    OpenAIRE

    Belanger, F. C.; Brodl, M R; Ho, T H

    1986-01-01

    In response to a phytohormone, gibberellic acid, the aleurone layers of barley seeds synthesize and secrete alpha-amylases, which are coded by a set of stable mRNAs. When aleurone layers are subjected to heat shock treatment, the synthesis of alpha-amylase is suppressed while heat shock proteins are induced. The suppression of alpha-amylase synthesis is not the result of translational control as reported in several other systems. Rather, the sequences of alpha-amylase mRNA are rapidly degrade...

  11. pp32 (ANP32A expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs.

    Directory of Open Access Journals (Sweden)

    Timothy K Williams

    Full Text Available The expression of protein phosphatase 32 (PP32, ANP32A is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1, a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C, but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK, causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR, while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.

  12. Anchoring a Defined Sequence to the 55' Ends of mRNAs : The Bolt to Clone Rare Full Length mRNAs and Generate cDNA Libraries porn a Few Cells.

    Science.gov (United States)

    Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J

    1993-01-01

    Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss

  13. Genome-wide analysis reveals selective modulation of microRNAs and mRNAs by histone deacetylase inhibitor in B cells induced to undergo class switch DNA recombination and plasma cell differentiation

    Directory of Open Access Journals (Sweden)

    Tian eShen

    2015-12-01

    Full Text Available As we have suggested, epigenetic factors, such as microRNAs (miRNAs, can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase inhibitors (HDI inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR, somatic hypermutation (SHM and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J. Immunol. 193:5933-5950, 2014. To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b and miR-361, which target Aicda, and miR-23b, miR-30a and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell. Only 18 (0.36% of these highly expressed mRNAs, including Aicda, Prdm1 and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30% of the highly expressed mRNAs were upregulated (more than twofold by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  14. Genome-Wide Analysis Reveals Selective Modulation of microRNAs and mRNAs by Histone Deacetylase Inhibitor in B Cells Induced to Undergo Class-Switch DNA Recombination and Plasma Cell Differentiation.

    Science.gov (United States)

    Shen, Tian; Sanchez, Helia N; Zan, Hong; Casali, Paolo

    2015-01-01

    As we have suggested, epigenetic factors, such as microRNAs (miRNAs), can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase (HDAC) inhibitors (HDI) inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR), somatic hypermutation (SHM), and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J Immunol 193:5933-5950, 2014). To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b, and miR-361, which target Aicda, and miR-23b, miR-30a, and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell). Only 18 (0.36%) of these highly expressed mRNAs, including Aicda, Prdm1, and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30%) of the highly expressed mRNAs were upregulated (more than twofold) by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting, or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  15. Expression patterns of cytokine, growth factor and cell cycle-related genes after partial hepatectomy in rats with thioacetamide-induced cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Shu Yang; Chon Kar Leow; Theresa May Chin Tan

    2006-01-01

    AIM: To examine the differences in the responses of normal and cirrhotic livers to partial hepatectomy in relation to the factors influencing liver regeneration.METHODS: Cirrhosis was induced in rats by administration of thioacetamide. Untreated rats were used as controls. The control rats as well as the cirrhotic rats were subjected to 70% partial hepatectomy. At different time points after hepatectomy, the livers were collected and the levels of cytokines, growth factors and cell cycle proteins were analyzed.RESULTS: After hepatectomy, the cirrhotic remnant expressed significantly lower levels of cyclin D1, its kinase partner, cdk4, and cyclin E as compared to the controls up to 72 h post hepatectomy. Significantly lower levels of cydin A and cdk2 were also observed while the cdk inhibitor, p27 was significantly higher. In addition,the cirrhotic group had lower IL-6 levels than the control group at all time points up to 72 h following resection.CONCLUSION: The data from our study shows that impaired liver regeneration in cirrhotic remnants is associated with low expression of cyclins and cdks.This might be the consequence of the low IL-6 levels in cirrhotic liver remnant which would in turn influence the actions of transcription factors that regulate genes involved in cell proliferation and metabolic homeostasis during the regeneration process.

  16. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  17. Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-07-01

    Full Text Available Both neurotrophins (NTs and target skeletal muscle (SKM cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT, calcitonin-gene related peptide (CGRP, neurofilament 200 (NF-200, and microtubule associated protein 2 (MAP-2 in dorsal root ganglion (DRG sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF or neurotrophin-3 (NT-3 on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.

  18. TFPI alpha and beta regulate mRNAs and microRNAs involved in cancer biology and in the immune system in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Benedicte Stavik

    Full Text Available Emerging evidence indicate a new role of TFPI in cancer biology. We recently reported that both isoforms of TFPI induced apoptosis and inhibited proliferation of cancer cells. The signaling pathway(s mediating the effects of TFPI is, however, presently still unclear. Our goal was to further investigate the cellular processes affected by TFPI and to get insight into the molecular mechanisms involved in the effects of TFPI, using a global gene expression study approach. TFPIα or TFPIβ cDNA were transfected into SK-BR-3 breast cancer cells for stable overexpression. Global mRNA and microRNA (miRNA expressions were measured and functional annotation of the differentially expressed genes and miRNAs according to gene ontology terms was conducted. Selected results were validated using qRT-PCR and Western blot. A total of 242 and 801 mRNA transcripts and 120 and 46 miRNAs were differentially expressed in cells overexpressing TFPIα or TFPIβ, respectively. Overexpression of either isoform significantly affected the expression of genes involved in cell development (apoptosis, cell movement, migration, invasion, colony formation, growth, and adhesion and immune response. Network analyses revealed biological interactions between these genes and implied that several of the genes may be involved in both processes. The expression profiles also correlated significantly with clinical phenotype and outcome. Functional cluster analyses indicated altered activity of the epidermal growth factor receptor, small GTPases, and the NF-κB and JAK/STAT cascades when TFPI was overexpressed, and increased activity of the transcription factors NF-κB and Elk-1 and phospho-Akt levels was observed. Integrated mRNA-miRNA analyses showed that 19% and 32% of the differentially expressed genes in cells overexpressing TFPIα or TFPIβ, respectively, may have been regulated by miRNAs. Overexpression of TFPI in breast cancer cells affected the expression of mRNAs and mi

  19. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  20. Cell cycle profiles of EcR, USP, HR3 and B cyclin mRNAs associated to 20E-induced G2 arrest of Plodia interpunctella imaginal wing cells.

    Science.gov (United States)

    Siaussat, D; Bozzolan, F; Queguiner, I; Porcheron, P; Debernard, S

    2005-04-01

    Using the IAL-PID2 cell line established from pupally committed imaginal wing discs of Plodia interpunctella, we have investigated the dynamics of cellular and molecular events involved in the G2/M arrest. We have first cloned a cDNA sequence named PIUSP-2 that likely encodes a homologue of the Ultraspiracle-2 isoform of Manduca sexta. When the IAL-PID2 cells were exposed to a 8 h 20E treatment applied at different times of the cell cycle, an optimal period of sensitivity of cells to 20E, in inducing G2 arrest, was determined at the S/G2 transition. Using cDNA probes specifically designed from Plodia B cyclin (PcycB), ecdysone receptor B1-isoform (PIEcR-B1) and HR3 transcription factor (PHR3), we provide evidence that the 20E-induced G2 arrest was correlated to a high induction of PHR3, PIEcR-B1, PIUSP-2 mRNAs at the S/G2 transition and a decrease in PcycB mRNA level at the end of G2 phase.

  1. 表皮生长因子对食管鳞癌细胞Eca109细胞周期及其调控因子的影响%Effects of epidermal growth factor on cell cycle and cell cycle-related regulatory factors of human esophageal squamous cell carcinoma cell line Eca109

    Institute of Scientific and Technical Information of China (English)

    李倩倩; 朱红; 王朝莉; 黎仕娟; 胡为民

    2015-01-01

    Objective:To investigate the effects of epidermal growth factor (EGF)on cell cycle and cell cycle-related regulatory factors of human esophageal squamous cell carcinoma (ESCC) cell line Eca109.Methods: Serum starved Eca109 cells were treated with 20 ng/ml recombinant human EGF(rhEGF)for 24 h.The cell cycle phase distribution was detected by flow cytometry.The mRNA and protein expression levels of p21CIP1/WAF1(p21) and p27KIP1(p27) were detected by real-time quantitative reverse transcription polymerase chain reaction(qRT-PCR)and Western blot,respectively.Results: The proportions of G1 phase cells in EGF group and control group were ( 54.90 ±0.82 )% and ( 65.94 ±0.74 )%.The mRNA and protein expression levels of p 21 in EGF group was significantly higher ,and p27 was significantly lower than that in control group ( P<0.01 ) .Conclusion: EGF facilitates G1-S phase transition,and promotes the proliferation of Eca 109 cells,which may be associated with the up-regulation of p21 and down-regulation of p27.%目的:探讨表皮生长因子( EGF)对食管鳞癌细胞Eca109 细胞周期及相关调控因子的影响. 方法:20 ng/ml重组人EGF( rhEGF)作用于血清饥饿的Eca109细胞24 h,采用流式细胞术检测EGF对Eca109细胞周期的影响,实时荧光定量逆转录聚合酶链反应(qRT-PCR)检测p21CIP1/WAF1(p21)、p27KIP1(p27)mRNA的表达情况,Western blot 检测p21、p27蛋白的表达情况. 结果:EGF组和对照组G1期细胞所占比例分别为(54.90±0.82)%和(65.94±0.74)%(P<0.01);qRT-PCR结果显示p21 mRNA表达水平EGF组明显高于对照组,p27 mRNA表达水平EGF组明显低于对照组( P<0.01 );Western blot结果显示, p21蛋白表达水平EGF组明显高于对照组,p27蛋白表达水平EGF组明显低于对照组( P<0.01 ). 结论:EGF有利于Eca109细胞从G1期过渡到S期,促进细胞增殖,可能与调节p21、p27的mRNA和蛋白的表达相关.

  2. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8.

    Science.gov (United States)

    Huang, Xin; Liu, Chang; Hao, Cuifang; Tang, Qianqing; Liu, Riming; Lin, Shaoxia; Zhang, Luping; Yan, Wei

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women and is characterised by polycystic ovaries, hyperandrogenism and chronic anovulation. Although the clinical and biochemical signs of PCOS are typically heterogeneous, abnormal folliculogenesis is considered a common characteristic of PCOS. Our aim is to identify the altered miRNA and mRNA expression profiles in the cumulus cells of PCOS patients to investigate their molecular function in the aetiology and pathophysiology of PCOS. In this study, the miRNA expression profiles of the cumulus cell samples isolated from five PCOS and five control patients were determined by an miRNA microarray. At the same time, the altered mRNA profiles of the same cumulus cell samples were also identified by a cDNA microarray. From the microarray data, 17 miRNAs and 1263 mRNAs showed significantly different expression in the PCOS cumulus cells. The differentially expressed miRNA-509-3p and its potential target gene (MAP3K8) were identified from the miRNA and mRNA microarrays respectively. The expression of miRNA-509-3p was up-regulated and MAP3K8 was down-regulated in the PCOS cumulus cells. The direct interaction between miRNA-509-3p and MAP3K8 was confirmed by a luciferase activity assay in KGN cells. In addition, miRNA-509-3p mimics or inhibitor transfection tests in KGN cells further confirmed that miRNA-509-3p improved oestradiol (E2) secretion by inhibiting the expression of MAP3K8 These results help to characterise the pathogenesis of anovulation in PCOS, especially the regulation of E2 production. PMID:27001999

  3. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8.

    Science.gov (United States)

    Huang, Xin; Liu, Chang; Hao, Cuifang; Tang, Qianqing; Liu, Riming; Lin, Shaoxia; Zhang, Luping; Yan, Wei

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women and is characterised by polycystic ovaries, hyperandrogenism and chronic anovulation. Although the clinical and biochemical signs of PCOS are typically heterogeneous, abnormal folliculogenesis is considered a common characteristic of PCOS. Our aim is to identify the altered miRNA and mRNA expression profiles in the cumulus cells of PCOS patients to investigate their molecular function in the aetiology and pathophysiology of PCOS. In this study, the miRNA expression profiles of the cumulus cell samples isolated from five PCOS and five control patients were determined by an miRNA microarray. At the same time, the altered mRNA profiles of the same cumulus cell samples were also identified by a cDNA microarray. From the microarray data, 17 miRNAs and 1263 mRNAs showed significantly different expression in the PCOS cumulus cells. The differentially expressed miRNA-509-3p and its potential target gene (MAP3K8) were identified from the miRNA and mRNA microarrays respectively. The expression of miRNA-509-3p was up-regulated and MAP3K8 was down-regulated in the PCOS cumulus cells. The direct interaction between miRNA-509-3p and MAP3K8 was confirmed by a luciferase activity assay in KGN cells. In addition, miRNA-509-3p mimics or inhibitor transfection tests in KGN cells further confirmed that miRNA-509-3p improved oestradiol (E2) secretion by inhibiting the expression of MAP3K8 These results help to characterise the pathogenesis of anovulation in PCOS, especially the regulation of E2 production.

  4. Tristetraprolin and Its Family Members Can Promote the Cell-Free Deadenylation of AU-Rich Element-Containing mRNAs by Poly(A) Ribonuclease

    OpenAIRE

    Lai, Wi S.; Kennington, Elizabeth A; Blackshear, Perry J.

    2003-01-01

    Eukaryotic mRNA stability can be influenced by AU-rich elements (AREs) within mRNA primary sequences. Tristetraprolin (TTP) is a CCCH tandem zinc finger protein that binds to ARE-containing transcripts and destabilizes them, apparently by first promoting the removal of their poly(A) tails. We developed a cell-free system in which TTP and its related proteins stimulated the deadenylation of ARE-containing, polyadenylated transcripts. Transcript deadenylation was not stimulated when a mutant TT...

  5. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2009-07-01

    Full Text Available Abstract Background Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. Results De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability ≤ 0.001. We identified significant increases (1.7- to 3.1- fold in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1, and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. Conclusion We describe novel

  6. Properties of human liver cytosolic aspartate aminotransferase mRNAs generated by alternative polyadenylation site selection

    International Nuclear Information System (INIS)

    Human cytosolic aspartate aminotransferase (cAspAT) cDNA clones have been isolated from an adult human liver cDNA library. Among the clones, two cDNAs of 1,550 and 1,950 base pairs, respectively, have been characterized. These two cDNAs differ only in the lengths of their 3' noncoding regions and by the presence of one or two putative polyadenylation signals AATAAA. Northern blot analysis revealed two different mRNAs of 2.1 and 1.8 kbp in several human tissues, whereas Southern blot analysis suggested the existence of a single gene for the human cAspAT. The two mRNA species result from the alternative use of two polyadenylation signals. In the liver, the relative ratio of these mRNAs varies among different species and, in humans at least, during development. The properties of the two mRNAs were compared. The half-lives of the 2.1 and 1.8 kbp mRNAs, in the HepG2 cell line, are 8 and 12 h, respectively. The two mRNAs have similar and rather short poly(A) tracts of 20-50 nucleotides. Both mRNAs are capable of directing the in vitro synthesis of the cAspAT protein. The authors conclude that both the 2.1 and 1.8 kbp cAspAT mRNAs are functional and exhibit similar properties

  7. A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators.

    Science.gov (United States)

    Park, Sookhee; Blaser, Susanne; Marchal, Melissa A; Houston, Douglas W; Sheets, Michael D

    2016-03-01

    Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis. PMID:26811381

  8. Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein.

    Science.gov (United States)

    Shu, Minfeng; Taddeo, Brunella; Zhang, Weiran; Roizman, Bernard

    2013-04-30

    Herpes simplex virus 1 (HSV-1) encodes an endoribonuclease that is responsible for the shutoff of host protein synthesis [virion host shutoff (VHS)-RNase]. The VHS-RNase released into cells during infection targets differentially four classes of mRNAs. Thus, (a) VHS-RNase degrades stable cellular mRNAs and α (immediate early) viral mRNAs; (b) it stabilizes host stress response mRNAs after deadenylation and subsequent cleavage near the adenylate-uridylate (AU)-rich elements; (c) it does not effectively degrade viral β or γ mRNAs; and (d) it selectively spares from degradation a small number of cellular mRNAs. Current evidence suggests that several viral and at least one host protein (tristetraprolin) regulate its activity. Thus, virion protein (VP) 16 and VP22 neutralize the RNase activity at late times after infection. By binding to AU-rich elements via its interaction with tristetraprolin, the RNase deadenylates and cleaves the mRNAs in proximity to the AU-rich elements. In this report we show that another virion protein, UL47, brought into the cell during infection, attenuates the VHS-RNase activity with respect to stable host and viral α mRNAs and effectively blocks the degradation of β and γ mRNAs, but it has no effect on the processing of AU-rich mRNAs. The properties of UL47 suggest that it, along with the α protein infected cell protein 27, attenuates degradation of mRNAs by the VHS-RNase through interaction with the enzyme in polyribosomes. Mutants lacking both VHS-RNase and UL47 overexpress α genes and delay the expression of β and γ genes, suggesting that overexpression of α genes inhibits the downstream expression of early and late genes.

  9. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2011-12-01

    Full Text Available SARS coronavirus (SCoV nonstructural protein (nsp 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.

  10. Evaluating the Stability of mRNAs and Noncoding RNAs.

    Science.gov (United States)

    Ayupe, Ana Carolina; Reis, Eduardo M

    2017-01-01

    Changes in RNA stability have an important impact in the gene expression regulation. Different methods based on the transcription blockage with RNA polymerase inhibitors or metabolic labeling of newly synthesized RNAs have been developed to evaluate RNA decay rates in cultured cell. Combined with techniques to measure transcript abundance genome-wide, these methods have been used to reveal novel features of the eukaryotic transcriptome. The stability of protein-coding mRNAs is in general closely associated to the physiological function of their encoded proteins, with short-lived mRNAs being significantly enriched among regulatory genes whereas genes associated with housekeeping functions are predominantly stable. Likewise, the stability of noncoding RNAs (ncRNAs) seems to reflect their functional role in the cell. Thus, investigating RNA stability can provide insights regarding the function of yet uncharacterized regulatory ncRNAs. In this chapter, we discuss the methodologies currently used to estimate RNA decay and outline an experimental protocol for genome-wide estimation of RNA stability of protein-coding and lncRNAs. This protocol details the transcriptional blockage of cultured cells with actinomycin D, followed by RNA isolation at different time points, the determination of transcript abundance by qPCR/DNA oligoarray hybridization, and the calculation of individual transcript half-lives. PMID:27662875

  11. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements

    OpenAIRE

    Franks, Tobias M.; Lykke-Andersen, Jens

    2007-01-01

    In mammalian cells, mRNAs with AU-rich elements (AREs) are targeted for translational silencing and rapid degradation. Here we present evidence that in human cells the proteins Tristetraprolin (TTP) and BRF-1 deliver ARE-mRNAs to processing bodies (PBs), cytoplasmic assemblies of mRNAs, and associated factors that promote translational silencing and mRNA decay. First, depletion of endogenous TTP and BRF proteins, or overexpression of dominant-negative mutant TTP proteins, impairs the localiza...

  12. Expression of mRNAs coding for the alpha 1 chain of type XIII collagen in human fetal tissues: comparison with expression of mRNAs for collagen types I, II, and III

    OpenAIRE

    1989-01-01

    This paper describes the topographic distribution of the multiple mRNAs coding for a novel human short-chain collagen, the alpha 1 chain of type XIII collagen. To identify the tissues and cells expressing these mRNAs, human fetal tissues of 15-19 gestational wk were studied by Northern and in situ hybridizations. The distribution pattern of the type XIII collagen mRNAs was compared with that of fibrillar collagen types I, II, and III using specific human cDNA probes for each collagen type. No...

  13. Single particle imaging of mRNAs crossing the nuclear pore: Surfing on the edge.

    Science.gov (United States)

    Palazzo, Alexander F; Truong, Mathew

    2016-08-01

    Six years ago, the Singer lab published a landmark paper which described how individual mRNA particles cross the nuclear pore complex in mammalian tissue culture cells. This involved the simultaneous imaging of mRNAs, each labeled by a large number of tethered fluorescent proteins and fluorescently tagged nuclear pore components. Now two groups have applied this technique to the budding yeast Saccharomyces cerevisiae. Their results indicate that in the course of nuclear export, mRNAs likely engage complexes that are present on either side of the pore and that these interactions are modulated by proteins present in the messenger ribonucleoprotein (mRNP) complex. These findings lend support to the notion that just before and/or after the completion of nuclear export, mRNPs undergo one or more maturation steps that prepare the packaged mRNAs for translation. These results represent new and exciting insights into the mechanism of mRNA nuclear export. PMID:27276446

  14. A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons.

    Science.gov (United States)

    Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B

    2016-09-01

    Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function.

  15. Processing of Baculovirus Late and Very Late mRNAs

    Institute of Scientific and Technical Information of China (English)

    Linda A. Guarino

    2007-01-01

    Baculoviruses encode a DNA-directed RNA polymerase that is evolutionarily divergent from cellular polymerases. This RNA polymerase is a multifunctional complex that has the ability to recognize late promoters, transcribe linked genes, and process transcripts at both the 5' and 3' ends. The LEF-4 subunit of the viral RNA polymerase is the mRNA capping enzyme, with both RNA triphosphatase and guanylyltransferase activities. Conversion to cap 1 structures is mediated by the viral enzyme MTase1 and another as yet unidentified methyltransferase. Termination is an intrinsic property of the viral RNA polymerase and occurs at oligoU rich sequences. Polyadenylation of the released transcripts is also a function of the viral RNA polymerase. Thus, although viral mRNAs resemble host messages with respect to their 5' and 3' end structures, the processing is mediated by viral enzymes and, in the case of the 3' ends, by mechanisms that differ from the host cell.

  16. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  17. A beacon in the cytoplasm: Tracking translation of single mRNAs.

    Science.gov (United States)

    Pingali, Hema V; Hilliker, Angela K

    2016-09-12

    Translation is carefully regulated to control protein levels and allow quick responses to changes in the environment. Certain questions about translation in vivo have been unattainable until now. In this issue, Pichon et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201605024) describe a new technique to allow real-time monitoring of translation on single mRNAs. PMID:27597752

  18. A beacon in the cytoplasm: Tracking translation of single mRNAs.

    Science.gov (United States)

    Pingali, Hema V; Hilliker, Angela K

    2016-09-12

    Translation is carefully regulated to control protein levels and allow quick responses to changes in the environment. Certain questions about translation in vivo have been unattainable until now. In this issue, Pichon et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201605024) describe a new technique to allow real-time monitoring of translation on single mRNAs.

  19. Demonstration of L1-related mRNAs in rat brain using DNA oligonucleotide probes

    DEFF Research Database (Denmark)

    Gaardsvoll, H; Andersson, A M; Bock, Elisabeth Marianne

    1991-01-01

    Only one copy of the cell adhesion molecule L1 gene is present in the mouse genome, and only one mRNA of 6 kilobases (kb) is expressed in mouse brain [1987, Neurosci. Lett. 82, 89-94]. We have constructed 5 synthetic oligonucleotide probes covering different parts of the published mouse L1 c......DNA sequence. Using these probes 3 distinct mRNAs of 9.0, 7.0 and 6.0 kb in rat brain could be demonstrated. Hybridizations performed at different stringency conditions indicated that the 9.0 and 7.0 kb mRNAs were highly related to the L1 mRNA of 6.0 kb expressed in rat brain. The 7.0 kb mRNA is possibly...

  20. The herpes simplex virus host shutoff RNase degrades cellular and viral mRNAs made before infection but not viral mRNA made after infection.

    Science.gov (United States)

    Taddeo, Brunella; Zhang, Weiran; Roizman, Bernard

    2013-04-01

    A herpes simplex virus tegument protein brought into the cell during infection and designated the virion host shutoff protein (VHS) is an endoribonuclease that degrades mRNA. The prevailing view for many years has been that the VHS-RNase does not discriminate between cellular and viral RNAs and that the viruses prevail because the accumulation of viral transcripts outpaces their degradation. Here we report the following. (i) The degradation of viral mRNA made during infection of Vero or HEp-2 cells proceeds at a much-reduced rate compared to that of cellular mRNA. In effect, viral mRNAs are largely stable, whereas cellular mRNAs are rapidly degraded or, in the case of AU-rich mRNA, cleaved and rendered dysfunctional. (ii) In contrast to viral mRNAs made after infection, viral mRNAs expressed by plasmids transfected into cells prior to infection are degraded after infection at a rate comparable to that of cellular mRNAs. Moreover, the mRNA encoded by the transfected plasmid is hyperadenylated in the infected cell. Hyperadenylation but not degradation of mRNAs is blocked by actinomycin D. The results indicate that VHS-mRNA discriminates between viral and cellular mRNA but only in the context of infection and that discrimination is not based on the sequence of the mRNA but most likely on one or more viral factors expressed in the infected cell.

  1. Cloning and characterization of avocado fruit mRNAs and their expression during ripening and low-temperature storage.

    Science.gov (United States)

    Dopico, B; Lowe, A L; Wilson, I D; Merodio, C; Grierson, D

    1993-02-01

    Differential screening of a cDNA library made from RNA extracted from avocado (Persea americana Mill cv. Hass) fruit stored at low temperature (7 degrees C) gave 23 cDNA clones grouped into 10 families, 6 of which showed increased expression during cold storage and normal ripening. Partial DNA sequencing was carried out for representative clones. Database searches found homologies with a polygalacturonase (PG), endochitinase, cysteine proteinase inhibitor and several stress-related proteins. No homologies were detected for clones from six families and their biological role remains to be elucidated. A full-length cDNA sequence for avocado PG was obtained and the predicted amino acid sequence compared with those from other PGs. mRNA encoding PG increased markedly during normal ripening, slightly later than mRNAs for cellulase and ethylene-forming enzyme (EFE). Low-temperature storage delayed ripening and retarded the appearance of mRNAs for enzymes known to be involved in cell wall metabolism and ethylene synthesis, such as cellulase, PG and EFE, and also other mRNAs of unknown function. The removal of ethylene from the atmosphere surrounding stored fruit delayed the appearance of the mRNAs encoding cellulase and PG more than the cold storage itself, although it hardly affected the expression of the EFE mRNA or the accumulation of mRNAs homologous to some other unidentified clones.

  2. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  3. Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast

    OpenAIRE

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie

    2011-01-01

    In mitotic fission yeast cells, expression of meiosis-specific mRNAs is prevented by their selective degradation in nuclear bodies. A novel required factor, Red1, leaves these nuclear bodies during meiosis, offering first hints on the regulation of this process.

  4. Granules Harboring Translationally Active mRNAs Provide a Platform for P-Body Formation following Stress

    Directory of Open Access Journals (Sweden)

    Jennifer Lui

    2014-11-01

    Full Text Available The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems.

  5. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans.

    Science.gov (United States)

    Noble, Daniel C; Aoki, Scott T; Ortiz, Marco A; Kim, Kyung Won; Verheyden, Jamie M; Kimble, Judith

    2016-01-01

    Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate.

  6. 肌醇5'磷酸酶基因突变对K562细胞周期蛋白和Akt磷酸化的影响%Effects of SHIP gene mutation on cell cycle related proteins and phosphorylated Akt in K562 cells

    Institute of Scientific and Technical Information of China (English)

    杨琳; 罗建民; 刘小军; 温树鹏; 杨敬慈; 张敬宇

    2009-01-01

    Objective To investigate the effect of SHIP gene mutation on the cell cycle and its related gene expression in K562 cells.Methods The recombinated green fluorescent protein (GFP) containing F1V-SHIP gene was transfected into K562 cells.The transfection efficiency and cell cycle of K562/SHIP were assessed by flow cytometry (FCM).The proliferation of K562 ceils was detected by MTT assay,the mRNA levels of SHIP by real-time fluorescent relative-quantification reverse transcriptional PCR(FQ-PCR),and the protein levels of SHIP,CyclinDl,p21WAF1/CIPI and p27KIP1 by Western blot.Results Wild type SHIP inhibited K562 cell proliferation and caused a G0/G1 arrest [(34.2 ± 7.8) % vs (0.7 ± 8.3) % (P0.05).Conclusion ①wtSHIP gene can downregulate Akt phosphorylation and result in inhibition of cyclin D1 expression,up-regulating p27KIP1 and p21WIF1/CIPI expression,finally leading to the reduction of K562 cell proliferation,and inducing G0/G1 phase arrest.②SHIP gene suppresses the proliferation of K562,being dependent on its intact structure and function.%目的 从分子水平探讨肌醇5'磷酸酶(SHIP)基因突变对人白血病细胞系K562细胞周期及其相关基因表达的影响.方法 应用携带野生型和突变型SHIP及绿色荧光蛋白的慢病毒及空载体慢病毒质粒转染K562细胞,通过流式细胞术检测K562/SHIP细胞转染效率、细胞增殖指数及细胞周期变化;MTT法检测细胞增殖活性改变,实时荧光定量PCR(FQ-PCR)检测SHIP mRNA水平变化,Western blot检测各组K562细胞SHIP、细胞周期蛋白(cyclin)D1、p21WAF1/CIPI、P27KIP1蛋白表达水平及Akt磷酸化变化.结果 野生型SHIP基因能明显抑制K562细胞增殖,并产生明显的G0/G1期阻滞[G0/G1期细胞分别为(34.2±7.8)%和(0.7±8.3)%,P0.05].Western blot结果发现转染野生型SHIP基因后K562细胞Akt磷酸化和cyclin D1表达水平明显下降(P0.05).结论 ①野生型SHIP基因通过下调K562细胞Akt磷酸化

  7. Quantification of llama inflammatory cytokine mRNAs by real-time RT-PCR.

    Science.gov (United States)

    Odbileg, Raadan; Konnai, Satoru; Usui, Tatsufumi; Ohashi, Kazuhiko; Onuma, Misao

    2005-02-01

    We have developed a method by which llama cytokine mRNAs can be quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Total RNA was extracted from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) of llama, reverse transcribed to cDNA, and cytokine profiles for interleukin (IL)-1alpha, IL-1beta, IL-6 and tumor necrosis factor (TNF) alpha were quantified by real-time PCR. The expressions of mRNAs of inflammatory cytokines IL-1alpha, IL-1beta, IL-6 and TNFalpha were upregulated upon stimulation with LPS in a dose- and time-dependent manner. Incubation of PBMCs with 100 and 1,000 pg/ml of LPS for 3 to 6 hr resulted in the acceleration of the mRNA levels of inflammatory cytokines. Here, we describe a highly sensitive and reproducible method to quantify the transcription of llama cytokine mRNAs by real-time RT-PCR with the double-stranded DNA-binding dye SYBR Green I.

  8. Polycistronic trypanosome mRNAs are a target for the exosome

    Science.gov (United States)

    Kramer, Susanne; Piper, Sophie; Estevez, Antonio; Carrington, Mark

    2016-01-01

    Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNAs from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5′-3′ exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNAs. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. PMID:26946399

  9. The nuclear-cytoplasmic shuttling of virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs.

    Science.gov (United States)

    Shu, Minfeng; Taddeo, Brunella; Roizman, Bernard

    2013-12-01

    The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.

  10. Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs.

    Science.gov (United States)

    Froyen, G; Proost, P; Ronsse, I; Mitera, T; Haelens, A; Wuyts, A; Opdenakker, G; Van Damme, J; Billiau, A

    1997-02-01

    Human osteosarcoma cells secrete a novel C-X-C chemokine called granulocyte chemotactic protein-2 (GCP-2), which was previously identified by amino acid sequencing of the purified natural protein. In order to understand the role of this new protein in inflammatory reactions, we cloned GCP-2 DNA sequences to generate recombinant protein and specific DNA probes and primers. By means of PCR on cloned cDNA of osteosarcoma cells induced by interleukin-1 beta and fibroblasts induced by lipopolysaccharide plus dsRNA, the complete coding domain of GCP-2 was isolated. This sequence was cloned into the bacterial expression vector pHEN1 and, after induction, GCP-2 was secreted into the periplasm of Escherichia coli. Recombinant GCP-2 (rGCP-2) was purified and characterized by SDS/PAGE as a monomeric 6.5-kDa protein and by amino-terminal sequencing. The chemoattractive potency of GCP-2 for neutrophilic granulocytes was about 10-times less than that of interleukin-8 and the minimal effective dose was 10 ng/ml. However, at optimal dose (100 ng/ml) the maximal chemotactic response was comparable with that of interleukin-8. Both characteristics correspond with those of natural GCP-2. In addition, intracellular calcium release in neutrophils by recombinant GCP-2 was achieved with as little as 10 ng/ml. Quantitation studies using reverse transcriptase and the polymerase chain reaction revealed higher GCP-2 mRNA production in normal fibroblasts than in tumor cells. When compared with epithelial-cell-derived neutrophil-activating peptide-78 (ENA-78) mRNA, the GCP-2 mRNA levels were higher in all cell lines tested. In addition, GCP-2 and ENA-78 expression seem to be differentially regulated in that phorbol ester and lipopolysaccharide have opposing effects on their mRNA induction in diploid fibroblasts and epithelial cells, respectively. Interleukin-1 was demonstrated to be a general inducer for both chemokines, while interferon-gamma down-regulates their mRNA expression. The

  11. Birthing histone mRNAs by CSR-1 section

    OpenAIRE

    Pasquinelli, Amy E.

    2012-01-01

    Histone pre-mRNAs undergo maturation through a mechanism distinct from all other RNA Pol II transcripts. In C. elegans, 3′-end processing of histone mRNAs depends on the RNAi pathway involving the Argonaute protein CSR-1.

  12. Altered expression of mRNAs implicated in osteogenesis under conditions of simulated microgravity is regulated by CD200:CD200R

    Science.gov (United States)

    Lee, Lydia; Kos, Olha; Gorczynski, Reginald M.

    2008-12-01

    Mouse calvarial cells grown under simulated microgravity conditions (neutral buoyancy) show preferential differentiation towards the osteoclast lineage, as defined by surrogate mRNAs, bone nodule growth and TRAP+ cells, when compared with cells cultured under normal gravity conditions. This effect was suppressed in cultures which contained the immunoregulatory molecule CD200, and conversely enhanced by anti-CD200 mAb. Concomitant increases occur in expression of inflammatory cytokines, and their mRNAs, under simulated microgravity conditions. Again cultures containing exogenous CD200 showed suppressed cytokine and cytokine mRNA expression. Further alterations in osteoclastogenesis were seen using cells isolated from cytokine-receptor knockout mice. We conclude that, as assessed by altered expression of mRNAs associated with osteoblast differentiation, CD200:CD200R interactions play an important regulatory role in the enhanced osteoclastogenesis seen under simulated microgravity conditions, with changes in cytokine expression further modulating this effect.

  13. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  14. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  15. Appraisal of the Missing Proteins Based on the mRNAs Bound to Ribosomes.

    Science.gov (United States)

    Xu, Shaohang; Zhou, Ruo; Ren, Zhe; Zhou, Baojin; Lin, Zhilong; Hou, Guixue; Deng, Yamei; Zi, Jin; Lin, Liang; Wang, Quanhui; Liu, Xin; Xu, Xun; Wen, Bo; Liu, Siqi

    2015-12-01

    Considering the technical limitations of mass spectrometry in protein identification, the mRNAs bound to ribosomes (RNC-mRNA) are assumed to reflect the mRNAs participating in the translational process. The RNC-mRNA data are reasoned to be useful for appraising the missing proteins. A set of the multiomics data including free-mRNAs, RNC-mRNAs, and proteomes was acquired from three liver cancer cell lines. On the basis of the missing proteins in neXtProt (release 2014-09-19), the bioinformatics analysis was carried out in three phases: (1) finding how many neXtProt missing proteins have or do not have RNA-seq and/or MS/MS evidence, (2) analyzing specific physicochemical and biological properties of the missing proteins that lack both RNA-seq and MS/MS evidence, and (3) analyzing the combined properties of these missing proteins. Total of 1501 missing proteins were found by neither RNC-mRNA nor MS/MS in the three liver cancer cell lines. For these missing proteins, some are expected higher hydrophobicity, unsuitable detection, or sensory functions as properties at the protein level, while some are predicted to have nonexpressing chromatin structures on the corresponding gene level. With further integrated analysis, we could attribute 93% of them (1391/1501) to these causal factors, which result in the expression products scarcely detected by RNA-seq or MS/MS.

  16. A Novel Role of Vimentin Filaments: Binding and Stabilization of Collagen mRNAs

    OpenAIRE

    Azariyas A Challa; Stefanovic, Branko

    2011-01-01

    The stem-loop in the 5′ untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5′SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5′SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5′SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filame...

  17. Structural and evolutionary analysis of the two chimpanzee alpha-globin mRNAs.

    OpenAIRE

    Liebhaber, S A; Begley, K A

    1983-01-01

    Two distinct alpha-globin mRNAs were detected in chimpanzee reticulocyte mRNA using a primer extension assay. DNA copies of these two mRNAs were cloned in the bacterial plasmid pBR322, and their sequence was determined. The two alpha-globin mRNAs have obvious structural homology to the two human alpha-globin mRNAs, alpha 1 and alpha 2. Comparison of the two chimpanzee alpha-globin mRNAs to each other and to their corresponding human counterparts revealed evidence of a recent gene conversion i...

  18. The role of two superoxide dismutase mRNAs in rye aluminium tolerance.

    Science.gov (United States)

    Sánchez-Parra, B; Figueiras, A M; Abd El-Moneim, D; Contreras, R; Rouco, R; Gallego, F J; Benito, C

    2015-05-01

    Aluminium (Al) is the main factor that limits crop production in acidic soils. There is evidence that antioxidant enzymes such as superoxide dismutase (SOD) play a key role against Al-induced oxidative stress in several plant species. Rye is one of the most Al-tolerant cereals and exudes both citrate and malate from the roots in response to Al. The role of SOD against Al-induced oxidative stress has not been studied in rye. Al accumulation, lipid peroxidation, H₂O₂ production and cell death were significantly higher in sensitive than in tolerant rye cultivars. Also, we characterised two genes for rye SOD: ScCu/ZnSOD and ScMnSOD. These genes were located on the chromosome arms of 2RS and 3RL, respectively, and their corresponding hypothetical proteins were putatively classified as cytosolic and mitochondrial, respectively. The phylogenetic relationships indicate that the two rye genes are orthologous to the corresponding genes of other Poaceae species. In addition, we studied Al-induced changes in the expression profiles of mRNAs from ScCu/ZnSOD and ScMnSOD in the roots and leaves of tolerant Petkus and sensitive Riodeva rye. These genes are mainly expressed in roots in both ryes, their repression being induced by Al. The tolerant cultivar has more of both mRNAs than the sensitive line, indicating that they are probably involved in Al tolerance.

  19. Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Emilio Gutierrez-Beltran

    2015-09-01

    Full Text Available Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN proteins (TSN1 and TSN2 are localized in cytoplasmic messenger ribonucleoprotein (mRNP complexes called stress granules (SG and processing bodies (PB under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011 [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler and TSN double knock-out (tsn1tsn2 seedlings grown under heat stress (39 °C for 40 min and control (23 °C conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522 published by Gutierrez-Beltran et al. (2015 in The Plant Cell [2].

  20. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    Science.gov (United States)

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  1. Use of in situ hybridization to identify collagen and albumin mRNAs in isolated mouse hepatocytes.

    OpenAIRE

    Saber, M A; Zern, M A; Shafritz, D. A.

    1983-01-01

    We present a simple and improved method for in situ localization of albumin and collagen mRNAs in isolated mouse hepatocytes. The cells were isolated by collagenase perfusion, mincing, and differential centrifugation. Nick-translated 3H-labeled mouse albumin cDNA (pmalb-2) and chicken pro-alpha 2(I) collagen cDNA (pCg45) probes were then hybridized with the cells in silane-treated microcentrifuge tubes. The cells were transferred and fixed to a microscope slide and hybridization was evaluated...

  2. Expression and relationship of microRNA-31 and FOXP3 mRNAs in CD4 + T cells from a mouse asthma model%哮喘小鼠CD4+T细胞中microRNA-31和FOXP3mRNA的表达及相互关系的研究

    Institute of Scientific and Technical Information of China (English)

    酆孟洁; 史菲; 邱晨

    2012-01-01

    Objective To determine the expression levels of microRNA-31 and FOXP3 mRNAs in the spleen CD4 + T cells from asthma mice, and identify their relationship. Methods A total of 15 Balb/c mice were randomly divided into 3 groups, normal control group, model group, and dexamethasone treatment group. The murine asthma model was sensitized and challenged by ovalbumin ( OVA). The inflammatory cytokines IL-4 and IFN-γ in the bronchoalveolar lavage fluid ( BALF) in the 3 groups were measured by ELISA. Expression of microRNA-31 and FOXP3 mRNAs in spleen CD4 + T cells from the 3 groups were detected by quantitative real time-PCR assay. The relationship of the expression were also analyzed. Results The BALF level of IL-4 was increased in the model group (228.29 ±66. 18 pg/ml) compared with the normal control group (66.63 ± 17.33 pg/ml, P 0.05). There was no significant difference in levels of IFN-γ among the three groups( P > 0.05). The expression of FOXP3 Mrna in the spleen CD4 + T cells in the model group was 0. 10 times as great as in the normal control group (P 0. 05 ). The expressions of microRNA-31 Mrna in the splenn CD4+ T lymphocytes in the model group were 4.79 times as great as in the normal control (P 0. 05). Pearson correlation coefficient between microRNA-31 and FOXP3 Mrna was -0.609 (P<0.05). Conclusion There is a negative linear correlation between microRNA-31 and FOXP3 Mrna in asthma, and microRNA-31 and dexamethasone mayaffect the expression of FOXP3 Mrna via different pathways.%目的 初步探讨哮喘CD4+T细胞中microRNA-31和FOXP3的表达水平、两者的相关性及激素对它们的影响.方法 以卵蛋白(OVA)致敏激发建立哮喘小鼠模型.将15只BALB/c小鼠分为正常对照组、OVA组和地塞米松组,EHSA检测小鼠支气管肺泡灌洗液(BALF)中IL-4和IFN-γ水平;实时荧光定量PCR检测小鼠脾脏CD4+T细胞的microRNA-31和FOXP3 mRNA的水平,并分析二者之间的相关性.结果 OVA组BALF中IL-4

  3. Ambivalent sexism, attitudes towards menstruation and menstrual cycle-related symptoms.

    Science.gov (United States)

    Marván, Ma Luisa; Vázquez-Toboada, Rocío; Chrisler, Joan C

    2014-08-01

    The objective of the present study was to investigate the relationship between ambivalent sexism and beliefs and attitudes towards menstruation, and, in turn, to study the influence of these variables on menstrual cycle-related symptoms. One hundred and six Mexican women completed the Ambivalent Sexism Inventory, the Beliefs about and Attitudes toward Menstruation Questionnaire and the Menstrual Distress Questionnaire. The higher scores on benevolent sexism were associated with the most positive attitudes towards menstruation and also with the belief that a menstruating woman should or should not do some activities and that menstruation keeps women from their daily activities. The higher scores on hostile sexism were associated with rejection of menstruation as well as with feelings of embarrassment about it. Beliefs about and attitudes towards menstruation predicted menstrual cycle-related symptoms related to negative affect, impaired concentration and behavioural changes, but did not predict somatic symptoms. These results will be useful to health professionals and advocates who want to change the negative expectations and stereotypes of premenstrual and menstrual women and reduce the sexism and negative attitudes towards women that are evident in Mexican culture.

  4. Regulation of maternal mRNAs in early development.

    Science.gov (United States)

    Farley, Brian M; Ryder, Sean P

    2008-01-01

    Most sexually reproducing metazoans are anisogamous, meaning that the two gametes that combine during fertilization differ greatly in size. By convention, the larger gametes are considered female and are called ova, while the smaller gametes are male and are called sperm. In most cases, both gametes contribute similarly to the chromosomal content of the new organism. In contrast, the maternal gamete contributes nearly all of the cytoplasm. This cytoplasmic contribution is crucial to patterning early development; it contains the maternal proteins and transcripts that guide the early steps of development prior to the activation of zygotic transcription. This review compares and contrasts early development in common laboratory model organisms in order to highlight the similarities and differences in the regulation of maternal factors. We will focus on the production and reversible silencing of maternal mRNAs during oogenesis, their asymmetric activation after fertilization, and their subsequent clearance at the midblastula transition. Where possible, insights from mechanistic studies are presented. PMID:18365862

  5. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1

    OpenAIRE

    Pimentel, Belén; Madine, Mark A.; de la Cueva-Méndez, Guillermo

    2005-01-01

    Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plas...

  6. Possible Cis-acting signal that could be involved in the localization of different mRNAs in neuronal axons

    Directory of Open Access Journals (Sweden)

    Manzo Jorge

    2005-08-01

    Full Text Available Abstract Background Messenger RNA (mRNA comprises three major parts: a 5'-UTR (UnTranslated Region, a coding region, and a 3'-UTR. The 3'-UTR contains signal sequences involved in polyadenylation, degradation and localization/stabilization processes. Some sequences in the 3'-UTR are involved in the localization of mRNAs in (e.g. neurons, epithelial cells, oocytes and early embryos, but such localization has been most thoroughly studied in neurons. Neuronal polarity is maintained by the microtubules (MTs found along both dendrites and axon and is partially influenced by sub-cellular mRNA localization. A widely studied mRNA is that for Tau protein, which is located in the axon hillock and growth cone; its localization depends on the well-characterized cis-acting signal (U-rich region in the 3'-UTR. Methods We compared the cis-acting signal of Tau with mRNAs in the axonal regions of neurons using the ClustalW program for alignment of sequences and the Mfold program for analysis of secondary structures. Results We found that at least 3 out of 12 mRNA analyzed (GRP75, cofilin and synuclein have a sequence similar to the cis-acting signal of Tau in the 3'-UTR. This could indicate that these messengers are localized specifically in the axon. The Mfold program showed that these mRNAs have a similar "bubble" structure in the putative sequence signal. Conclusion Hence, we suggest that a U-rich sequence in the 3'-UTR region of the mRNA could act as a signal for its localization in the axon in neuronal cells. Sequences homologous to the DTE sequence of BC1 mRNA could direct the messenger to the dendrites. Messengers with homologues of both types of sequence, e.g. β-actin, might be located in both dendrites and axon.

  7. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    OpenAIRE

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Highlight Long-lived mRNAs stored in dry seed are translated after imbibition for germination. We report accumulation of long-lived mRNAs in developing rice embryos and candidates of the mRNAs required for germination.

  8. Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer

    Directory of Open Access Journals (Sweden)

    Coppola Domenico

    2006-10-01

    Full Text Available Abstract Background The efficacy of screening for colorectal cancer using a simple blood-based assay for the detection of tumor cells disseminated in the circulation at an early stage of the disease is gaining positive feedback from several lines of research. This method seems able to reduce colorectal cancer mortality and may replace colonoscopy as the most effective means of detecting colonic lesions. Methods In this work, we present a new microarray-based high-throughput screening method to identifying candidate marker mRNAs for the early detection of epithelial cells diluted in peripheral blood cells. This method includes 1. direct comparison of different samples of colonic mucosa and of blood cells to identify consistent epithelial-specific mRNAs from among 20,000 cDNA assayed by microarray slides; 2. identification of candidate marker mRNAs by data analysis, which allowed selection of only 10 putative differentially expressed genes; 3. Selection of some of the most suitable mRNAs (TMEM69, RANBP3 and PRSS22 that were assayed in blood samples from normal subjects and patients with colon cancer as possible markers for the presence of epithelial cells in the blood, using reverse transcription – polymerase chain reaction (RT-PCR. Results Our present results seem to provide an indication, for the first time obtained by genome-scale screening, that a suitable and consistent colon epithelium mRNA marker may be difficult to identify. Conclusion The design of new approaches to identify such markers is warranted.

  9. The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy

    OpenAIRE

    Vlassov Valentin V; Nikolin Valery P; Kaledin Vasily I; Popova Nelly A; Mironova Nadezda L; Patutina Olga A; Zenkova Marina A

    2010-01-01

    Abstract Background One of the main obstacles for successful cancer polychemotherapy is multiple drug resistance phenotype (MDR) acquired by tumor cells. Currently, RNA interference represents a perspective strategy to overcome MDR via silencing the genes involved in development of this deleterious phenotype (genes of ABC transporters, antiapoptotic genes, etc.). Methods In this study, we used the siRNAs targeted to mdr1b, mdr1a, and bcl-2 mRNAs to reverse the MDR of tumors and increase tumor...

  10. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites.

    Science.gov (United States)

    Knapp, Darin J; Harper, Kathryn M; Whitman, Buddy A; Zimomra, Zachary; Breese, George R

    2016-01-01

    Stress is a strong risk factor in alcoholic relapse and may exert effects that mimic aspects of chronic alcohol exposure on neurobiological systems. With the neuroimmune system becoming a prominent focus in the study of the neurobiological consequences of stress, as well as chronic alcohol exposure proving to be a valuable focus in this regard, the present study sought to compare the effects of stress and chronic ethanol exposure on induction of components of the neuroimmune system. Rats were exposed to either 1 h exposure to a mild stressor (restraint) or exposure to withdrawal from 15 days of chronic alcohol exposure (i.e., withdrawal from chronic ethanol, WCE) and assessed for neuroimmune mRNAs in brain. Restraint stress alone elevated chemokine (C-C motif) ligand 2 (CCL2), interleukin-1-beta (IL-1β), tumor necrosis factor alpha (TNFα) and toll-like receptor 4 (TLR4) mRNAs in the cerebral cortex within 4 h with a return to a control level by 24 h. These increases were not accompanied by an increase in corresponding proteins. Withdrawal from WCE also elevated cytokines, but did so to varying degrees across different cytokines and brain regions. In the cortex, stress and WCE induced CCL2, TNFα, IL-1β, and TLR4 mRNAs. In the hypothalamus, only WCE induced cytokines (CCL2 and IL-1β) while in the hippocampus, WCE strongly induced CCL2 while stress and WCE induced IL-1β. In the amygdala, only WCE induced CCL2. Finally-based on the previously demonstrated role of corticotropin-releasing factor 1 (CRF1) receptor inhibition in blocking WCE-induced cytokine mRNAs-the CRF1 receptor antagonist CP154,526 was administered to a subgroup of stressed rats and found to be inactive against induction of CCL2, TNFα, or IL-1β mRNAs. These differential results suggest that stress and WCE manifest broad neuroimmune effects in brain depending on the cytokine and brain region, and that CRF inhibition may not be a relevant mechanism in non-alcohol exposed animals. Overall, these

  11. The RNA Binding Zinc Finger Protein Tristetraprolin Regulates AU-Rich mRNAs Involved in Breast Cancer-Related Processes

    OpenAIRE

    Al-Souhibani, Norah; Al-Ahmadi, Wijdan; Hesketh, John E.; Blackshear, Perry J.; Khabar, Khalid S.A.

    2010-01-01

    Tristetraprolin (TTP or ZFP36) is a tandem CCCH zinc finger RNA binding protein that regulates the stability of certain AU-rich mRNAs. Recent work suggests that TTP is deficient in cancer cells when compared to normal cell types. Here we found that TTP expression was lower in invasive breast cancer cells (MDA-MB-231) compared to normal breast cell lines, MCF12A and MCF-10. TTP targets were probed using a novel approach by expressing the C124R zinc finger TTP mutant that act as dominant negati...

  12. Expression analysis of miRNA and target mRNAs in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X.R. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, P. [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Mei, J.Z.; Liu, G.J. [Medical Oncology Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Q.X. [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-01

    We aimed to investigate miRNAs and related mRNAs through a network-based approach in order to learn the crucial role that they play in the biological processes of esophageal cancer. Esophageal squamous-cell carcinoma (ESCC) and adenocarcinoma (EAC)-related miRNA and gene expression data were downloaded from the Gene Expression Omnibus database, and differentially expressed miRNAs and genes were selected. Target genes of differentially expressed miRNAs were predicted and their regulatory networks were constructed. Differentially expressed miRNA analysis selected four miRNAs associated with EAC and ESCC, among which hsa-miR-21 and hsa-miR-202 were shared by both diseases. hsa-miR-202 was reported for the first time to be associated with esophageal cancer in the present study. Differentially expressed miRNA target genes were mainly involved in cancer-related and signal-transduction pathways. Functional categories of these target genes were related to transcriptional regulation. The results may indicate potential target miRNAs and genes for future investigations of esophageal cancer.

  13. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine

    Science.gov (United States)

    Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E

    2016-01-01

    AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237

  14. Role of gonadotropin regulated testicular RNA helicase (GRTH/Ddx25 on polysomal associated mRNAs in mouse testis.

    Directory of Open Access Journals (Sweden)

    Chon-Hwa Tsai-Morris

    Full Text Available Gonadotropin Regulated Testicular RNA Helicase (GRTH/Ddx25 is a testis-specific multifunctional RNA helicase and an essential post-transcriptional regulator of spermatogenesis. GRTH transports relevant mRNAs from nucleus to cytoplasmic sites of meiotic and haploid germ cells and associates with actively translating polyribosomes. It is also a negative regulator of steroidogenesis in Leydig cells. To obtain a genome-wide perspective of GRTH regulated genes, in particularly those associated with polyribosomes, microarray differential gene expression analysis was performed using polysome-bound RNA isolated from testes of wild type (WT and GRTH KO mice. 792 genes among the entire mouse genome were found to be polysomal GRTH-linked in WT. Among these 186 were down-regulated and 7 up-regulated genes in GRTH null mice. A similar analysis was performed using total RNA extracted from purified germ cell populations to address GRTH action in individual target cells. The down-regulation of known genes concerned with spermatogenesis at polysomal sites in GRTH KO and their association with GRTH in WT coupled with early findings of minor or unchanged total mRNAs and abolition of their protein expression in KO underscore the relevance of GRTH in translation. Ingenuity pathway analysis predicted association of GRTH bound polysome genes with the ubiquitin-proteasome-heat shock protein signaling network pathway and NFκB/TP53/TGFB1 signaling networks were derived from the differentially expressed gene analysis. This study has revealed known and unexplored factors in the genome and regulatory pathways underlying GRTH action in male reproduction.

  15. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  16. Differential expression of pancreatic protein andchemosensing receptor mRNAs in NKCC1-null intestine

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    AIM To investigate the intestinal functions of the NKCC1Na+-K+-2Cl cotransporter (SLC12a2 gene), differentialmRNA expression changes in NKCC1-null intestine wereanalyzed.METHODS: Microarray analysis of mRNA from intestinesof adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed toidentify patterns of differential gene expression changes.Differential expression patterns were further examinedby Gene Ontology analysis using the online Gorillaprogram, and expression changes of selected genes wereverified using northern blot analysis and quantitativereal time-polymerase chain reaction. Histological stainingand immunofluorescence were performed to identify celltypes in which upregulated pancreatic digestive enzymeswere expressed.RESULTS: Genes typically associated with pancreaticfunction were upregulated. These included lipase,amylase, elastase, and serine proteases indicative ofpancreatic exocrine function, as well as insulin andregenerating islet genes, representative of endocrinefunction. Northern blot analysis and immunohistochemistryshowed that differential expression of exocrinepancreas mRNAs was specific to the duodenum andlocalized to a subset of goblet cells. In addition, a majorpattern of changes involving differential expression ofolfactory receptors that function in chemical sensing, aswell as other chemosensing G-protein coupled receptors,was observed. These changes in chemosensory receptorexpression may be related to the failure of intestinalfunction and dependency on parenteral nutritionobserved in humans with SLC12a2 mutations.CONCLUSION: The results suggest that loss of NKCC1affects not only secretion, but also goblet cell functionand chemosensing of intestinal contents via G-proteincoupled chemosensory receptors.

  17. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    Directory of Open Access Journals (Sweden)

    Ma Lei

    2012-08-01

    Full Text Available Abstract Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs.

  18. Overexpression of E2F mRNAs associated with gastric cancer progression identified by the transcription factor and miRNA co-regulatory network analysis.

    Science.gov (United States)

    Zhang, XiaoTian; Ni, ZhaoHui; Duan, ZiPeng; Xin, ZhuoYuan; Wang, HuaiDong; Tan, JiaYi; Wang, GuoQing; Li, Fan

    2015-01-01

    Gene expression is regulated at the transcription and translation levels; thus, both transcription factors (TFs) and microRNAs (miRNA) play roles in regulation of gene expression. This study profiled differentially expressed mRNAs and miRNAs in gastric cancer tissues to construct a TF and miRNA co-regulatory network in order to identify altered genes in gastric cancer progression. A total of 70 cases gastric cancer and paired adjacent normal tissues were subjected to cDNA and miRNA microarray analyses. We obtained 887 up-regulated and 93 down-regulated genes and 41 down-regulated and 4 up-regulated miRNAs in gastric cancer tissues. Using the Transcriptional Regulatory Element Database, we obtained 105 genes that are regulated by the E2F family of genes and using Targetscan, miRanda, miRDB and miRWalk tools, we predicted potential targeting genes of these 45 miRNAs. We then built up the E2F-related TF and miRNA co-regulatory gene network and identified 9 hub-genes. Furthermore, we found that levels of E2F1, 2, 3, 4, 5, and 7 mRNAs associated with gastric cancer cell invasion capacity, and has associated with tumor differentiation. These data showed Overexpression of E2F mRNAs associated with gastric cancer progression.

  19. Genome-scale identification of membrane-associated human mRNAs.

    Directory of Open Access Journals (Sweden)

    Maximilian Diehn

    2006-01-01

    Full Text Available The subcellular localization of proteins is critical to their biological roles. Moreover, whether a protein is membrane-bound, secreted, or intracellular affects the usefulness of, and the strategies for, using a protein as a diagnostic marker or a target for therapy. We employed a rapid and efficient experimental approach to classify thousands of human gene products as either "membrane-associated/secreted" (MS or "cytosolic/nuclear" (CN. Using subcellular fractionation methods, we separated mRNAs associated with membranes from those associated with the soluble cytosolic fraction and analyzed these two pools by comparative hybridization to DNA microarrays. Analysis of 11 different human cell lines, representing lymphoid, myeloid, breast, ovarian, hepatic, colon, and prostate tissues, identified more than 5,000 previously uncharacterized MS and more than 6,400 putative CN genes at high confidence levels. The experimentally determined localizations correlated well with in silico predictions of signal peptides and transmembrane domains, but also significantly increased the number of human genes that could be cataloged as encoding either MS or CN proteins. Using gene expression data from a variety of primary human malignancies and normal tissues, we rationally identified hundreds of MS gene products that are significantly overexpressed in tumors compared to normal tissues and thus represent candidates for serum diagnostic tests or monoclonal antibody-based therapies. Finally, we used the catalog of CN gene products to generate sets of candidate markers of organ-specific tissue injury. The large-scale annotation of subcellular localization reported here will serve as a reference database and will aid in the rational design of diagnostic tests and molecular therapies for diverse diseases.

  20. Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2011-01-01

    RNAs are coregulated according to amino acid availability, thereby allowing redirection of limited resources to mount a nutrient deprivation response. This presents a fundamental example of how a group of mRNAs can be translationally coregulated in response to changes in the cellular environment....

  1. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thomsen, Rune; Libri, Domenico; Boulay, Jocelyne;

    2003-01-01

    In the yeast Saccharomyces cerevisiae, a common conditional phenotype associated with deletion or mutation of genes encoding mRNA export factors is the rapid accumulation of mRNAs in intranuclear foci, suggested to be near transcription sites. The nuclear RNA exosome has been implicated in retain...

  2. Dietary sucrose enhances processing of mRNA-S14 nuclear precursor.

    Science.gov (United States)

    Burmeister, L A; Mariash, C N

    1991-12-01

    The rapid response of rat hepatic mRNA-S14 to hormonal or dietary manipulation makes it an excellent model to study the control of lipogenic enzyme mRNA. The mechanism of regulation of this mRNA by triiodothyronine (T3) or sucrose remains controversial. Although initial studies suggested that T3 stabilized the nuclear precursor, subsequent studies suggest that T3 acts by increasing the transcriptional rate of this gene. More recently, the induction of mRNA-S14 by sucrose administration was shown to be associated with an increase in transcriptional "run-on" activity. Because T3 and carbohydrate feeding synergistically regulate this mRNA, we studied the response to short and long term high carbohydrate feeding in hypothyroid and euthyroid rats. We found the response to the lipogenic diet was rapid in hypothyroid rats, with maximal levels of mRNA-S14 attained by 4 h (2.2 +/- 0.6 chow fed versus 13.5 +/- 2.5 pg/micrograms RNA on lipogenic diet). The rapid induction by the lipogenic diet contrasts with the diminished response to sucrose by gastric gavage (4.6 +/- 1.2 pg/micrograms RNA) over the same time interval. Despite the large increase in the mature mRNA induced by the lipogenic diet, the rise in the nuclear precursor was small and not different from that observed after sucrose gavage (0.14 +/- 0.01 chow, 0.26 +/- 0.03 sucrose gavage, 0.25 +/- 0.04 pg/micrograms RNA lipogenic diet). The molar ratio of the mature to precursor mRNA-S14 showed progressive increases with the smallest level in the fasting rat, an intermediate level in the chow-fed and sucrose gavaged rats, and the highest level in the animals fed a lipogenic diet (2.1, 16.5, 16.3, 62.7, respectively). Based on the previously reported half-life for the mature mRNA-S14, these data show that feeding sucrose by gavage or by a lipogenic diet leads to enhanced fractional conversion of precursor to mature mRNA-S14 with a simultaneous stabilization of the precursor mRNA-S14. PMID:1744084

  3. Expression of gap junction genes connexin 32 and connexin 43 mRNAs and proteins, and their role in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Xiang-Dong Ma; Xing Ma; Yan-Fang Sui; Wen-Liang Wang

    2002-01-01

    AIM: To investigate the relationship betweenhepatocarcinogenesis and the expression of connexin32(cx32), connexin43 (cx43) mRNAs and proteins in vitro.METHODS Gap junction genes cx32 and cx43 mRNA inhepatocellular carcinoma call lines HHCC, SMMC-7721 andnormal liver call line QZG were detected by in situhybridization (ISH) with digoxin-labeled cx32, and cx43cDNA probes. Expression of Cx32 and Cx43 proteins in thecell lines was revealed by indirect immuno-fluorescence andflow cytornetry (FCM).RESULTS Blue positive hybridization signals of cx32 andcx43 mRNAs detected by ISH with cx32 and cx43 cDNAprobes respectively were located in cytoplasm of cells ofHHCC, SMMC-7721 and QZG. No significant difference ofeither cx32 mRNA or cx43 mRNA was tested among HHCC,SMMC-7721 and QZG (P = 2.673, HHCC vs QZG; P =1.375, SMMC-7721 vs QZG). FCM assay showed that thepositive rates of Cx32 protein in HHCC, SMMC-7721 and QZGwere 0.7%, 1.7% and 99.0%, and the positive rates of Cx43protein in HHCC, SMMC-7721 and QZG were 7.3%, 26.5%and 99.1% respectively. Significant differences of both Cx32and Cx43 protein expression existed between hepatocellularcarcinoma cell lines and normal liver cell line ( P = 0.0069,HHCC vs QZG; P = 0.0087, SMMC-7721 vs QZG).Moreover, the fluorescent intensities of Cx32 and Cx43proteins in HHCC, SMMC-7721 were lower than that in QZG.CONCLUSION Hepatocellular carcinoma cell lines HHCCand SMMC-7721 exhibited lower positive rates andfluorescent intensities of Cx32, Cx43 proteins compared withthat of normal liver cell line QZG. lt is suggested that lowerexpression of both Cx32 and Cx43 proteins in hepatocellularcarcinoma cells could play pivotal roles in thehepatocarcinogenesis. Besides, genetic defects of cx32 andcx43 in post-translational processing should be considered.

  4. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  5. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs.

    Science.gov (United States)

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold shock-inducible protein (70 aa), and its major role in the cold shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature non-sense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5'-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the 'LACE' effect. We show here that non-sense mutation even at the 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an Escherichia coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5'-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  6. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs.

    Science.gov (United States)

    Campo Verde Arboccó, Fiorella; Sasso, Corina V; Actis, Esteban A; Carón, Rubén W; Hapon, María Belén; Jahn, Graciela A

    2016-01-01

    Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.

  7. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    International Nuclear Information System (INIS)

    The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs). The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established. We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis. This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment

  8. Differential contribution of the m7G-cap to the 5' end-dependent translation initiation of mammalian mRNAs.

    Science.gov (United States)

    Andreev, Dmitri E; Dmitriev, Sergey E; Terenin, Ilya M; Prassolov, Vladimir S; Merrick, William C; Shatsky, Ivan N

    2009-10-01

    Many mammalian mRNAs possess long 5' UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5' UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5' UTRs with so-called 'cellular IRESes' demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5' UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5' UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated.

  9. Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs

    Science.gov (United States)

    Andreev, Dmitri E.; Dmitriev, Sergey E.; Terenin, Ilya M.; Prassolov, Vladimir S.; Merrick, William C.; Shatsky, Ivan N.

    2009-01-01

    Many mammalian mRNAs possess long 5′ UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5′ UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5′ UTRs with so-called ‘cellular IRESes’ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5′ UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5′ UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated. PMID:19696074

  10. HuR-Regulated mRNAs Associated with Nuclear hnRNP A1-RNP Complexes

    Directory of Open Access Journals (Sweden)

    Apostolia Guialis

    2013-10-01

    Full Text Available Post-transcriptional regulatory networks are dependent on the interplay of many RNA-binding proteins having a major role in mRNA processing events in mammals. We have been interested in the concerted action of the two RNA-binding proteins hnRNP A1 and HuR, both stable components of immunoselected hnRNP complexes and having a major nuclear localization. Specifically, we present here the application of the RNA-immunoprecipitation (RIP-Chip technology to identify a population of nuclear transcripts associated with hnRNP A1-RNPs as isolated from the nuclear extract of either HuR WT or HuR-depleted (KO mouse embryonic fibroblast (MEF cells. The outcome of this analysis was a list of target genes regulated via HuR for their association (either increased or reduced with the nuclear hnRNP A1-RNP complexes. Real time PCR analysis was applied to validate a selected number of nuclear mRNA transcripts, as well as to identify pre-spliced transcripts (in addition to their mature mRNA counterpart within the isolated nuclear hnRNP A1-RNPs. The differentially enriched mRNAs were found to belong to GO categories relevant to biological processes anticipated for hnRNP A1 and HuR (such as transport, transcription, translation, apoptosis and cell cycle indicating their concerted function in mRNA metabolism.

  11. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    International Nuclear Information System (INIS)

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  12. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Keryer-Bibens, Cecile, E-mail: cecile.keryer-bibens@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Legagneux, Vincent; Namanda-Vanderbeken, Allen [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Cosson, Bertrand [UPMC Universite de Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Developpement, Station Biologique de Roscoff, 29682 Roscoff (France); CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Paillard, Luc [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Poncet, Didier [Virologie Moleculaire et Structurale, UMR CNRS, 2472, INRA, 1157, 91198 Gif sur Yvette (France); Osborne, H. Beverley, E-mail: beverley.osborne@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France)

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  13. The study on the induction of specific immune cytotoxic T lymphocyte responses against pancreatic cancer by transfected dendritic cells with common tumor antigen survivin mRNAs in vitro%Survivin mRNA转染树突细胞诱导特异性抗胰腺癌免疫反应的体外研究

    Institute of Scientific and Technical Information of China (English)

    郭晓钟; 陈江

    2011-01-01

    Objective To investigate the induction of specific anti-tumor immune response by transfected dendritic cells (DCs) with survivin mRNA of human pancreatic cancer, and to provide the experimental evidences for the treatment of human pancreatic cancer with DCs vaccine. Methods DCs were isolated and cultured from peripheral blood mononuclear cells (PBMCs). After being transcripted and amplified, survivin mRNA was transfected into DCs by electroporation. The expression of survivin in DCs at different time points was detected by quantitative real-time PCR. The survival rate of DCs before and after transfection was determined by MTT method. The induction of specific cytotoxic T lymphocyte (CTL) response by survivin mRNA transfected DCs was measured by 51Cr standard cytotoxicity test. The induction of specific CTL activation by survivin mRNA transfected DCs was evaluated through testing released IFN-γ by ELISA method. Results After survivin mRNA transfection for 48h, the expression of survivin mRNA in DCs reached the highest point (46.09±6.57). After transfection, the survival rate of DCs was stabilized around 80%. The DCs transfected with survivin mRNA could effectively induce HLA-A2+ / survivin+ specific CTL immune responses. Stimulated with pancreatic cancer cell line Capan-2 cells or SCL-1 cells as control group, the IFN-γ released in 24 hours by survivin specific CTL were (28.79±5.70) U/ml and (25.12±2.13) U/ml respectively, there was no significant difference (P=0.761). Conclusion The induction of CTLs by DCs transfected with human pancreatic cancer survivin mRNA could produce specific anti-tumor immunity.%目的 研究人胰腺癌survivin mRNA转染树突细胞(DC)诱导的特异性抗肿瘤免疫反应,为DC疫苗治疗胰腺癌提供实验依据.方法 自样本外周血单核细胞中分离和培养DC.体外转录和PCR扩增survivin mRNA后使用电穿孔法将其转染DC.采用实时定量PCR技术检测不同时间点DC中survivin的表达.用四甲基

  14. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56.

    Science.gov (United States)

    Taniguchi, Ichiro; Ohno, Mutsuhito

    2008-01-01

    Loading of export factors onto mRNAs is a key step in gene expression. In vertebrates, splicing plays a role in this process. Specific protein complexes, exon junction complex and transcription/export complex, are loaded onto mRNAs in a splicing-dependent manner, and adaptor proteins such as Aly/REF in the complexes in turn recruit mRNA exporter TAP-p15 onto the RNA. By contrast, how export factors are recruited onto intronless mRNAs is largely unknown. We previously showed that Aly/REF is preferentially associated with intronless mRNAs in the nucleus. Here we show that Aly/REF could preferentially bind intronless mRNAs in vitro and that this binding was stimulated by RNA helicase UAP56 in an ATP-dependent manner. Consistently, an ATP binding-deficient UAP56 mutant specifically inhibited mRNA export in Xenopus oocytes. Interestingly, ATP activated the RNA binding activity of UAP56 itself. ATP-bound UAP56 therefore bound to both RNA and Aly/REF, and as a result ATPase activity of UAP56 was cooperatively stimulated. These results are consistent with a model in which ATP-bound UAP56 chaperones Aly/REF onto RNA, ATP is then hydrolyzed, and UAP56 dissociates from RNA for the next round of Aly/REF recruitment. Our finding provides a mechanistic insight into how export factors are recruited onto mRNAs.

  15. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    Science.gov (United States)

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. PMID:26926106

  16. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bensidoun, Pierre; Raymond, Pascal; Oeffinger, Marlene; Zenklusen, Daniel

    2016-04-01

    Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export.

  17. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra

    Directory of Open Access Journals (Sweden)

    Purves-Tyson Tertia D

    2012-08-01

    Full Text Available Abstract Background Increased risk of schizophrenia in adolescent males indicates that a link between the development of dopamine-related psychopathology and testosterone-driven brain changes may exist. However, contradictions as to whether testosterone increases or decreases dopamine neurotransmission are found and most studies address this in adult animals. Testosterone-dependent actions in neurons are direct via activation of androgen receptors (AR or indirect by conversion to 17β-estradiol and activation of estrogen receptors (ER. How midbrain dopamine neurons respond to sex steroids depends on the presence of sex steroid receptor(s and the level of steroid conversion enzymes (aromatase and 5α-reductase. We investigated whether gonadectomy and sex steroid replacement could influence dopamine levels by changing tyrosine hydroxylase (TH protein and mRNA and/or dopamine breakdown enzyme mRNA levels [catechol-O-methyl transferase (COMT and monoamine oxygenase (MAO A and B] in the adolescent male rat substantia nigra. We hypothesized that adolescent testosterone would regulate sex steroid signaling through regulation of ER and AR mRNAs and through modulation of aromatase and 5α-reductase mRNA levels. Results We find ERα and AR in midbrain dopamine neurons in adolescent male rats, indicating that dopamine neurons are poised to respond to circulating sex steroids. We report that androgens (T and DHT increase TH protein and increase COMT, MAOA and MAOB mRNAs in the adolescent male rat substantia nigra. We report that all three sex steroids increase AR mRNA. Differential action on ER pathways, with ERα mRNA down-regulation and ERβ mRNA up-regulation by testosterone was found. 5α reductase-1 mRNA was increased by AR activation, and aromatase mRNA was decreased by gonadectomy. Conclusions We conclude that increased testosterone at adolescence can shift the balance of sex steroid signaling to favor androgenic responses through promoting

  18. Effect of Advanced Glycation End Products on Expression of Urotensin Ⅱ and G-Protein-Couple Receptor mRNAs in Rat Mesangial Cells%糖基化终末产物对大鼠肾小球系膜细胞尾加压素Ⅱ及G蛋白偶联受体mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵岩; 林风武; 李才

    2010-01-01

    目的 观察不同浓度糖基化终末产物(Advanced glycation end products,AGEs)及AGEs作用不同时间对大鼠肾小球系膜细胞尾加压素Ⅱ(UrotensinⅡ,UⅡ)及G蛋白偶联受体(G-protein-couple receptor,GPR14)mRNA表达的影响.方法 制备AGE-BSA,体外培养大鼠肾小球系膜细胞(Mesangial cells,MC),加入不同浓度的AGE-BSA(终浓度分别为0、25、50、100和200 mg/L),37℃孵育24 h;加入100 mg/L AGE-BSA,分别培养0、2、8、16和24 h,以不含葡萄糖的BSA作为对照.收集细胞,采用RT-PCR检测各组MC UⅡ及GPR14 mRNA的表达.结果 AGE-BSA各组MC UⅡ及GPR14 mRNA的表达量均随AGEs浓度的增加而增加,50、100和200 mg/L与0 mg/L组比较,差异有统计学意义(P<0.05);100 mg/L AGE-BSA各组MC UⅡ及GPR14 mRNA的表达量随着作用时间的延长而增加,作用8、16、24 h组与0 h组比较,差异有统计学意义(P<0.05).BSA组MC UⅡ及GPR14 mRNA的表达量无明显增加(P>0.05).结论 AGEs能上调大鼠MC UⅡ及GPR14 mRNA的表达.

  19. Expression of type I and type V collagen mRNAs in the elasmoid scales of a teleost fish as revealed by in situ hybridization.

    Science.gov (United States)

    Le Guellec, D; Zylberberg, L

    1998-01-01

    The ability of scale-forming cells to produce both type I and type V collagens was investigated by in situ hybridization at the light and electron microscope levels. Biochemical analyses reported that type I collagen, the predominant component, was associated with the minor type V collagen in the collagenous matrix of the teleost scales where, thin and thick collagen fibrils formed distinct layers. Thin collagen fibrils of the external layer were produced by the episquamal scleroblasts scattered on the outer scale surface, while thick collagen fibrils forming the compact basal plate were produced by the hyposquamal scleroblasts lining the inner surface of the scale. We demonstrated that episquamal and hyposquamal scleroblasts contained mRNAs for alpha1(I) and alpha1(V) collagens. Quantification by image analysis of the relative amount of alpha1(I) and alpha1(V) mRNAs in episquamal and hyposquamal scleroblasts suggests that the gene expression of type V collagen was proportionally higher in episquamal scleroblasts. These results support our hypothesis that the diameter of the thin fibrils of the external layer is regulated by the significant amount of type V collagen that interacts with type I collagen. PMID:11063006

  20. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  1. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Type I collagen is extracellular matrix protein composed of two α1(I and one α2(I polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER after translation of the signal peptide and by signal peptide recognition particle (SRP. Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I and α2(I mRNAs, a necessary step for proper synthesis of type I collagen.

  2. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings.

  3. mRNAs involved in copper homeostasis are regulated by the nonsense-mediated mRNA decay pathway depending on environmental conditions.

    Science.gov (United States)

    Peccarelli, Megan; Scott, Taylor D; Steele, Megan; Kebaara, Bessie W

    2016-01-01

    The nonsense-mediated mRNA decay pathway (NMD) is an mRNA degradation pathway that degrades mRNAs that prematurely terminate translation. These mRNAs include mRNAs with premature termination codons as well as many natural mRNAs. In Saccharomyces cerevisiae a number of features have been shown to target natural mRNAs to NMD. However, the extent to which natural mRNAs from the same functional group are regulated by NMD and how environmental conditions influence this regulation is not known. Here, we examined mRNAs involved in copper homeostasis and are predicted to be sensitive to NMD. We found that the majority of these mRNAs have long 3'-UTRs that could target them for degradation by NMD. Analysis of one of these mRNAs, COX19, found that the long 3'-UTR contributes to regulation of this mRNA by NMD. Furthermore, we examined an additional mRNA, MAC1 under low copper conditions. We found that low copper growth conditions affect NMD sensitivity of the MAC1 mRNA demonstrating that sensitivity to NMD can be altered by environmental conditions. MAC1 is a copper sensitive transcription factor that regulates genes involved with high affinity copper transport. Our results expand our understanding of how NMD regulates mRNAs from the same functional group and how the environment influences this regulation.

  4. Differential display of skin mRNAs regulated under varying environmental conditions in a mudskipper.

    Science.gov (United States)

    Sakamoto, T; Yasunaga, H; Yokota, S; Ando, M

    2002-07-01

    To understand the molecular mechanisms underlying the terrestrial adaptation, as well as adaptation to different salinities, of the euryhaline and amphibious mudskipper ( Periophthalmus modestus), we have looked for the skin mRNAs that change during varying environmental conditions. Using differential mRNA display polymerase chain reaction, we compared skin mRNAs in mudskipper transferred from isotonic 30% seawater to fresh water or to seawater for 1 day and 7 days, as well as those kept out of water for 1 day. At the end of these periods, poly(A(+))RNA was prepared from the Cl(-)-secreting pectoral skins and also from the outer opercular skins where ion transport is negligible, and analyzed by differential display. We identified four cDNA products expressed differently under various environments as homologues of known genes. A further 34 cDNAs were expressed differentially, but they have no significant homology to identified sequences in GenBank. Northern blots demonstrate that mRNA levels of the actin-binding protein and the platelet-activating factor acetylhydrolase increased in the pectoral skins during seawater acclimation. The mRNA of the 90 kDa heat shock protein was down-regulated in water-deprived and freshwater fish, whose plasma cortisol levels were high. The aldolase mRNA was induced in both skins after desiccation. These four genes may be involved in the environmental adaptations. PMID:12122461

  5. Induction of stilbene synthase and cinnamyl alcohol dehydrogenase mRNAs in Scots pine (Pinus sylvestris L.) seedlings

    International Nuclear Information System (INIS)

    Pine is known to respond to ozone by the induction of stilbene synthase (STS) and cinnamyl alcohol dehydrogenase (CAD) activities. Here we describe the influence of ozone on STS and CAD transcript levels, as well as on the amounts of actin mRNA and chlorophyll a/b-binding protein (cab) mRNA in needles of young Scots pine (Pinus sylvestris L.) seedlings. A single ozone pulse of 0.3 μL · L−1 for 8 h resulted in transient increases in STS, and CAD mRNA levels. In contrast, actin and cab transcript levels were reduced. Treatment of Scots pine seedlings with ozone (0.3 μL · L−1, 8 h · d−1) over a period of 12.5 d resulted in a constant high CAD mRNA level. In contrast STS transcripts were transiently induced over 6 d under these conditions. These results indicate selective ozone responses by the two genes. Compared with results for ozone fumigation alone, combined ozone/UV-B treatment led to a slightly higher increase in STS mRNA in primary needles, as well as in cotyledons. This points to an additive effect by the two stressors. In-situ hybridization with STS and CAD antisense mRNAs revealed an enhanced uniform labeling of mesophyll cells in tissue cross-sections of ozone-treated needles, whereas in the epidermal cell layer the amount of silver grains was unaltered in comparison with controls. (author)

  6. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Alexander F Lovejoy

    Full Text Available We developed a novel technique, called pseudouridine site identification sequencing (PSI-seq, for the transcriptome-wide mapping of pseudouridylation sites with single-base resolution from cellular RNAs based on the induced termination of reverse transcription specifically at pseudouridines following CMCT treatment. PSI-seq analysis of RNA samples from S. cerevisiae correctly detected all of the 43 known pseudouridines in yeast 18S and 25S ribosomal RNA with high specificity. Moreover, application of PSI-seq to the yeast transcriptome revealed the presence of site-specific pseudouridylation within dozens of mRNAs, including RPL11a, TEF1, and other genes implicated in translation. To identify the mechanisms responsible for mRNA pseudouridylation, we genetically deleted candidate pseudouridine synthase (Pus enzymes and reconstituted their activities in vitro. These experiments demonstrated that the Pus1 enzyme was necessary and sufficient for pseudouridylation of RPL11a mRNA, whereas Pus4 modified TEF1 mRNA, and Pus6 pseudouridylated KAR2 mRNA. Finally, we determined that modification of RPL11a at Ψ -68 was observed in RNA from the related yeast S. mikitae, and Ψ -239 in TEF1 mRNA was maintained in S. mikitae as well as S. pombe, indicating that these pseudouridylations are ancient, evolutionarily conserved RNA modifications. This work establishes that site-specific pseudouridylation of eukaryotic mRNAs is a genetically programmed RNA modification that naturally occurs in multiple yeast transcripts via distinct mechanisms, suggesting that mRNA pseudouridylation may provide an important novel regulatory function. The approach and strategies that we report here should be generally applicable to the discovery of pseudouridylation, or other RNA modifications, in diverse biological contexts.

  7. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.

    Science.gov (United States)

    Lovejoy, Alexander F; Riordan, Daniel P; Brown, Patrick O

    2014-01-01

    We developed a novel technique, called pseudouridine site identification sequencing (PSI-seq), for the transcriptome-wide mapping of pseudouridylation sites with single-base resolution from cellular RNAs based on the induced termination of reverse transcription specifically at pseudouridines following CMCT treatment. PSI-seq analysis of RNA samples from S. cerevisiae correctly detected all of the 43 known pseudouridines in yeast 18S and 25S ribosomal RNA with high specificity. Moreover, application of PSI-seq to the yeast transcriptome revealed the presence of site-specific pseudouridylation within dozens of mRNAs, including RPL11a, TEF1, and other genes implicated in translation. To identify the mechanisms responsible for mRNA pseudouridylation, we genetically deleted candidate pseudouridine synthase (Pus) enzymes and reconstituted their activities in vitro. These experiments demonstrated that the Pus1 enzyme was necessary and sufficient for pseudouridylation of RPL11a mRNA, whereas Pus4 modified TEF1 mRNA, and Pus6 pseudouridylated KAR2 mRNA. Finally, we determined that modification of RPL11a at Ψ -68 was observed in RNA from the related yeast S. mikitae, and Ψ -239 in TEF1 mRNA was maintained in S. mikitae as well as S. pombe, indicating that these pseudouridylations are ancient, evolutionarily conserved RNA modifications. This work establishes that site-specific pseudouridylation of eukaryotic mRNAs is a genetically programmed RNA modification that naturally occurs in multiple yeast transcripts via distinct mechanisms, suggesting that mRNA pseudouridylation may provide an important novel regulatory function. The approach and strategies that we report here should be generally applicable to the discovery of pseudouridylation, or other RNA modifications, in diverse biological contexts.

  8. Deep sequencing shows multiple oligouridylations are required for 3' to 5' degradation of histone mRNAs on polyribosomes.

    Science.gov (United States)

    Slevin, Michael K; Meaux, Stacie; Welch, Joshua D; Bigler, Rebecca; Miliani de Marval, Paula L; Su, Wei; Rhoads, Robert E; Prins, Jan F; Marzluff, William F

    2014-03-20

    Histone mRNAs are rapidly degraded when DNA replication is inhibited during S phase with degradation initiating with oligouridylation of the stem loop at the 3' end. We developed a customized RNA sequencing strategy to identify the 3' termini of degradation intermediates of histone mRNAs. Using this strategy, we identified two types of oligouridylated degradation intermediates: RNAs ending at different sites of the 3' side of the stem loop that resulted from initial degradation by 3'hExo and intermediates near the stop codon and within the coding region. Sequencing of polyribosomal histone mRNAs revealed that degradation initiates and proceeds 3' to 5' on translating mRNA and that many intermediates are capped. Knockdown of the exosome-associated exonuclease PM/Scl-100, but not the Dis3L2 exonuclease, slows histone mRNA degradation consistent with 3' to 5' degradation by the exosome containing PM/Scl-100. Knockdown of No-go decay factors also slowed histone mRNA degradation, suggesting a role in removing ribosomes from partially degraded mRNAs. PMID:24656133

  9. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins.

    Directory of Open Access Journals (Sweden)

    Kohila Mahadevan

    Full Text Available In higher eukaryotes, most mRNAs that encode secreted or membrane-bound proteins contain elements that promote an alternative mRNA nuclear export (ALREX pathway. Here we report that ALREX-promoting elements also potentiate translation in the presence of upstream nuclear factors. These RNA elements interact directly with, and likely co-evolved with, the zinc finger repeats of RanBP2/Nup358, which is present on the cytoplasmic face of the nuclear pore. Finally we show that RanBP2/Nup358 is not only required for the stimulation of translation by ALREX-promoting elements, but is also required for the efficient global synthesis of proteins targeted to the endoplasmic reticulum (ER and likely the mitochondria. Thus upon the completion of export, mRNAs containing ALREX-elements likely interact with RanBP2/Nup358, and this step is required for the efficient translation of these mRNAs in the cytoplasm. ALREX-elements thus act as nucleotide platforms to coordinate various steps of post-transcriptional regulation for the majority of mRNAs that encode secreted proteins.

  10. Primer extension studies on alpha-amylase mRNAs in barley aleurone. II. Hormonal regulation of expression.

    Science.gov (United States)

    Chandler, P M; Jacobsen, J V

    1991-04-01

    Relative levels of different alpha-amylase mRNAs were assessed by primer extension experiments using RNA prepared from aleurone of barley (Hordeum vulgare L. cv. Himalaya). Three different aleurone systems were studied: protoplasts prepared from aleurone layers, isolated aleurone layers, and aleurone from germinated grain. Oligonucleotide primers specific for the low-pI and high-pI alpha-amylase groups allowed the levels of different alpha-amylase mRNAs to be assessed both within and between the two groups. In all aleurone systems the same set of alpha-amylase mRNAs was produced in response to either applied gibberellic acid (aleurone protoplasts, isolated aleurone layers) or, presumably, native gibberellin(s) (germinated grain). This result indicates that the same set of genes is being expressed in each case. Differences were observed between the different aleurone systems in regulation of levels of alpha-amylase mRNAs. In particular, the regulation of alpha-amylase mRNA levels in aleurone of germinated grain has unique features which are not adequately explained by the response of isolated aleurone layers to gibberellic acid.

  11. Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG.

    Science.gov (United States)

    Kern, Markus; Aertsen, Ad; Schulze-Bonhage, Andreas; Ball, Tonio

    2013-11-01

    The perception of one's own heartbeat is a fundamental interoceptive process that involves cortical and subcortical structures. Yet, the precise spatiotemporal neuronal activity patterns underlying the cortical information processing have remained largely elusive. Although the high temporal and spatial resolution of electrocorticographic (ECoG) recordings is increasingly being exploited in functional neuroimaging, it has not been used to study heart cycle-related effects. Here, we addressed the capacity of ECoG to characterize neuronal signals within the cardiac cycle, as well as to disentangle them from heart cycle-related artifacts. Based on topographical distribution and latency, we identified a biphasic potential within the primary somatosensory cortex, which likely constitutes a heartbeat-evoked potential (HEP) of neuronal origin. We also found two different types of artifacts: i) oscillatory potential changes with a frequency identical to the heart pulse rate, which probably represent pulsatility artifacts and ii) sharp potentials synchronized to the R-peak, corresponding to the onset of ventricular contraction and the cardiac field artifact (CFA) in EEG. Finally, we show that heart cycle-related effects induce pronounced phase-synchrony patterns in the ECoG and that this kind of correlation patterns, which may confound ECoG connectivity studies, can be reduced by a suitable correction algorithm. The present study is, to our knowledge, the first one to show a focally localized cortical HEP that could be clearly and consistently observed over subjects, suggesting a basic role of primary sensory cortex in processing of heart-related sensory inputs. We also conclude that taking into account and reducing heart cycle-related effects may be advantageous for many ECoG studies, and are of crucial importance, particularly for ECoG-based connectivity studies. Thus, in summary, although ECoG poses new challenges, it opens up new possibilities for the investigation of

  12. The optional long 5'-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay

    Institute of Scientific and Technical Information of China (English)

    Xiaonan Zhao; Baoliang Song; Tayuan Chang; Boliang Li; Jia Chen; Lei Lei; Guangjing Hu; Ying Xiong; Jiajia Xu; Qin Li; Xinying Yang; Catherine C.Y.Chang

    2009-01-01

    We have previously reported that human ACAT1 mRNAs produce the 50 kDa protein using the AUG1397-1399 initiation codon,and also a minor 56 kDa isoform using the upstream in-frame GGC1274-1276initiation codon.The GGC1274-1276 codon is located at the optional long 5'-untranslated region(5'-UTR,nt 1-1396)of the mRNAs.The DNA sequences corresponding to this 5'-UTR are located in two different chromosomes,7 and 1.In the current work,we report that the optional long 5'-UTR significantly impairs the production of human ACAT1 protein initiated from the AUG1397-1399 codon,mainly by promoting its mRNA decay.The western blot analyses indicated that the optional long 5'-UTR potently impaired the production of different proteins initiated from the AUG1397-1399codon,meaning that this impairing effect was not influenced by the 3'-UTR or the coding sequence of ACAT1 mRNA.The results of reverse transcription-quantitative polymerase chain reaction demonstrated that this 5'-UTR dramatically reduced the contents of its linked mRNAs.Analyses of the protein to mRNA ratios showed that this 5'-UTR mainly decreased its mRNA stability rather than altering its translational efficiency.We next performed the plasmid transfection experiments and used actinomycin D to inhibit transcription.The results showed that this 5'-UTR promoted its mRNA decay.Additional transfection and nucleofection experiments using RNAs prepared in vitro illustrated that,in both the cytoplasm and the nucleus of cells,the optional long 5'-UTR-linked mRNAs decayed faster than those without the link.Overall,our study brings new insight to the regulation of the human ACAT1 gene expression at the post-transcription level.

  13. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs

    International Nuclear Information System (INIS)

    Two forms of human thyroid peroxidase cDNAs were isolated from a λgt11 cDNA library, prepared from Graves disease thyroid tissue mRNA, by use of oligonucleotides. The longest complete cDNA, designated phTPO-1, has 3048 nucleotides and an open reading frame consisting of 933 amino acids, which would encode a protein with a molecular weight of 103,026. Five potential asparagine-linked glycosylation sites are found in the deduced amino acid sequence. The second peroxidase cDNA, designated phTPO-2, is almost identical to phTPO-1 beginning 605 base pairs downstream except that it contains 1-base-pair difference and lacks 171 base pairs in the middle of the sequence. This results in a loss of 57 amino acids corresponding to a molecular weight of 6282. Interestingly, this 171-nucleotide sequence has GT and AG at its 5' and 3' boundaries, respectively, that are in good agreement with donor and acceptor splice site consensus sequences. Using specific oligonucleotide probes for the mRNAs derived from the cDNA sequences hTOP-1 and hTOP-2, the authors show that both are expressed in all thyroid tissues examined and the relative level of two mRNAs is different in each sample. The results suggest that two thyroid peroxidase proteins might be generated through alternate splicing of the same gene. By using somatic cell hybrid lines, the thyroid peroxidase gene was mapped to the short arm of human chromosome 2

  14. The BTG4 and CAF1 complex prevents the spontaneous activation of eggs by deadenylating maternal mRNAs.

    Science.gov (United States)

    Pasternak, Michał; Pfender, Sybille; Santhanam, Balaji; Schuh, Melina

    2016-09-01

    Once every menstrual cycle, eggs are ovulated into the oviduct where they await fertilization. The ovulated eggs are arrested in metaphase of the second meiotic division, and only complete meiosis upon fertilization. It is crucial that the maintenance of metaphase arrest is tightly controlled, because the spontaneous activation of the egg would preclude the development of a viable embryo (Zhang et al. 2015 J. Genet. Genomics 42, 477-485. (doi:10.1016/j.jgg.2015.07.004); Combelles et al. 2011 Hum. Reprod. 26, 545-552. (doi:10.1093/humrep/deq363); Escrich et al. 2011 J. Assist. Reprod. Genet. 28, 111-117. (doi:10.1007/s10815-010-9493-5)). However, the mechanisms that control the meiotic arrest in mammalian eggs are only poorly understood. Here, we report that a complex of BTG4 and CAF1 safeguards metaphase II arrest in mammalian eggs by deadenylating maternal mRNAs. As a follow-up of our recent high content RNAi screen for meiotic genes (Pfender et al. 2015 Nature 524, 239-242. (doi:10.1038/nature14568)), we identified Btg4 as an essential regulator of metaphase II arrest. Btg4-depleted eggs progress into anaphase II spontaneously before fertilization. BTG4 prevents the progression into anaphase by ensuring that the anaphase-promoting complex/cyclosome (APC/C) is completely inhibited during the arrest. The inhibition of the APC/C relies on EMI2 (Tang et al. 2010 Mol. Biol. Cell 21, 2589-2597. (doi:10.1091/mbc.E09-08-0708); Ohe et al. 2010 Mol. Biol. Cell 21, 905-913. (doi:10.1091/mbc.E09-11-0974)), whose expression is perturbed in the absence of BTG4. BTG4 controls protein expression during metaphase II arrest by forming a complex with the CAF1 deadenylase and we hypothesize that this complex is recruited to the mRNA via interactions between BTG4 and poly(A)-binding proteins. The BTG4-CAF1 complex drives the shortening of the poly(A) tails of a large number of transcripts at the MI-MII transition, and this wave of deadenylation is essential for the arrest in

  15. Capped nonviral sequences at the 5' end of the mRNAs of rice hoja blanca virus RNA4.

    Science.gov (United States)

    Ramirez, B C; Garcin, D; Calvert, L A; Kolakofsky, D; Haenni, A L

    1995-03-01

    Subgenomic RNAs of both polarities corresponding to rice hoja blanca virus (RHBV) ambisense RNA4 were detected in RHBV-infected rice tissues. Total RNA extracted from RHBV-infected and noninfected rice tissues and RNA4 purified from RHBV ribonucleoprotein particles were used as templates for primer extension studies. The RNAs extracted from RHBV-infected tissues contain a population of RNA molecules with 10 to 17 nonviral nucleotides at their 5' end. The RNA-cDNA hybrids resulting from primer extension of such RNA molecules were specifically immunoselected with anti-cap antibodies, indicating that the subgenomic RNAs are capped and probably serve as mRNAs and that the additional nucleotides at their 5' end possibly derive from host mRNAs via a cap-snatching mechanism. PMID:7853540

  16. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana

    2014-11-03

    Background Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. Results We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. Conclusions Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.

  17. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti.

    Science.gov (United States)

    de Groot, Arjan; Roche, David; Fernandez, Bernard; Ludanyi, Monika; Cruveiller, Stéphane; Pignol, David; Vallenet, David; Armengaud, Jean; Blanchard, Laurence

    2014-04-01

    Deinococcus deserti is a desiccation- and radiation-tolerant desert bacterium. Differential RNA sequencing (RNA-seq) was performed to explore the specificities of its transcriptome. Strikingly, for 1,174 (60%) mRNAs, the transcription start site was found exactly at (916 cases, 47%) or very close to the translation initiation codon AUG or GUG. Such proportion of leaderless mRNAs, which may resemble ancestral mRNAs, is unprecedented for a bacterial species. Proteomics showed that leaderless mRNAs are efficiently translated in D. deserti. Interestingly, we also found 173 additional transcripts with a 5'-AUG or 5'-GUG that would make them competent for ribosome binding and translation into novel small polypeptides. Fourteen of these are predicted to be leader peptides involved in transcription attenuation. Another 30 correlated with new gene predictions and/or showed conservation with annotated and nonannotated genes in other Deinococcus species, and five of these novel polypeptides were indeed detected by mass spectrometry. The data also allowed reannotation of the start codon position of 257 genes, including several DNA repair genes. Moreover, several novel highly radiation-induced genes were found, and their potential roles are discussed. On the basis of our RNA-seq and proteogenomics data, we propose that translation of many of the novel leaderless transcripts, which may have resulted from single-nucleotide changes and maintained by selective pressure, provides a new explanation for the generation of a cellular pool of small peptides important for protection of proteins against oxidation and thus for radiation/desiccation tolerance and adaptation to harsh environmental conditions.

  18. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f.

    Science.gov (United States)

    Wang, Fei; Johnson, Xenie; Cavaiuolo, Marina; Bohne, Alexandra-Viola; Nickelsen, Joerg; Vallon, Olivier

    2015-06-01

    In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization. PMID:25898982

  19. Activity-dependent expression of RNA binding protein HuD and its association with mRNAs in neurons.

    Science.gov (United States)

    Tiruchinapalli, Dhanrajan M; Ehlers, Michael D; Keene, Jack D

    2008-01-01

    The dendritic trafficking of RNA binding proteins (RBPs) is an important posttranscriptional process involved in the regulation of synaptic plasticity. For example, HuD RBP binds to AU-rich elements (AREs) in the 3' untranslated regions (3'UTR) of immediate-early gene (IEG) transcripts, whose protein products directly affect synaptic plasticity. However, the subcellular localization of HuD RBPs and associated mRNAs has not been investigated following neuronal stimulation. Immunofluorescence analysis revealed activity-dependent dendritic localization of HuD RBPs following KCl stimulation in hippocampal neurons, while immunoprecipitation demonstrated the association of HuD RBP with neuronal mRNAs encoding neuritin, Homer1a, GAP-43, Neuroligins, Verge and CAMKIIalpha. Activity-dependent expression of HuD involves activation of NMDAR as NMDA receptor 1 knockout mice (Nr1(neo-/-)) exhibited decreased expression of HuD. Moreover, translational regulation of HuD-associated transcripts was suggested by its co-localization with poly-A-binding protein (PABP) as well as the cap-binding protein (eIF4E). We propose that post-transcriptional regulation of neuronal mRNAs by HuD RBPs mediates protein synthesis-dependent changes in synaptic plasticity. PMID:18769135

  20. Cycle-Related Changes in Mood, Sexual Desire, and Sexual Activity in Oral Contraception-Using and Nonhormonal-Contraception-Using Couples.

    Science.gov (United States)

    Elaut, Els; Buysse, Ann; De Sutter, Petra; Gerris, Jan; De Cuypere, Griet; T'Sjoen, Guy

    2016-01-01

    Findings on women's sexuality across the menstrual cycle are inconsistent. One relatively consistent finding is a midcycle and premenstrual peak in sexual desire in freely cycling women. Results on the cycle-related effects on sexual behavior are less clear. Large proportions of reproductive-aged women use combined oral contraception (COC), but studies on potential cycle-related shifts in sexual desire and behavior are sparse. A prospective diary study assessed sexual desire, sexual behavior, and mood in 89 heterosexual couples. Women were using one of four contraceptive methods: (1) nonhormonal contraception, (2) low-dose COC containing 20 mcg ethinylestradiol and 75 mcg gestoden or desogestrel, (3) COC containing 35 mcg ethinylestradiol and 2 mg cyproteronacetate, and (4) COC containing 30 mcg ethinylestradiol and 3 mg drospirenone. No cycle effects of sexual desire were established in the COC group, but frequency of sexual intercourse declined in the last days of active pill taking. These results were similar in both female and male partners. Negative affect did not covary with sexual desire.

  1. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression.

    Science.gov (United States)

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon-exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT-PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  2. Effect of PD I Administration on Dopamine Receptors mRNAs Expression in the Lesioned Striatum of PD Rat Model

    Institute of Scientific and Technical Information of China (English)

    YANG Mei; SUN Shenggang; CAO Xuebing

    2005-01-01

    To study the effect of PD I administration on dopamine receptors (DR1, DR2 ) mRNAs expression in the lesioned striatum of the PD rat model and confirm if PD I has the effect of dopamine receptor agonist. The PD rats with unilateral 6-hydroxydopamine lesioned were administrated with PD I , L-dopa methyl/benserazide, L-dopa methyl/benserazide/ PD I , normal saline respectively for 4 weeks and their behavioral changes were observed. Then the rats were sacrificed and RT-PCR technique was used to detect changes of dopamine receptors (DR1, DR2 ) mRNAs expression in the ipsilateral striatum 1 day after the last treatment. The results showed that treatment with PD I plus L-dopa resulted in a stable contralateral rotation behavior; treatment with L-dopa resulted in a progressively increased contralateral rotation behavior. Rotation behavior induced by anhydromorphine decreased with PD I or PD I plus L-dopa treatment. Treatment With L-dopa or PD I plus L-dopa, up-regulation of DR1 mRNA and down regulation of DR2 mRNA were observed in the ipsilateral striatum which were more obvious than that treated with PD I or vehicle (P<0.05). It was concluded that long-term treatment with PD I could alleviate the behavior of PD rats.PD I had no apparent effect on the dopamine receptors (DR1 , DR2) mRNAs expression in the ipsilateral striatum and the PD I has no agonist effect on dopamine receptors.

  3. Activity-dependent expression of ELAV/Hu RBPs and neuronal mRNAs in seizure and cocaine brain.

    Science.gov (United States)

    Tiruchinapalli, Dhanrajan M; Caron, Marc G; Keene, Jack D

    2008-12-01

    Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA-binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p-glycogen synthase kinase 3beta (GSK3beta) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIalpha, vascular early response gene, GAP-43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3beta signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3beta, p-Akt, and beta-catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile-X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity. PMID:19014379

  4. The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy

    Directory of Open Access Journals (Sweden)

    Vlassov Valentin V

    2010-05-01

    Full Text Available Abstract Background One of the main obstacles for successful cancer polychemotherapy is multiple drug resistance phenotype (MDR acquired by tumor cells. Currently, RNA interference represents a perspective strategy to overcome MDR via silencing the genes involved in development of this deleterious phenotype (genes of ABC transporters, antiapoptotic genes, etc.. Methods In this study, we used the siRNAs targeted to mdr1b, mdr1a, and bcl-2 mRNAs to reverse the MDR of tumors and increase tumor sensitivity to chemotherapeutics. The therapy consisting in ex vivo or in vivo application of mdr1b/1a siRNA followed by cyclophosphamide administration was studied in the mice bearing RLS40 lymphosarcoma, displaying high resistance to a wide range of cytostatics. Results Our data show that a single application of mdr1b/1a siRNA followed by treatment with conventionally used cytostatics results in more than threefold decrease in tumor size as compared with the control animals receiving only cytostatics. Conclusions In perspective, mdr1b/1a siRNA may become a well-reasoned adjuvant tool in the therapy of MDR malignancies.

  5. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    International Nuclear Information System (INIS)

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A+) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A+) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded

  6. Regulación de la traducción de mRNAs virales: efecto de proteasas virales

    OpenAIRE

    Moral López, Pablo

    2016-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular Success of viral infection relays on the viral ability to overcome host antiviral response at the same time that their mRNAs hijack components of the translation machinery including ribosomes. Some viruses have developed the ability to bypass cellular antiviral response and optimize viral protein synthesis by inhibiting host translation. In the case of pic...

  7. Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs.

    OpenAIRE

    van Dijk, E L; Sussenbach, J S; Holthuizen, P E

    1998-01-01

    Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To furth...

  8. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  9. Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting.

    Science.gov (United States)

    Paré, Adam; Lemons, Derek; Kosman, Dave; Beaver, William; Freund, Yoav; McGinnis, William

    2009-12-15

    The detection and counting of transcripts within single cells via fluorescent in situ hybridization (FISH) has allowed researchers to ask quantitative questions about gene expression at the level of individual cells. This method is often preferable to quantitative RT-PCR, because it does not necessitate destruction of the cells being probed and maintains spatial information that may be of interest. Until now, studies using FISH at single-molecule resolution have only been rigorously carried out in isolated cells (e.g., yeast cells or mammalian cell culture). Here, we describe the detection and counting of transcripts within single cells of fixed, whole-mount Drosophila embryos via a combination of FISH, immunohistochemistry, and image segmentation. Our method takes advantage of inexpensive, long RNA probes detected with antibodies, and we present novel evidence to show that we can robustly detect single mRNA molecules. We use this method to characterize transcription at the endogenous locus of the Hox gene Sex combs reduced (Scr), by comparing a stably expressing group of cells to a group that only transiently expresses the gene. Our data provide evidence for transcriptional bursting, as well for divergent "accumulation" and "maintenance" phases of gene activity at the Scr locus.

  10. In vivo monitoring of mRNA movement in Drosophila body wall muscle cells reveals the presence of myofiber domains.

    Directory of Open Access Journals (Sweden)

    Alice M C van Gemert

    Full Text Available BACKGROUND: In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. METHODOLOGY/PRINCIPAL FINDINGS: In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. CONCLUSIONS/SIGNIFICANCE: These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cell-based therapies.

  11. BRCA1-Dependent Translational Regulation in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Estelle Dacheux

    Full Text Available BRCA1 (Breast Cancer 1 has been implicated in a number of cellular processes, including transcription regulation, DNA damage repair and protein ubiquitination. We previously demonstrated that BRCA1 interacts with PABP1 (Poly(A-Binding Protein 1 and that BRCA1 modulates protein synthesis through this interaction. To identify the mRNAs that are translationally regulated by BRCA1, we used a microarray analysis of polysome-bound mRNAs in BRCA1-depleted and non-depleted MCF7 cells. Our findings show that BRCA1 modifies the translational efficiency of approximately 7% of the mRNAs expressed in these cells. Further analysis revealed that several processes contributing to cell surveillance such as cell cycle arrest, cell death, cellular growth and proliferation, DNA repair and gene expression, are largely enriched for the mRNAs whose translation is impacted by BRCA1. The BRCA1-dependent translation of these species of mRNAs therefore uncovers a novel mechanism through which BRCA1 exerts its onco-suppressive role. In addition, the BRCA1-dependent translation of mRNAs participating in unexpected functions such as cellular movement, nucleic acid metabolism or protein trafficking is indicative of novel functions for BRCA1. Finally, this study contributes to the identification of several markers associated with BRCA1 deficiency and to the discovery of new potential anti-neoplastic therapeutic targets.

  12. Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat

    DEFF Research Database (Denmark)

    Jensen, B L; Mann, Birgitte; Skøtt, O;

    1999-01-01

    BACKGROUND: In this study, we tested the hypothesis that prostaglandin (PG) receptor expression in the rat kidney is subject to physiological regulation by dietary salt intake. METHODS: Rats were fed diets with 0.02 or 4% NaCl for two weeks. PG receptor expression was assayed in kidney regions...... and cells by ribonuclease protection assay and reverse transcription-polymerase chain reaction analysis. Functional correlates were studied by measurement of PGE2-induced cAMP formation and renin secretion in juxtaglomerular (JG) cells isolated from animals on various salt intakes. RESULTS: EP1 and EP3...... did not affect the expression of EP1 or IP receptors, whereas EP4 transcripts in glomeruli were increased twofold by salt deprivation. Consistent with this, we found that PGE2-evoked cAMP production and renin secretion by JG cells from salt-deprived animals were significantly higher compared...

  13. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Zhifen Liu

    Full Text Available LncRNAs, which represent one of the most highly expressed classes of ncRNAs in the brain, are becoming increasingly interesting with regard to brain functions and disorders. However, changes in the expression of regulatory lncRNAs in Major Depressive Disorder (MDD have not yet been reported. Using microarrays, we profiled the expression of 34834 lncRNAs and 39224 mRNAs in peripheral blood sampled from MDD patients as well as demographically-matched controls. Among these, we found that 2007 lncRNAs and 1667 mRNAs were differentially expressed, 17 of which were documented as depression-related gene in previous studies. Gene Ontology (GO and pathway analyses indicated that the biological functions of differentially expressed mRNAs were related to fundamental metabolic processes and neurodevelopment diseases. To investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we also constructed co-expression networks composed of the lncRNAs and mRNAs, which shows significant correlated patterns of expression. In the MDD-derived network, there were a greater number of nodes and connections than that in the control-derived network. The lncRNAs located at chr10:874695-874794, chr10:75873456-75873642, and chr3:47048304-47048512 may be important factors regulating the expression of mRNAs as they have previously been reported associations with MDD. This study is the first to explore genome-wide lncRNA expression and co-expression with mRNA patterns in MDD using microarray technology. We identified circulating lncRNAs that are aberrantly expressed in MDD and the results suggest that lncRNAs may contribute to the molecular pathogenesis of MDD.

  14. Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs

    OpenAIRE

    Kurischko, Cornelia; Kuravi, Venkata K.; Herbert, Christopher J.; Luca, Francis C.

    2011-01-01

    Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The S. cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, aging, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumor suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm, however biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore e...

  15. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in the biological activities of the growth hormone receptor.

    Science.gov (United States)

    Chang, Lei; Qi, Haolong; Xiao, Yusha; Li, Changsheng; Wang, Yitao; Guo, Tao; Liu, Zhisu; Liu, Quanyan

    2016-08-01

    Accumulating evidence has indicated that noncoding RNAs (ncRNAs) have important regulatory potential in various biological processes. The molecular mechanisms by which growth hormone receptor (GHR) deficiency protects against age-related pathologies, reduces the incidence and delays the occurrence of fatal neoplasms are unclear. The aim of this study was to investigate miRNA, lncRNA and mRNA expression profiles and the potential functional roles of these RNA molecules in GHR knockout (GHR-KO) mice. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in wild type control mice and in GHR-KO mice. Differential expression, pathway and gene network analyses were developed to identify the possible biological roles of functional RNA molecules. Compared to wild type control mice, 1695 lncRNAs, 914 mRNAs and 9 miRNAs were upregulated and 1747 lncRNAs, 786 mRNAs and 21 miRNAs were downregulated in female GHR-KO mice. Moreover, 1265 lncRNAs, 724 mRNAs and 41 miRNAs were upregulated and 1377 lncRNAs, 765 mRNAs and 16 miRNAs were downregulated in male GHR-KO mice compared to wild type mice. Co-expression analysis of mRNAs, lncRNAs, and miRNAs showed that mRNAs including Hemxi2, Ero1Ib, 4933434i20RIK, Pde7a and Lgals1, lncRNAs including ASMM9PARTA014848, EL605414-P1, ASMM9PARTA051724, ASMM9PARTA045378 and ASMM9PARTA049185, and miRNAs including miR-188-3p, miR-690, miR-709 and miR-710 are situated at the core position of a three-dimensional lncRNA-mRNA-miRNA regulatory network. KEGG analysis showed that the most significantly regulated pathway was steroid hormone biosynthesis. We identified a set of lncRNAs, miRNAs and mRNAs that were aberrantly expressed in GHR-KO mice. Our results provide a foundation and an expansive view of the biological activities of the GHR. PMID:27064376

  16. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs.

    OpenAIRE

    Scheper, W; Meinsma, D; Holthuizen, P E; Sussenbach, J S

    1995-01-01

    Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb ...

  17. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution

    DEFF Research Database (Denmark)

    Workman, Christopher; Krogh, Anders Stærmose

    1999-01-01

    This work investigates whether mRNA has a lower estimated folding free energy than random sequences. The free energy estimates are calculated by the mfold program for prediction of RNA secondary structures. For a set of 46 mRNAs it is shown that the predicted free energy is not significantly...... different from random sequences with the same dinucleotide distribution. For random sequences with the same mononucleotide distribution it has previously been shown that the native mRNA sequences have a lower predicted free energy, which indicates a more stable structure than random sequences. However......, dinucleotide content is important when assessing the significance of predicted free energy as the physical stability of RNA secondary structure is known to depend on dinucleotide base stacking energies. Even known RNA secondary structures, like tRNAs, can be shown to have predicted free energies...

  18. Research Progress on Centrosome Cycle Related Protein Phosphorylation /Dephosphorylation and the Involved Functions%中心体周期相关蛋白磷酸化/去磷酸化及其功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    谭锬; 梁前进

    2012-01-01

    or abnormal cells ( e. g. tumour cells) , protein modifications, especially the phosphorylation modification, dominate in cell regulation. As one kind of the major organelles cells, centrosome contains many centrosomal proteins depend on phosphorylation regulation. To provide references for future research, the centrosome cycle related protein phosphorylation and function were reviewed.

  19. Effect of plant species on P cycle-related microorganisms associated with litter decomposition and P soil availability: implications for agroforestry management

    Directory of Open Access Journals (Sweden)

    Correa E

    2016-04-01

    Full Text Available Cutting dry deciduous forest (preserved site for wood supply in semi-arid Brazil has led to invasion of a pioneer shrub vegetation called “Carrasco” (disturbed site, which inhibits the sprouting of native species. A land restoration project was undertaken in a cleared Carrasco area where a mixed plantation of native species and Eucalyptus spp. (experimental site was established to preserve the forest and ensure wood supply for the local population. We considered phosphorus as a limiting soil nutrient to plant growth, and we addressed the roles of litter decomposition and microbial activity on phosphorus release in the disturbed, preserved and experimental sites. The phosphorus released from leaf litter was affected by the vegetation type, which favored specific soil microbial populations during decomposition. The Carrasco vegetation predominantly favored arbuscular mycorrhizal fungi (AMF, as shown by root colonization in the litter bags; the Eucalyptus plants favored AMF and ectomycorrhizal fungi (EM, as well as phosphate solubilizing microorganisms (PSM, and the intercropping system favored AMF and PSM groups. In contrast, the preserved site favored the PSM population. High phosphatase activity was found in the preserved and experimental sites in contrast to the Carrasco soil. Principal component analysis showed that AMF root colonization and phosphatase activity were the main parameters influencing the increase in soil phosphorus. Based on the above results, rehabilitation appeared to be underway in the experimental site, since the samples were more similar to the preserved site than to the disturbed site. This effect was attributed to Eucalyptus camaldulensis that promote the establishment of all phosphorus cycle-related microorganisms (AMF, EM and PSF. E. camaldulensis associated with mycorrhizal fungi and PSM are recommended for inclusion in agroforestry systems.

  20. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    OpenAIRE

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS wh...

  1. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs.

    Science.gov (United States)

    Hata, Taketoshi; Murakami, Kosuke; Nakatani, Hajime; Yamamoto, Yasunari; Matsuda, Tsukasa; Aoki, Naohito

    2010-05-28

    By a series of centrifugation and ultracentrifugation, we could isolate microvesicles with approximately 100 nm in diameter from bovine milk. We also found that approximately 1700 and 1000 ng of total RNA, in which small RNAs were major components, was contained inside the microvesicles isolated from 6 ml of colostrum and mature milk, respectively, despite high RNase activity in the milk. Polyadenylated gene transcripts for major milk proteins and translation elongation factor-1alpha (EF-1alpha) were present in the microvesicles, and integrity of some transcripts was confirmed by real-time PCR targeting 5'- and 3'-ends of mRNA and by in vitro translation analysis. Moreover, a considerable amount of mammary gland and immune-related microRNAs were present in the milk-derived microvesicles. Acidification of milk to mimic gastrointestinal tract did not mostly affected RNA yield and quality. The milk related gene transcripts were detected in cultured cells when incubated with milk-derived microvesicles, suggesting cellular uptake of the microvesicle contents including RNA. Our findings suggest that bovine breast milk contains RNAs capable for being transferred to living cells and involved in the development of calf's gastrointestinal and immune systems. PMID:20434431

  2. The Expression of Insulin-like Growth Factor and Insulin-like Growth Factor Binding Protein mRNAs in Mouse Placenta

    DEFF Research Database (Denmark)

    Carter, Anthony M.; Nygard, K.; Mazzuca, D.M.;

    2006-01-01

    expression patterns of the mRNAs at embryonic days 10.5 to 18.5 by in situ hybridization. IGF-II mRNA was expressed strongly in mesoderm and fetal blood vessels of early placenta and in labyrinthine trophoblast of later placenta. In the junctional zone, IGF-II mRNA was expressed first in spongiotrophoblasts...

  3. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes

    Science.gov (United States)

    Slevin, Michael K.; Meaux, Stacie; Welch, Joshua D.; Bigler, Rebecca; Miliani de Marval, Paula L.; Su, Wei; Rhoads, Robert E.; Prins, Jan F.; Marzluff, William F.

    2014-01-01

    SUMMARY Histone mRNAs are rapidly degraded when DNA replication is inhibited during S-phase with degradation initiating with oligouridylation of the stemloop at the 3′ end. We developed a customized RNA-Seq strategy to identify the 3′ termini of degradation intermediates of histone mRNAs. Using this strategy, we identified two types of oligouridylated degradation intermediates: RNAs ending at different sites of the 3′ side of the stemloop that resulted from initial degradation by 3′hExo and intermediates near the stop codon and within the coding region. Sequencing of polyribosomal histone mRNAs revealed that degradation initiates and proceeds 3′ to 5′ on translating mRNA and many intermediates are capped. Knockdown of the exosome-associated exonuclease Pml/Scl-100, but not the Dis3L2 exonuclease, slows histone mRNA degradation, consistent with 3′ to 5′ degradation by the exosome containing PM/Scl-100. Knockdown of No-go decay factors also slowed histone mRNA degradation, suggesting a role in removing ribosomes from partially degraded mRNAs. PMID:24656133

  4. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway.

    Science.gov (United States)

    Coyle, John H; Bor, Yeou-Cherng; Rekosh, David; Hammarskjold, Marie-Louise

    2011-07-01

    Post-transcriptional regulation of mRNA includes restriction mechanisms to prevent export and expression of mRNAs that are incompletely spliced. Here we present evidence that the mammalian protein Tpr is involved in this restriction. To study the role of Tpr in export of mRNA with retained introns, we used reporters in which the mRNA was exported either via the Nxf1/Nxt1 pathway using a CTE or via the Crm1 pathway using Rev/RRE. Our data show that even modest knockdown of Tpr using RNAi leads to a significant increase in export and translation from the mRNA containing the CTE. In contrast, Tpr perturbation has no effect on export of mRNA containing the RRE, either in the absence or presence of Rev. Also, no effects were observed on export of a completely spliced mRNA. Taken together, our results indicate that Tpr plays an important role in quality control of mRNA trafficked on the Nxf1 pathway.

  5. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey.

    Directory of Open Access Journals (Sweden)

    Hirohisa Izumi

    Full Text Available Functional RNAs, such as microRNA (miRNA and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2 was markedly higher than that in mature milk whey (days 9 and 16. Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats.

  6. On the Contribution of Protein Spatial Organization to the Physicochemical Interconnection between Proteins and Their Cognate mRNAs.

    Science.gov (United States)

    Beier, Andreas; Zagrovic, Bojan; Polyansky, Anton A

    2014-01-01

    Early-stage evolutionary development of the universal genetic code remains a fundamental, open problem. One of the possible scenarios suggests that the code evolved in response to direct interactions between peptides and RNA oligonucleotides in the primordial environment. Recently, we have revealed a strong matching between base-binding preferences of modern protein sequences and the composition of their cognate mRNA coding sequences. These results point directly at the physicochemical foundation behind the code's origin, but also support the possibility of direct complementary interactions between proteins and their cognate mRNAs, especially if the two are unstructured. Here, we analyze molecular-surface mapping of knowledge-based amino-acid/nucleobase interaction preferences for a set of complete, high-resolution protein structures and show that the connection between the two biopolymers could remain relevant even for structured, folded proteins. Specifically, protein surface loops are strongly enriched in residues with a high binding propensity for guanine and cytosine, while adenine- and uracil-preferring residues are uniformly distributed throughout protein structures. Moreover, compositional complementarity of cognate protein and mRNA sequences remains strong even after weighting protein sequence profiles by residue solvent exposure. Our results support the possibility that protein/mRNA sequence complementarity may also translate to cognate interactions between structured biopolymers.

  7. Expression Pattern of Myogenic Regulatory Transcription Factor mRNAs in the Embryo and Adult Labeo rohita (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Archya Sengupta

    2014-01-01

    Full Text Available Understanding the regulation of skeletal muscle development is important to meet the increasing demand of Indian major carp Labeo rohita. Myogenic regulatory factors (MRFs along with myocyte specific enhancer factor 2 (MEF2 play the pivotal role in the determination and differentiation of skeletal muscle. The majority of skeletal muscle genes require both MRFs and MEF2 family members to activate their transcription. In this study, the expression pattern of MyoD, myf-5, myogenin, and MEF2A was observed from 6 h after fertilization to 12 months of age using semiquantitative RT-PCR as well as real-time PCR method. MyoD and myf-5 mRNAs were expressed at high level at the early embryonic stages. Myogenin and MEF2A were expressed after MyoD and myf-5 and remained active up to adult stage. Expression of MyoD was lower than that of Myf-5 after the 5th month. Partial sequencing of MyoD, myf-5, and MEF2A was done to draw phylogeny. In phylogenetic study, Labeo MyoD, MEF2A and myf-5 were found to be closely related to those of common carp. The present investigation suggests that the four transcription factors play pivotal role in the regulation of muscle growth of Labeo rohita in an overlapping and interconnected way.

  8. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    Directory of Open Access Journals (Sweden)

    Adam Kotorashvili

    Full Text Available BACKGROUND: Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. PRINCIPAL FINDINGS: For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. SIGNIFICANCE: We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of

  9. Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation.

    Science.gov (United States)

    Ciandrini, Luca; Stansfield, Ian; Romano, M Carmen

    2013-01-01

    To understand the complex relationship governing transcript abundance and the level of the encoded protein, we integrate genome-wide experimental data of ribosomal density on mRNAs with a novel stochastic model describing ribosome traffic dynamics during translation elongation. This analysis reveals that codon arrangement, rather than simply codon bias, has a key role in determining translational efficiency. It also reveals that translation output is governed both by initiation efficiency and elongation dynamics. By integrating genome-wide experimental data sets with simulation of ribosome traffic on all Saccharomyces cerevisiae ORFs, mRNA-specific translation initiation rates are for the first time estimated across the entire transcriptome. Our analysis identifies different classes of mRNAs characterised by their initiation rates, their ribosome traffic dynamics, and by their response to ribosome availability. Strikingly, this classification based on translational dynamics maps onto key gene ontological classifications, revealing evolutionary optimisation of translation responses to be strongly influenced by gene function. PMID:23382661

  10. Expression of hepatic mRNAs for insulin-like growth factors-I and -II during the development of hypothyroid rats.

    Science.gov (United States)

    Gallo, G; de Marchis, M; Voci, A; Fugassa, E

    1991-12-01

    The effect of thyroid status on the expression of insulin-like growth factors-I and -II mRNAs in the liver of developing rats has been investigated. Northern blot analyses of the specific mRNA demonstrated the presence of four IGF-II mRNA species which were strongly expressed in fetal liver and progressively declined after birth, becoming undetectable after week 3. This decrease was markedly delayed in the liver of hypothyroid rats. In addition, expression of IGF-I mRNA, absent in fetal liver, began during week 1 after birth and progressively increased with age. This increase was markedly delayed in the liver of hypothyroid rats. The data suggest that thyroid hormones regulate rat development via the co-ordinate expression of hepatic IGF-II and IGF-I mRNAs. PMID:1783883

  11. Effect of Mifepristone and Anordrin Compound on Lev-els of Estrogen and Progesterone Receptor mRNAs in Human Decidua of Early Pregnancy

    Institute of Scientific and Technical Information of China (English)

    张翔; 孙志达; 沈维雄; 江德琦; 朱月华; 王寒正; 金力

    2000-01-01

    Objective To provide the theoretical fundation for the further clinical application of mifepristone and anordrin compound.Materials & Methods Ribonuclease protection assay was used for the detection and quantitation of estrogen and progesterone receptor mRNAs in human decidua from the termination of early pregnancy. Three groups, each of which had 6~8 cases, were studied.Results Compared to the normal control group, estrogen and progesterone receptor mRNAs increased significantly (P <0. 05) in the mifepristone group, whereas the changes in the group administrated mifepristone compound which contains anordrin were not obvious.Conclusions The result suggests that with the similar clinical effect, mifepristone compound has less side effect on the patients, thus being more suitable for the anti-ear-ly pregnancy drug.

  12. Effect of Mifepristone and Anordrin Compound on Levels of Estrogen and Progesterone Receptor mRNAs in Human Decidua of Early Pregnancy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To provide the theoretical fundation for the further clinical application of mi fepristone and anordrin compound. Materials & Methods Ribonuclease protection assay was used for the detection and quantitation of estrogen and progesterone receptor mRNAs in human decidua from the termination of early pregnancy. Three groups, each of which had 6~8 cases, were studied. Results Compared to the normal control group, estrogen and progesterone receptor mRNAs increased significantly (P<0.05) in the mifepristone group, whereas the changes in the group administrated mifepristone compound which contains anordrin were not obvious. Conclusions The result suggests that with the similar clinical effect, mifepristone compound has less side effect on the patients, thus being more suitable for the anti-ear ly pregnancy drug.

  13. Ribosome Traffic on mRNAs Maps to Gene Ontology: Genome-wide Quantification of Translation Initiation Rates and Polysome Size Regulation

    OpenAIRE

    Ciandrini, Luca; Stansfield, Ian; Romano, M. Carmen

    2013-01-01

    To understand the complex relationship governing transcript abundance and the level of the encoded protein, we integrate genome-wide experimental data of ribosomal density on mRNAs with a novel stochastic model describing ribosome traffic dynamics during translation elongation. This analysis reveals that codon arrangement, rather than simply codon bias, has a key role in determining translational efficiency. It also reveals that translation output is governed both by initiation efficiency and...

  14. Towards simultaneous individual and tissue identification: A proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM

    OpenAIRE

    Zubakov, Dmitry; Kokmeijer, I.; Ralf, Arwin; N Rajagopalan; Calandro, L.; Wootton, S; Langit, R.; C. CHANG; Lagace, R.; Kayser, Manfred

    2015-01-01

    textabstractAbstract DNA-based individual identification and RNA-based tissue identification represent two commonly-used tools in forensic investigation, aiming to identify crime scene sample donors and helping to provide links between DNA-identified sample donors and criminal acts. Currently however, both analyses are typically performed separately. In this proof-of-principle study, we developed an approach for the simultaneous analysis of forensic STRs, amelogenin, and forensic mRNAs based ...

  15. The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct toles of stored and neosynthesizes mRNAs during germination

    OpenAIRE

    Rajjou, Loïc; Gallardo, Karine; Debeaujon, Isabelle; Vandekerckhove, Joël; Job, Claudette; Job, Dominique

    2004-01-01

    To investigate the role of stored and neosynthesized mRNAs in seed germination, we examined the effect of alpha-amanitin, a transcriptional inhibitor targeting RNA polymerase II, on the germination of nondormant Arabidopsis seeds. We used transparent testa mutants, of which seed coat is highly permeable, to better ascertain that the drug can reach the embryo during seed imbibition. Even with the most permeable mutant (tt2-1), germination (radicle protrusion) occurred in the absence of transcr...

  16. Identification and expression of mRNAs encoding bursicon in the plesiomorphic central nervous system of Homarus gammarus.

    Science.gov (United States)

    Sharp, Jasmine H; Wilcockson, David C; Webster, Simon G

    2010-10-01

    Ecdysis in arthropods is a complex process, regulated by many neurohormones, which must be released in a precisely coordinated manner. In insects, the ultimate hormone involved in this process is the cuticle tanning hormone, bursicon. Recently, this hormone has been identified in crustaceans. To further define the distribution of bursicon in crustacean nervous systems, and to compare hormone structures within the sub-phylum, cDNAs encoding both bursicon subunits were cloned and sequenced from the nervous system of the European lobster, Homarus gammarus, and expression patterns including those for CCAP determined using in-situ hybridisation, quantitative RT-PCR and immunohistochemistry. Full-length cDNAs encoded bursicon subunits of 121 amino acids (Average M(r): 13365.48) for Burs α, 115 amino acids (Average M(r): 12928.54) for Burs β. Amino acid sequences were most closely related to those of crabs, and for Burs β the sequence was identical to that of the American lobster, Homarus americanus. Complete co-localisation with CCAP in the VNC was seen. Copy numbers burs α, burs β and CCAP mRNAs were between 0.5 and 1.5 × 10(5) for both bursicon subunits, 0.5-6 × 10(5) per cdn neurone for CCAP. The terminal abdominal ganglia (AG 6-8) contained about 52 cdn-type neurons, making it the largest bursicon producing region in the CNS. Double labelling IHC using recombinant Carcinus Burs α and CCAP antisera demonstrated complete co-localisation in the VNC. On the basis of the results obtained, it is proposed that CCAP and bursicon release occur simultaneously during ecdysis in crustaceans. PMID:20691691

  17. Profiles of nuclear and mitochondrial encoded mRNAs in developing and quiescent embryos of Artemia franciscana.

    Science.gov (United States)

    Hardewig, I; Anchordoguy, T J; Crawford, D L; Hand, S C

    1996-05-24

    Embryos of the brine shrimp Artemia franciscana are able to withstand long bouts of environmental anoxia by entering a quiescent state during which metabolism is greatly depressed. Recent evidence supports a global arrest of protein synthesis during quiescence. In this study we measured the amounts of mRNA for a mitochondrial-encoded subunit of cytochrome c oxidase (COX I) and for nuclear-encoded actin during aerobic development, anaerobiosis, and aerobic acidosis (artificial quiescence imposed by intracellular acidification under aerobic conditions). The levels of both COX I and actin transcripts increased significantly during aerobic development. COX I mRNA levels were tightly correlated with previous measures of COX catalytic activity, which suggests that COX synthesis could be regulated by message concentration during aerobic development. The ontogenetic increase for these mRNAs was blocked by anoxia and aerobic acidosis. Importantly, the levels of COX I and actin mRNA did not decline appreciably during the 6 h bouts of quiescence, even though protein synthesis is acutely arrested by these same treatments. Thus, the constancy of mRNA levels during quiescence indicate that reduced protein synthesis is not caused by message limitation, but rather, is likely controlled at the translational level. One advantage of this regulatory mechanism is the conservation of mRNA molecules during quiescence, which would potentially favor a quick resumption of translation as soon as oxygen is returned to the embryos. Finally, because anoxia and aerobic acidosis are both characterized by acidic intracellular pH, the reduction in pH may serve, directly or indirectly, as one signal regulating levels of mRNA in this embryo during quiescence. PMID:8817476

  18. Sickle cell microRNAs inhibit the malaria parasite.

    Science.gov (United States)

    Duraisingh, Manoj T; Lodish, Harvey F

    2012-08-16

    Sickle cell hemoglobin conveys resistance to malaria. In this issue of Cell Host & Microbe, LaMonte et al. (2012) demonstrate a surprising mechanism for this innate immunity. A microRNA enriched in sickle red blood cells is translocated into the parasite, incorporated covalently into P. falciparum mRNAs and inhibits parasite growth.

  19. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Update 2002

    Science.gov (United States)

    Pesole, Graziano; Liuni, Sabino; Grillo, Giorgio; Licciulli, Flavio; Mignone, Flavio; Gissi, Carmela; Saccone, Cecilia

    2002-01-01

    The 5′- and 3′-untranslated regions (5′- and 3′-UTRs) of eukaryotic mRNAs are known to play a crucial role in post-transcriptional regulation of gene expression modulating nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and stability. UTRdb is a specialized database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized information not present in the primary databases including the presence of nucleotide sequence patterns already demonstrated by experimental analysis to have some functional role. All these patterns have been collected in the UTRsite database so that it is possible to search any input sequence for the presence of annotated functional motifs. Furthermore, UTRdb entries have been annotated for the presence of repetitive elements. All Internet resources we implemented for retrieval and functional analysis of 5′- and 3′-UTRs of eukaryotic mRNAs are accessible at http://bighost.area.ba.cnr.it/BIG/UTRHome/. PMID:11752330

  20. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs

    Science.gov (United States)

    Pesole, Graziano; Liuni, Sabino; Grillo, Giorgio; Licciulli, Flavio; Larizza, Alessandra; Makalowski, Wojciech; Saccone, Cecilia

    2000-01-01

    The 5′ and 3′ untranslated regions of eukaryotic mRNAs may play a crucial role in the regulation of gene expression controlling mRNA localization, stability and translational efficiency. For this reason we developed UTRdb, a specialized database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized information not present in the primary databases including the presence of nucleotide sequence patterns already demonstrated by experimental analysis to have some functional role. All these patterns have been collected in the UTRsite database so that it is possible to search any input sequence for the presence of annotated functional motifs. Furthermore, UTRdb entries have been annotated for the presence of repetitive elements. All internet resources implemented for retrieval and functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs are accessible at http://bigarea.area.ba.cnr.it:8000/EmbIT/UTRHome/ PMID:10592223

  1. Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes.

    OpenAIRE

    Xu, Z.; Hille, M B

    1990-01-01

    Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimenta...

  2. Exosomes Released from Breast Cancer Carcinomas Stimulate Cell Movement

    OpenAIRE

    Dinari A Harris; Patel, Sajni H.; Gucek, Marjan; Hendrix, An; Westbroek, Wendy; Taraska, Justin W.

    2015-01-01

    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and e...

  3. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry.

    Science.gov (United States)

    Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  4. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry

    Science.gov (United States)

    Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  5. Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2.

    Science.gov (United States)

    Yamamoto, Tomomi M; Cook, Jonathan M; Kotter, Cassandra V; Khat, Terry; Silva, Kevin D; Ferreyros, Michael; Holt, Justin W; Knight, Jefferson D; Charlesworth, Amanda

    2013-10-01

    Maternal mRNAs are translationally regulated during early development. Zar1 and its closely related homolog, Zar2, are both crucial in early development. Xenopus laevis Zygote arrest 2 (Zar2) binds to the Translational Control Sequence (TCS) in maternal mRNAs and regulates translation. The molecular mechanism of Zar1 has not been described. Here we report similarities and differences between Xenopus Zar1 and Zar2. Analysis of Zar sequences in vertebrates revealed two Zar family members with conserved, characteristic amino acid differences in the C-terminal domain. The presence of only two vertebrate Zar proteins was supported by analyzing Zar1 synteny. We propose that the criteria for naming Zar sequences are based on the characteristic amino acids and the chromosomal context. We also propose reclassification of some Zar sequences. We found that Zar1 is expressed throughout oogenesis and is stable during oocyte maturation. The N-terminal domain of Zar1 repressed translation of a reporter construct in immature oocytes. Both Zar1 and Zar2 bound to the TCS in the Wee1 and Mos 3' UTRs using a zinc finger in the C-terminal domain. However, Zar1 had much higher affinity for RNA than Zar2. To show the functional significance of the conserved amino acid substitutions, these residues in Zar2 were mutated to those found in Zar1. We show that these residues contributed to the different RNA binding characteristics of Zar1 compared to Zar2. Our study shows that Zar proteins have generally similar molecular functions in the translational regulation of maternal mRNAs, but they may have different roles in early development. PMID:23827238

  6. Arterivirus Nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs.

    Directory of Open Access Journals (Sweden)

    Danny D Nedialkova

    2010-02-01

    Full Text Available The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the genomic mRNA, as well as synthesis of subgenomic (sg mRNAs. Arteriviruses and coronaviruses, distantly related members of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-length templates for the synthesis of a nested set of sg mRNAs. Non-structural protein 1 (nsp1 of the arterivirus equine arteritis virus (EAV, a multifunctional regulator of viral RNA synthesis and virion biogenesis, was previously implicated in controlling the balance between genome replication and sg mRNA synthesis. Here, we employed reverse and forward genetics to gain insight into the multiple regulatory roles of nsp1. Our analysis revealed that the relative abundance of viral mRNAs is tightly controlled by an intricate network of interactions involving all nsp1 subdomains. Distinct nsp1 mutations affected the quantitative balance among viral mRNA species, and our data implicate nsp1 in controlling the accumulation of full-length and subgenome-length minus-strand templates for viral mRNA synthesis. The moderate differential changes in viral mRNA abundance of nsp1 mutants resulted in similarly altered viral protein levels, but progeny virus yields were greatly reduced. Pseudorevertant analysis provided compelling genetic evidence that balanced EAV mRNA accumulation is critical for efficient virus production. This first report on protein-mediated, mRNA-specific control of nidovirus RNA synthesis reveals the existence of an integral control mechanism to fine-tune replication, sg mRNA synthesis, and virus production, and establishes a major role for nsp1 in coordinating the arterivirus replicative cycle.

  7. Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs

    OpenAIRE

    Tao, Xianzun; Gao, Guangxia

    2015-01-01

    Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpressio...

  8. Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation.

    Directory of Open Access Journals (Sweden)

    Luca Ciandrini

    Full Text Available To understand the complex relationship governing transcript abundance and the level of the encoded protein, we integrate genome-wide experimental data of ribosomal density on mRNAs with a novel stochastic model describing ribosome traffic dynamics during translation elongation. This analysis reveals that codon arrangement, rather than simply codon bias, has a key role in determining translational efficiency. It also reveals that translation output is governed both by initiation efficiency and elongation dynamics. By integrating genome-wide experimental data sets with simulation of ribosome traffic on all Saccharomyces cerevisiae ORFs, mRNA-specific translation initiation rates are for the first time estimated across the entire transcriptome. Our analysis identifies different classes of mRNAs characterised by their initiation rates, their ribosome traffic dynamics, and by their response to ribosome availability. Strikingly, this classification based on translational dynamics maps onto key gene ontological classifications, revealing evolutionary optimisation of translation responses to be strongly influenced by gene function.

  9. Changes in dopamine D2 and GluR-1 glutamate receptor mRNAs in the rat brain after treatment with phencyclidine.

    Directory of Open Access Journals (Sweden)

    Tomita,Hiroaki

    1995-04-01

    Full Text Available In situ hybridization of slide-mounted brain sections from rats subjected to acute and chronic phencyclidine treatment was carried out using synthetic oligonucleotides complementary to dopamine D2-receptor and non-N-methyl-D-aspartate (NMDA glutamate-receptor-subunit (GluR-1 mRNAs. There was no significant difference in either the D2-receptor or the GluR-1 mRNA levels in any brain region of the acute phencyclidine (10 mg/kg-treated and control groups. However, chronic administration of phencyclidine (10 mg/kg/day, 14 days significantly decreased the dopamine D2-receptor mRNA level in the caudate-putamen (by 27%, P < 0.01 and significantly increased the GluR-1 mRNA level in the prefrontal cortex (by 29%, P < 0.001. These results suggest that the chronic pharmaco-behavioral effects of phencyclidine may involve expression of both dopamine- and non-NMDA glutamate-receptor mRNAs.

  10. Gibberellin-induced changes in the populations of translatable mRNAs and accumulated polypeptides in dwarfs of maize and pea

    International Nuclear Information System (INIS)

    Two-dimensional gel electrophoresis was used to characterize the molecular mechanism of gibberellin-induced stem elongation in maize and pea. Dwarf mutants of maize and pea lack endogenous gibberellin (GA1) but become phenotypically normal with exogenous applications of this hormone. Sections from either etiolated maize or green pea seedlings were incubated in the presence of [35S] methionine for 3 hours with or without gibberellin. Labeled proteins from soluble and particulate fractions were analyzed by two-dimensional gel electrophoresis and specific changes in the patterns of protein synthesis were observed upon treatment with gibberellin. Polyadenylated mRNAs from etiolated or green maize shoots and green pea epicotyls treated or not with gibberellin (a 0.5 to 16 hour time course) were assayed by translation in a rabbit reticulocyte extract and separation of products by two-dimensional gel electrophoresis. Both increases and decreases in the levels of specific polypeptides were seen for pea and corn, and these changes were observed within 30 minutes of treatment with gibberellin. Together, these data indicate that gibberellin induces changes in the expression of a subset of gene products within elongating dwarfs. This may be due to changes in transcription rate, mRNA stability, or increased efficiency of translation of certain mRNAs

  11. Active oxygen and cell death in cereal aleurone cells.

    Science.gov (United States)

    Fath, Angelika; Bethke, Paul; Beligni, Veronica; Jones, Russell

    2002-05-01

    The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.

  12. Extracellular protease mRNAs are predominantly expressed in the stromal areas of microdissected mouse breast carcinomas

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Pennington, Caroline J; Almholt, Kasper;

    2005-01-01

    cells. We have now used laser capture microdissection and real-time PCR to quantify the mRNA expression of components of matrix-degrading proteolytic systems in cancer and stromal areas of mouse mammary tumors genetically induced by the polyoma virus middle T (PyMT) antigen. We examined the mRNA levels...... the possible interactions between cancer and stromal cells during the development of breast cancer, and the results suggest that stromal cells are involved in carcinogenesis and tumor progression, which may have important implications for the biology and therapy of cancer....

  13. Translation Regulation and RNA Granule Formation after Heat Shock of Procyclic Form Trypanosoma brucei: Many Heat-Induced mRNAs Are also Increased during Differentiation to Mammalian-Infective Forms

    Science.gov (United States)

    Minia, Igor; Merce, Clementine; Terrao, Monica

    2016-01-01

    African trypanosome procyclic forms multiply in the midgut of tsetse flies, and are routinely cultured at 27°C. Heat shocks of 37°C and above result in general inhibition of translation, and severe heat shock (41°C) results in sequestration of mRNA in granules. The mRNAs that are bound by the zinc-finger protein ZC3H11, including those encoding refolding chaperones, escape heat-induced translation inhibition. At 27°C, ZC3H11 mRNA is predominantly present as an untranslated cytosolic messenger ribonucleoprotein particle, but after heat shocks of 37°C—41°C, the ZC3H11 mRNA moves into the polysomal fraction. To investigate the scope and specificities of heat-shock translational regulation and granule formation, we analysed the distributions of mRNAs on polysomes at 27°C and after 1 hour at 39°C, and the mRNA content of 41°C heat shock granules. We found that mRNAs that bind to ZC3H11 remained in polysomes at 39°C and were protected from sequestration in granules at 41°C. As previously seen for starvation stress granules, the mRNAs that encode ribosomal proteins were excluded from heat-shock granules. 70 mRNAs moved towards the polysomal fraction after the 39°C heat shock, and 260 increased in relative abundance. Surprisingly, many of these mRNAs are also increased when trypanosomes migrate to the tsetse salivary glands. It therefore seems possible that in the wild, temperature changes due to diurnal variations and periodic intake of warm blood might influence the efficiency with which procyclic forms develop into mammalian-infective forms. PMID:27606618

  14. Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5' alternative splice sites responsible for multiple mRNAs

    International Nuclear Information System (INIS)

    A full-length genomic clone for human tyrosine hydroxylase (L-tyrosine, tetrahydropteridine:oxygen oxidoreductase, EC 1.14.16.2) has been isolated. A human brain genomic library constructed in EMBL3 was screened by using a rat cDNA for tyrosine hydroxylase as a probe. Out of one million recombinant phage, one clone was identified that hybridized to both 5' and 3' rat cDNA probes. Restriction endonuclease mapping, Southern blotting, and sequence analysis revealed that, like its rodent counterpart, the human gene is single copy, contains 13 primary exons, and spans approximately 8 kilobases (kb). In contrast to the rat gene, human tyrosine hydroxylase undergoes alternative RNA processing within intron 1, generating at least three distinct mRNAs. A comparison of the human tyrosine hydroxylase and phenylalanine hydroxylase genes indicates that although both probably evolved from a common ancestral gene, major changes in the size of introns have occurred since their divergence

  15. Hormonal and photoperiodic modulation of testicular mRNAs coding for inhibin/activin subunits and follistatin in Clethrionomys glareolus, Schreber.

    Science.gov (United States)

    Tähkä, K M; Kaipia, A; Toppari, J; Tähkä, S; Tuuri, T; Tuohimaa, P

    1998-07-01

    Photoperiodic and hormonal modulation of mRNAs for testicular inhibin/activin subunits and follistatin were studied in a seasonally breeding rodent, the bank vole (Clethrionomys glareolus). Photoperiod-induced testicular regression had no effect on the relatively low steady-state levels of follistatin mRNA. Inhibin alpha (I alpha) and beta B (I beta B) mRNA levels were significantly higher in regressed than in active gonads, but inhibin beta A was undetectable. The effect of gonadotropin administration on testicular weight and mRNA concentrations differed between the sexually active and quiescent voles. Neither FSH (1.2 U/kg; s.c. for 5 days) nor hCG (600 IU/kg; s.c. for 5 days) affected testicular weight in sexually active voles, whereas both gonadotropins significantly increased testicular weight in photo-regressed individuals. FSH had no effect on I alpha or I beta B mRNA concentrations in the active testes, whereas excessive hCG challenge induced a decrease in the steady-state levels of these mRNAs. FSH induced an increase in I alpha mRNA concentrations in the regressed gonad, whereas both gonadotropins concomitantly down-regulated I beta B mRNA levels. In conclusion, the high expression of I alpha and I beta B mRNA in the regressed testis imply autocrine and paracrine roles for inhibin/activin in the quiescent gonad of seasonal breeders. Inhibin alpha-subunit expression is at least partly under the control of FSH in the bank vole testis.

  16. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective

    OpenAIRE

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly ...

  17. Distinct expression pattern and post-transcriptional regulation of cell cycle genes in the glandular epithelia of avian ovarian carcinomas.

    Directory of Open Access Journals (Sweden)

    Jin-Young Lee

    Full Text Available The cell cycle system is controlled in a timely manner by three groups of cyclins, cyclin dependent kinases and cyclin dependent kinase inhibitors. Abnormal alterations of cell cycle regulatory mechanisms are a common feature of many diseases including numerous tumor types such as ovarian cancer. Although a variety of cell cycle regulatory genes are well known in mammalian species including human and mice, they are not well studied in avian species, especially in laying hens which are recognized as an excellent animal model for research relevant to human ovarian carcinogenesis. Therefore, in the present study, we focused on comparative expression and regulation of expression of candidate genes which might be involved in the cell cycle program in surface epithelial ovarian cancer in laying hens. Our current results indicate that expression levels of cell cycle gene transcripts are greater in cancerous as compared to normal ovaries. In particular, cyclin A2 (CCNA2, CCND1, CCND2, CCND3, CCNE2, cyclin dependent kinase 1 (CDK1, CDK3, CDK5, cyclin dependent kinases inhibitor 1A (CDKN1A and CDKN1B were upregulated predominantly in the glandular epithelia of cancerous ovaries from laying hens. Further, several microRNAs (miRs, specifically miR-1798, miR-1699, miR-223 and miR-1744 were discovered to influence expression of CCND1, CCNE2, CDK1, and CDK3 mRNAs, respectively, via their 3'-UTR which suggests that post-transcriptional regulation of gene expression influences their expression in laying hens. Moreover, miR-1626 influenced CDKN1A expression and miR-222, miR-1787 and miR-1812 regulated CDKN1B expression via their 3'-UTR regions. Collectively, results of the present study demonstrate increased expression of cell cycle-related genes in cancerous ovaries of laying hens and indicate that expression of these genes is post-transcriptionally regulated by specific microRNAs.

  18. Next generation sequencing analysis of human platelet PolyA+ mRNAs and rRNA-depleted total RNA.

    Directory of Open Access Journals (Sweden)

    Antheia Kissopoulou

    Full Text Available BACKGROUND: Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. MATERIALS AND METHODS: We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts. RESULTS: Consistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq. CONCLUSION: The present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components

  19. A cell-free extract from yeast cells for studying mRNA turnover.

    OpenAIRE

    Vreken, P.; Buddelmeijer, N.; Raué, H A

    1992-01-01

    We have isolated a cell-free extract from yeast cells that reproduces the differences observed in vivo in the rate of turnover of individual yeast mRNAs. Detailed analysis of the degradation of yeast phosphoglycerate kinase (PGK) mRNA in this system demonstrated that both natural and synthetically prepared PGK transcripts are degraded by the same pathway previously established by us in vivo, consisting of endonucleolytic cleavage at a number of 5'-GGUG-3' sequence motifs within a short target...

  20. The DYW Subgroup PPR Protein MEF35 Targets RNA Editing Sites in the Mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Nadja Brehme

    Full Text Available RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C to uridine (U mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35 to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209, for cytochrome b (cob-286 and for subunit 4 of complex I (nad4-1373, respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.

  1. Palytoxin and an Ostreopsis toxin extract increase the levels of mRNAs encoding inflammation-related proteins in human macrophages via p38 MAPK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rita Crinelli

    Full Text Available BACKGROUND: Palytoxin and, likely, its analogues produced by the dinoflagellate genus Ostreopsis, represent a class of non-proteinaceous compounds displaying high toxicity in animals. Owing to the wide distribution and the poisonous effects of these toxins in humans, their chemistry and mechanism of action have generated a growing scientific interest. Depending on the exposure route, palytoxin and its Ostreopsis analogues may cause several adverse effects on human health, including acute inflammatory reactions which seem more typical of cutaneous and inhalation contact. These observations have led us to hypothesize that these toxins may activate pro-inflammatory signalling cascades. METHODOLOGY AND PRINCIPAL FINDINGS: Here we demonstrate that palytoxin and a semi-purified Ostreopsis cf. ovata toxin extract obtained from a cultured strain isolated in the NW Adriatic Sea and containing a putative palytoxin and all the ovatoxins so far known--including the recently identified ovatoxin-f--significantly increase the levels of mRNAs encoding inflammation-related proteins in immune cells, i.e. monocyte-derived human macrophages, as assessed by Real-Time PCR analysis. Western immunoblot and electrophoretic mobility shift assays revealed that nuclear transcription factor -κB (NF-κB is activated in cells exposed to toxins in coincidence with reduced levels of the inhibitory protein IκB-α. Moreover, Mitogen-Activated Protein Kinases (MAPK were phosphorylated in response to palytoxin, as also reported by others, and to the Ostreopsis toxin extract, as shown here for the first time. By using specific chemical inhibitors, the involvement of NF-κB and p38 MAPK in the toxin-induced transcription and accumulation of Cycloxigenase-2, Tumor Necrosis Factor-α, and Interleukin-8 transcripts has been demonstrated. CONCLUSIONS AND SIGNIFICANCE: The identification of specific molecular targets of palytoxin and its Ostreopsis analogues, besides contributing to

  2. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit

    2013-06-01

    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  3. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor; Nicolas, Francisco; Moxon, Simon; Haro, Juan de; Calo, Silvia; Torres-Martinez, Santiago; Moulton, Vincent; Ruiz-Vazquez, Rosa; Dalmay, Tamas

    2011-09-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi

  4. Expression and regulation of mRNAs for insulin-like growth factor-I receptor and LH receptor in corpora lutea

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Relationship between insulin-like growth factor-I receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2 inhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2. These data suggest that IGF-I may be involved in regulating CL function, and maintaining CL structure through changes in expression of its receptors. Inhibited expression of IGF-IR by PGF2 may be part of mechanisms for regression of CL.

  5. Expression and regulation of mRNAs for insulin-like growth factor-I receptor and LH receptor in corpora lutea

    Institute of Scientific and Technical Information of China (English)

    罗文祥; 祝诚

    2000-01-01

    Relationship between insulin-like growth factor-l receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2ainhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2α. These data suggest that IGF-I may be involved in regulating CL function, and maintai

  6. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells.

    OpenAIRE

    Shimomura, I; Shimano, H; Horton, J D; Goldstein, J L; Brown, M S

    1997-01-01

    The 5' end of the mRNA-encoding sterol regulatory element binding protein-1 (SREBP-1) exists in two forms, designated 1a and 1c. The divergence results from the use of two transcription start sites that produce two separate 5' exons, each of which is spliced to a common exon 2. Here we show that the ratio of SREBP-1c to 1a transcripts varies markedly among organs of the adult mouse. At one extreme is the liver, in which the 1c transcript predominates by a 9:1 ratio. High 1c:1a ratios are also...

  7. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ. PMID:26839690

  8. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.

  9. Nucleotides Flanking the Start Codon in hsp70 mRNAs with Very Short 5'-UTRs Greatly Affect Gene Expression in Haloarchaea.

    Directory of Open Access Journals (Sweden)

    Wenchao Chen

    Full Text Available Leaderless translation is prevalent in haloarchaea, with many of these leaderless transcripts possessing short 5'-untranslated regions (UTRs less than 10 nucleotides. Whereas, little is known about the function of this very short 5'-UTR. Our previous studies determined that just four nucleotides preceded the start codon of hsp70 mRNA in Natrinema sp. J7, with residues -3A and +4G, relative to the A of the ATG start codon, acting as the preferred bases around the start codon of all known haloarchaeal hsp70 genes. Here, we examined the effects of nucleotides flanking the start codon on gene expression. The results revealed that shortening and deletion of the short 5'-UTR enhanced transcript levels; however, it led to significant reductions in overall translational efficiency. AUG was efficiently used as start codons, in both the presence and absence of short 5'-UTRs. GUG also could initiate translation, even though it was so inefficient that it would not be detected without considerably elevated transcript. Nucleotide substitutions at position -4 to +6 were shown to affect gene expression by transcript and/or translational levels. Notably, -3A and A/U nucleotides at position +4~+6 were more optimal for gene expression. Nucleotide transversions of -3A to -3C and +4G to +4T with hsp70 promoter from either Haloferax volcanii DS70 or Halobacterium salinarum NRC-1 showed the same effects on gene expression as that of Natrinema sp. J7. Taken together, our results suggest that the nucleotides flanking the start codon in hsp70 mRNAs with very short 5'-UTRs play an important role in haloarchaeal gene expression.

  10. Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress.

    Science.gov (United States)

    Cassol, Daniela; Cruz, Fernanda P; Espindola, Kauê; Mangeon, Amanda; Müller, Caroline; Loureiro, Marcelo Ehlers; Corrêa, Régis L; Sachetto-Martins, Gilberto

    2016-09-01

    Quantitative real-time PCR (RT-qPCR) is one of the most powerful and sensitive techniques to the study of gene expression. Several factors influence RT-qPCR performance though, including the stability of the reference genes used for data normalization. While the selection of appropriate reference genes is crucial for accurate and reliable gene expression analysis, no suitable reference genes have been previously identified in castor bean under drought stress. In this study, the expression stability of eleven mRNAs, thirteen microRNAs (miRNAs) and one small nuclear RNA were analyzed in roots and leaves across different levels of water deficit. Three different algorithms were employed to analyze the RT-qPCR data, and the resulting outputs were merged using a non-weighted unsupervised rank aggregation method. Our analysis indicated that the Elongation factor 1-beta (EF1B), Protein phosphatase 2A (PP2A) and ADP-ribosylation factor (ADP) ranked as the best candidates across diverse samples submitted to different levels of drought conditions. EF1B and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and EF1B and SKP1/ASK-interacting protein 16 (SKIP16) were found as the most suitable reference genes for expression analysis in roots and leaves, respectively. In addition, miRNAs miR168, miR160 and miR397 were selected as optimal reference genes across all tissues and treatments. miR168 and miR156 were recommended as reference for roots, while miR168 and miR160 were recommended for leaves. Together, our results constitute the first attempt to identify and validate the most suitable reference genes for accurate normalization of gene expression in castor bean under drought stress.

  11. Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress.

    Science.gov (United States)

    Cassol, Daniela; Cruz, Fernanda P; Espindola, Kauê; Mangeon, Amanda; Müller, Caroline; Loureiro, Marcelo Ehlers; Corrêa, Régis L; Sachetto-Martins, Gilberto

    2016-09-01

    Quantitative real-time PCR (RT-qPCR) is one of the most powerful and sensitive techniques to the study of gene expression. Several factors influence RT-qPCR performance though, including the stability of the reference genes used for data normalization. While the selection of appropriate reference genes is crucial for accurate and reliable gene expression analysis, no suitable reference genes have been previously identified in castor bean under drought stress. In this study, the expression stability of eleven mRNAs, thirteen microRNAs (miRNAs) and one small nuclear RNA were analyzed in roots and leaves across different levels of water deficit. Three different algorithms were employed to analyze the RT-qPCR data, and the resulting outputs were merged using a non-weighted unsupervised rank aggregation method. Our analysis indicated that the Elongation factor 1-beta (EF1B), Protein phosphatase 2A (PP2A) and ADP-ribosylation factor (ADP) ranked as the best candidates across diverse samples submitted to different levels of drought conditions. EF1B and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and EF1B and SKP1/ASK-interacting protein 16 (SKIP16) were found as the most suitable reference genes for expression analysis in roots and leaves, respectively. In addition, miRNAs miR168, miR160 and miR397 were selected as optimal reference genes across all tissues and treatments. miR168 and miR156 were recommended as reference for roots, while miR168 and miR160 were recommended for leaves. Together, our results constitute the first attempt to identify and validate the most suitable reference genes for accurate normalization of gene expression in castor bean under drought stress. PMID:27156134

  12. Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs.

    Science.gov (United States)

    Mayberry, Laura K; Allen, M Leah; Dennis, Michael D; Browning, Karen S

    2009-08-01

    Eukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analysis to most likely be a monomer with an extended structure. An extended structure would facilitate the multiple interactions of eIF4B with mRNA as well as other initiation factors (eIF4A, eIF4G, PABP, and eIF3). Eight mRNAs, barley (Hordeum vulgare) alpha-amylase mRNA, rabbit beta-hemoglobin mRNA, Arabidopsis heat shock protein 21 (HSP21) mRNA, oat (Avena sativa) globulin, wheat (Triticum aestivum) germin, maize (Zea mays) alcohol dehydrogenase, satellite tobacco necrosis virus RNA, and alfalfa mosaic virus (AMV) 4, were used in wheat germ in vitro translation assays to measure their dependence on eIF4B and eIF4F isoforms. The two Arabidopsis eIF4B isoforms, as well as native and recombinant wheat eIF4B, showed similar responses in the translation assay. AMV RNA 4 and Arabidopsis HSP21 showed only a slight dependence on the presence of eIF4B isoforms, whereas rabbit beta-hemoglobin mRNA and wheat germin mRNA showed modest dependence. Barley alpha-amylase, oat globulin, and satellite tobacco necrosis virus RNA displayed the strongest dependence on eIF4B. These results suggest that eIF4B has some effects on mRNA discrimination during initiation of translation. Barley alpha-amylase, oat globulin, and rabbit beta-hemoglobin mRNA showed the highest activity with eIF4F, whereas Arabidopsis HSP21 and AMV RNA 4 used both eIF4F and eIF(iso)4F equally well. These results suggest that differential or optimal translation of mRNAs may require initiation complexes composed of specific isoforms of initiation factor gene products. Thus, individual mRNAs or classes of mRNAs may respond to the

  13. Towards simultaneous individual and tissue identification: A proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM.

    Science.gov (United States)

    Zubakov, D; Kokmeijer, I; Ralf, A; Rajagopalan, N; Calandro, L; Wootton, S; Langit, R; Chang, C; Lagace, R; Kayser, M

    2015-07-01

    DNA-based individual identification and RNA-based tissue identification represent two commonly-used tools in forensic investigation, aiming to identify crime scene sample donors and helping to provide links between DNA-identified sample donors and criminal acts. Currently however, both analyses are typically performed separately. In this proof-of-principle study, we developed an approach for the simultaneous analysis of forensic STRs, amelogenin, and forensic mRNAs based on parallel targeted DNA/RNA sequencing using the Ion Torrent Personal Genome Machine(®) (PGM™) System coupled with the AmpliSeq™ targeted amplification. We demonstrated that 9 autosomal STRs commonly used for individual identification (CSF1PO, D16S539, D3S1358, D5S818, D7S820, D8S1179, TH01, TPOX, and vWA), the AMELX/AMELY system widely applied for sex identification, and 12 mRNA markers previously established for forensic tissue identification (ALAS2 and SPTB for peripheral blood, MMP10 and MMP11 for menstrual blood, HTN3 and STATH for saliva, PRM1 and TGM4 for semen, CYP2B7P1 and MUC4 for vaginal secretion, CCL27 and LCE1C for skin) together with two candidate reference mRNA markers (HPRT1 and SDHA) can all be successfully combined. Unambiguous mRNA-based tissue identification was achieved in all samples from all forensically relevant tissues tested, and STR sequencing analysis of the tissue sample donors was 100% concordant with conventional STR profiling using a commercial kit. Successful STR analysis was obtained from 1ng of genomic DNA and mRNA analysis from 10ng total RNA; however, sensitivity limits were not investigated in this proof-of-principle study and are expected to be much lower. Since dried materials with noticeable RNA degradation and small DNA/RNA amplicons with high-coverage sequencing were used, the achieved correct individual and tissue identification demonstrates the suitability of this approach for analyzing degraded materials in future forensic applications. Overall

  14. Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus.

    Science.gov (United States)

    Ayson, Felix G; de Jesus, Evelyn Grace T; Moriyama, Shunsuke; Hyodo, Susumu; Funkenstein, Bruria; Gertler, Arieh; Kawauchi, Hiroshi

    2002-04-01

    In rodents, the expression of insulin-like growth factor II (IGF-II) is higher than that of insulin-like growth factor I (IGF-I) during fetal life while the reverse is true after birth. We wanted to examine whether this is also true in fish and whether IGF-I and IGF-II are differentially regulated during different stages of embryogenesis and early larval development in rabbitfish. We first cloned the cDNAs of rabbitfish IGF-I and IGF-II from the liver. Rabbitfish IGF-I has an open reading frame of 558 bp that codes for a signal peptide of 44 amino acids (aa), a mature protein of 68 aa, and a single form of E domain of 74 aa. Rabbitfish IGF-II, on the other hand, has an open reading frame of 645 bp that codes for a signal peptide of 47 aa, a mature protein of 70 aa, and an E domain of 98 aa. On the amino acid level, rabbitfish IGF-I shares 68% similarity with IGF-II. We then examined the relative expression of the two IGFs in unfertilized eggs, during different stages of embryogenesis, and in early larval stages of rabbitfish by a semiquantitative reverse transcription-polymerase chain reaction. Primers that amplify the mature peptide region of both IGFs were used and PCR for both peptides was done simultaneously, with identical PCR conditions for both. The identity of the PCR products was confirmed by direct sequencing. Contrary to published reports for seabream and rainbow trout, IGF-I mRNA was not detected in rabbitfish unfertilized eggs; it was first expressed in larvae soon after hatching. IGF-II mRNA, however, was expressed in unfertilized eggs, albeit weakly, and was already strongly expressed during the cleavage stage. mRNAs for both peptides were strongly expressed in the larvae, although IGF-II mRNA expression was higher than IGF-I expression.

  15. Sensitization to the behavioural effects of cocaine: alterations in tyrosine hydroxylase or endogenous opioid mRNAs are not necessarily involved.

    Science.gov (United States)

    Alvarez Fischer, D; Schäfer, M K; Ferger, B; Gross, S; Westermann, R; Weihe, E; Kuschinsky, K

    2001-03-01

    After repeated administration of cocaine at intervals, sensitization phenomena can be observed, so that its behavioural effects are enhanced. Since this phenomenon is long-lasting, it was of interest to study which persistent alterations in the activity of dopaminergic neurones or of endogenous opioid systems downstream of dopaminergic synapses in the basal ganglia are involved in the sensitization. Cocaine (10 mg/kg i.p.) was administered to rats on days 1, 3, 5 and 7 and saline on days 2, 4 and 6 ("repeated cocaine"), or saline was injected on days 1-6 and cocaine on day 7 ("acute cocaine"), or saline was injected on days 1-7 ("saline group"). The "repeated cocaine" schedule led to a significant sensitization to the locomotor activation produced by cocaine on day 7 or on day 17, 10 days after the end of sensitization protocol. Microdialysis in the nucleus accumbens which was performed after administration of cocaine (10 mg/kg i.p.) on day 7, or after an administration of the same dose 10 days after the last administration of cocaine, respectively, revealed significant acute increases of extracellular dopamine to about 200% of basal values. These increases were similar in "acute cocaine" and in "repeated cocaine" animals both after 7 days and after 17 days. For in situ hybridization studies, rats were sacrificed on day 7, 4.5 h after the last cocaine or saline administration. The mRNA for tyrosine hydroxylase (TH) in substantia nigra + ventral tegmental area was significantly elevated to about 140% of saline controls both in the "repeated cocaine" and the "acute cocaine" group as compared with the "saline group". In contrast, there were no differences between the three groups in the mRNAs of preprodynorphin or preproenkephalin levels measured in the nucleus accumbens (core and shell). These results suggest that sensitization phenomena to cocaine are not necessarily connected with alterations in the dopaminergic activity in the mesolimbic system or in the

  16. Origin, properties, and regulated expression of multiple mRNAs encoded by the protein kinase C1 gene of Caenorhabditis elegans.

    Science.gov (United States)

    Land, M; Islas-Trejo, A; Rubin, C S

    1994-05-20

    Recently, we cloned and characterized cDNA encoding a novel, protein kinase C (designated PKC1B) from Caenorhabditis elegans. PKC1B (707 amino acid residues) is a developmentally regulated, calcium-independent kinase that is expressed exclusively in sensory neurons and related interneurons. We have now discovered a mechanism by which a second, distinct mRNA (PKC1A mRNA) with increased protein coding potential is generated from the C. elegans PKC1 gene. PKC1A mRNA is produced in a process that involves the utilization of an alternative, distal promoter, the incorporation of two unique exons into the mRNA, and alternative cis/trans splicing. Diversity among PKC1 gene transcripts is increased substantially by trans-splicing. The 5' end of PKC1A mRNA contains an acceptor site that is modified by the addition of either a classical spliced leader sequence 2 or one of four novel spliced leaders. PKC1A mRNA encodes a predicted kinase that contains the entire sequence of PKC1B as well as an N-terminal extension of 56 residues. The extension contains a preponderance of basic amino acids. The levels of transcripts arising from the distal (1A) and proximal (1B) promoters for the PKC1 gene are differentially regulated during C. elegans development. The ratio of 1B mRNA:1A mRNA varies from 40:1 to unity as the nematodes progress from early larval stages to mature adults. The novel exons in the PKC1A structural gene are not contiguous with the PKC1A promoter but are instead positioned downstream from a second gene, kinase upstream gene-1, in the context of a multicystronic operon. PKC1A and kinase upstream gene-1 mRNAs are coordinately expressed in a fixed ratio throughout C. elegans post-embryonic development, suggesting that a shared upstream promoter regulates transcription of both genes. Finally, PKC1A and PKC1B mRNA levels are differentially regulated by phorbol esters in a process that may involve the participation of another PKC isoform that is analogous to mammalian PKC

  17. Towards simultaneous individual and tissue identification: A proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM.

    Science.gov (United States)

    Zubakov, D; Kokmeijer, I; Ralf, A; Rajagopalan, N; Calandro, L; Wootton, S; Langit, R; Chang, C; Lagace, R; Kayser, M

    2015-07-01

    DNA-based individual identification and RNA-based tissue identification represent two commonly-used tools in forensic investigation, aiming to identify crime scene sample donors and helping to provide links between DNA-identified sample donors and criminal acts. Currently however, both analyses are typically performed separately. In this proof-of-principle study, we developed an approach for the simultaneous analysis of forensic STRs, amelogenin, and forensic mRNAs based on parallel targeted DNA/RNA sequencing using the Ion Torrent Personal Genome Machine(®) (PGM™) System coupled with the AmpliSeq™ targeted amplification. We demonstrated that 9 autosomal STRs commonly used for individual identification (CSF1PO, D16S539, D3S1358, D5S818, D7S820, D8S1179, TH01, TPOX, and vWA), the AMELX/AMELY system widely applied for sex identification, and 12 mRNA markers previously established for forensic tissue identification (ALAS2 and SPTB for peripheral blood, MMP10 and MMP11 for menstrual blood, HTN3 and STATH for saliva, PRM1 and TGM4 for semen, CYP2B7P1 and MUC4 for vaginal secretion, CCL27 and LCE1C for skin) together with two candidate reference mRNA markers (HPRT1 and SDHA) can all be successfully combined. Unambiguous mRNA-based tissue identification was achieved in all samples from all forensically relevant tissues tested, and STR sequencing analysis of the tissue sample donors was 100% concordant with conventional STR profiling using a commercial kit. Successful STR analysis was obtained from 1ng of genomic DNA and mRNA analysis from 10ng total RNA; however, sensitivity limits were not investigated in this proof-of-principle study and are expected to be much lower. Since dried materials with noticeable RNA degradation and small DNA/RNA amplicons with high-coverage sequencing were used, the achieved correct individual and tissue identification demonstrates the suitability of this approach for analyzing degraded materials in future forensic applications. Overall

  18. Molecular beacon – tool for real time studying gene activity in stem cells.

    OpenAIRE

    Ilieva, Mirolyuba; Dufva, Martin

    2012-01-01

    Cells respond to their internal genetic programs and external stimuli by modulating the synthesis of specific mRNAs. Direct observation of mRNA expression in living cells can provide valuable information with regards to understanding fundamental processes such cell differentiation, regeneration and cancerogenesis. Molecular beacon technology is based on fluorescence resonance energy transfer (FRET) and the complementary pairing principles. These fluorescent molecular probes are highly specifi...

  19. The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB–atpE dicistronic mRNAs in chloroplasts

    OpenAIRE

    Suzuki, Haruka; Kuroda, Hiroshi; Yukawa, Yasushi; Sugiura, Masahiro

    2011-01-01

    The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the ...

  20. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    Science.gov (United States)

    Yunusov, Dinar; Anderson, Leticia; Dasilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-09-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines.

  1. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    Science.gov (United States)

    Yunusov, Dinar; Anderson, Leticia; DaSilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-01-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines. PMID:27605307

  2. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    OpenAIRE

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  3. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases

    OpenAIRE

    Yang, Qiwei; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Cells release into the extracellular environment, diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles. A number of studies indicate that these extracellular vehicles (EVs) mediate the interaction between cancer cells and their microenvironment; and thereby, play a critical role in the development of cancers. EVs contain cargo which consist of proteins, lipids, mRNAs, and miRNAs that can be delivered to different types of cells in nascen...

  4. Metabolic properties of chicken embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cellular energy metabolism correlates with cell fate,but the metabolic properties of chicken embryonic stem (chES) cells are poorly understood.Using a previously established chES cell model and electron microscopy (EM),we found that undifferentiated chES cells stored glycogen.Additionally,undifferentiated chES cells expressed lower levels of glucose transporter 1 (GLUT1) and phosphofructokinase (PFK) mRNAs but higher levels of hexokinase 1 (HK1) and glycogen synthase (GYS) mRNAs compared with control primary chicken embryonic fibroblast (CEF) cells,suggesting that chES cells direct glucose flux towards the glycogenic pathway.Moreover,we demonstrated that undifferentiated chES cells block gluconeogenic outflow and impede the accumulation of glucose-6-phosphate (G6P) from this pathway,as evidenced by the barely detectable levels of pyruvate carboxylase (PCX) and mitochondrial phosphoenolpyruvate carboxykinase (PCK2) mRNAs.Additionally,cell death occurred in undifferentiated chES cells as shown by Hoechst 33342 and propidium iodide (PI) double staining,but it could be rescued by exogenous G6P.However,we found that differentiated chES cells decreased the glycogen reserve through the use of PAS staining.Moreover,differentiated chES cells expressed higher levels of GLUT1,HK1 and PFK mRNAs,while the level of GYS mRNA remained similar in control CEF cells.These data indicate that undifferentiated chES cells continue to synthesize glycogen from glucose at the expense of G6P,while differentiated chES cells have a decreased glycogen reserve,which suggests that the amount of glycogen is indicative of the chES cell state.

  5. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  6. Tracking single mRNA molecules in live cells

    Science.gov (United States)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  7. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bela-Ong, Dennis; Jalali, Seyed Amir Hossein;

    2015-01-01

    MicroRNAs (miRNAs) are similar to 22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene r...

  8. Stem cells in light of a new concept for cell differentiation.

    Science.gov (United States)

    Kristeva, Marlene Anastassova

    2008-10-01

    My concept of cell differentiation involves genetic information from DNA being transcribed into mRNA proteins-morphogenes (mRNAs+ homeodomain proteins)-and stored in the ovoplasm as maternal inheritance, or cytoplasmic genetic memory. Feedback mechanism(s) allow these morphogenes to selectively unlock new genes, regulating the development of the embryo. The blastomeres and the embryonic pluripotent cells of the inner cell mass of early (5 day) blastocysts are loaded with morphogenes which hamper the production of cell lines and are responsible for the formation of embryoid bodies in vitro and teratomas in vivo. There are therefore legitimate concerns as to proposals to use embryonic pluripotent cells for cell therapy and regenerative medicine. An alternative cell therapy would involve the production of tailored growth-related genes-morphogenes-and hence selective in vitro differentiation of adult de-differentiated cells.

  9. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells.

    Science.gov (United States)

    Grosse, Jirka; Wehland, Markus; Pietsch, Jessica; Ma, Xiao; Ulbrich, Claudia; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Infanger, Manfred; Eilles, Christoph; Egli, Marcel; Richter, Peter; Baltz, Theo; Einspanier, Ralf; Sharbati, Soroush; Grimm, Daniela

    2012-02-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down-regulated after P1. EDN1 and TNFRSF12A mRNAs were up-regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down-regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up-regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up-regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β-Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.

  10. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  11. Qualification of the Darwin code for the studies of the fuel cycle relative to the boiling water reactors; Qualification du formulaire Darwin pour les etudes du cycle du combustible pour les reacteurs a eau bouillante

    Energy Technology Data Exchange (ETDEWEB)

    Allais, V

    1998-03-01

    This thesis was carried out in the framework of fuel cycles studies in partnership with COGEMA; the aim is to determine physics parameters characterising Boiling Reactor Assemblies. Those reactors Firstly distinguish themselves from Pressurised Water Reactor by the boiling of the moderator in the core and secondary by the strong neutronics heterogeneity due to complex design. The diphasic mixture formed is characterised by the void fraction parameter. The loss of information, and neutronic studies characteristics of Boiling Water Reactors led us to make preliminary studies having in view to quantify the void fraction impact on the isotopics evolution. Studies on neutronics influence of assemblies and control rods from the immediate environment allows to define the cluster size to describe. The radial description optimisation with APOLLO-2 is necessary to improve the calculation performance and to reduce the errors coming from the modelization. The following points were studied: pellet radial discretization, clustering of cells characterized by a similar behaviour, options in flux spatial calculation (interface current formalism), self-shielding optimisation (specific to each isotopes). The three dimensional modelization with CRONOS-2 and the simplified accounting of the thermohydraulics / neutronics coupling done by a procedure developed and written during this thesis, allow an evaluation of axial distribution of void fraction, power and burn-up during the irradiation. The comparison with experimental analytic results of complete assembly and pin samples dissolutions allows the qualification of this procedure and confirms the necessity to take into account the void fraction axial variation during the evolution. The application of an automatic coupling with the DARWIN cycle code will allow a precise burnup calculation to be utilized in an industrial procedure. (author)

  12. Expression Profiling of Exosomal miRNAs Derived from Human Esophageal Cancer Cells by Solexa High-Throughput Sequencing

    OpenAIRE

    Juan Liao; Ran Liu; Lihong Yin; Yuepu Pu

    2014-01-01

    Cellular genetic materials, such as microRNAs (miRNAs), mRNAs and proteins, are packaged inside exosomes, small membrane vesicles of endocytic origin that are released into the extracellular environment. These cellular genetic materials can be delivered into recipient cells, where they exert their respective biological effects. However, the miRNA profiles and biological functions of exosomes secreted by cancer cells remain unknown. The present study explored the miRNA expression profile and d...

  13. Daily expression patterns for mRNAs of GH, PRL, SL, IGF-I and IGF-II in juvenile rabbitfish, Siganus guttatus, during 24-h light and dark cycles.

    Science.gov (United States)

    Ayson, Felix G; Takemura, Akihiro

    2006-12-01

    Most animals respond to changes in the external environment in a rhythmic fashion. In teleost fishes, daily rhythms are observed in plasma concentrations of some hormones but it is not clear whether these rhythms are exogenous or are entrained by predictable cues. We investigated whether the expression patterns for the mRNAs of growth hormone (GH), prolactin (PRL) and somatolactin (SL) in the pituitary gland, and insulin-like growth factor-I and II (IGF-I and IGF-II) in the liver, follow a daily rhythm when juvenile rabbitfish (Siganus guttatus) are reared under a normal 24-h light and dark cycle (LD), and when they are exposed to either continuous light (LL) or darkness (DD). Hormone mRNA levels were determined by real time PCR. Under LD conditions, GH mRNA expression in the pituitary was significantly lower during the light phase than during the dark phase suggesting a diurnal rhythm of expression. The rhythm disappeared when fish were exposed to LL or DD conditions. PRL mRNA expression pattern was irregular in all 3 conditions. Very low levels of SL mRNA were observed during the mid day under LD conditions. The expression pattern of SL mRNA became irregular under LL and DD conditions. No pattern could be observed in the expression profile of IGF-I and II mRNA in the liver during LD and LL conditions but a single peak in mRNA level was observed under DD conditions in both IGF-I and II. The results indicate that except for GH, the daily expression pattern for the mRNAs of the hormones examined do not seem to follow a rhythm according to light and dark cycles.

  14. Increased expression of alpha- and beta-globin mRNAs at the pituitary following exposure to estrogen during the critical period of neonatal sex differentiation in the rat.

    Science.gov (United States)

    Leffers, H; Navarro, V M; Nielsen, John E; Mayen, A; Pinilla, L; Dalgaard, M; Malagon, M M; Castaño, J P; Skakkebaek, N E; Aguilar, E; Tena-Sempere, M

    2006-04-01

    Deterioration of reproductive health in human and wildlife species during the past decades has drawn considerable attention to the potential adverse effects of exposure to xenosteroids during sensitive periods of sex development. The hypothalamic-pituitary (HP) unit is a key element in the neuroendocrine system controlling development and function of the reproductive axis; the HP unit being highly sensitive to the organizing effects of endogenous and exogenous sex steroids. To gain knowledge on the molecular mode of action and potential biomarkers of exposure to estrogenic compounds at the HP unit, we screened for differentially expressed genes at the pituitary and hypothalamus of rats after neonatal exposure to estradiol benzoate. Our analyses identified persistent up-regulation of alpha- and beta-globin mRNAs at the pituitary following neonatal estrogenization. This finding was confirmed by combination of RT-PCR analyses and in situ hybridization. Induction of alpha- and beta-globin mRNA expression at the pituitary by neonatal exposure to estrogen was demonstrated as dose-dependent and it was persistently detected up to puberty. In contrast, durable up-regulation of alpha- and beta-globin genes was not detected at the hypothalamus, cortex, cerebellum, liver and testis. Finally, enhanced levels of alpha- and beta-globin mRNAs at the pituitary were also demonstrated after neonatal administration of the anti-androgen flutamide. In summary, alpha- and beta-globin genes may prove as sensitive, pituitary-specific biomarkers of exposure to estrogenic (and/or anti-androgenic) compounds at critical periods of sex development, whose potential in the assessment of endocrine disrupting events at the HP unit merits further investigation. PMID:16520034

  15. Cyclebase.org: version 2.0, an updated comprehensive, multi-species repository of cell cycle experiments and derived analysis results

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Wernersson, Rasmus; Brunak, Søren;

    2010-01-01

    -cycle-related experiments. This database provides an easy-to-use web interface that facilitates visualization and download of genome-wide cell-cycle data and analysis results. Data from different experiments are normalized to a common timescale and are complimented with key cell-cycle information and derived analysis...

  16. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  17. MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in Human Non Small Cell Lung Cancer Cell Lines

    OpenAIRE

    Takahashi, Yukari; Forrest, Alistair R. R.; Maeno, Emi; Hashimoto, Takehiro; Daub, Carsten O.; Yasuda, Jun

    2009-01-01

    Background MicroRNAs (miRNAs) are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5′ seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentia...

  18. Structure and expression of ferritin genes in a human promyelocytic cell line that differentiates in vitro.

    OpenAIRE

    Chou, C. C.; Gatti, R A; Fuller, M L; Concannon, P; Wong, A.; Chada, S; Davis, R C; Salser, W A

    1986-01-01

    HL-60 is a human promyelocytic cell line with the capability of differentiating in vitro to give neutrophils, macrophages, or eosinophils. We screened libraries of HL-60 cDNA clones representing different time points during these differentiation processes to isolate clones corresponding to mRNAs whose expression is regulated during terminal differentiation. Upon sequencing this group of regulated clones, one clone encoding the heavy subunit and two clones encoding the light subunit of human f...

  19. Effective Alu Repeat Based RT-Qpcr Normalization in Cancer Cell Perturbation Experiments

    OpenAIRE

    Ali Rihani; Tom Van Maerken; Filip Pattyn; Gert Van Peer; Anneleen Beckers; Sara De Brouwer; Candy Kumps; Evelien Mets; Joni Van der Meulen; Pieter Rondou; Carina Leonelli; Pieter Mestdagh; Frank Speleman; Jo Vandesompele

    2013-01-01

    BACKGROUND: Measuring messenger RNA (mRNA) levels using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) is common practice in many laboratories. A specific set of mRNAs as internal control reference genes is considered as the preferred strategy to normalize RT-qPCR data. Proper selection of reference genes is a critical issue, especially in cancer cells that are subjected to different in vitro manipulations. These manipulations may result in dramatic alterations in ...

  20. Imaging of mRNA-protein interactions in live cells using novel mCherry trimolecular fluorescence complementation systems.

    Directory of Open Access Journals (Sweden)

    Juan Yin

    Full Text Available Live cell imaging of mRNA-protein interactions makes it possible to study posttranscriptional processes of cellular and viral gene expression under physiological conditions. In this study, red color mCherry-based trimolecular fluorescence complementation (TriFC systems were constructed as new tools for visualizing mRNA-protein interaction in living cells using split mCherry fragments and HIV REV-RRE and TAT-TAR peptide-RNA interaction pairs. The new mCherry TriFC systems were successfully used to image RNA-protein interactions such as that between influenza viral protein NS1 and the 5' UTR of influenza viral mRNAs NS, M, and NP. Upon combination of an mCherry TriFC system with a Venus TriFC system, multiple mRNA-protein interactions could be detected simultaneously in the same cells. Then, the new mCherry TriFC system was used for imaging of interactions between influenza A virus mRNAs and some of adapter proteins in cellular TAP nuclear export pathway in live cells. Adapter proteins Aly and UAP56 were found to associate with three kinds of viral mRNAs. Another adapter protein, splicing factor 9G8, only interacted with intron-containing spliced M2 mRNA. Co-immunoprecipitation assays with influenza A virus-infected cells confirmed these interactions. This study provides long-wavelength-spectrum TriFC systems as new tools for visualizing RNA-protein interactions in live cells and help to understand the nuclear export mechanism of influenza A viral mRNAs.

  1. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  2. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells.

    Science.gov (United States)

    Yoffe, Yael; David, Maya; Kalaora, Rinat; Povodovski, Lital; Friedlander, Gilgi; Feldmesser, Ester; Ainbinder, Elena; Saada, Ann; Bialik, Shani; Kimchi, Adi

    2016-09-01

    Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions. PMID:27664238

  3. Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Federica Cesca

    Full Text Available Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington's disease (HD. As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and age-matched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2 and vascular endothelial growth factor (VEGF in peripheral blood mononuclear cells (PBMCs of manifest and pre-manifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD.

  4. Human adrenodoxin reductase: Two mRNAs encoded by a single gene on chromosome 17cen → q25 are expressed in steroidogenic tissues

    International Nuclear Information System (INIS)

    Adrenodoxin reductase is a mitochondrial flavoprotein that receives electrons from NADPH, thus initiating the electron-transport chain serving mitochondrial cytochromes P450. The authors have cloned and sequenced two human adrenodoxin reductase cDNAs that differ by the presence of six additional codons in the middle of one clone. The sequence in this region indicates that these six extra codons arise by alternative splicing of the pre-mRNA. Southern blot hybridization patterns of human genomic DNA cut with four restriction enzymes indicate that the human genome has only one gene for adrenodoxin reductase. Analysis of a panel of mouse-human somatic cell hybrids localized this gene to chromosome 17cen → q25. The alternatively spliced mRNA containing the six extra codons represents 10-20% of all adrenodoxin reductase mRNA. The expression of the adrenodoxin reductase gene may be stimulated by pituitary tropic hormones acting through cAMP, but its response is quantitatively much less than the responses of P450scc and adrenodoxin

  5. Isolation of Genes that Are Preferentially Expressed at the G1/S Boundary during the Cell Cycle in Synchronized Cultures of Catharanthus roseus Cells 1

    Science.gov (United States)

    Kodama, Hiroaki; Ito, Masaki; Hattori, Tsukaho; Nakamura, Kenzo; Komamine, Atsushi

    1991-01-01

    A cDNA library was screened for genes that may be involved in the progression of the cell cycle of cells of higher plants. The Catharanthus roseus L. (G) Don. cells were synchronized by the double phosphate starvation method, and a λgt11 cDNA library was prepared using poly(A)+ RNA from cells in the S phase of the cell cycle. Two independent sequences, cyc02 and cyc07, were identified by differential screening. The levels of cyc02 and cyc07 mRNAs increased dramatically, but transiently, at the G1/S boundary of the cell cycle. High levels of cyc02 mRNA, but not of cyc07 mRNA, were also present in cells arrested at the G1 phase by phosphate starvation. In an asynchronous batch culture, cyc02 and cyc07 mRNAs accumulated transiently at different stages of the growth cycle, cyc02 mRNA early in the stationary phase, and cyc07 mRNA in the midlogarithmic phase. When the proliferation of cells was arrested by nutrient starvation, i.e. by sucrose or nitrogen starvation, the relative amounts of the cyc02 and cyc07 mRNAs decreased. These results indicate that cyc02 and cyc07 contain nucleotide sequences from growth-related genes. The analysis of nucleotide sequence of cyc02 shows that the predicted product of this gene is basic and is composed of 101 amino acids. No significant homology to other known proteins was detected. Images Figure 1 Figure 4 Figure 5 PMID:16667998

  6. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs.

    Science.gov (United States)

    Soundararajan, Ramani; Won, Jungyeon; Stearns, Timothy M; Charette, Jeremy R; Hicks, Wanda L; Collin, Gayle B; Naggert, Jürgen K; Krebs, Mark P; Nishina, Patsy M

    2014-01-01

    Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P) 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR). In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr), phototransduction (Pde6a, Guca1b, Rgs9), and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2). Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that these genes

  7. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs.

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    Full Text Available Mutations in the membrane frizzled-related protein (MFRP/Mfrp gene, specifically expressed in the retinal pigment epithelium (RPE and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR. In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr, phototransduction (Pde6a, Guca1b, Rgs9, and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2. Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that

  8. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  9. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Science.gov (United States)

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  10. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  11. The PUF binding landscape in metazoan germ cells

    Science.gov (United States)

    Prasad, Aman; Porter, Douglas F.; Kroll-Conner, Peggy L.; Mohanty, Ipsita; Ryan, Anne R.; Crittenden, Sarah L.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their “binding landscape”). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF–RNA interactions. FBF-1 and FBF-2 can bind sites in the 5′UTR, coding region, or 3′UTR, but have a strong bias for the 3′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2. PMID:27165521

  12. Establishing and maintaining cell polarity with mRNA localization in Drosophila.

    Science.gov (United States)

    Barr, Justinn; Yakovlev, Konstantin V; Shidlovskii, Yulii; Schedl, Paul

    2016-03-01

    How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.

  13. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    OpenAIRE

    Yushi Ishibashi; Shinsuke Kasa; Masatsugu Sakamoto; Nozomi Aoki; Kyohei Kai; Takashi Yuasa; Atsushi Hanada; Shinjiro Yamaguchi; Mari Iwaya-Inoue

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidas...

  14. Transfection of B7-1 cDNA empowers antigen presentation of blood malignant cells for activation of anti-tumor T cells

    Institute of Scientific and Technical Information of China (English)

    克晓燕; 贾丽萍; 王晶; 王德炳

    2003-01-01

    Objective To define roles of B7-1 co-stimulation factor expressed in human malignant cell lines in mediating anti-tumor T cell immune responses. Methods Examining human leucocyte antigen (HLA) and B7 expressions on 8 human blood malignancies cell lines by flow cytometry. Transfecting B7-1 gene to B7-1 negative (B7*!-) Raji and B7*!- Jurkat cell lines by liposome, and comparing the potencies of blood malignant cell lines in the induction of T cell activation by examination of T cell cytokine mRNAs before and after transfection using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Results High level of HLA Ⅰ and Ⅱ molecules were expressed in most human blood malignant cell lines examined, and the co-stimulatory factor B7-2 was also highly expressed. In contrast, another member of B7 family: B7-1 was either not expressed or very limitedly expressed in most of these hematopoietic malignant cell lines. Most importantly, transfection of B7-1 gene to B7*!-. Raji and B7*!-. Jurkat cell lines made these cell lines better antigen presenting cells for stimulation of anti-tumor T cell activation, which was demonstrated by up regulation of expression of T cell cytokines IL-2, IL-4 and INF-γ mRNAs after incubation of these tumor cells with T cells for 24 h. Conclusions B7 co-stimulation plays an important role in anti-tumor immunity. Transfection of B7-1 gene to the human hematopoietic malignant cell lines that are deficient in the B7-1 expression empowers their antigen presentation potency for activation of anti-tumor T cells. Our results suggested that repairing the deficiency of B7-1 co-stimulatory pathway in tumor cells might be a novel immunotherapeutic approach for human hematopoietic malignancies.

  15. Mechanism of T cell regulation by microRNAs

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post-transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells have important functions in acquired immune response; miRNAs regulate this immune response by targeting the mRNAs of genes involved in T cell development, proliferation, differentiation, and function. For instance, miR-181 family members function in progression by targeting Bcl2 and CD69, among others. MiR-17 to miR-92 clusters function by binding to CREB1, PTEN, and Bim. Considering that the suppression of T cell-mediated immune responses against tumor cells is involved in cancer progression, we should investigate the mechanism by which miRNA regulates T cells to develop new approaches for cancer treatment

  16. HIV-1 Tat 蛋白对细胞周期相关基因表达及辐射细胞周期阻滞的影响%Effects of HIV-1 Tat protein on expression of cell cycle-related genes and radiation-induced cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    孙薏; 黄越承; 徐勤枝; 王会平; 隋建丽; 周平坤

    2006-01-01

    目的:探讨HIV-1 Tat蛋白对细胞周期相关基因表达以及电离辐射诱发细胞周期阻滞的影响.方法:使用包含102个与DNA损伤修复和细胞周期相关的基因微阵列检测人横纹肌肉瘤细胞(TE671)及已转染tat基因的TE671细胞(TT2)基因表达谱的改变;使用流式细胞仪检测细胞周期变化;Western印迹检测蛋白表达变化.结果:在基因芯片的检测中发现,与DNA损伤修复及细胞周期调控相关的6个基因Cdc25C,KIF2C,Cdc20,DNA-PKcs,CTS1,Wee1在转染tat基因的细胞中表达下调;细胞周期检测发现TE671细胞和TT2细胞经4 Gy γ射线照射后表现出不同程度的G2/M期阻滞,但表达Tat的TT2细胞G2/M阻滞出现较TE671细胞晚,而在照射后48 h时TE671细胞G2/M期阻滞已恢复,但TT2细胞阻滞仍很显著.另外,TT2细胞S期阻滞时间延长.研究进一步发现细胞周期蛋白(cyclin)B1在TT2细胞中表达增强.结论:HIV-1Tat蛋白导致G2/M检验点功能紊乱,将影响细胞的辐射敏感性,本研究为了解AIDS合并肿瘤患者对放射治疗敏感性提供了重要实验数据.

  17. IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Pedro Miura

    Full Text Available Glucocorticoids are currently the only drug treatment recognized to benefit Duchenne muscular dystrophy (DMD patients. The nature of the mechanisms underlying the beneficial effects remains incompletely understood but may involve an increase in the expression of utrophin. Here, we show that treatment of myotubes with 6alpha-methylprednisolone-21 sodium succinate (PDN results in enhanced expression of utrophin A without concomitant increases in mRNA levels thereby suggesting that translational regulation contributes to the increase. In agreement with this, we show that PDN treatment of cells transfected with monocistronic reporter constructs harbouring the utrophin A 5'UTR, causes an increase in reporter protein expression while leaving levels of reporter mRNAs unchanged. Using bicistronic reporter assays, we further demonstrate that PDN enhances activity of an Internal Ribosome Entry Site (IRES located within the utrophin A 5'UTR. Analysis of polysomes demonstrate that PDN causes an overall reduction in polysome-associated mRNAs indicating that global translation rates are depressed under these conditions. Importantly, PDN causes an increase in the polysome association of endogenous utrophin A mRNAs and reporter mRNAs harbouring the utrophin A 5'UTR. Additional experiments identified a distinct region within the utrophin A 5'UTR that contains the inducible IRES activity. Together, these studies demonstrate that a translational regulatory mechanism involving increased IRES activation mediates, at least partially, the enhanced expression of utrophin A in muscle cells treated with glucocorticoids. Targeting the utrophin A IRES may thus offer an important and novel therapeutic avenue for developing drugs appropriate for DMD patients.

  18. Massive parallel gene expression profiling of RINm5F pancreatic islet beta-cells stimulated with interleukin-1beta

    DEFF Research Database (Denmark)

    Rieneck, K; Bovin, L F; Josefsen, K;

    2000-01-01

    Interleukin 1 (IL-1) is a pleiotropic cytokine with the potential to kill pancreatic beta-cells, and this unique property is thought to be involved in the pathogenesis of type I diabetes mellitus. We therefore determined the quantitative expression of 24,000 mRNAs of RINm5F, an insulinoma cell line...... derived from rat pancreatic beta-cells, before and after challenge with 30 and 1,000 pg/ml of recombinant human IL-1beta. The highest concentration resulted in decreased insulin production and cell death over a period of 4 days. Using three different time points, 2, 4 and 24 hours after challenge, we...

  19. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of (/sup 3/H)-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the ..cap alpha..1 and ..cap alpha..2 chains of type I and the ..cap alpha..1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells.

  20. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice.

    Science.gov (United States)

    Snyder-Talkington, Brandi N; Dong, Chunlin; Sargent, Linda M; Porter, Dale W; Staska, Lauren M; Hubbs, Ann F; Raese, Rebecca; McKinney, Walter; Chen, Bean T; Battelli, Lori; Lowry, David T; Reynolds, Steven H; Castranova, Vincent; Qian, Yong; Guo, Nancy L

    2016-01-01

    Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 µg g(-1) body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m(-3), 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes.

  1. Positive selection at codon 38 of the human KCNE1 (= minK gene and sporadic absence of 38Ser-coding mRNAs in Gly38Ser heterozygotes

    Directory of Open Access Journals (Sweden)

    Pfeufer Arne

    2009-08-01

    Full Text Available Abstract Background KCNE1 represents the regulatory beta-subunit of the slowly activating delayed rectifier potassium channel (IKs. Variants of KCNE1 have repeatedly been linked to the long-QT syndrome (LQTS, a disorder which predisposes to deafness, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Results We here analyze the evolution of the common Gly38Ser variant (rs1805127, using genomic DNAs, complementary DNAs, and HEK293-expressed variants of altogether 19 mammalian species. The between species comparison reveals that the human-specific Gly38Ser polymorphism evolved under strong positive Darwinian selection, probably in adaptation to specific challenges in the fine-tuning of IKs channels. The involved amino acid exchanges (Asp > Gly, Gly > Ser are moderately radical and do not induce apparent changes in posttranslational modification. According to population genetic analyses (HapMap phase II a heterozygote advantage accounts for the maintenance of the Gly38Ser polymorphism in humans. On the other hand, the expression of the 38Ser allele seems to be disadvantageous under certain conditions, as suggested by the sporadic deficiency of 38Ser-coding mRNAs in heterozygote Central Europeans and the depletion of homozygotes 38Ser in the Yoruban sample. Conclusion We speculate that individual differences in genomic imprinting or genomic recoding might have contributed to conflicting results of recent association studies between Gly38Ser polymorphism and QT phenotype. The findings thus highlight the relevance of mRNA data in future association studies of genotypes and clinical disorders. To the best of our knowledge, they moreover provide first time evidence for a unique pattern; i.e. coincidence of positive Darwinian selection and polymorphism with a sporadically suppressed expression of one allele.

  2. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Ouyang, Haoxu;

    2010-01-01

    normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently...... confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression...... antagonized miR-31-mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing...

  3. Translation in cell-free systems

    International Nuclear Information System (INIS)

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  4. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  5. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    International Nuclear Information System (INIS)

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation

  6. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kairui; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Li, Qianqian [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Yang, Jun [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, 421 Hospital of PLA, Guangzhou 510318 (China); Dong, Weiqiang [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, The First Affiliated Hospital to Guangzhou Medical University, Guangzhou 510120 (China); Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Qiang, E-mail: 1780468505@qq.com [Department of Orthopaedics, Subei People’s Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, Jiangsu Province 225001 (China); Yu, Bin, E-mail: carryzhang1985@live.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2014-07-18

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.

  7. Effect of polo-like kinase 1 gene silence on cell cycle and drug resistance in K562/A02 cell

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Polo-like kinase 1(PLK1) plays an important role in many cell-cycle-related events.1 At G2/M transition, PLK1 contributes to the activation of cyclinB/Cdc by phosphorylation of Cdc25C, centrosome functional maturation, bipolar spindle formation. In later stage of mitosis, PLK1 is involved in regulating components of the anaphase-promoting complex (APC) for mitotic exit and in the execution of cytokinesis.

  8. EIF3 p170, a Mediator of Mimosine Effect on Protein Synthesis and Cell Cycle Progression

    OpenAIRE

    Dong, Zizheng; Zhang, Jian-Ting

    2003-01-01

    l-Mimosine, a plant amino acid, can reversibly block mammalian cells at late G1 phase and has been suggested to affect translation of mRNAs such as p27, the CDK inhibitor. However, the mechanism of this effect is not known. Regulation of translation generally occurs at the initiation step that, in mammalian cells, is a complex process that requires multiple eukaryotic initiation factors (eIFs) and ribosome. The effects of mimosine on initiation factors or regulators consequently will influenc...

  9. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense

    OpenAIRE

    Kreuzaler, Fritz; Ragg, Hermann; Fautz, Erich; David N Kuhn; Hahlbrock, Klaus

    1983-01-01

    DNAs complementary to poly(A)+ mRNAs from UV-irradiated cell suspension cultures of parsley (Petroselinum hortense) were inserted into pBR322 and used to transform Escherichia coli strain RR1. A clone containing a DNA complementary to chalcone synthase mRNA was identified by hybrid-selected and hybrid-arrested translation. Large and rapid changes in the amount of chalcone synthase mRNA in response to irradiation of the cells was detected by RNA blot hybridization experiments. The pattern of c...

  10. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression

    OpenAIRE

    Arumugam, Karthik; Wang, Yiying; Hardy, Linda L.; MacNicol, Melanie C.; MacNicol, Angus M

    2009-01-01

    Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE...

  11. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells.

    Directory of Open Access Journals (Sweden)

    Justin R Hassler

    2015-10-01

    Full Text Available Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s. Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α to initiate X-box-binding protein 1 (Xbp1 mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq, we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP, SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.

  12. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells

    Science.gov (United States)

    Hassler, Justin R.; Scheuner, Donalyn L.; Wang, Shiyu; Han, Jaeseok; Kodali, Vamsi K.; Li, Philip; Nguyen, Julie; George, Jenny S.; Davis, Cory; Wu, Shengyang P.; Bai, Yongsheng; Sartor, Maureen; Cavalcoli, James; Malhi, Harmeet; Baudouin, Gregory; Zhang, Yaoyang; Yates III, John R.; Itkin-Ansari, Pamela; Volkmann, Niels; Kaufman, Randal J.

    2015-01-01

    Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure. PMID:26469762

  13. Simultaneous detection of mRNA and protein stem cell markers in live cells

    Directory of Open Access Journals (Sweden)

    Bao Gang

    2009-04-01

    Full Text Available Abstract Background Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation. Results Quantification of Oct-4 mRNA and protein in P19 mouse carcinoma stem cells using respectively RT-PCR and immunocytochemistry confirmed that their levels drastically decreased after differentiation. To visualize Oct-4 mRNA in live stem cells, molecular beacons were designed, synthesized and validated, and the detection specificity was confirmed using control studies. We found that the fluorescence signal from Oct-4-targeting molecular beacons provides a clear discrimination between undifferentiated and retinoic acid-induced differentiated cells. Using deconvolution fluorescence microscopy, Oct-4 mRNAs were found to reside on one side of the cytosol. We demonstrated that, using a combination of Oct-4 mRNA-targeting molecular beacon with SSEA-1 antibody in flow cytometric analysis, undifferentiated stem cells can be clearly distinguished from differentiated cells. We revealed that Oct-4 targeting molecular beacons do not seem to affect stem cell biology. Conclusion Molecular beacons have the potential to provide a powerful tool for highly specific detection and isolation of stem cells, including cancer stem cells and induced pluripotent stem (iPS cells without disturbing cell physiology. It is advantageous to perform simultaneous detection of intracellular (mRNA and cell-surface (protein stem cell markers in flow cytometric analysis, which may lead to high detection sensitivity and efficiency.

  14. Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule-Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells.

    Science.gov (United States)

    Weeks, Adrienne; Agnihotri, Sameer; Lymer, Jennifer; Chalil, Alan; Diaz, Roberto; Isik, Semra; Smith, Christian; Rutka, James T

    2016-06-01

    Stress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins epithelial cell transforming 2 and Aurora kinase B (AurkB) are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed using high-throughput fluorescent-based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells, and subsequent analysis revealed that astrocytoma stress granules harbor unique mRNAs for various cellular pathways, including cellular migration, metabolism, translation, and transcriptional regulation. Human astrocytoma cell stress granules contain mRNAs that are known to be involved in glioma signaling and the mammalian target of rapamycin pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptibility to conventional therapy, such as radiation and chemotherapy. PMID:27106762

  15. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    Science.gov (United States)

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  16. The increased number of Leydig cells by di(2-ethylhexyl) phthalate comes from the differentiation of stem cells into Leydig cell lineage in the adult rat testis

    International Nuclear Information System (INIS)

    Highlights: ► DEHP increases rat Leydig cell number. ► DEHP induces the proliferation of stem Leydig cells. ► DEHP induces the formation of progenitor Leydig cells. - Abstract: The objective of the present study is to determine whether di(2-ethylhexyl) phthalate (DEHP) exposure at adulthood increases rat Leydig cell number and to investigate the possible mechanism. 90-day-old Long–Evans rats were randomly divided into 3 groups, and were gavaged with the corn oil (control) or 10 or 750 mg/kg DEHP daily for 7 days, and then received an intraperitoneal injection of 75 mg/kg ethane dimethanesulfonate (EDS) to eliminate Leydig cells. Serum testosterone concentrations were assessed by RIA, and the mRNA levels of Leydig cell genes were measured by qPCR. EDS eliminated all Leydig cells in the control testis on day 4 post-EDS, as judged by undetectable serum testosterone level and no 3β-hydroxysteroid dehydrogenase positive (3β-HSDpos) cells in the interstitium. However, in DEHP-treated groups, there were detectable serum testosterone concentrations and some oval-shaped 3β-HSDpos cells in the interstitium. These 3β-HSDpos cells were not stained by the antibody against 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), a marker for Leydig cells at a more advanced stage. The disappearance of mRNAs of Leydig cell biomarkers including Lhcgr, Cyp11a1, Cyp17a1, Insl3 and Hsd11b1 in the control testis was observed on day 4 post-EDS. However, there were detectable concentrations of Lhcgr, Cyp11a1 and Cyp17a1 mRNAs but undetectable concentrations of Insl3, Hsd17b3 and Hsd11b1 in the DEHP-treated testes, indicating that these 3β-HSDpos cells were newly formed progenitor Leydig cells. The mRNA level for nestin (Nes, biomarker for stem Leydig cells) was significantly increased in the control testis on day 4 post-EDS, but not in the DEHP treated testes, suggesting that these nestin positive stem cells were differentiated into progenitor Leydig cells in the DEHP-treated testes

  17. Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment

    Directory of Open Access Journals (Sweden)

    Yu-Fei Zhang

    2015-04-01

    Full Text Available Only occupying about 1%-5% of total testicular cells, the adult Leydig cell (ALC is a unique endocrine cell that produces androgens. Rat Leydig cells regenerate after these cells in the testis are eliminated with ethane dimethane sulfonate (EDS. In this study, we have characterized Leydig cell regeneration and messenger ribonucleic acids (mRNA profiles of EDS treated rat testes. Serum testosterone, testicular gene profiling and some steroidogenesis-related proteins were analyzed at 7, 21, 35 and 90 days after EDS treatment. Testicular testosterone levels declined to undetectable levels until 7 days after treatment and then started to recover. Seven days after treatment, 81 mRNAs were down-regulated greater than or equal to two-fold, with 48 becoming undetectable. These genes increased their expression 21 days and completely returned to normal levels 90 days after treatment. The undetectable genes include steroidogenic pathway proteins: steroidogenic acute regulatory protein, Scarb1, Cyp11a1, Cyp17a1, Hsd3b1, Cyp1b1 and Cyp2a1. Seven days after treatment, there were 89 mRNAs up-regulated two-fold or more including Pkib. These up-regulated mRNAs returned to normal 90 days after treatment. Cyp2a1 did not start to recover until 35 days after treatment, indicating that this gene is only expressed in ALCs not in the precursor cells. Quantitative polymerase chain reaction, western blotting and semi-quantitative immunohistochemical staining using tissue array confirmed the changes of several randomly picked genes and their proteins.

  18. 调心方对Aβ25-35杏仁核注射大鼠脑内细胞周期相关蛋白表达的影响%Effects of Tiaoxin Recipe on Cell Cycle Related Protein Expression in Rat's Brain with Injection of Aβ25-35 into Nucleus Amygdalae

    Institute of Scientific and Technical Information of China (English)

    洪道俊; 裴爱琳; 朱粹青

    2003-01-01

    目的:探讨调心方对β淀粉样蛋白(β-amyloid,Aβ)片段Aβ25-35杏仁核注射大鼠脑内细胞周期相关蛋白表达的影响.方法:用Aβ25-35多肽片段进行大鼠单侧杏仁核注射,以模拟阿尔茨海默病(Alzheimer's disease,AD)脑内Aβ对神经系统的损害.应用免疫组织化学染色和积分光密度分析检测磷酸化tau、Aβ、cyclin A、cyclin B1等蛋白水平的变化.结果:与生理盐水对照组比较,Aβ注射大鼠脑内的磷酸化tau、Aβ、cyclin A、cyclin B1等蛋白水平有不同程度的升高(P<0.05),而给予调心方的动物在一定程度上能降低这些蛋白的水平(P<0.05).结论:调心方对Aβ引起的动物脑内神经元异常表达的细胞周期相关蛋白有一定的抑制作用.

  19. Effects of HIV-1 Tat protein on expression of DNA repair genes and cell cycle related genes%HIV-1 Tat蛋白对DNA修复基因及细胞周期相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙薏; 周平坤; 匡红; 张聪; 呼永河; 冯怀志; 李硕; 徐勤枝; 陈健

    2009-01-01

    目的:探讨HIV-1 Tat蛋白对DNA修复基因及细胞周期相关基因表达影响.方法:使用包含102个与DNA损伤修复和细胞周期相关的基因微阵列检测人横纹肌肉瘤细胞(TE671)及已转染tat基因的TE671细胞(TT2)基因表达谱的改变;使用半定量RT-PCR分析DNA-PKcs在mRNA水平表达;Western印迹法检测DNA-PKcs表达变化;荧光染色法检测电离辐射后细胞凋亡.结果:在基因芯片的检测中,发现与DNA损伤修复及细胞周期调控相关的6个基因CdC25C、KIF2C、CdC20、DNA-PKcs、CTS1、WEE1在转染tat基因的细胞中表达下调;DNA-PKcs的表达在表达Tat蛋白细胞中不论是在mRNA和蛋白水平均被抑制;接受电离辐射后,表达Tat蛋白的细胞凋亡增加.结论:HIV-1 Tat蛋白使细胞对电离辐射敏感,部分通过抑制DNA-PKcs表达来降低DNA双链断裂的修复能力,本研究为了解AIDS合并肿瘤患者对放射治疗敏感性提供了重要实验数据.

  20. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  1. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available Insulin-like growth factor 1 (IGF-1 and hepatocyte growth factor (HGF are two potent cell survival and regenerative factors in response to myocardial injury (MI. We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01. IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01 and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  2. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells.

    Science.gov (United States)

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C

    2016-06-07

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  3. Insights from lncRNAs Profiling of MIN6 Beta Cells Undergoing Inflammation

    Directory of Open Access Journals (Sweden)

    Chuntao Sun

    2016-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is an organ-specific autoimmune disease characterized by chronic and progressive apoptotic destruction of pancreatic beta cells. During the initial phases of T1DM, cytokines and other inflammatory mediators released by immune cells progressively infiltrate islet cells, induce alterations in gene expression, provoke functional impairment, and ultimately lead to apoptosis. Long noncoding RNAs (lncRNAs are a new important class of pervasive genes that have a variety of biological functions and play key roles in many diseases. However, whether they have a function in cytokine-induced beta cell apoptosis is still uncertain. In this study, lncRNA microarray technology was used to identify the differently expressed lncRNAs and mRNAs in MIN6 cells exposed to proinflammatory cytokines. Four hundred forty-four upregulated and 279 downregulated lncRNAs were detected with a set filter fold-change ≧2.0. To elucidate the potential functions of these lncRNAs, Gene Ontology (GO and pathway analyses were used to evaluate the potential functions of differentially expressed lncRNAs. Additionally, a lncRNA-mRNA coexpression network was constructed to predict the interactions between the most strikingly regulated lncRNAs and mRNAs. This study may be utilized as a background or reference resource for future functional studies on lncRNAs related to the diagnosis and development of new therapies for T1DM.

  4. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Science.gov (United States)

    Znidar, Katarina; Bosnjak, Masa; Cemazar, Maja; Heller, Loree C.

    2016-01-01

    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo. PMID:27271988

  5. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  6. Relationship between changes in mRNAs of the genes encoding steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage in head kidney and plasma levels of cortisol in response to different kinds of acute stress in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Geslin, Malika; Auperin, Benoit

    2004-01-01

    In this study, the expression of several genes involved in cortisol synthesis in head kidneys, the site of cortisol production, and in the rainbow trout (Oncorhynchus mykiss) was examined in response to two different acute stressors and an acute ACTH treatment. mRNAs levels of the "steroidogenic acute regulatory" (StAR) sterol transport protein, which transports cholesterol to the inner mitochondrial membrane as well as cytochrome P450 cholesterol side chain cleavage (P450(SCC)) were determined in head kidney (containing the interrenal tissue). In one experiment, we also quantified 3-beta-hydroxysteroid dehydrogenase (3B-HSD) and cytochrome P450(11beta) (11B-H) mRNAs. The presence of these four transcripts in the head kidney was confirmed by Northern blot analysis. For each stress condition, mRNA levels were quantified by quantitative or real-time RT-PCR. The results of these two methods were highly correlated. An acute stress induced by capture, short confinement (2min), and anesthesia (3min) resulted in significant elevation of plasma cortisol (30-fold higher than controls) and an increase in levels of StAR and P450(SCC) mRNAs 3h post-stress. When fish were submitted to an acute stress caused by 5min of chase with a net in a tank, plasma cortisol reached a peak within 1h, but after 3h, levels were only 5-fold higher in stressed trout than in controls and no variations in the expression of StAR, P450(SCC), 3B-HSD, and 11B-H were observed whatever the time post-stress. One hour after acute ACTH stimulation (5IU/kg), plasma cortisol level was 4-fold higher than in control trout and no changes in StAR and P450(SCC) mRNAs levels were detected. The data suggest that the high levels of cortisol after stress need an activation of genes involved in cortisol synthesis, but lower levels do not. Futhermore, under these three test conditions, we always found a strong positive correlation between mRNA levels of StAR and P450(SCC), in contrast to what has been described in

  7. Regulation of embryonic cell adhesion by the prion protein.

    Directory of Open Access Journals (Sweden)

    Edward Málaga-Trillo

    2009-03-01

    Full Text Available Prion proteins (PrPs are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1 mediates Ca(+2-independent homophilic cell adhesion and signaling; and (2 modulates Ca(+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin-based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development.

  8. 78-kilodalton glucose-regulated protein is induced in Rous sarcoma virus-transformed cells independently of glucose deprivation.

    OpenAIRE

    Stoeckle, M Y; Sugano, S; Hampe, A; Vashistha, A; Pellman, D.; Hanafusa, H

    1988-01-01

    To identify mRNAs with altered expression in Rous sarcoma virus (RSV)-transformed cells, we screened a chicken embryo fibroblast (CEF) cDNA library by differential hybridization. One clone, designated R1H, showed markedly elevated mRNA expression in RSV-transformed cells. Nucleotide sequence analysis indicated that R1H mRNA encodes 78-kilodalton glucose-regulated protein (GRP78). Chicken GRP78 was found to be very highly conserved in comparison with rat GRP78 (96% identity between chicken and...

  9. FRTL-5 Rat Thyroid Cells Release Thyroglobulin Sequestered in Exosomes: A Possible Novel Mechanism for Thyroglobulin Processing in the Thyroid

    OpenAIRE

    Vlasov, Pavel; Doi, Sonia Q.; Sellitti, Donald F.

    2016-01-01

    Exosomes are 30–100 nm, membrane-bound vesicles containing specific cellular proteins, mRNAs, and microRNAs that take part in intercellular communication between cells. A possible role for exosomes in thyroid function has not been fully explored. In the present study, FRTL-5 rat thyroid cells were grown to confluence and received medium containing either thyroid stimulating hormone (TSH), exogenous bovine thyroglobulin (bTg), or neither additive for 24 or 48 hours followed by collection of sp...

  10. Transcriptional Profiling of Newly Generated Dentate Granule Cells Using TU Tagging Reveals Pattern Shifts in Gene Expression during Circuit Integration1,2

    Science.gov (United States)

    Chatzi, Christina; Shen, Rongkun; Goodman, Richard H.

    2016-01-01

    Abstract Despite representing only a small fraction of hippocampal granule cells, adult-generated newborn granule cells have been implicated in learning and memory (Aimone et al., 2011). Newborn granule cells undergo functional maturation and circuit integration over a period of weeks. However, it is difficult to assess the accompanying gene expression profiles in vivo with high spatial and temporal resolution using traditional methods. Here we used a novel method [“thiouracil (TU) tagging”] to map the profiles of nascent mRNAs in mouse immature newborn granule cells compared with mature granule cells. We targeted a nonmammalian uracil salvage enzyme, uracil phosphoribosyltransferase, to newborn neurons and mature granule cells using retroviral and lentiviral constructs, respectively. Subsequent injection of 4-TU tagged nascent RNAs for analysis by RNA sequencing. Several hundred genes were significantly enhanced in the retroviral dataset compared with the lentiviral dataset. We compared a selection of the enriched genes with steady-state levels of mRNAs using quantitative PCR. Ontology analysis revealed distinct patterns of nascent mRNA expression, with newly generated immature neurons showing enhanced expression for genes involved in synaptic function, and neural differentiation and development, as well as genes not previously associated with granule cell maturation. Surprisingly, the nascent mRNAs enriched in mature cells were related to energy homeostasis and metabolism, presumably indicative of the increased energy demands of synaptic transmission and their complex dendritic architecture. The high spatial and temporal resolution of our modified TU-tagging method provides a foundation for comparison with steady-state RNA analyses by traditional transcriptomic approaches in defining the functional roles of newborn neurons. PMID:27011954

  11. Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR.

    Science.gov (United States)

    Gao, Keliang; Huang, Xiaomeng; Chiang, Chi-Ling; Wang, Xinmei; Chang, Lingqian; Boukany, Pouyan; Marcucci, Guido; Lee, Robert; Lee, Ly James

    2016-05-01

    Nanochannel electroporation (NEP) was applied to deliver precise dosages of myeloid cell leukemia-1 (Mcl-1)-specific siRNA and molecular beacons to two types of acute myeloid leukemia (AML) cells, FMS-like tyrosine kinase-3 wild-type (WT) and internal tandem duplications (ITD) type at the single-cell level. NEP, together with single-cell quantitative reverse transcription PCR, led to an observation showing nearly 20-folds more Mcl-1 siRNA than MCL1 mRNA were required to induce cell death for both cell lines and patient blasts, i.e., ~8,800 siRNAs for ~500 ± 50 mRNAs in ITD cells and ~6,000 siRNAs for ~300 ± 50 mRNAs in WT cells. A time-lapse study revealed that >75% MCL1 mRNA was downregulated within 1 hour after delivery of a small amount of siRNA. However, additional siRNA was required to inhibit the newly transcribed mRNA for >12 hours until the cell lost its ability of self-protection recovery. A multidelivery strategy of low doses and short delivery interval, which require 77% less siRNA and has the potential of lower side effects and clinical cost, was as effective as a single high-dose siRNA delivery. Our method provides a viable analytical tool to investigate gene silencing at the single-cell level for oligonucleotide-based therapy.

  12. miRNA regulatory circuits in ES cells differentiation: a chemical kinetics modeling approach.

    Directory of Open Access Journals (Sweden)

    Zijun Luo

    Full Text Available MicroRNAs (miRNAs play an important role in gene regulation for Embryonic Stem cells (ES cells, where they either down-regulate target mRNA genes by degradation or repress protein expression of these mRNA genes by inhibiting translation. Well known tables TargetScan and miRanda may predict quite long lists of potential miRNAs inhibitors for each mRNA gene, and one of our goals was to strongly narrow down the list of mRNA targets potentially repressed by a known large list of 400 miRNAs. Our paper focuses on algorithmic analysis of ES cells microarray data to reliably detect repressive interactions between miRNAs and mRNAs. We model, by chemical kinetics equations, the interaction architectures implementing the two basic silencing processes of miRNAs, namely "direct degradation" or "translation inhibition" of targeted mRNAs. For each pair (M,G of potentially interacting miRMA gene M and mRNA gene G, we parameterize our associated kinetic equations by optimizing their fit with microarray data. When this fit is high enough, we validate the pair (M,G as a highly probable repressive interaction. This approach leads to the computation of a highly selective and drastically reduced list of repressive pairs (M,G involved in ES cells differentiation.

  13. Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation.

    Science.gov (United States)

    Wong, Queenie Wing-Lei; Vaz, Candida; Lee, Qian Yi; Zhao, Tian Yun; Luo, Raymond; Archer, Stuart K; Preiss, Thomas; Tanavde, Vivek; Vardy, Leah A

    2016-01-01

    The presence of multiple variants for many mRNAs is a major contributor to protein diversity. The processing of these variants is tightly controlled in a cell-type specific manner and has a significant impact on gene expression control. Here we investigate the differential translation rates of individual mRNA variants in embryonic stem cells (ESCs) and in ESC derived Neural Precursor Cells (NPCs) using polysome profiling coupled to RNA sequencing. We show that there are a significant number of detectable mRNA variants in ESCs and NPCs and that many of them show variant specific translation rates. This is correlated with differences in the UTRs of the variants with the 5'UTR playing a predominant role. We suggest that mRNA variants that contain alternate UTRs are under different post-transcriptional controls. This is likely due to the presence or absence of miRNA and protein binding sites that regulate translation rate. This highlights the importance of addressing translation rate when using mRNA levels as a read out of protein abundance. Additional analysis shows that many annotated non-coding mRNAs are present on the polysome fractions in ESCs and NPCs. We believe that the use of polysome fractionation coupled to RNA sequencing is a useful method for analysis of the translation state of many different RNAs in the cell.

  14. Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation.

    Directory of Open Access Journals (Sweden)

    Queenie Wing-Lei Wong

    Full Text Available The presence of multiple variants for many mRNAs is a major contributor to protein diversity. The processing of these variants is tightly controlled in a cell-type specific manner and has a significant impact on gene expression control. Here we investigate the differential translation rates of individual mRNA variants in embryonic stem cells (ESCs and in ESC derived Neural Precursor Cells (NPCs using polysome profiling coupled to RNA sequencing. We show that there are a significant number of detectable mRNA variants in ESCs and NPCs and that many of them show variant specific translation rates. This is correlated with differences in the UTRs of the variants with the 5'UTR playing a predominant role. We suggest that mRNA variants that contain alternate UTRs are under different post-transcriptional controls. This is likely due to the presence or absence of miRNA and protein binding sites that regulate translation rate. This highlights the importance of addressing translation rate when using mRNA levels as a read out of protein abundance. Additional analysis shows that many annotated non-coding mRNAs are present on the polysome fractions in ESCs and NPCs. We believe that the use of polysome fractionation coupled to RNA sequencing is a useful method for analysis of the translation state of many different RNAs in the cell.

  15. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.

    Science.gov (United States)

    Wang, Yang; Li, Yue; Toth, Julia I; Petroski, Matthew D; Zhang, Zhaolei; Zhao, Jing Crystal

    2014-02-01

    N(6)-methyladenosine (m(6)A) has been identified as the most abundant internal modification of messenger RNA in eukaryotes. m(6)A modification is involved in cell fate determination in yeast and embryo development in plants. Its mammalian function remains unknown but thousands of mammalian mRNAs and long non-coding RNAs (lncRNAs) show m(6)A modification and m(6)A demethylases are required for mammalian energy homeostasis and fertility. We identify two proteins, the putative m(6)A MTase, methyltransferase-like 3 (Mettl3; ref. ), and a related but uncharacterized protein Mettl14, that function synergistically to control m(6)A formation in mammalian cells. Knockdown of Mettl3 and Mettl14 in mouse embryonic stem cells (mESCs) led to similar phenotypes, characterized by lack of m(6)A RNA methylation and lost self-renewal capability. A large number of transcripts, including many encoding developmental regulators, exhibit m(6)A methylation inversely correlated with mRNA stability and gene expression. The human antigen R (HuR) and microRNA pathways were linked to these effects. This gene regulatory mechanism operating in mESCs through m(6)A methylation is required to keep mESCs at their ground state and may be relevant to thousands of mRNAs and lncRNAs in various cell types. PMID:24394384

  16. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.

    Directory of Open Access Journals (Sweden)

    Audrey A Chan

    Full Text Available Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1 was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA, a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.

  17. Overexpression of amyloid precursor protein inhibits neurite outgrowth and disrupts cytoskeleton in N2a cells

    Institute of Scientific and Technical Information of China (English)

    王泽芬; 王建枝

    2004-01-01

    @@ There is considerable evidence suggesting that altered metabolism of β-amyloid precursor protein (APP) and accumulation of its β-amyloid (Aβ) fragment are key features of Alzheimer's disease (AD). APP is a type Ⅰ integral membrane protein and consists of 695-770 amino acids encoded by differentially spliced mRNAs transcribed from a single gene located on human chromosome 21.1 The 695-amino acid APP is expressed preferentially in the brain. Aβ, the major component of senile plaques, is derived by proteolytic processing of APP by β-and γ-secretase and is constitutively released from most cells.

  18. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    Science.gov (United States)

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  19. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  20. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  1. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Bramsen, Jesper Bertram; Lamy, Philippe;

    2010-01-01

    Downregulation of miR-145 in a variety of cancers suggests a possible tumor suppressor function for this microRNA. Here, we show that miR-145 expression is reduced in bladder cancer and urothelial carcinoma in situ, compared with normal urothelium, using transcription profiling and in situ...... hybridization. Ectopic expression of miR-145 induced extensive apoptosis in urothelial carcinoma cell lines (T24 and SW780) as characterized by caspase activation, nuclear condensation and fragmentation, cellular shrinkage, and detachment. However, cell death also proceeded upon caspase inhibition by the...... pharmacological inhibitor zVAD-fmk and ectopic expression of anti-apoptotic Bcl-2, indicating the activation of an alternative caspase-independent death pathway. Microarray analysis of transcript levels in T24 cells, before the onset of cell death, showed destabilization of mRNAs enriched for miR-145 7mer target...

  2. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... and GLC 19 on recurrence after radiotherapy. TGF beta was detected by ELISA and TGF beta receptors by chemical crosslinking to radiolabelled TGF beta 1. Furthermore, TGF beta and TGF beta receptor mRNAs were detected by northern blot analysis. Expression of type II TGF beta receptor mRNA and protein...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...

  3. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel;

    2011-01-01

    this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN...... not bind directly to the FAT/CD36 promoter. The hGH-mediated suppression of FAT/CD36 mRNA was associated with a decrease in palmitate uptake and fatty acid-induced basal hyper-secretion of insulin resulting in improved glucose-stimulated insulin secretion. This study suggests that hGH can protect ß-cells......Fatty acid-induced damage in pancreatic ß-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve ß-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim of...

  4. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel;

    2011-01-01

    this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN...... not bind directly to the FAT/CD36 promoter. The hGH-mediated suppression of FAT/CD36 mRNA was associated with a decrease in palmitate uptake and fatty acid-induced basal hyper-secretion of insulin resulting in improved glucose-stimulated insulin secretion. This study suggests that hGH can protect β-cells......Fatty acid-induced damage in pancreatic β-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve β-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim of...

  5. Target-dependent biogenesis of cognate microRNAs in human cells.

    Science.gov (United States)

    Bose, Mainak; Bhattacharyya, Suvendra N

    2016-01-01

    Extensive research has established how miRNAs regulate target mRNAs by translation repression and/or endonucleolytic degradation in metazoans. However, information related to the effect of target mRNA on biogenesis and stability of corresponding miRNAs in animals is limited. Here we report regulated biogenesis of cognate miRNAs by their target mRNAs. Enhanced pre-miRNA processing by AGO-associated DICER1 contributes to this increased miRNP formation. The processed miRNAs are loaded onto AGO2 to form functionally competent miRISCs both in vivo and also in a cell-free in vitro system. Thus, we identify an additional layer of posttranscriptional regulation that helps the cell to maintain requisite levels of mature forms of respective miRNAs by modulating their processing in a target-dependent manner, a process happening for miR-122 during stress reversal in human hepatic cells. PMID:27448149

  6. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Kyle Friend

    Full Text Available Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs. We find abundant phosphorylated P-eIF2α (P-eIF2α in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor and BMP4 (bone morphogenic protein 4 both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression.

  7. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation.

    Science.gov (United States)

    Friend, Kyle; Brooks, Hunter A; Propson, Nicholas E; Thomson, James A; Kimble, Judith

    2015-01-01

    Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor) and BMP4 (bone morphogenic protein 4) both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression. PMID:26406898

  8. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH.

    Science.gov (United States)

    Lee, ChangHwan; Roberts, Samantha E; Gladfelter, Amy S

    2016-04-01

    mRNA positioning in the cell is important for diverse cellular functions and proper development of multicellular organisms. Single-molecule RNA FISH (smFISH) enables quantitative investigation of mRNA localization and abundance at the level of individual molecules in the context of cellular features. Details about spatial mRNA patterning at various times, in different genetic backgrounds, at different developmental stages, and under varied environmental conditions provide invaluable insights into the mechanisms and functions of spatial regulation. Here, we describe detailed methods for performing smFISH along with immunofluorescence for two large, multinucleate cell types: the fungus Ashbya gossypii and cultured mouse myotubes. We also put forward a semi-automated image processing tool that systematically detects mRNAs from smFISH data and statistically analyzes the spatial pattern of mRNAs using a customized MATLAB code. These protocols and image analysis tools can be adapted to a wide variety of transcripts and cell types for systematically and quantitatively analyzing mRNA distribution in three-dimensional space. PMID:26690072

  9. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    Full Text Available BACKGROUND: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. CONCLUSION/SIGNIFICANCE: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  10. Transcriptional regulation of cytosol and membrane alanyl-aminopeptidase in human T cell subsets.

    Science.gov (United States)

    Bukowska, Alicja; Tadje, Janine; Arndt, Marco; Wolke, Carmen; Kähne, Thilo; Bartsch, Jaqueline; Faust, Jürgen; Neubert, Klaus; Hashimoto, Yuichi; Lendeckel, Uwe

    2003-04-01

    Aminopeptidase inhibitors strongly affect the proliferation and function of immune cells in man and animals and are promising agents for the pharmacological treatment of inflammatory or autoimmune diseases. Membrane alanyl-aminopeptidase (mAAP) has been considered as the major target of these anti-inflammatory aminopeptidase inhibitors. Recent evidence also points to a role of the cytosol alanyl-aminopeptidase (cAAP) in the immune response. In this study we used quantitative RT-PCR to determine the mRNA expression of both cAAP and mAAP in resting and activated peripheral T cells and also in CD4+, CD8+, Th1, Th2 and Treg (CD4+ CD25+) subpopulations. Both mAAP and cAAP mRNAs were expressed in all cell types investigated, and in response to activation their expression appeared to be upregulated in CD8+ cells, but downregulated in Treg cells. In CD4+ cells, mAAP and cAAP mRNAs were affected in opposite ways in response to activation. The cAAP-specific inhibitor, PAQ-22, did not affect either cAAP or mAAP expression in activated CD4+ or CD8+ cells, whereas in activated Treg cells it markedly upregulated the mRNA levels of both aminopeptidases. The non-discriminatory inhibitor, phebestin, significantly increased the amount of mAAP and cAAP mRNA in CD4+ and that of cAAP in Treg cells.

  11. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  12. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells.

    Science.gov (United States)

    Kadioglu, Onat; Efferth, Thomas

    2016-08-01

    Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. "WGQWPYHC" deserves further analysis for targeted therapy of TCTP-expressing tumor cells. Graphical abstract Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins. PMID:26972431

  13. Effect of amlodipine on apoptosis of human breast carcinoma MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To elucidate the effects of amlodipine on the proliferation and apoptosis of human breast carcinoma MDA-MB-231 cells. Methods: Light microscopy was used to determine the effects of amiodipine on cell morphology; Flow cytometry was used to quantitate cells undergoing apoptosis; the expression of a cell cycle-related protein, proliferating cell nuclear antigen (PCNA) and an antiapoptosis protein, Bcl-2 were assessed by immunocytochemistry. Results: Amlodipine concentration of 8.25 Ixmol/L (1/2 of IC50) affected the morphology, decreased the expression of PCNA and Bcl-2 and induced apoptosis of human breast carcinoma MDA-MB-231 cells. Conclusion: The effect of amlodipine on the antiproliferation of human breast carcinoma MDA-MB-231 cells is related to inducement of apoptosis, and the decrease of the expression of Bcl-2 and PCNA may be the possible mechanism for proliferation inhibitory and inducement of apoptosis.

  14. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia;

    2011-01-01

    transition and invasion of healthy tissues (usually bones). MicroRNA-203 (miR-203) is a tumor suppressor microRNA often silenced in different malignancies. Here, we show that miR-203 is downregulated in clinical primary prostatic tumors compared to normal prostate tissue, and in metastatic prostate cancer...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2......, LASP1, BIRC5, WASF1, ASAP1 and RUNX2 as new miR-203 direct target mRNAs involved in these events. Therefore, miR-203 could be a potentially new prognostic marker and therapeutic target in metastatic prostate cancer....

  15. Regulation of CYP11B1 and CYP11B2 steroidogenic genes by hypoxia-inducible miR-10b in H295R cells

    International Nuclear Information System (INIS)

    Highlights: • Identification of miR-10b as a hypoxia-inducible microRNA in H295R human adrenocortical cells. • Characterization of miR-10b as a negative regulator of the human CYP11B1 and CYP11B2 genes. • Evidence to support that CYP11B1 and and CYP11B2 mRNAs are likely targets of miR-10b. • miR-10b inhibits cortisol and aldosterone production in H295R cells. - Abstract: Although numerous studies have shown that hypoxia affects cortisol and aldosterone production in vivo, the underlying molecular mechanisms regulating the steroidogenic genes of these steroid hormones are still poorly known. MicroRNAs are post-transcriptional regulators that control diverse biological processes and this study describes the identification and validation of the hypoxia-inducible microRNA, miR-10b, as a negative regulator of the CYP11B1 and CYP11B2 steroidogenic genes in H295R human adrenocortical cells. Using the human TaqMan Low Density miRNA Arrays, we determined the miRNA expression patterns in H295R cells under normoxic and hypoxic conditions, and in cells overexpressing the human HIF-1α. Computer analysis using three in silico algorithms predicted that the hypoxia-inducible miR-10b molecule targets CYP11B1 and CYP11B2 mRNAs. Gene transfection studies of luciferase constructs containing the 3′-untranslated region of CYP11B1 or CYP11B2, combined with miRNA overexpression and knockdown experiments provide compelling evidence that CYP11B1 and CYP11B2 mRNAs are likely targets of miR-10b

  16. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  17. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p.

    Science.gov (United States)

    Ding, Guoping; Zhou, Liangjing; Qian, Yingming; Fu, Mingnian; Chen, Jian; Chen, Jionghuang; Xiang, Jianyang; Wu, Zhengrong; Jiang, Guixing; Cao, Liping

    2015-10-01

    It has been reported tumor-derived exosomes can transfer miRNAs to recipient cells in the tumor microenvironment, promoting tumor invasion and metastasis. The present research aimed to explore how pancreatic cancer (PC) derived exosomal miRNAs inhibited mRNA expression of dendritic cells and induced immune tolerance. Our study revealed that 9 PC-related miRNAs were increased and 208 mRNAs were inhibited in exosome-stimulated dendritic cells (exo-iDCs) compared to immature dendritic cells (iDCs). A target prediction between the 9 miRNAs and 208 mRNAs was performed by bioinformatics database analysis. From the target prediction, it was predicted and validated that regulatory factor X-associated protein (RFXAP), an important transcription factor for MHC II, was inhibited by miR-212-3p transferred from PC-secreted exosomes, resulting in decreased MHC II expression. Moreover, a clinical study showed a negative correlation between miR-212-3p and RFXAP in PC tissue. From these data, we concluded that PC-related miRNAs can be transferred to dendritic cells via exosome and inhibit target mRNA expression. More importantly, PC-derived exosomes inhibit RFXAP expression via miR-212-3p, which decrease MHC II expression and induce immune tolerance of dendritic cells. RFXAP deficiency has never been reported in solid tumors. The functions and mechanisms of RFXAP in tumors deserve future explorations.

  18. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal.

    Science.gov (United States)

    Zismanov, Victoria; Chichkov, Victor; Colangelo, Veronica; Jamet, Solène; Wang, Shuo; Syme, Alasdair; Koromilas, Antonis E; Crist, Colin

    2016-01-01

    Regeneration of adult tissues depends on somatic stem cells that remain quiescent yet are primed to enter a differentiation program. The molecular pathways that prevent activation of these cells are not well understood. Using mouse skeletal muscle stem cells as a model, we show that a general repression of translation, mediated by the phosphorylation of translation initiation factor eIF2α at serine 51 (P-eIF2α), is required to maintain the quiescent state. Skeletal muscle stem cells unable to phosphorylate eIF2α exit quiescence, activate the myogenic program, and differentiate, but do not self-renew. P-eIF2α ensures in part the robust translational silencing of accumulating mRNAs that is needed to prevent the activation of muscle stem cells. Additionally, P-eIF2α-dependent translation of mRNAs regulated by upstream open reading frames (uORFs) contributes to the molecular signature of stemness. Pharmacological inhibition of eIF2α dephosphorylation enhances skeletal muscle stem cell self-renewal and regenerative capacity.

  19. Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells

    Science.gov (United States)

    Alexandrova, Elena; Nassa, Giovanni; Corleone, Giacomo; Buzdin, Anton; Aliper, Alexander M.; Terekhanova, Nadezhda; Shepelin, Denis; Zhavoronkov, Alexander; Tamm, Michael; Milanesi, Luciano; Weisz, Alessandro

    2016-01-01

    Background Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (ppromoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology. PMID:26863634

  20. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Alvarez

    2013-06-01

    Full Text Available A hallmark of group/species A rotavirus (RVA replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1 is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV. NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.

  1. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.

    Science.gov (United States)

    Santos, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.

  2. Dynamic transcription of long non-coding RNA genes during CD4+ T cell development and activation.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available BACKGROUND: Recent evidence shows that long non-coding RNA (LncRNA play important regulatory roles in many biology process, including cell development, activation and oncogenesis. However, the roles of these LncRNAs in the development and activation of CD4+ T cells, which is an important component of immune response, remain unknown. RESULTS: To predict the function of LncRNA in the development and activation of CD4+ T cells, first, we examined the expression profiles of LncRNAs and mRNAs in CD4-CD8- (DN, CD4+CD8+ (DP, CD4+CD8-, and activated CD4+CD8- T cells in a microarray analysis and verified these results by real time PCRs (qPCR. We found that the expression of hundreds of LncRNAs significantly changed in each process of developmental transition, including DN into DP, DP into CD4+CD8-, and CD4+CD8- into activated CD4+ T cells. A Kendall distance analysis suggested that the expression of LncRNAs in DN, DP, CD4+CD8- T cells and activated CD4+ T cells were correlated with the expression of mRNAs in these T cells. The Blat algorithm and GO analysis suggested that LncRNAs may exert important roles in the development and activation of CD4+ T cells. These roles included proliferation, homeostasis, maturation, activation, migration, apoptosis and calcium ion transportation. CONCLUSION: The present study found that the expression profiles of LncRNAs in different stages of CD4+ T cells are distinguishable. LncRNAs are involved in the key biological process in CD4+ T cell development and activation.

  3. Identification of the Paneth cells in chicken small intestine.

    Science.gov (United States)

    Wang, L; Li, J; Li, J; Li, R X; Lv, C F; Li, S; Mi, Y L; Zhang, C Q

    2016-07-01

    The Paneth cells are highly specialized cells in the epithelium of the small intestine of many vertebrate species. These cells reside at the base of crypts of the Lieberkühn and contain abundant secretory granules. Previous studies suggesting the existence of Paneth cells in the chicken (Gallus gallus) remained controversial. Here we seek to identify the Paneth cells in the chicken small intestine through morphological examination and specific gene expression. Histological staining and transmission electron microscope confirmed the presence of granulated secretory cells at the base of the crypts in the chicken small intestine. Western blotting experiment also manifested the expression of lysozyme protein, which is specifically secreted by the Paneth cells in the small intestine. Moreover, lysozyme c and lysozyme g mRNAs were expressed in the small intestine of chickens at different ages. Lysozyme c mRNA, in particular, was located at the base of the small intestinal crypts as displayed by in situ hybridization. Collectively, we provide evidences that the Paneth cells indeed exist in the small intestine of the chicken.

  4. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy

    Science.gov (United States)

    Pashoutan Sarvar, Davod; Shamsasenjan, Karim; Akbarzadehlaleh, Parvin

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.

  5. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    Science.gov (United States)

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells.

  6. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  7. The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells.

    Science.gov (United States)

    Yang, Yubo; Dai, Cuihong; Cai, Zhipeng; Hou, Aiju; Cheng, Dayou; Wu, Guanying; Li, Jing; Cui, Jie; Xu, Dechang

    2016-03-01

    Chemotherapy is the main strategy in the treatment of cancer; however, the development of drug-resistance is the obstacle in long-term treatment of cervical cancer. Cisplatin is one of the most common drugs used in cancer therapy. Recently, accumulating evidence suggests that miRNAs are involved in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a key role in acquiring of drug-resistance in the progression of tumor. In this study, we induced and maintained four levels of cisplatin-resistant HeLa cell lines (HeLa/CR1, HeLa/CR2, HeLa/CR3, and HeLa/CR4). According to the previous studies and existing evidence, we selected five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential target mRNAs as our research targets. The real-time RT-PCR was adopted to detect the relative expression of miRNAs and their mRNAs. The results show that miR-182 and miR-15b were up-regulated in resistant cell lines, while miR-30a was significantly down-regulated. At the same time, their targets are related to drug resistance. Compared to their parent HeLa cell line, the expression of selected miRNAs in resistant cell lines altered. The alteration suggests that HeLa cell drug resistance is associated with distinct miRNAs, which indicates that miRNAs may be one of the therapy targets in the treatment of cervical cancer by sensitizing cell to chemotherapy. We suggested a possible network diagram based on the existing theory and the preliminary results of candidate miRNAs and their targets in HeLa cells during development of drug resistance. PMID:27019498

  8. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  9. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry.

    Science.gov (United States)

    Porichis, Filippos; Hart, Meghan G; Griesbeck, Morgane; Everett, Holly L; Hassan, Muska; Baxter, Amy E; Lindqvist, Madelene; Miller, Sara M; Soghoian, Damien Z; Kavanagh, Daniel G; Reynolds, Susan; Norris, Brett; Mordecai, Scott K; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single-cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to address a variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T-cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by ImageStream technology. PMID:25472703

  10. The effects of differential polyadenylation on expression of the dihydrofolate reductase-encoding gene in Chinese hamster lung cells.

    Science.gov (United States)

    Yang, H; Hussain, A; Melera, P W

    1995-10-01

    Three differently sized mRNAs are expressed from each of two DHFR (encoding dihydrofolate reductase) alleles present in the Chinese hamster lung (CHL) cell line, DC-3F. The relative abundancy of the transcripts produced from each allele differs dramatically as a result of differential utilization of the multiple poly(A) sites present in the DHFR DHFR gene and a genetic polymorphism located within the third poly(A) signal of one allele. We sought to determine whether such differences in polyadenylation affect the steady-state levels of DHFR and mRNAs expressed from either allele and, in a more general sense, to ask whether differences in 3' end RNA processing in a gene containing multiple poly(A) sites affects the final level of gene expression. An SV40 promoter-based transient expression system producing chimeric cat::DHFR transcripts was developed to regenerate the in vivo mRNA polyadenylation patterns associated with each of the two DHFR alleles. The results demonstrate that the total amount of polyadenylated RNA expressed from each of these constructs in vitro is the same regardless of the differential utilization of the poly(A) signals that occurs between them. Moreover, measurement of the individual turnover rates of the DHFR mRNAs expressed in vivo from each allele, as determined by pulse-chase labeling and actinomycin D inhibition studies, revealed no significant allele-specific differences in transcript half-lives. Finally, measuring the steady-state levels of DHFR poly(A)+ mRNA in parental DC-3F cells demonstrated that both alleles are expressed to the same extent during normal growth. Thus, even though dramatic allele-specific differences in 3' end processing of DHFR transcripts occur in vivo, such differences do not appear to influence the steady-state levels of DHFR gene expression. PMID:7590264

  11. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Fromm-Dornieden Carolin

    2012-03-01

    Full Text Available Abstract Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated and 2 genes that shifted towards free mRNA fraction (down-regulated. Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3, form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, act on the regulation of translation (eIF4B or transcription (HSF1, IRF6, MYC, TSC22d3. Others act as chaperones (BAG3, HSPA8, HSP90ab1 or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.

  12. Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Dao Mo A

    2011-10-01

    Full Text Available Abstract Background SB623 cells are expanded from marrow stromal cells (MSCs transfected with a Notch intracellular domain (NICD-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed. Methods To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR. Results Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86. Conclusion The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells.

  13. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    Science.gov (United States)

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma.

  14. Oxidative stress regulated heme-oxygenase-1 and glutathione S-transferase-m1 gene expression changes in cell lines exposed to melanins

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Peng Zhao; Junfeng Yang; Renyun Zhang; Shen Li; Dan Liu

    2011-01-01

    To investigate the effects of oxidative stress on substantia nigra neuronal degeneration and death in patients with Parkinson's disease, we treated neuroblastoma cells (SK-N-SH) and glioma cells with Fenton's reagent, iron chelating agent, neuromelanin and dopamine melanin. We investigated the changes in expression of nine oxidative stress-related genes and proteins. The levels of mRNAs for heme-oxygenase-1 and glutathione S-transferase-m1 were significantly reduced in SK-N-SH cells exposed to oxidative stress, and increased in glial cells treated with deferoxamine. These results revealed that SK-N-SH neurons react sensitively to oxidative stress, which implies different outcomes between these two types of cells in the substantia nigra. Moreover, the influences of neuromelanin and dopamine melanin on cell function are varied, and dopamine melanin is not a good model for neuromelanin.

  15. Insulin-like growth factor binding protein 2 is a marker for antiestrogen resistant human breast cancer cell lines but is not a major growth regulator

    DEFF Research Database (Denmark)

    Juncker-Jensen, A; Lykkesfeldt, A E; Worm, J;

    2006-01-01

    Antiestrogens target the estrogen receptor and counteract the growth stimulatory action of estrogen on human breast cancer. However, acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. To mimic acquired resistance, we have used a model...... system with the antiestrogen sensitive human breast cancer cell line MCF-7 and several antiestrogen resistant cell lines derived from the parental MCF-7 cell line. This model system was used to study the expression and possible involvement in resistant cell growth of insulin-like growth factor binding...... protein 2 (IGFBP-2). By an oligonucleotide based microarray, we compared the expression of mRNAs encoding insulin-like growth factor binding protein 1,2,3,4,5 and 6 (IGFBP-1 to -6) in the parental MCF-7 cell line to three human breast cancer cell lines, resistant to the antiestrogen ICI 182,780 (Faslodex...

  16. Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells.

    Science.gov (United States)

    Tani, Hidenori; Onuma, Yasuko; Ito, Yuzuru; Torimura, Masaki

    2014-01-01

    In this study, we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs) and human-induced pluripotent stem cells (hiPSCs). lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical issues associated with human embryonic stem cells. Here, we identified six novel lncRNAs (CDKN2B-AS1, MIR22HG, GABPB1-AS1, FLJ33630, LINC00152, and LINC0541471_v2) that respond to model chemical stresses (cycloheximide, hydrogen peroxide, cadmium, or arsenic) in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs, the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.

  17. Reactive oxygen species regulate the levels of dual oxidase (Duox1-2 in human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Simona Damiano

    Full Text Available Dual Oxidases (DUOX 1 and 2 are efficiently expressed in thyroid, gut, lung and immune system. The function and the regulation of these enzymes in mammals are still largely unknown. We report here that DUOX 1 and 2 are expressed in human neuroblastoma SK-N-BE cells as well as in a human oligodendrocyte cell line (MO3-13 and in rat brain and they are induced by platelet derived growth factor (PDGF. The levels of DUOX 1 and 2 proteins and mRNAs are induced by reactive oxygen species (ROS produced by the membrane NADPH oxidase. As to the mechanism, we find that PDGF stimulates membrane NADPH oxidase to produce ROS, which stabilize DUOX1 and 2 mRNAs and increases the levels of the proteins. Silencing of gp91(phox (NOX2, or of the other membrane subunit of NADPH oxidase, p22(phox, blocks PDGF induction of DUOX1 and 2. These data unravel a novel mechanism of regulation of DUOX enzymes by ROS and identify a circuitry linking NADPH oxidase activity to DUOX1 and 2 levels in neuroblastoma cells.

  18. Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hidenori Tani

    Full Text Available In this study, we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs and human-induced pluripotent stem cells (hiPSCs. lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical issues associated with human embryonic stem cells. Here, we identified six novel lncRNAs (CDKN2B-AS1, MIR22HG, GABPB1-AS1, FLJ33630, LINC00152, and LINC0541471_v2 that respond to model chemical stresses (cycloheximide, hydrogen peroxide, cadmium, or arsenic in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs, the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.

  19. CTCFL (BORIS) mRNA Expression in a Peripheral Giant Cell Granuloma of the Oral Cavity

    Science.gov (United States)

    Zambrano-Galván, Graciela; Reyes-Romero, Miguel; Bologna-Molina, Ronell; Almeda-Ojeda, Oscar Eduardo; Lemus-Rojero, Obed

    2014-01-01

    Peripheral giant cell granuloma (PGCG) is a relatively common benign reactive lesion of the oral cavity which can occur at any age. CTCFL/BORIS (CTCF like/Brother of the Regulator of Imprinted Sites) and CTCF (CCCTC-binding factor) are paralogous genes with an important role in the regulation of gene expression, genomic imprinting, and nuclear chromatin insulators regulation. BORIS expression promotes cell immortalization and growth while CTCF has tumor suppressor activity; the expression pattern may reflect the reverse transcription silencing of BORIS. The aim of this work was to describe a histopathological and molecular approach of an 8-year-old pediatric male patient with PGCG diagnosis. It was observed that the PGCG under study expressed CTCF as well as BORIS mRNAs alongside with the housekeeping gene GAPDH, which may be related to possible genetic and epigenetic changes in normal cells of oral cavity. PMID:25114808

  20. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  1. Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell.

    Science.gov (United States)

    Seale, Patrick; Ishibashi, Jeff; Holterman, Chet; Rudnicki, Michael A

    2004-11-15

    Satellite cells are committed myogenic progenitors that give rise to proliferating myoblasts during postnatal growth and repair of skeletal muscle. To identify genes expressed at different developmental stages in the satellite cell myogenic program, representational difference analysis of cDNAs was employed to identify more than 50 unique mRNAs expressed in wild-type myoblasts and MyoD-/- myogenic cells. Novel expression patterns for several genes, such as Pax7, Asb5, IgSF4, and Hoxc10, were identified that were expressed in both quiescent and activated satellite cells. Several previously uncharacterized genes that represent putative MyoD target genes were also identified, including Pw1, Dapk2, Sytl2, and NLRR1. Importantly, many genes such as IgSF4, Neuritin, and Klra18 that were expressed exclusively in MyoD-/- myoblasts were also expressed by satellite cells in undamaged muscle in vivo but were not expressed by primary myoblasts. These data are consistent with a biological role for activated satellite cells that induce Myf5 but not MyoD. Lastly, additional endothelial and hematopoietic markers were identified supporting a nonsomitic developmental origin of the satellite cell myogenic lineage. PMID:15501219

  2. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars;

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......, we show that a 5.0 kb CD44 mRNA contained multiple IMP-binding sites in its 3'UTR, and following IMP depletion this species became unstable. Direct knockdown of the CD44 transcript mimicked the effect of IMPs on invadopodia, and we infer that CD44 mRNA stabilization may be involved in IMP...

  3. [Application Prospect of Stem Cell-derived Microvesicles in Regeneration of Injured Tissues].

    Science.gov (United States)

    Yin, Huiqun; Jiang, Hong

    2015-06-01

    More and more evidence indicates that microvesicles (MVs) play a key role in cell-to-cell communication. The MVs are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the cell surface membranes of most types. Components of donor cells are incorporated into MVs that contain bioactive lipids, proteins, genetic cargoes. MVs derived from stem cells may reprogram cells that survived in injury tissue and favor tissue regeneration by delivering their bioactive cargoes to influence the behaviors of recipient cells. Compared with mesenchymal stem cells (MSCs), MVs derived from MSCs were found to mimic the beneficial effects of these cells. These proregenerative effects mediated by MVs can be explained by the fact that MVs are enriched in bioactive lipids, anti-apoptotic and pro-stimulatory growth factors or cytokines, and deliver mRNAs, regulatory miRNAs and proteins that improve overall cell function. Therefore, it opens novel perspectives in exploiting these MVs in tissue regeneration and repair. In addition, the use of MVs instead of stem cells could represent a safe and potentially more advantageous alternative to cell-therapy approaches.

  4. Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures.

    Science.gov (United States)

    Amano, Tomokazu; Jeffries, Emiko; Amano, Misa; Ko, Akihiro C; Yu, Hong; Ko, Minoru S H

    2015-10-01

    Aneuploidy, an abnormal number of chromosomes, has previously been considered irremediable. Here, we report findings that euploid cells increased among cultured aneuploid cells after exposure to the protein ZSCAN4, encoded by a mammalian-specific gene that is ordinarily expressed in preimplantation embryos and occasionally in stem cells. For footprint-free delivery of ZSCAN4 to cells, we developed ZSCAN4 synthetic mRNAs and Sendai virus vectors that encode human ZSCAN4. Applying the ZSCAN4 biologics to established cultures of mouse embryonic stem cells, most of which had become aneuploid and polyploid, dramatically increased the number of euploid cells within a few days. We then tested the biologics on non-immortalized primary human fibroblast cells derived from four individuals with Down syndrome—the most frequent autosomal trisomy of chromosome 21. Within weeks after ZSCAN4 application to the cells in culture, fluorescent in situ hybridization with a chromosome 21-specific probe detected the emergence of up to 24% of cells with only two rather than three copies. High-resolution G-banded chromosomes further showed up to 40% of cells with a normal karyotype. These findings were confirmed by whole-exome sequencing. Similar results were obtained for cells with the trisomy 18 of Edwards syndrome. Thus a direct, efficient correction of aneuploidy in human fibroblast cells seems possible in vitro using human ZSCAN4. PMID:26324424

  5. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of); Jeong, Hyung Jin, E-mail: jhj@andong.ac.kr [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  6. Co-regulation of pituitary tumor cell adhesion and prolactin gene expression by glucocorticoid.

    Science.gov (United States)

    Spangler, P R; Delidow, B C

    1998-01-01

    Rat 235-1 pituitary tumor cells are lactotrophs producing high levels of prolactin (PRL). Dexamethasone (Dex, 100 nM) inhibits PRL gene expression in 235-1 cells by 50%, while simultaneously decreasing cell replication and cell-cell aggregation. To determine the time course of Dex action, we used a quantitative assay for cell-cell interaction, based on the number of single cells present before and after re-aggregation of dispersed cells. 235-1 cells were cultured in growth medium or medium plus 100 nM Dex for 1-4 days before assay. Control cells had 90% re-aggregation on all days of assay. Aggregation of Dex-treated cells decreased to 55% by day 4. Dex treatment also reduced cell numbers by 40%, but this decrease did not contribute to reduced aggregation. To determine the mechanism of Dex-inhibited cell-cell adhesion, we examined the expression of cadherins and catenins. Cadherin-related mRNAs (P- and N-cadherin probes) were detectable in 235-1 cells, but their levels were unchanged by Dex. A pancadherin antibody was unable to detect classical cadherins in these cells. Both alpha- and beta-catenins were detected by Western blotting and their levels were decreased by Dex. Unlike control aggregates, aggregates of Dex-treated cells were able to inhibit expression of PRL mRNA when added to monolayers of 235-1 cells. These data suggest that Dex influences cadherin function by inhibiting catenin expression and that this has the functional consequence of altering 235-1 cell-cell interactions. Overall the data show that Dex affects important aspects of lactotroph function other than PRL gene expression. These changes may include physical alterations in pituitary cell contacts that further support a change in functional state. PMID:9397162

  7. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  8. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells.

    Science.gov (United States)

    Reigstad, Christopher S; Salmonson, Charles E; Rainey, John F; Szurszewski, Joseph H; Linden, David R; Sonnenburg, Justin L; Farrugia, Gianrico; Kashyap, Purna C

    2015-04-01

    Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5-hydroxytryptamine (5-HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ-free (GF) or humanized (HM; ex-GF colonized with human gut microbiota). 5-HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5-HT synthesis; P cell numbers (cells producing 5-HT) were unchanged. Short-chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5-HT production and homeostasis. PMID:25550456

  9. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay.

    Science.gov (United States)

    Roman-Sanchez, Ramon; Wensel, Theodore G; Wilson, John H

    2016-04-01

    Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes-presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK293 and HT1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene. PMID:26416182

  10. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  11. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    Science.gov (United States)

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  12. Stochastic mRNA synthesis in mammalian cells.

    Science.gov (United States)

    Raj, Arjun; Peskin, Charles S; Tranchina, Daniel; Vargas, Diana Y; Tyagi, Sanjay

    2006-10-01

    Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise. PMID:17048983

  13. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    Science.gov (United States)

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. PMID:27375190

  14. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    Science.gov (United States)

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.

  15. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukari Takahashi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. CONCLUSIONS/SIGNIFICANCE: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.

  16. Deletion of Tristetraprolin (TTP) caused spontaneous reactive granulopoiesis by a non-cell autonomous mechanism without disturbing LT-HSC quiescence1

    OpenAIRE

    Ian M Kaplan; Morisot, Sebastien; Heiser, Diane; Cheng, Wen-Chih; Kim, Min Jung; Civin, Curt I.

    2011-01-01

    Tristetraprolin (TTP, Zfp36, Nup475, Tis11) dramatically reduces the stability of target mRNAs by binding to AU-rich elements (AREs) in their 3′UTRs. Through this mechanism, TTP functions as a rheostatic, temporal regulator of gene expression. TTP KO mice exhibit completely penetrant granulocytic hyperplasia. We have shown that the hematopoietic stem-progenitor cell (HSPC) compartment in TTP KO mice is also altered. Although no change was detected in long-term HSC (LT-HSC) frequency or functi...

  17. miR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy

    OpenAIRE

    Wang, Fang; Lou, Jian-fang; Cao, Yan; Shi, Xin-hui; Wang, Peng; Xu, Jian; Xie, Er-fu; Xu, Ting; Sun, Rui-hong; Rao, Jian-Yu; Huang, Pu-wen; Pan, Shi-yang; Wang, Hong

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC ...

  18. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available BACKGROUND: Pluri-potent bone marrow stromal cells (MSCs provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach. METHODS AND FINDINGS: Two HMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and approximately 12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/-0.75 to 7.63+/-1.63 mM. 13 of the 16 mice became normoglycaemic (6.9+/-0.64 mM, despite the failure to detect the expression of SUR1, a K(+-ATP channel component required for regulation of insulin secretion. CONCLUSIONS: Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.

  19. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  20. Spiegelzymes® mirror-image hammerhead ribozymes and mirror-image DNAzymes, an alternative to siRNAs and microRNAs to cleave mRNAs in vivo?

    Directory of Open Access Journals (Sweden)

    Eliza Wyszko

    Full Text Available With the discovery of small non-coding RNA (ncRNA molecules as regulators for cellular processes, it became intriguing to develop technologies by which these regulators can be applied in molecular biology and molecular medicine. The application of ncRNAs has significantly increased our knowledge about the regulation and functions of a number of proteins in the cell. It is surprising that similar successes in applying these small ncRNAs in biotechnology and molecular medicine have so far been very limited. The reasons for these observations may lie in the high complexity in which these RNA regulators function in the cells and problems with their delivery, stability and specificity. Recently, we have described mirror-image hammerhead ribozymes and DNAzymes (Spiegelzymes® which can sequence-specifically hydrolyse mirror-image nucleic acids, such as our mirror-image aptamers (Spiegelmers discovered earlier. In this paper, we show for the first time that Spiegelzymes are capable of recognising complementary enantiomeric substrates (D-nucleic acids, and that they efficiently hydrolyse them at submillimolar magnesium concentrations and at physiologically relevant conditions. The Spiegelzymes are very stable in human sera, and do not require any protein factors for their function. They have the additional advantages of being non-toxic and non-immunogenic. The Spiegelzymes can be used for RNA silencing and also as therapeutic and diagnostic tools in medicine. We performed extensive three-dimensional molecular modelling experiments with mirror-image hammerhead ribozymes and DNAzymes interacting with D-RNA targets. We propose a model in which L/D-double helix structures can be formed by natural Watson-Crick base pairs, but where the nucleosides of one of the two strands will occur in an anticlinal conformation. Interestingly enough, the duplexes (L-RNA/D-RNA and L-DNA/D-RNA in these models can show either right- or left-handedness. This is a very new

  1. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  2. Effects of expression of surfactant protein A and B mRNAs in lung of rat pups from maternal passive smoking%孕期被动吸烟对新生大鼠肺SP-A和SP-B mRNAs表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    蔡栩栩; 杜悦; 高红; 李书琴; 李岩; 孟菲

    2004-01-01

    Objective:To study if prenatal exposure to sidestream cigarette smoke influences the expression of suffactant protein A(SP-A)and surfactant protein B(SP-B)mRNAs in the lung of rat pups.Methods:Sprague-Dawley rats on pregnant day 1,8 and 15 were exposed to sidestream cigarette smoke in a whole-body exposure chamber for 2 h each day.The pups were delivered by cesarean section on the 20thday of gestation.Reverse transcription polymerase chain reaction(RT-PCR)was used to evaluate relative amount of SP-A and SP-B mRNAs expression.Results:The relative amount of SP-A and SP-B mRNAs in the lung of rat pups did not show any significant difference between the control and smoke-exposed groups at any exposure point.Conclusions:The results indicate that prenatal exposure to sidestream smoke does not influence the expression of SP-A and SP-B mRNAs.%目的研究孕期被动吸烟对新生大鼠肺表面活性蛋白A、B(SP-A,SP-B)基因表达的影响,探讨产前被动吸烟对新生大鼠肺损伤的机制.方法分别将SD大鼠于妊娠第1、8和15天置于吸烟箱内每天2 h被动吸烟建立孕鼠被动吸烟动物模型,孕鼠每天置于吸烟箱内2 h不吸烟者为对照组,于妊娠第20天剖宫取胎鼠,采用反转录聚合酶链反应(RT-PCR)方法检测新生鼠肺组织SP-A、SP-B mRNAs的表达.结果不同孕期被动吸烟SD大鼠所产新生鼠肺组织SP-A、SP-B mRNAs的表达与对照比较和组间无明显差异(P>0.05).结论孕期被动吸烟对新生大鼠肺组织SP-A和SP-B mRNAs的表达无明显影响.

  3. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely.

    Science.gov (United States)

    Zhou, Beiyan; Wang, Stephanie; Mayr, Christine; Bartel, David P; Lodish, Harvey F

    2007-04-24

    MicroRNAs (miRNAs) are a family of approximately 22-nt noncoding RNAs that can posttranscriptionally regulate gene expression. Several miRNAs are specifically expressed in hematopoietic cells. Here we show that one such miRNA, miR-150, is mainly expressed in the lymph nodes and spleen and is highly up-regulated during the development of mature T and B cells; expression of miR-150 is sharply up-regulated at the immature B cell stage. Overexpression of miR-150 in hematopoietic stem cells, followed by bone marrow transplantation, had little effect on the formation of either mature CD8- and CD4-positive T cells or granulocytes or macrophages, but the formation of mature B cells was greatly impaired. Furthermore, premature expression of miR-150 blocked the transition from the pro-B to the pre-B stage. Our results indicate that miR-150 most likely down-regulates mRNAs that are important for pre- and pro-B cell formation or function, and its ectopic expression in these cells blocks further development of B cells.

  4. Increased interferon alpha receptor 2 mRNA levels is associated with renal cell carcinoma metastasis

    Directory of Open Access Journals (Sweden)

    Yamanishi Tomonori

    2007-08-01

    Full Text Available Abstract Background Interferon-α (IFN-α is one of the central agents in immunotherapy for renal cell carcinoma (RCC and binds to the IFN-α receptor (IFNAR. We investigated the role of IFNAR in RCC. Methods We quantified IFNAR mRNA expression in paired tumor and non-tumor samples from the surgical specimens of 103 consecutive patients with RCC using a real-time reverse transcription polymerase chain reaction (RT-PCR, and IFNAR2 protein using Western blotting. Results The absolute level of IFNAR1 and IFNAR2 mRNAs in tumor and non-tumor tissues did not correlate with the malignant and metastatic profiles. The relative yields of the PCR product from the tumor tissue to that from the corresponding non-tumor tissue (T/N for the expression of IFNAR mRNAs were calculated. While the T/N ratio of IFNAR1 did not correlate with any factor, a high T/N ratio of IFNAR2 correlated with poor differentiation (P P P P P Conclusion IFNAR2 is associated with the progression of RCC.

  5. Dexamethasone acutely regulates endocrine parameters in stallions and subsequently affects gene expression in testicular germ cells.

    Science.gov (United States)

    Ing, N H; Brinsko, S P; Curley, K O; Forrest, D W; Love, C C; Hinrichs, K; Vogelsang, M M; Varner, D D; Welsh, T H

    2015-01-01

    Testicular steroidogenesis and spermatogenesis are negatively impacted by stress-related hormones such as glucocorticoids. The effects of two injections of a therapeutic dose of dexamethasone (a synthetic glucocorticoid, 0.1mg/kg; i.v.) given 24h apart to each of three stallions were investigated and compared to three saline-injected control stallions. Dexamethasone decreased circulating concentrations of cortisol by 50% at 24h after the initial injection. Serum testosterone decreased by a maximum of 94% from 4 to 20h after the initial injection of dexamethasone. Semen parameters of the dexamethasone-treated stallions were unchanged in the subsequent two weeks. Two weeks after treatment, stallions were castrated. Functional genomic analyses of the testes revealed that, of eight gene products analyzed, dexamethasone depressed concentrations of heat shock protein DNAJC4 and sperm-specific calcium channel CATSPER1 mRNAs by more than 60%. Both genes are expressed in germ cells during spermiogenesis and have been related to male fertility in other species, including humans. This is the first report of decreased DNAJC4 and CATSPER1 mRNA concentrations in testes weeks after dexamethasone treatment. Concentrations of these mRNAs in sperm may be useful as novel markers of fertility in stallions. PMID:25487569

  6. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer

    Science.gov (United States)

    Li, Yang; Francia, Giulio; Zhang, Jian-Ying

    2015-01-01

    p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression. PMID:26416451

  7. Alphastatin downregulates vascular endothelial cells sphingosine kinase activity and suppresses tumor growth in nude mice bearing human gastric cancer xenografts

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Tao Li; Rong Li; Bo Wei; Zheng Peng

    2006-01-01

    AIM: To investigate whether alphastatin could inhibit human gastric cancer growth and furthermore whether sphingosine kinase (SPK) activity is involved in this process.METHODS: Using migration assay, MTT assay and Matrigel assay, the effect of alphastatin on vascular endothelial cells (ECs) was evaluated in vitro. SPK and endothelial differentiation gene (EDG)-1, -3, -5 mRNAs were detected by reverse transcription-polymerase chain reaction (RT-PCR). SPK activity assay was used to evaluate the effect of alphastatin on ECs. Matrigel plug assay in nude mice was used to investigate the effect of alphastatin on angiogenesis in vivo. Female nude mice were subcutaneously implanted with human gastric cancer cells (BGC823) for the tumor xenografts studies.Micro vessel density was analyzed in Factor Ⅷ-stained tumor sections by the immunohistochemical SP method.RESULTS: In vitro, alphastatin inhibited the migration and tube formation of ECs, but had no effect on proliferation of ECs. RT-PCR analysis demonstrated that ECs expressed SPK and EDG-1, -3, -5 mRNAs. In vivo,alphastatin sufficiently suppressed neovascularization of the tumor in the nude mice. Daily administration of alphastatin produced significant tumor growth suppression. Immunohistochemical studies of tumor tissues revealed decreased micro vessel density in alphastatin-treated animals as compared with controls.CONCLUSION: Downregulating ECs SPK activity may be one of the mechanisms that alphastatin inhibits gastric cancer angiogenesis. Alphastatin might be a useful and relatively nontoxic adjuvant therapy in the treatment of gastric cancer.

  8. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs.

    Science.gov (United States)

    Hui, Dequan; Iqbal, Javeed; Lehmann, Katja; Gase, Klaus; Saluz, Hans Peter; Baldwin, Ian T

    2003-04-01

    We extend our analysis of the transcriptional reorganization that occurs when the native tobacco, Nicotiana attenuata, is attacked by Manduca sexta larvae by cloning 115 transcripts by mRNA differential display reverse transcription-polymerase chain reaction and subtractive hybridization using magnetic beads (SHMB) from the M. sexta-responsive transcriptome. These transcripts were spotted as cDNA with eight others, previously confirmed to be differentially regulated by northern analysis on glass slide microarrays, and hybridized with Cy3- and Cy5-labeled probes derived from plants after 2, 6, 12, and 24 h of continuous attack. Microarray analysis proved to be a powerful means of verifying differential expression; 73 of the cloned genes (63%) were differentially regulated (in equal proportions from differential display reverse transcription-polymerase chain reaction and SHMB procedures), and of these, 24 (32%) had similarity to known genes or putative proteins (more from SHMB). The analysis provided insights into the signaling and transcriptional basis of direct and indirect defenses used against herbivores, suggesting simultaneous activation of salicylic acid-, ethylene-, cytokinin-, WRKY-, MYB-, and oxylipin-signaling pathways and implicating terpenoid-, pathogen-, and cell wall-related transcripts in defense responses. These defense responses require resources that could be made available by decreases in four photosynthetic-related transcripts, increases in transcripts associated with protein and nucleotide turnover, and increases in transcripts associated with carbohydrate metabolism. This putative up-regulation of defense-associated and down-regulation of growth-associated transcripts occur against a backdrop of altered transcripts for RNA-binding proteins, putative ATP/ADP translocators, chaperonins, histones, and water channel proteins, responses consistent with a major metabolic reconfiguration that underscores the complexity of response to herbivore attack

  9. Effect of adrenotensin on cell proliferation is mediated by angiotensin Ⅱ in cultured rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    Hong XUE; Ping YUAN; Li ZHOU; Tai YAO; Yu HUANG; Li-min LU

    2009-01-01

    Aim: Both adrenomedullin (ADM) and adrenotensin (ADT) are derived from the same propeptide precursor, and both act as circulat- ing hormones and local paracrine mediators with multiple biological activities. Compared with ADM, little is known about how ADT achieves its functions. In the present study, we investigated the effect of ADT on cell proliferation and transforming growth factor-β (TGF-β) secretion in cultured renal mesangial cells (MCs) and determined whether angiotensin Ⅱ (Ang Ⅱ) was involved in mediating this process.Methods: Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation assay, Ang Ⅱ levels were assayed using an enzyme immunoassay, and real time PCR was used to measure Ang Ⅱ type 1 (AT1) receptor, Ang Ⅱ type 2 (AT2) receptor, angiotensino-gen (AGT), renin, angiotensin converting enzyme (ACE) and TGF-β1 mRNA levels. TGF-β1 and collagen type IV protein levels in cellmedia were measured using enzyme-linked immunoassays. Results: ADT treatment induced cell proliferation in a concentration-dependent manner; it also increased the levels of TGF-β1 mRNA and protein as well as collagen type Ⅳ excretion by cultured MCs. ADT treatment increased renin and AGT mRNAs as well as Ang Ⅱ protein, but did not affect the ACE mRNA level. ADT up-regulated angiotensin AT1 receptor mRNA, but not that of the AT2 receptor. The angiotensin AT1 receptor antagonist Iosartan blocked the effects of ADT-induced cell proliferation, TGF-β1 and collagen type Ⅳ synthe-sis and secretion.Conclusion: ADT has a stimulating role in cell proliferation in cultured MCs. Increases in the levels of Ang II and the AT1 receptor after ADT treatment mediate the stimulating effects of ADT on cell proliferation and extracellular matrix synthesis and secretion.

  10. Analysis of miR-302 host RNA as a stem cell marker

    DEFF Research Database (Denmark)

    Rahimi, Karim

    2016-01-01

    by a repressor element which we located between 600 bp and 850 bp upstream of the transcription start site using a luciferase promoter test assay. Several attempts to target the gene utilizing the endogenous miR-302 promoter/enhancer failed, even when CRISPR/Cas9 strategies were used. If this was due to the low...... in somatic cells and to repress mRNAs required for differentiation. In this study, we explored the possibility to use the miR-302 promoter/enhancer to drive stem cell specific expression of reporter genes. We first performed 'Rapid Amplification of cDNA Ends' (RACE) for the 5’ and 3’ ends of mmiR-302...

  11. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis.

    Science.gov (United States)

    Park, Gyu Man; Lee, Sunray; Park, Boyoun; Kim, Eunkyung; Shin, Jinwook; Cho, Kwangmin; Ahn, Kwangseog

    2004-01-16

    In contrast to the classical HLA class Ia molecules, the nonclassical HLA-G primary transcript is alternatively spliced to generate several mRNAs that encode four membrane-bound and three soluble isoforms. This study demonstrated that the soluble form of HLA-G can also be generated by metalloproteinase-dependent shedding at post-translational level. These soluble HLA-G1 molecules generated by the cleavage of membrane-bound HLA-G1 associate with beta2-microglobulin and contain bound peptides that are stable at physiological conditions. This report further showed that the soluble HLA-G1 is able to protect HLA class I-negative K562 cells from NK lysis, suggesting that soluble HLA-G could act as an immunoregulator in NK cell recognition and possibly in other immune responses.

  12. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro.

    Science.gov (United States)

    Zachow, Rob; Uzumcu, Mehmet

    2006-11-01

    The exquisitely balanced hormonal mechanisms that control female fertility can be affected by several internal and external factors including pathogens, genetic maladies, and environmental agents. In the latter group are natural and synthetic agents known as endocrine disruptors. One such compound, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), is the predominant metabolite of the pesticide methoxychlor. The effects of HPTE on ovarian steroidogenesis have not been previously reported and were investigated in the present study. Granulosa cells harvested from immature rats were treated with follicle-stimulating hormone (FSH) or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP) in the presence or absence of HPTE. After 48h, progesterone (P4) and estradiol-17beta (E2) concentrations were measured in the culture media. Steady-state levels of the mRNAs encoding steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase type 1 (3beta-HSD), and P450 aromatase (P450arom) were examined using real-time PCR. Both FSH- and db-cAMP-stimulated P(4) accumulation were impaired by HPTE. In contrast, FSH-, but not db-cAMP-stimulated, E2 content was suppressed by HPTE. The FSH-dependent increase in the abundance of P450scc, 3beta-HSD, and P450arom mRNAs was blocked by HPTE; however, StAR expression was not altered. Although db-cAMP-dependent P450arom was moderately reduced by HPTE, the levels of db-cAMP-dependent StAR, P450scc, and 3beta-HSD mRNAs were increased in the presence of HPTE. These data collectively show that HPTE can disrupt P4 and E2 production in granulosa cells, with implications for sites of action both preceding and following the generation of cAMP. The steroid-modulatory effects of HPTE in granulosa cells appear to involve the general suppression of the FSH-dependent expression of mRNAs encoding steroid pathway proteins, whereas the disparate effects of HPTE on cAMP-dependent m

  13. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.

    Science.gov (United States)

    Choi, Ji Suk; Yoon, Hwa In; Lee, Kyoung Soo; Choi, Young Chan; Yang, Seong Hyun; Kim, In-San; Cho, Yong Woo

    2016-01-28

    Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA). Interestingly, exosome-treated HASCs fused with neighboring cells at early time points and exhibited a myotube-like phenotype with increased expression of myogenic proteins (myosin heavy chain and desmin). On day 21, mRNAs of terminal myogenic genes were also up-regulated in exosome-treated HASCs. Moreover, in vivo studies demonstrated that exosomes from differentiating HSkM reduced the fibrotic area and increased the number of regenerated myofibers in the injury site, resulting in significant improvement of skeletal muscle regeneration. Our findings suggest that exosomes act as a biochemical cue directing stem cell differentiation and provide a cell-free therapeutic approach for muscle regeneration.

  14. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    Science.gov (United States)

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice. PMID:14967896

  15. Generation of Interleukin-2 Receptor Gamma Gene Knockout Pigs from Somatic Cells Genetically Modified by Zinc Finger Nuclease-Encoding mRNA

    Science.gov (United States)

    Watanabe, Masahito; Nakano, Kazuaki; Matsunari, Hitomi; Matsuda, Taisuke; Maehara, Miki; Kanai, Takahiro; Kobayashi, Mirina; Matsumura, Yukina; Sakai, Rieko; Kuramoto, Momoko; Hayashida, Gota; Asano, Yoshinori; Takayanagi, Shuko; Arai, Yoshikazu; Umeyama, Kazuhiro; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. PMID:24130776

  16. Bombesin stimulation of c-fos and c-myc gene expression in cultured of Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Bombesin has been show to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations it stimulates DNA synthesis in quiescent cultures of 3T3 cells and also induces the expression of c-fos and c-myc mRNA. c-fos mRNA transcripts dramatically increase 15 min after the addition of bombesin, are still abundant after 30-60 min and then decrease. c-myc mRNA induction is detectable later, 1 h after bombesin treatment. Conversely, no changes in c-Ki-ras expression are observed after stimulation with bombesin. These results demonstrate that the increased expression of c-fos and c-myc mRNAs appears to be a common response to diverse agents that induce DNA synthesis and cell proliferation

  17. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    Science.gov (United States)

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  18. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. PMID:25680810

  19. Effects of RNA interference-induced tryptase down-regulation in P815 cells on IL-6 and TNF-α release of endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-feng JIANG; Feng-di ZHAO; Xiao-bo LI; Yan-xia NING; Xiu-ling ZHI; Rui-zhe QIAN; Lian-hua YIN

    2008-01-01

    Objective:To explore the effects of down-regulated tryptase expression in mast cells on the synthesis and release of interleukin-6(IL-6)and tumor necrosis factor-alpha(TNF-α) of vascular endothelial cells.Methods:Tryptase-siRNA (small-interfering RNA)vector was constructed to inhibit tryptase expression in P815 cells.The medium of P815 cells treated by the tryptase-siRNA(RNAi-P815 group)or pure vector(P815 group)was collected and used to culture bEnd.3 cells.The messenger RNAs (mRNAs)of IL-6 and TNF-a in bEnd.3 cells and their protein levels in the medium were measured by reverse transcription polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA),respectively.Results:IL-6 and TNF-α mRNAs in bEnd.3 cells cultured in RNAi-P815-conditioned medium decreased significantly compared to those in P815-conditioned medium.Consistently.IL-6 and TNF-α protein levels in the medium of bEnd.3 of RNAi-P815 group were lower than those of P815 group.Conclusion:Reduced tryptase expression significantly inhibited the synthesis and release of IL-6 and TNF-α in vascular endothelial cells.RNA interference targeting tryptasc expression may be a new anti-inflammatory strategy for vascular diseases.

  20. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tereza Cristina da Silva

    2015-01-01

    Full Text Available Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation.

  1. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  2. Long-noncoding RNAs in basal cell carcinoma.

    Science.gov (United States)

    Sand, Michael; Bechara, Falk G; Sand, Daniel; Gambichler, Thilo; Hahn, Stephan A; Bromba, Michael; Stockfleth, Eggert; Hessam, Schapoor

    2016-08-01

    Long noncoding RNAs (lncRNAs) are fundamental regulators of pre- and post-transcriptional gene regulation. Over 35,000 different lncRNAs have been described with some of them being involved in cancer formation. The present study was initiated to describe differentially expressed lncRNAs in basal cell carcinoma (BCC). Patients with BCC (n = 6) were included in this study. Punch biopsies were harvested from the tumor center and nonlesional epidermal skin (NLES, control, n = 6). Microarray-based lncRNA and mRNA expression profiles were identified through screening for 30,586 lncRNAs and 26,109 protein-coding transcripts (mRNAs). The microarray data were validated by RT-PCR in a second set of BCC versus control samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of mRNAs were performed to assess biologically relevant pathways. A total of 1851 lncRNAs were identified as being significantly up-regulated, whereas 2165 lncRNAs were identified as being significantly down-regulated compared to nonlesional skin (p < 0.05). Oncogenic and/or epidermis-specific lncRNAs, such as CASC15 or ANRIL, were among the differentially expressed sequences. GO analysis showed that the highest enriched GO targeted by up-regulated transcripts was "extracellular matrix." KEGG pathway analysis showed the highest enrichment scores in "Focal adhesion." BCC showed a significantly altered lncRNA and mRNA expression profile. Dysregulation of previously described lncRNAs may play a role in the molecular pathogenesis of BCC and should be subject of further analysis. PMID:26861560

  3. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-01

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. PMID:27235586

  4. Differential long non‑coding RNA and mRNA expression in differentiated human glioblastoma stem cells.

    Science.gov (United States)

    Li, Hao; Li, Haowen; Hao, Yajing; Jiao, Yuming; Li, Zhicen; Yue, Haiyan; Xu, Zhe; Wang, Shuo; Cao, Yong; Zhao, Jizong

    2016-09-01

    Differentiation of glioblastoma stem cells (GSCs) may lead to inhibition of their self‑renewing ability and tumorigenic potential, as well as increasing their sensitivity to treatment. The critical role of long non‑coding RNAs (lncRNAs) in numerous biological processes has been revealed. However, the involvement of lncRNAs in GSC differentiation remains to be elucidated. In the present study, GSCs were isolated from patient samples and differentiation was induced. Using a high‑throughput microarray, the present study identified a profile of 1,545 lncRNAs and 2,729 mRNAs that differed between GSCs and their non‑differentiated counterparts. To ascertain the association between the altered lncRNAs and mRNAs, a co‑expression network was constructed in which 1,087 lncRNAs and 1,928 mRNAs altered upon GSC differentiation formed a total of 19,642 lncRNA‑mRNA pairs. Based on the co‑expression network, the lncRNA functions were additionally predicted by a cis‑ or trans‑ targeting program. Furthermore, three pairs of lncRNAs and their nearby target mRNAs were selected [ENSG00000261924.1‑regulatory associated protein of MTOR complex 1, ENSG00000235427.1‑caveolin 1 and Tax1 binding protein 3 (TAX1BP3)‑purinergic receptor P2X 5 (P2RX5)‑TAX1BP3] and their expression levels were validated by reverse transcription‑quantitative polymerase chain reaction. The altered lncRNAs were also regulated by various pluripotency transcription factors (POU domain, class 3, transcription factor, sex determining region Y‑box 2, spalt‑like transcription factor 2 and oligodendrocyte lineage transcription factor 2). In conclusion, the results of the present study revealed that lncRNAs may function in GSC differentiation by regulating their target mRNAs, and a set of lncRNAs were identified as candidates for further study concerning the future treatment of GSCs. PMID:27432080

  5. Downregulation of CREB Promotes Cell Proliferation by Mediating G1/S Phase Transition in Hodgkin Lymphoma.

    Science.gov (United States)

    Lu, Fangjin; Zheng, Ying; Donkor, Paul Owusu; Zou, Peng; Mu, Ping

    2016-01-01

    The cyclic-AMP response element-binding protein (CREB), a well-known nuclear transcription factor, has been shown to play an essential role in many cellular processes, including differentiation, cell survival, and cell proliferation, by regulating the expression of downstream genes. Recently, increased expression of CREB was frequently found in various tumors, indicating that CREB is implicated in the process of tumorigenesis. However, the effects of CREB on Hodgkin lymphoma (HL) remain unknown. To clarify the role of CREB in HL, we performed knockdown experiments in HL. We found that downregulation of CREB by short hairpin RNA (shRNA) resulted in enhancement of cell proliferation and promotion of G1/S phase transition, and these effects can be rescued by expression of shRNA-resistant CREB. Meanwhile, the expression level of cell cycle-related proteins, such as cyclin D1, cyclin E1, cyclin-dependent kinase 2 (CDK2), and CDK4, was elevated in response to depletion of CREB. Furthermore, we performed chromatin immunoprecipitation (ChIP) assay and confirmed that CREB directly bound to the promoter regions of these genes, which consequently contributed to the regulation of cell cycle. Consistent with our results, a clinical database showed that high expression of CREB correlates with favorable prognosis in B-cell lymphoma patients, which is totally different from the function of CREB in other cancers such as colorectal cancer, acute myeloid leukemia, and some endocrine cancers. Taken together, all of these features of CREB in HL strongly support its role as a tumor suppressor gene that can decelerate cell proliferation by inhibiting the expression of several cell cycle-related genes. Our results provide new evidence for prognosis prediction of HL and a promising therapeutic strategy for HL patients. PMID:27458098

  6. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  7. Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development.

    Directory of Open Access Journals (Sweden)

    Sandra C Moser

    2009-04-01

    Full Text Available CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2-null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development.

  8. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.

    Science.gov (United States)

    Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M

    2015-06-05

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.

  9. Paris chinensis dioscin induces G2/M cell cycle arrest and apoptosis in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Lin-Lin Gao; Fu-Rong Li; Peng Jiao; Ming-Feng Yang; Xiao-Jun Zhou; Yan-Hong Si; Wen-Jian Jiang; Ting-Ting Zheng

    2011-01-01

    AIM: To investigate the anti-tumor effects of Paris chinensis dioscin (PCD) and mechanisms regarding cell cycle regulation and apoptosis in human gastric cancer SGC-7901 cells.METHODS: Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Cell apoptosis was evaluated by flow cytometry and laser scanning confocal microscope (LSCM) using Annexin-V/propidium iodide (PI) staining, and the cell cycle was evaluated using PI staining with flow cytometry. Intracellular calcium ions were detected under fluorescence microscope. The expression of cell cycle and apoptosis-related proteins cyclin B1, CDK1, cytochrome C and caspase-3 was measured by immunohistochemical staining. RESULTS: PCD had an anti-proliferation effect on human gastric cancer SGC-7901 cells in a dose- and time-dependent manner. After treatment of SGC-7901 cells with PCD, apoptosis appeared in SGC-7901 cells. Morphological changes typical of apoptosis were also observed with LSCM by Annexin V/PI staining, and the cell number of the G0/G1 phase was decreased, while the number of cells in the G2/M phase was increased. Cell cycle-related proteins, such as cyclin B1 and CDK1, were all down-regulated, but caspase-3 and cytochrome C were up-regulated. Moreover, intracellular calcium accumulation occurred in PCD-treated cells. CONCLUSION: G2/M phase arrest and apoptosis induced by PCD are associated with the inhibition of CDK-activating kinase activity and the activation of Ca2+-related mitochondrion pathway in SGC-7901 cells.

  10. Radiation-responsive transcriptome analysis in human lymphoid cells

    International Nuclear Information System (INIS)

    Ionising radiation (IR) causes DNA (deoxyribonucleic acid) injury and activates intracellular signal pathways including the regulation of DNA repair and cell cycle. However, the further knowledge of molecular events involved in radiation exposure is essential to more comprehensively understand the effects of irradiation. Therefore, the gene expressions of mRNA (messenger ribonucleic acid) by X-ray irradiation in human B lymphoblasts cell line (IM-9) using a microarray were investigated. The mRNA expressions of 65 genes were shown to be up-regulated at >2.0-fold in irradiated cells (4 Gy) when compared with non-irradiated cells (0 Gy) by microarray analysis. Among 65 genes, a large number of genes were up-regulated with an X-ray dose-dependent change. These results indicate that the up-regulation of their mRNAs is the effects of irradiation and may be due to biological dosimetric markers for the evaluation of radiation exposure in the future. (authors)

  11. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-03-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  12. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia.

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-01-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  13. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7.

    Science.gov (United States)

    Chiang, Chi-Hsiang; Chu, Pei-Yi; Hou, Ming-Feng; Hung, Wen-Chun

    2016-01-01

    The feature of imperfect complementary effect of miRNAs to mRNAs implies that miRNAs may simultaneously target different mRNAs to affect multiple aspects of tumorigenesis. In our previous results, we demonstrated that miR-182 was over-expressed in breast cancer cell lines and clinical tumor tissues and its up-regulation increased tumorigenicity and invasiveness by repressing a tumor suppressor RECK. In this study, we showed that overexpression miR-182 regulated actin distribution and filopodia formation to increase invasiveness of breast cancer cells. In addition, miR-182 enhanced cell cycle progression and proliferation. We further identified the E3 ubiquitin-protein ligase FBXW7 as a target gene of miR-182. We also demonstrated that miR-182-overexpressing cells were highly sensitive to hypoxia. Under hypoxic condition, HIF-1α and VEGF-A proteins were significantly upregulated in these cells. In addition, the conditioned medium of miR-182-overexpressing cells contained more VEGF-A than the control cells and induced angiogenesis more efficiently in vitro. All these effects could be counteracted by ectopic expression of FBXW7 in cells or neutralization of VEGF-A in the conditioned media by specific antibody. Finally, our data showed that miR-182 expression was inversely correlated with FBXW7 in breast tumor tissues. In conclusion, our study explores a novel mechanism by which miR-182 elevates HIF-1α expression to promote breast cancer progression. PMID:27648365

  14. Asparanin A induces G(2)/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Wei; Huang, Xue-Feng; Qi, Qi; Dai, Qin-Sheng; Yang, Li; Nie, Fei-Fei; Lu, Na; Gong, Dan-Dan; Kong, Ling-Yi; Guo, Qing-Long

    2009-04-17

    We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G(2)/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21(WAF1/Cip1) and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21(WAF1/Cip1) and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma. PMID:19254688

  15. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells.

    Science.gov (United States)

    Chustz, Regina T; Nagarkar, Deepti R; Poposki, Julie A; Favoreto, Silvio; Avila, Pedro C; Schleimer, Robert P; Kato, Atsushi

    2011-07-01

    The IL-1 family of cytokines, which now includes 11 members, is well known to participate in inflammation. Although the most recently recognized IL-1 family cytokines (IL-1F5-11) have been shown to be expressed in airway epithelial cells, the regulation of their expression and function in the epithelium has not been extensively studied. We investigated the regulation of IL-1F5-11 in primary normal human bronchial epithelial cells. Messenger (m)RNAs for IL-1F6 and IL-1F9, but not IL-1F5, IL-1F8 or IL-1F10, were significantly up-regulated by TNF, IL-1β, IL-17 and the Toll-like receptor (TLR)3 ligand double-stranded (ds)RNA. mRNAs for IL-1F7 and IL-1F11 (IL-33) were weakly up-regulated by some of the cytokines tested. Notably, mRNAs for IL-1F6 and IL-1F9 were synergistically enhanced by the combination of TNF/IL-17 or dsRNA/IL-17. IL-1F9 protein was detected in the supernatant following stimulation with dsRNA or a combination of dsRNA and IL-17. IL-1F6 protein was detected in the cell lysate but was not detected in the supernatant. We screened for the receptor for IL-1F9 and found that lung fibroblasts expressed this receptor. We found that IL-1F9 activated mitogen-activated protein kinases and the transcription factor NF-κB in primary normal human lung fibroblasts. IL-1F9 also stimulated the expression of the neutrophil chemokines IL-8 and CXCL3 and the Th17 chemokine CCL20 in lung fibroblasts. These results suggest that epithelial activation by TLR3 (e.g., by respiratory viral infection) and exposure to cytokines from Th17 cells (IL-17) and inflammatory cells (TNF) may amplify neutrophilic inflammation in the airway via induction of IL-1F9 and activation of fibroblasts. PMID:20870894

  16. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives

    Science.gov (United States)

    Chang, Lingqian; Hu, Jiaming; Chen, Feng; Chen, Zhou; Shi, Junfeng; Yang, Zhaogang; Li, Yiwen; Lee, Ly James

    2016-02-01

    The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.

  17. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives.

    Science.gov (United States)

    Chang, Lingqian; Hu, Jiaming; Chen, Feng; Chen, Zhou; Shi, Junfeng; Yang, Zhaogang; Li, Yiwen; Lee, Ly James

    2016-02-14

    The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.

  18. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  19. The modulation of radiation-induced cell death by genistein in K562 cells:Activation of thymidine kinase 1

    Institute of Scientific and Technical Information of China (English)

    Min Ho JEONG; Young Hee JIN; Eun Young KANG; Wol Soon JO; Hwan Tae PARK; Jae Dong LEE; Yeo Jin YOO; Soo Jin JEONG

    2004-01-01

    Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML)cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization(SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression of TK1 mRNA and TK 1enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition,the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G1/S progression and G2-arrest, and their relationship with TK1 in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.

  20. Prevention of Simvastatin-Induced Inhibition of Tendon Cell Proliferation and Cell Cycle Progression by Geranylgeranyl Pyrophosphate.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Cheng, Mei-Ling; Chen, Cheng-Lun; Pang, Jong-Hwei S

    2016-02-01

    Statins have been reported to induce tendinopathy and even tendon rupture. The present study was designed to investigate the potential molecular mechanism underlying the adverse effect of simvastatin on tendon cells. An in vitro tendon healing model was performed using tendon cells isolated from rat Achilles tendons. The viability of tendon cells and cell cycle progression were examined by the MTT assay and flow cytometric analysis, respectively. Immunofluorescent staining for Ki-67 was used to assess the proliferation activity of tendon cells. Western blot analysis and coimmunoprecipitation was used to determine the protein expression of cell cycle-related proteins. To investigate the potential mechanism underlying the effect of statins on tendon cells, mevalonate, farnesyl pyrophosphate (FPP), or geranylgeranyl pyrophosphate (GGPP) was added to simvastatin-treated tendon cells. Simvastatin inhibited the in vitro tendon healing model and tendon cell proliferation in a dose-dependent manner. Immunofluorescent staining demonstrated reduced ki-67 expression in simvastatin-treated tendon cells. Furthermore, simvastatin induced cell cycle arrest at the G1 phase. The expression levels of cdk1, cdk2, cyclin A, and cyclin E were downregulated by simvastatin in a dose-dependent manner. The inhibitory effect of simvastatin was proved to mediate the reduction of mevalonate, and the addition of exogenous GGPP completely prevented the inhibitory effect of simvastatin on tendon cells. The present study demonstrated, for the first time, the molecular mechanism underlying simvastatin-induced tendinopathy or tendon rupture. GGPP was shown to prevent the adverse effect of simvastatin in tendon cells without interfering with its cholesterol-reducing efficacy. PMID:26577051

  1. Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions.

    Directory of Open Access Journals (Sweden)

    Jens Durruthy-Durruthy

    Full Text Available Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP. Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.

  2. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis.

    Science.gov (United States)

    Spaethling, Jennifer M; Sanchez-Alavez, Manuel; Lee, JaeHee; Xia, Feng C; Dueck, Hannah; Wang, Wenshan; Fisher, Stephen A; Sul, Jai-Yoon; Seale, Patrick; Kim, Junhyong; Bartfai, Tamas; Eberwine, James

    2016-01-01

    Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides β3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in 1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought. PMID:26304220

  3. Effects of No.2 Renal Failure Recipe on expressions of cyclooxygenase-2 and -1 mRNAs in rats with chronic renal failure%肾衰2号方对慢性肾衰大鼠肾皮质环氧化酶2及环氧化酶1 mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    蒲冠军; 王琛; 郑平东; 何立群

    2009-01-01

    Objective: To observe the effects of No.2 Renal Failure Recipe (No.2RFR), a compound traditional Chinese herbal medicine, on expressions of cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) mRNAs in rats with chronic renal failure (CRF).Methods: A rat model of CRF was successfully established by infarction of approximately two-thirds of the left kidney and removal of the right kidney (ablation/infarction, A/I). Thirty A/I rats were randomly divided into untreated group, celebrex group and No.2RFR group. Another 10 SD rats were selected as normal control group. After 2-month treatment, the pathology of the nephridial tissue was observed with hematoxylin and eosin straining under a light microscope. Renal function including serum creatinine (SCr) and blood urea nitrogen (BUN) was determined by using an automatic biochemical analyzer. Expressions of COX-2 and COX-1 mRNAs in nephridial tissues were detected by reverse transcription-polymerase chain reaction (RT-PCR).Results: No.2RFR could significantly decrease the levels of SCr and BUN. Renal function and morphology of CRF rats were ameliorated and the expressions of COX-2 mRNA were decreased significantly in the No.2RFR group and the celebrex group, but the expressions of COX-1 mRNA had no differences among the four groups.Conclusion: No.2RFR can improve renal function and reduce glomerular sclerosis and renal fibrosis by inhibiting the over-expression of the COX-2 mRNA.%目的:观察肾衰2号方对慢性肾衰(chronic renal failure,CRF)大鼠肾皮质环氧化酶2(cyclooxygenase-2,COX-2)及环氧化酶1(cyclooxygenase-1,COX-1)mRNA表达的影响.方法:采用左肾动脉的2/3分支结扎,右肾摘除(ablation/infarction, A/I)法制作大鼠CRF模型.造模成功后,将造模大鼠随机分为模型组、西乐葆(塞来昔布)组、肾衰2号方组.选用10只正常大鼠作为正常对照组.治疗2个月后,苏木精和伊红染色观察大鼠肾组织形态学改变,检测治

  4. Menstrual Cycle-Related Changes of Functional Cerebral Asymmetries in Fine Motor Coordination

    Science.gov (United States)

    Bayer, Ulrike; Hausmann, Markus

    2012-01-01

    Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral…

  5. CO 2 degassing and trapping during hydrothermal cycles related to Gondwana rifting in eastern Australia

    Science.gov (United States)

    Uysal, I. Tonguç; Golding, Suzanne D.; Bolhar, Robert; Zhao, Jian-xin; Feng, Yue-xing; Baublys, Kim A.; Greig, Alan

    2011-10-01

    Intensive carbonate and clay mineral authigenesis took place throughout the Late Permian Bowen-Gunnedah-Sydney basin system in eastern Australia. We conducted isotopic and trace element analyses of carbonate and clay minerals from clastic sedimentary rocks of the Gunnedah Basin and the Denison Trough in the Bowen Basin. Rb-Sr isochron age data of the illitic clays are consistent with episodic hydrothermal fluid flow events that occurred in association with Gondwana rifting accompanied by alkaline magmatism at ˜85 Ma and ˜95 Ma. Stable isotope data of carbonate and clay minerals from the Gunnedah Basin are indicative of meteoric waters from a high-latitude environment as the main fluid source, whereas trace element, Sr and Nd isotope data highlight mixing of meteoric fluids with magmatic and/or crustal components, with a possible input from marine carbonates for some samples. Trace metals, oxygen and strontium isotopes of dawsonites from the Denison Trough are interpreted to have been mobilised by fluids that interacted with evolved clastic sedimentary and marine carbonate end members. According to the carbon isotope data, CO 2 for calcite and ankerite precipitation was sourced mainly from thermal degradation of organic matter and magmatism, whereas the CO 2 used for dawsonite formation is inferred to have been derived from magmatic and marine sources. In the low permeability environments (particularly in coal seams), the increasing accumulation and oversaturation of CO 2 particularly promote the precipitation of dawsonite.

  6. Abortive infection of snakehead fish vesiculovirus in ZF4 cells was associated with the RLRs pathway activation by viral replicative intermediates.

    Science.gov (United States)

    Wang, Wenwen; Asim, Muhammad; Yi, Lizhu; Hegazy, Abeer M; Hu, Xianqin; Zhou, Yang; Ai, Taoshan; Lin, Li

    2015-03-18

    Snakehead fish vesiculovirus (SHVV) is a negative strand RNA virus which can cause great economic losses in fish culture. To facilitate the study of SHVV-host interactions, the susceptibility of zebrafish embryonic fibroblast cell line (ZF4) to the SHVV was investigated in this report. The results showed that high amount of viral mRNAs and cRNAs were detected at the 3 h post-infection. However, the expressions of the viral mRNAs and cRNA were decreased dramatically after 6 h post-infection. In addition, the expressions of interferon (IFN) and interferon-induced GTP-binding protein Mx were all up regulated significantly at the late stage of the infection. Meanwhile, the expressions of Retinoic acid-inducible gene I (RIG-I) and Melanoma differentiation-associated gene 5 (MDA5) were also all up-regulated significantly during the infection. Two isoforms of DrLGP2 from zebrafish were also cloned and analyzed. Interestingly, the expression of DrLGP2a but not DrLGP2b was significantly up-regulated at both mRNA and protein levels, indicating that the two DrLGP2 isoforms might play different roles during the SHVV infection. Transfection experiment showed that viral replicative intermediates were required for the activation of IFN-α expression. Taken together, the abortive infection of SHVV in ZF4 cells was associated with the activation of RLRs pathway, which was activated by viral replicative intermediates.

  7. Differentiation-Associated MicroRNA Alterations in Mouse Heart-Derived Sca-1+CD31− and Sca-1+CD31+ Cells

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2016-01-01

    Full Text Available Cardiac resident stem/progenitor cells (CSC/CPCs are critical to the cellular and functional integrity of the heart because they maintain myocardial cell homeostasis. Several populations of CSC/CPCs have been identified based on expression of different stem cell-associated antigens. Sca-1+ cells in the cardiac tissue may be the most common CSC/CPCs. However, they are a heterogeneous cell population and, in transplants, clinicians might transplant more endothelial cells, cardiomyocytes, or other cells than stem cells. The purposes of this study were to (1 isolate CSC/CPCs with Lin−CD45−Sca-1+CD31− and Lin−CD45−Sca-1+CD31+ surface antigens using flow-activated cell sorting; (2 investigate their differentiation potential; and (3 determine the molecular basis for differences in stemness characteristics between cell subtypes. The results indicated that mouse heart-derived Sca-1+CD31− cells were multipotent and retained the ability to differentiate into different cardiac cell lineages, but Sca-1+CD31+ cells did not. Integrated analysis of microRNA and mRNA expression indicated that 20 microRNAs and 49 mRNAs were inversely associated with Sca-1+CD31− and Sca-1+CD31+ subtype stemness characteristics. In particular, mmu-miR-322-5p had more targeted and inversely associated genes and transcription factors and might have higher potential for CSC/CPCs differentiation.

  8. Comparison of phenotype characteristics of rat annulus fibrosus cells cultured on flexible silicone membrane and in plastic plate

    Institute of Scientific and Technical Information of China (English)

    GUO Zhi-liang; CHENG Min; CAO Guo-yong; LI Hua-zhuang; TENG Hai-jun; ZHOU Yue

    2006-01-01

    Objective:To compare the phenotype characteristics of rat annulus fibrosus (AF) cells cultured on flexible silicone membranes and those in plastic plates. Methods :The morphology of AF cells cultured in different substrates was examined. Proteoglycan was stained by toluidine blue. Contents of collagen type I , collagen type Ⅱ and aggrecan mRNAs were determined by reverse transcription-polymerase chain reaction (RT-PCR). The expression of integrin β1 was monitored by flow cytometry. By using propidium iodide (PI), the cell cycle in AF cells was analyzed. Cell adhesion to silicone membrane was also measured. Results:The AF cells cultured on different substrates were morphologically undistinguishable.Toluidine blue staining showed that there was also no difference between AF cells cultured on these 2 substrates. They still had the same expression levels of collagen type Ⅰ , collagen type Ⅱ , aggrecan mRNAs,and integrin β1. No significant difference was observed in the distribution of the cell cycle. AF cells grew well on silicone membrane. Conclusion:AF cells cultured on flexible silicone membrane maintain the stability of phenotype and may be appropriate for further studying the metabolic responses to mechanical stimuli at the cellular level.

  9. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Hisao Moriya

    2006-07-01

    Full Text Available Intracellular biochemical parameters, such as the expression level of gene products, are considered to be optimized so that a biological system, including the parameters, works effectively. Those parameters should have some permissible range so that the systems have robustness against perturbations, such as noise in gene expression. However, little is known about the permissible range in real cells because there has been no experimental technique to test it. In this study, we developed a genetic screening method, named "genetic tug-of-war" (gTOW that evaluates upper limit copy numbers of genes in a model eukaryote Saccharomyces cerevisiae, and we applied it for 30 cell-cycle related genes (CDC genes. The experiment provided unique quantitative data that could be used to argue the system-level properties of the cell cycle such as robustness and fragility. The data were used to evaluate the current computational model, and refinements to the model were suggested.

  10. Graft-infiltrating cells expressing a CD200 transgene prolong allogeneic skin graft survival in association with local increases in Foxp3(+)Treg and mast cells.

    Science.gov (United States)

    Gorczynski, Reginald M; Chen, Zhiqi; Khatri, Ismat; Yu, Kai

    2011-12-01

    Expression of the molecule CD200 has been reported to increase allograft survival by suppression of inflammation and acquired immunity. In previous studies we have shown that increased skin and cardiac allograft survival in transgenic mice over-expressing CD200 (CD200(tg)) occurs in association with increased intra-graft expression of mRNAs for genes associated with altered T cell subset differentiation. We investigated changes in graft-infiltrating cells, Treg and mast cells in skin grafts post transplantation into control or CD200(tg) mice, using focused gene array and real-time PCR to assess altered gene expression, and FACS, immunohistology and MLC to determine numbers/function of those cells. Graft-infiltrating cells isolated from CD200(tg) recipients suppressed induction of CTL from control lymph node cells in vitro, and contained increased numbers of infiltrating, non-degranulating, mast cells and Foxp3(+)Treg. Mast cells were also evident in graft tissue of control animals, but there these cells showed evidence for degranulation, and fewer Foxp3(+)Treg were present than was the case of CD200(tg) mice. The infusion of a competitive inhibitor of CD200:CD200R interactions, CD200(tr), at high concentrations (50μg/mouse iv) caused rapid rejection of grafts in CD200(tg) mice, mast cell degranulation within graft tissue, and a decrease in Treg infiltrates. These effects were attenuated by simultaneous infusion of the mast cell stabilizer, sodium cromoglycate. We conclude that CD200 expression contributes to graft prolongation through local suppression of mast cell degranulation, attraction/expansion of Treg, and attenuation of T cell effector activation. PMID:21801836

  11. Progesterone promotes propagation and viability of mouse embryonic stem cells.

    Science.gov (United States)

    Shen, Shan-Wei; Song, Hou-Yan

    2009-10-25

    It has been known that estrogen-17beta stimulates proliferation of mouse embryonic stem (mES) cells. To explore the function of another steroid hormone progesterone, we used MTT method and BrdU incorporation assay to obtain growth curves, clone forming assay to detect the propagation and viability of individual mES cells, Western blot to test the expression of ES cell marker gene Oct-4, fluorescence activated cell sorter (FACS) to test cell cycle, and real-time PCR to detect the expressions of cyclins, cyclin-dependent kinases and proto-oncogenes. The results showed that progesterone promoted proliferation of mES cells. The number of clones was more in progesterone-treated group than that in the control group. The expression of pluripotency-associated transcriptional factor Oct-4 changed little after progesterone treatment as shown by Western blot, indicating that most of mES cells were in undifferentiated state. The results of FACS proved that progesterone promoted DNA synthesis in mES cells. The proportion of mES cells in S+G(2)/M phase was higher in progesterone-treated group than that in the control group. Cyclins and cyclin-dependent kinases, as well as proto-oncogenes (c-myc, c-fos) were up-regulated when cells were treated with progesterone. The results obtained indicate that progesterone promotes propagation and viability of mES cells. The up-regulation of cell cycle-related factors might contribute to the function of progesterone.

  12. Phase-specific polypeptides and poly(A) sup + RNAs during the cell cycle in synchronous cultures of Catharanthus roseus cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Hiroaki; Komamine, Atsushi (Tohoku Univ., Sendai (Japan)); Kawakami, Naoto; Watanabe, Akira (Nagoya Univ. (Japan))

    1989-03-01

    This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with ({sup 35}S)methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silver-stained electrophoretic pattern of proteins in the G{sub 2} phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G{sub 2} phase did not show such phase-specific changes. This result suggest that posttranslational processing of polypeptides occurs during or prior to the G{sub 2} phase. In the G{sub 1} and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A){sup +} RNA isolated at each phase. Three poly(A){sup +} RNAs increased in amount from the G{sub 1} to the S phase and one poly(A){sup +} RNA increased preferentially from the G{sub 2} phase to cytokinesis.

  13. Phase-Specific Polypeptides and Poly(A)+ RNAs during the Cell Cycle in Synchronous Cultures of Catharanthus roseus Cells 1

    Science.gov (United States)

    Kodama, Hiroaki; Kawakami, Naoto; Watanabe, Akira; Komamine, Atsushi

    1989-01-01

    This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [35S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G2 phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G2 phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G2 phase. In the G1 and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)+ RNA isolated at each phase. Three poly(A)+ RNAs increased in amount from the G1 to the S phase and one poly (A)+ RNA increased preferentially from the G2 phase to cytokinesis. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11 Figure 12 PMID:16666641

  14. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  15. Identification of connexin 50 and 57 mRNA in A-type horizontal cells of the rabbit retina

    Institute of Scientific and Technical Information of China (English)

    He HUANG; Hui LI; Shi Gang HE

    2005-01-01

    Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeability and therefore the strength of feedback can be regulated by light intensity, dopamine and many other factors. However, the component(s) of the most prominent gap junctions, those between A-type HCs in the rabbit retina, is still unknown. In this study, we compared the sequences of many types of mammalian connexins, obtained partial sequences of rabbit connexin 50 and 57. Using specific primers designed against the rabbit sequences, we identified mRNAs of connexin 50and/or 57 in visually selected single A-type HC using multiplex RT-PCR.

  16. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  17. Characteristic and functional analysis of a newly established porcine small intestinal epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02 by introducing the human telomerase reverse transcriptase (hTERT gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium. Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine

  18. Stimulatory Effect of Vascular Endothelial Growth Factor on Proliferation and Migration of Porcine Trophectoderm Cells and Their Regulation by the Phosphatidylinositol-3-Kinase-AKT and Mitogen-Activated Protein Kinase Cell Signaling Pathways.

    Science.gov (United States)

    Jeong, Wooyoung; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2014-03-01

    Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways. PMID:24451985

  19. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    International Nuclear Information System (INIS)

    The effects of radiation were investigated on pathogenic plasmid aiming at a development of a method to induce mutagenesis in plasmid DNA by radiation. To construct an experimental system which allows to detect a plasmid-segregated cell, kanamycin-resistant casette was inserted into pX02, a capsule plasmid in Bacillus anthracis to produce acpA:: Kmr by homologous recombination. This plasmid is thought available for analyzing the rate of plasmid segregation caused by radiation. Next, developments of detection and determination methods for various cytokines were attempted by RT-PCR method with an aim to investigate the expression changes of cytokine mRNA in calf immunocytes by radiation. In calf peripheral monocytes and alveolar macrophages, expressions of cytokine mRNAs such as IL-4, IFNα and GM-CSF mRNA as well as IL-1α, IL-1β, IL-2 and IL-6 were detected by RT-PCR method. (M.N.)

  20. Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in Cancer Cell Biology

    Directory of Open Access Journals (Sweden)

    Vânia Gonçalves

    2015-01-01

    Full Text Available Over the past decade, alternative splicing has been progressively recognized as a major mechanism regulating gene expression patterns in different tissues and disease states through the generation of multiple mRNAs from the same gene transcript. This process requires the joining of selected exons or usage of different pairs of splice sites and is regulated by gene-specific combinations of RNA-binding proteins. One archetypical splicing regulator is SRSF1, for which we review the molecular mechanisms and posttranscriptional modifications involved in its life cycle. These include alternative splicing of SRSF1 itself, regulatory protein phosphorylation events, and the role of nuclear versus cytoplasmic SRSF1 localization. In addition, we resume current knowledge on deregulated SRSF1 expression in tumors and describe SRSF1-regulated alternative transcripts with functional consequences for cancer cell biology at different stages of tumor development.

  1. Interleukin mRNA changes in mast cells stimulated by TSL-1 antigens

    Directory of Open Access Journals (Sweden)

    Arizmendi N.

    2001-06-01

    Full Text Available In this work we analyzed by RT-PCR, the mRNA changes for IL-4, IL-10, TNF and IFN ( induced by TSL-1 antigens in a rat mast cell line (HRMC with mucosal characteristics. The data obtained showed an increase of 65 and 52 % in mRNA expression for IL-4 and TNF respectively and a decrease of 59 and 55 % in mRNAs for IFNγ and IL-10. Our results suggest that TSL-1 antigens induce the release from MC of regulatory molecules, such as IL-4 by an IgE independent mechanism. Our data also provides important information related to the ability of MC to participate not only in the effector phase against the infectious agents, but also in the orchestration of the immune response by the host against parasites.

  2. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Patsharaporn Techasintana

    Full Text Available Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs and microRNAs (miRNAs. RNA immunoprecipitation (RIP methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1 and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.

  3. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance.

    Science.gov (United States)

    Zaidman, Nathan A; Panoskaltsis-Mortari, Angela; O'Grady, Scott M

    2016-08-01

    Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective β2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and β2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to β2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance. PMID:27306366

  4. Stem-loop binding protein is required for retinal cell proliferation, neurogenesis, and intraretinal axon pathfinding in zebrafish.

    Science.gov (United States)

    Imai, Fumiyasu; Yoshizawa, Asuka; Matsuzaki, Ayako; Oguri, Eri; Araragi, Masato; Nishiwaki, Yuko; Masai, Ichiro

    2014-10-01

    In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3'-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.

  5. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

    Science.gov (United States)

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-01-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  6. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles.

    Science.gov (United States)

    Lavranos, T C; Mathis, J M; Latham, S E; Kalionis, B; Shay, J W; Rodgers, R J

    1999-08-01

    We have previously postulated that granulosa cells of developing follicles arise from a population of stem cells. Stem cells and cancer cells can divide indefinitely partly because they express telomerase. Telomerase is a ribonucleoprotein enzyme that repairs the ends of telomeres that otherwise shorten progressively upon each successive cell division. In this study we carried out cell cycle analyses and examined telomerase expression to examine our hypothesis. Preantral (60-100 microm) and small (1 mm) follicles, as well as granulosa cells from medium-sized (3 mm) and large (6-8 mm) follicles, were isolated. Cell cycle analyses and expression of Ki-67, a cell cycle-related protein, were undertaken on follicles of each size (n = 3) by flow cytometry; 12% to 16% of granulosa cells in all follicles were in the S phase, and less than 2% were in the G(2)/M phase. Telomerase activity (n = 3) was highest in the small preantral follicles, declining at the 1-mm stage and even further at the 3-mm stage. In situ hybridization histochemistry was carried out on bovine ovaries, and telomerase RNA was detected in the granulosa cells of growing follicles but not primordial follicles. Two major patterns of staining were observed in the membrana granulosa of antral follicles: staining in the middle and antral layers, and staining in the middle and basal layers. No staining was detected in oocytes. Our results strongly support our hypothesis that granulosa cells arise from a population of stem cells. PMID:10411512

  7. Resveratrol Induces Apoptosis in Human Osteosarcoma MG63 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Xin Wang; Yuxin Xie; Jingui Zhang; Qingshan Wang; Xianhui Xu

    2008-01-01

    OBJECTIVE To investigate apoptosis in human osteosarcoma MG63 cells induced by resveratrol and the molecular mechanism involved.METHODS MG63 cells were treated with different concentrations of resveratrol and transmission electron microscopy was used to observe morphological changes occurring in apoptosis.The MTT method was used to determine the inhibitory rate and flow cytometry was used to assess apoptosis and to analyze the expression of the p21ciP1/WAF1 and survivin proteins;the expression of p21ciP1/WAF1 and survivin mRNAs was analyzed by the reverse transcriptase polymerase chain reaction (RT-PCR).RESULTS After resveratrol treatment,the growth of the MG63 cells was significantly inhibited in a time- and dose-dependent fashion.By transmission electron microscopy,the cells displayed morphological changes characteristic of apoptosis,including formation of cytoplasmic vacuoles,chromatin condensation and margination.Flow cytometry showed that the growth of the cells was inhibited after resveratrol (10 mg/L and 20 mg/L) treatment.The inhibitory rates were (11.9 ±0.63)% and (19.7 ± 0.88)%respectively.The quantity of treated cells in G0/G1 transition was increased,but the number in the S phase and G2/M transition was decreased.A subdiploid peak was observed.The expression of p21ciP1/WAF1 was up-regulated while survivin was down-regulated.CONCLUSION Resveratrol can inhibit growth and induce apoptosis of MG63 cells.Its molecular mechanism might be related to modulation of survivin and p21ciP1/WAF1 expression.

  8. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sujoy Dutta

    Full Text Available Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7, representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs. Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.

  9. Family with sequence similarity 5, member C (FAM5C increases leukocyte adhesion molecules in vascular endothelial cells: implication in vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Junya Sato

    Full Text Available Identification of the regulators of vascular inflammation is important if we are to understand the molecular mechanisms leading to atherosclerosis and consequent ischemic heart disease, including acute myocardial infarction. Gene polymorphisms in family with sequence similarity 5, member C (FAM5C are associated with an increased risk of acute myocardial infarction, but little is known about the function of this gene product in blood vessels. Here, we report that the regulation of the expression and function of FAM5C in endothelial cells. We show here that FAM5C is expressed in endothelial cells in vitro and in vivo. Immunofluorescence microscopy showed localization of FAM5C in the Golgi in cultured human endothelial cells. Immunohistochemistry on serial sections of human coronary artery showed that FAM5C-positive endothelium expressed intercellular adhesion molecule-1 (ICAM-1 or vascular cell adhesion molecule-1 (VCAM-1. In cultured human endothelial cells, the overexpression of FAM5C increased the reactive oxygen species (ROS production, nuclear factor-κB (NF-κB activity and the expression of ICAM-1, VCAM-1 and E-selectin mRNAs, resulting in enhanced monocyte adhesion. FAM5C was upregulated in response to inflammatory stimuli, such as TNF-α, in an NF-κB- and JNK-dependent manner. Knockdown of FAM5C by small interfering RNA inhibited the increase in the TNF-α-induced production of ROS, NF-κB activity and expression of these leukocyte adhesion molecule mRNAs, resulting in reduced monocyte adhesion. These results suggest that in endothelial cells, when FAM5C is upregulated in response to inflammatory stimuli, it increases the expression of leukocyte adhesion molecules by increasing ROS production and NF-κB activity.

  10. Influence of inositol hexaphosphate on the expression of selected proliferation markers in IL-1β-stimulated intestinal epithelial cells.

    Science.gov (United States)

    Kapral, Małgorzata; Sośnicki, Stanisław; Wawszczyk, Joanna; Węglarz, Ludmiła

    2014-01-01

    The aim of the present study was to examine the influence of IP6, a naturally occurring phytochem- ical, on the expression of genes coding for proliferation markers, i.e., cyclin D1 (CCND1) and histone H3 in IL-1β-stimulated intestinal cancer cell line Caco-2. Quantification of genes expression was carried out using real time RT-QPCR technique in Caco-2 cells after treatment with IL-1β, 1 and 2.5 mM of IP6 for 3, 6 and 12 h. In separate cultures, cells were incubated with IL-1β for the indicated times. The untreated Caco-2 cells were used as the control. In a time course experiment, stimulation of cells with IL-1β only resulted in an overex- pression of both CCND1 and histone H3 mRNAs as compared with control. IP6 had no influence on IL-1β-stimulated CCND1 expression for 3 and 6 h. After 12 h, statistically significant decrease in CCND1 mRNA was observed in cells exposed to IL-1β and IP6 (1 and 2.5 mM) in relation to cells treated with IL-1β only. The levels of H3 mRNA in IL-1β-stimulated cells and cells treated with IL-1β and IP6 revealed no statistically significant differences after 3 h. IP6 at 1 and 2.5 mM enhanced IL1β-stimulated transcription of H3 gene after 6 h. Subsequently (12 h), the combination of IP6 and IL-1β decreased H3 mRNA level compared to IL1β-treated cells. In conclusion, pro-inflammatory cytokine IL-1β up-regulates CCND1 and histone H3 mRNAs expression in Caco-2 cells. These results suggest that the ability of IP6 to inhibit colon cancer cells proliferation may be mediated through downregulation of genes encoding cyclin D1 and histone H3 at the mRNA level. PMID:25745771

  11. Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2016-01-01

    Full Text Available A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for generating more relevant in vitro disease models using this existing bioresource. However, the overall reprogramming efficiency and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and cellular functional level during LCL-to-iPSC reprogramming. Here, we report a new optimized LCL-to-iPSC reprogramming protocol using episomal plasmids encoding pluripotency transcription factors and mouse p53DD (p53 carboxy-terminal dominant-negative fragment and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate using this optimized protocol. Further, we investigated the transcriptional changes in mRNA and miRNA levels, using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of human ESCs.

  12. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck;

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  13. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.)

  14. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Seiji [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Kobayashi, Saori [Wakasa Seikatsu Co., Ltd., 134 Chudoujiminami-cho, Shimogyo-ku, Kyoto 600-8813 (Japan); Tsubota, Kazuo [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ozawa, Yoko, E-mail: ozawa@a5.keio.jp [Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  15. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yu; Jian Zou; Zhi-Jun Bao; Jie Dong

    2011-01-01

    AIM: To identify differentially expressed microRNAs (miRNAs) in human colon cancer stem cells (SW1116csc) and study their function in SW1116csc proliferation.METHODS: SW1116csc were isolated from the human colon cancer cell line, SW1116 and cultured in serum free medium. A miRNA microarray was used to detect differential expression profiles of miRNAs in SW1116csc and SW1116 cells. Real-time quantitative polymerase chain reaction (PCR) was performed to verify the dif ferential expression of candidate miRNAs obtained from the microarray. Target mRNAs of differentially expressed miRNAs were predicted with target predic tion tools. miRNA expression plasmids were transfected into SW1116csc using Lipofectamine 2000 reagent. Cell proliferation curves were generated with trypan blue staining, and the colony formation rate of transfected cells was measured with the soft agar colony formation assay. Expression of target mRNAs and proteins from differentially expressed miRNAs were detected using reverse transcription (RT)-PCR and western blotting.RESULTS: Compared with expression in SW1116 cells, 35 miRNAs (including hsa-miR-192, hsa-miR-29b, hsa-miR-215, hsa-miR-194, hsa-miR-33a and hsa-miR-32) were upregulated more than 1.5-fold, and 11 miRNAs (including hsa-miR-93, hsa-miR-1231, hsa-miRPIus-F1080, hsa-miR-524-3p, hsa-miR-886-3p and hsa-miR-561) were downregulated in SW1116csc. The miRNA microarray results were further validated with quantitative RT-PCR. miR-93 was downregulated, and its predicted mRNA targets included BAMBI, CCND2, CDKN1A, HDAC8, KIF23, MAP3K9, MAP3K11, MYCN, PPARD, TLE4 and ZDHHC1. Overexpressed miR-93 sig nificantly inhibited cell proliferation and colony forma tion by SW1116CSC. Furthermore, miR-93 negatively regulated the mRNA and protein levels of HDAC8 and TLE4.CONCLUSION: Some miRNAs were differentially ex pressed during differentiation of SW1116csc into SW1116 cells. miR-93 may inhibit SW1116csc proliferation and colony formation.

  16. Co-expression networks in generation of induced pluripotent stem cells.

    Science.gov (United States)

    Paul, Sharan; Pflieger, Lance; Dansithong, Warunee; Figueroa, Karla P; Gao, Fuying; Coppola, Giovanni; Pulst, Stefan M

    2016-01-01

    We developed an adenoviral vector, in which Yamanaka's four reprogramming factors (RFs) were controlled by individual CMV promoters in a single cassette (Ad-SOcMK). This permitted coordinated expression of RFs (SOX2, OCT3/4, c-MYC and KLF4) in a cell for a transient period of time, synchronizing the reprogramming process with the majority of transduced cells assuming induced pluripotent stem cell (iPSC)-like characteristics as early as three days post-transduction. These reprogrammed cells resembled human embryonic stem cells (ESCs) with regard to morphology, biomarker expression, and could be differentiated into cells of the germ layers in vitro and in vivo. These iPSC-like cells, however, failed to expand into larger iPSC colonies. The short and synchronized reprogramming process allowed us to study global transcription changes within short time intervals. Weighted gene co-expression network analysis (WGCNA) identified sixteen large gene co-expression modules, each including members of gene ontology categories involved in cell differentiation and development. In particular, the brown module contained a significant number of ESC marker genes, whereas the turquoise module contained cell-cycle-related genes that were downregulated in contrast to upregulation in human ESCs. Strong coordinated expression of all four RFs via adenoviral transduction may constrain stochastic processes and lead to silencing of genes important for cellular proliferation. PMID:26892236

  17. Co-expression networks in generation of induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Sharan Paul

    2016-03-01

    Full Text Available We developed an adenoviral vector, in which Yamanaka's four reprogramming factors (RFs were controlled by individual CMV promoters in a single cassette (Ad-SOcMK. This permitted coordinated expression of RFs (SOX2, OCT3/4, c-MYC and KLF4 in a cell for a transient period of time, synchronizing the reprogramming process with the majority of transduced cells assuming induced pluripotent stem cell (iPSC-like characteristics as early as three days post-transduction. These reprogrammed cells resembled human embryonic stem cells (ESCs with regard to morphology, biomarker expression, and could be differentiated into cells of the germ layers in vitro and in vivo. These iPSC-like cells, however, failed to expand into larger iPSC colonies. The short and synchronized reprogramming process allowed us to study global transcription changes within short time intervals. Weighted gene co-expression network analysis (WGCNA identified sixteen large gene co-expression modules, each including members of gene ontology categories involved in cell differentiation and development. In particular, the brown module contained a significant number of ESC marker genes, whereas the turquoise module contained cell-cycle-related genes that were downregulated in contrast to upregulation in human ESCs. Strong coordinated expression of all four RFs via adenoviral transduction may constrain stochastic processes and lead to silencing of genes important for cellular proliferation.

  18. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  19. Systematic identification of cell cycle regulated transcription factors from microarray time series data

    Directory of Open Access Journals (Sweden)

    Li Lei M

    2008-03-01

    Full Text Available Abstract Background The cell cycle has long been an important model to study the genome-wide transcriptional regulation. Although several methods have been introduced to identify cell cycle regulated genes from microarray data, they can not be directly used to investigate cell cycle regulated transcription factors (CCRTFs, because for many transcription factors (TFs it is their activities instead of expressions that are periodically regulated across the cell cycle. To overcome this problem, it is useful to infer TF activities across the cell cycle by integrating microarray expression data with ChIP-chip data, and then examine the periodicity of the inferred activities. For most species, however, large-scale ChIP-chip data are still not available. Results We propose a two-step method to identify the CCRTFs by integrating microarray cell cycle data with ChIP-chip data or motif discovery data. In S. cerevisiae, we identify 42 CCRTFs, among which 23 have been verified experimentally. The cell cycle related behaviors (e.g. at which cell cycle phase a TF achieves the highest activity predicted by our method are consistent with the well established knowledge about them. We also find that the periodical activity fluctuation of some TFs can be perturbed by the cell synchronization treatment. Moreover, by integrating expression data with in-silico motif discovery data, we identify 8 cell cycle associated regulatory motifs, among which 7 are binding sites for well-known cell cycle related TFs. Conclusion Our method is effective to identify CCRTFs by integrating microarray cell cycle data with TF-gene binding information. In S. cerevisiae, the TF-gene binding information is provided by the systematic ChIP-chip experiments. In other species where systematic ChIP-chip data is not available, in-silico motif discovery and analysis provide us with an alternative method. Therefore, our method is ready to be implemented to the microarray cell cycle data sets from

  20. [The molecular organizational characteristics of the cell nucleus components at different phases of the mitotic cycle and in the resting state].

    Science.gov (United States)

    S'iakste, N I

    1992-01-01

    Data about the changes of the cell nucleus structure at different levels of its organization are summarized in the review. The data about the change of the DNA break number during the cycle and in resting state are presented and the role of the changes of the repair efficiency in this process is discussed. The changes of the chromatin protein spectrum, the chromatin structure at nucleosomal and supranucleosomal levels, the DNA superhelicity, topoisomerase activity, nuclear matrix composition and structure are discussed as well. The nucleus structure during the S-phase and mitosis and the cycle-related changes of the chromatin structure in lower eukaryotes are reviewed separately.

  1. Sonic Hedgehog Signaling Mediates Resveratrol to Increase Proliferation of Neural Stem Cells After Oxygen-Glucose Deprivation/Reoxygenation Injury in Vitro

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2015-03-01

    Full Text Available Background/Aims: There is interest in drugs and rehabilitation methods to enhance neurogenesis and improve neurological function after brain injury or degeneration. Resveratrol may enhance hippocampal neurogenesis and improve hippocampal atrophy in chronic fatigue mice and prenatally stressed rats. However, its effect and mechanism of neurogenesis after stroke is less well understood. Sonic hedgehog (Shh signaling is crucial for neurogenesis in the embryonic and adult brain, but relatively little is known about the role of Shh signaling in resveratrol-enhanced neurogenesis after stroke. Methods: Neural stem cells (NSCs before oxygen-glucose deprivation/reoxygenation (OGD/R in vitro were pretreated with resveratrol with or without cyclopamine. Survival and proliferation of NSCs was assessed by the CCK8 assay and BrdU immunocytochemical staining. The expressions and activity of signaling proteins and mRNAs were detected by immunocytochemistry, Western blotting, and RT-PCR analysis. Results: Resveratrol significantly increased NSCs survival and proliferation in a concentration-dependent manner after OGD/R injury in vitro. At the same time, the expression of Patched-1, Smoothened (Smo, and Gli-1 proteins and mRNAs was upregulated, and Gli-1 entered the nucleus, which was inhibited by cyclopamine, a Smo inhibitor. Conclusion: Shh signaling mediates resveratrol to increase NSCs proliferation after OGD/R injury in vitro.

  2. LncRNA-uc.167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c.

    Science.gov (United States)

    Song, Guixian; Shen, Yahui; Ruan, Zhongbao; Li, Xing; Chen, Yumei; Yuan, Wei; Ding, Xiangwei; Zhu, Li; Qian, Lingmei

    2016-09-15

    In our previous study we screened thousands of lncRNAs for their relationship with ventricular septal defect. Among these lncRNAs, uc.167 attracted our attention for its high level of conservation and that it was antisense to the Mef2c gene, which encodes myocyte enhancer factor 2C. This study aims to investigate the role of uc.167 during cardiomyocyte maturation in P19 cells induction and possible mechanism. The uc.167 expression level in human heart tissue of ventricular septum defect (VSD) was evaluated by qRT-PCR. The UCSC database was searched to investigate the bioinformatics of uc.167. We constructed overexpression vector of uc.167 and Mef2c. To detect proliferation and apoptosis, we combined cell cycle analysis and CCK8, Hoechst staining, flow cytometry and caspase-3 assays, respectively. The cardiomyogenesis related RNAs (cTnT, GATA4, and Mef2c) and proteins were detected by qRT-PCR and Western blotting. In this study, we found that uc.167 expression was significantly increased in VSD heart tissues. uc.167 is on the opposite strand to the coding gene Mef2c. The expression model of Mef2c and uc.167 showed an opposite correlation in the embryonic development and process of differentiation of P19 cells into cardiomyocytes. Overexpression of uc.167 inhibited proliferation but promoted apoptosis in P19 cells compared with the vector group, and those relative mRNAs and proteins decreased during the differentiation process. Whereas, co-expression of Mef2c and uc.167 can partially reverse the negative effects of uc.167 on proliferation, apoptosis and differentiation. Taken together, our findings suggest that uc.167 contributes to the development potential of VSD and may constitute a potential therapeutic target in this disease. uc.167 influences cell proliferation, apoptosis and differentiation of P19 cell by regulating Mef2c. PMID:27268728

  3. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Sara Paccosi

    Full Text Available Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs, or co-cultured (ccDCs with human coronary artery VSMCs (CASMCs using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.

  4. Alterations in testicular histology and the mRNAs of enzymes responsible for sex steroid synthesis in the zebrafish Danio rerio exposed to nonyphenol%壬基酚对斑马鱼精巢组织及性激素合成酶基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘晓丽; 汪奇; 贾林芝; 周忠良

    2011-01-01

    壬基酚(NP)是广泛存在于水体中的环境内分泌干扰物,会影响鱼类的生殖和发育.为了解NP影响鱼类精巢发育的分子机制,将成年雄性斑马鱼(Danio rerio)暴露于不同浓度(0、125、250、500μg·L-1)NP下21d,用常规组织学方法研究试验鱼精巢组织结构的变化,并用荧光定量PCR(QRT-PCR)方法检测试验鱼精巢性激素合成酶及雌、雄激素受体(ERα、AR)基因的表达.结果表明,暴露于250μg·L-1NP的斑马鱼精巢内精子及精小囊的数目减少,非细胞区域增加;500μg·L-1NP组斑马鱼生精小管内精子凝集于管腔中央.250μg·L-1NP可导致精巢CYP17mRNA的表达量显著下调,125μg·L-1NP可导致CYP11B mRNA的表达量显著下调,并呈现出明显的负剂量-效应关系.但是,NP对精巢AR mRNA的表达无明显影响,精巢中CYP19A mRNA及ERαmRNA的表达与NP暴露浓度之间呈正剂量-效应关系,125μg·L-1NP即可显著上调CYP19A mRNA及ERαmRNA的表达.NP可通过抑制精巢中雄激素合成相关酶基因的表达影响精巢发育,同时可诱导精巢内源雌激素合成和雌激素受体的表达,提高雌激素效应.%Nonylphenol (NP),an aquatic endocrine disruptor,is known to be capable of adversely affecting fish development and reproduction.In order to elucidate the molecular mechanisms for the harmful effects of NP on testicular development in fish,the male zebrafish Danio rerio were exposed to 0,125,250 and 500 μg·L-1 NP for 21 days.Histological alterations in the testis and the mRNAs of enzymes responsible for sex steroid synthesis,estrogen receptor α (ERα) and androgen receptor (AR) were subsequently investigated.Histologically,the fish treated with 250 μg·L-1 NP exhibited reduced numbers of both spermatocyst and spermatozoan and an enlargement of acellular zone.In the fish exposed to 500 μg·L-1 NP,sperms were found to be congregated in the lumen of seminiferous tubules.Downregulation of

  5. Suppressive effects of liquid crystal compounds on the growth of U937 human leukemic monocyte lymphoma cells

    Directory of Open Access Journals (Sweden)

    Ishikawa Junya

    2012-02-01

    Full Text Available Abstract Background The aim of this study was to evaluate the biological and pharmaceutical activities of 14 amphiphilic liquid-crystalline compounds (LCs, i.e, phenylpyrimidine derivatives possessing D-glucamine and cyanobiphenyl derivatives with a terminal hydroxyl unit. Results The cytotoxic properties of the LCs on the cell growth, cell cycle distribution, and cell signaling pathway of U937 human leukemic monocyte lymphoma cells were assessed by flow cytometry and western blot analysis. Some LCs showed cytostatic effects, suppressing cell growth via S-phase arrest and without apoptosis in U937 cells. To investigate the mechanisms of the LC-induced S-phase arrest, proteins relevant to cell cycle regulation were investigated by western blot analysis. The rate of LC-induced S-phase arrest was congruent with the decreased expression of MCM2, cyclin A, cyclin B, CDK2, phospho-CDK1 and Cdc25C. Observed changes in cell cycle distribution by LC treated might be caused by insufficient preparation for G2/M transition. Considering the structure of the LCs, the rod-like molecules displaying cytotoxicity against U937 cells possessed flexible spacers with no bulky polar group attached via the flexible spacer. Conclusions Our results revealed that some LCs showed cytotoxic properties against non-solid type tumor human leukemic cells via LC-induced S-phase arrest and decreasing expression of several cell cycle related proteins.

  6. Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Pei-xun Zhang; Xiao-rui Jiang; Lei Wang; Fang-min Chen; Lin Xu; Fei Huang

    2015-01-01

    Preliminary animal experiments have conifrmed that sensory nerve ifbers promote osteoblast differentiation, but motor nerve ifbers have no promotion effect. Whether sensory neurons pro-mote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green lfuorescent protein 3 weeks after osteo-genic differentiationin vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the prolifera-tion of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by lfuorescence microscopy. The levels of mRNAs for osteogenic differentiation-re-lated factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our ifndings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which pro-vides a theoretical basis forin vitro experiments aimed at constructing tissue-engineered bone.

  7. DAZL Limits Pluripotency, Differentiation, and Apoptosis in Developing Primordial Germ Cells

    Directory of Open Access Journals (Sweden)

    Hsu-Hsin Chen

    2014-11-01

    Full Text Available The scarcity of primordial germ cells (PGCs in the developing mammalian embryo hampers robust biochemical analysis of the processes that underlie early germ cell formation. Here, we demonstrate that DAZL, a germ cell-specific RNA binding protein, is a robust PGC marker during in vitro germ cell development. Using Dazl-GFP reporter ESCs, we demonstrate that DAZL plays a central role in a large mRNA/protein interactive network that blocks the translation of core pluripotency factors, including Sox2 and Sall4, as well as of Suz12, a polycomb family member required for differentiation of pluripotent cells. Thus, DAZL limits both pluripotency and somatic differentiation in nascent PGCs. In addition, we observed that DAZL associates with mRNAs of key Caspases and similarly inhibits their translation. This elegant fail-safe mechanism ensures that, whereas loss of DAZL results in prolonged expression of pluripotency factors, teratoma formation is avoided due to the concomitant activation of the apoptotic cascade.

  8. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

    Indian Academy of Sciences (India)

    Jung Ah Cho; Ho Park; Eun Hye Lim; Kyo Won Lee

    2011-04-01

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

  9. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel

    Institute of Scientific and Technical Information of China (English)

    Qing-qing MO; Ping-bo CHEN; Xin JIN; Qian CHEN; Lan TANG; Bei-bei WANG; Ke-zhen LI

    2013-01-01

    Aim:Hec1,a member of the Ndc80 kinetochore complex,is highly expressed in cancers.The aim of this study was to explore the role and mechanism of action of Hec1 with respect to the cytotoxicity of paclitaxel in ovarian cancer.Methods:Thirty ovarian cancer samples and 6 normal ovarian samples were collected.Hec1 expression in these samples was determined with immunohistochemistry.Ovarian cancer cell lines A2780,OV2008,C13K,SKOV3,and CAOV3 and A2780/Taxol were examined.Cell apoptosis and cell cycle analysis were detected with flow cytometric technique.siRNA was used to delete Hec1 in the cells.The expression of related mRNAs and proteins was measured using RT-PCR and Western blot analysis,respectively.Results:Hec1 expression was significantly higher in ovarian cancer samples than in normal ovarian samples,and was associated with paclitaxel-resistance and poor prognosis.Among the 6 ovarian cancer cell lines examined,Hec1 expression was highest in paclitaxelresistant A2780/Taxol cells,and lowest in A2780 cells.Depleting Hec1 in A2780/Taxol cells with siRNA decreased the IC5o value of paclitaxel by more than 10-fold (from 590±26.7 to 45.6±19.4 nmol/L).Depleting Hec1 in A2780 cells had no significant effect on the paclitaxel sensitivity.In paclitaxel-treated A2780/Taxol cells,depleting Hec1 significantly increased the cleaved PARP and Bax protein levels,and decreased the Bcl-xL protein level.Conclusion:Hec1 overexpression is associated with the progression and poor prognosis of ovarian cancer.Inhibition of Hec1 expression can sensitize ovarian cancer cells to paclitaxel.

  10. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction

    Directory of Open Access Journals (Sweden)

    Zhang Yawei

    2009-08-01

    Full Text Available Abstract Background Despite multidisciplinary treatment, lung cancer remains a highly lethal disease due to poor response to chemotherapy. The identification of therapeutic agents with synergistic effects with traditional drugs is an alternative for lung cancer therapy. In this study, the synergistic effects of arsenic trioxide (As2O3 with cisplatin (DDP on A549 and H460 non-small cell lung cancer (NSCLC cells were explored. Methods A549 and H460 human lung cancer cells were treated with As2O3 and/or DDP. Cell growth curves, cell proliferation, cell cycle, and apoptosis of human cancer cell lines were determined by the 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT method, clonogenic assay, and flow cytometry (FCM. Apoptosis was further assessed by TUNEL staining. Cell cycle and apoptosis related protein p21, cyclin D1, Bcl-2, bax, clusterin, and caspase-3 were detected by western blot. Results MTT and clonogenic assay showed As2O3 within 10-2 μM to 10 μM exerted inhibition on the proliferation of NSCLC cells, and 2.5 μM As2O3 exerted synergistic inhibition on proliferation with 3 μg/ml DDP. The combination indices (CI for A549 and H460 were 0.5 and 0.6, respectively, as confirmed by the synergism of As2O3 with DDP. FCM showed As2O3 did not affect the cell cycle. The G0/G1 fraction ranged from 57% to 62% for controlled A549 cells and cells treated with As2O3 and/or DDP. The G0/G1 fraction ranged from 37% to 42% for controlled H460 cells and cells treated with As2O3 and/or DDP. FCM and TUNEL staining illustrated that the combination of As2O3 and DDP provoked synergistic effects on apoptosis induction based on the analysis of the apoptosis index. Western blotting revealed that the expression of cell cycle related protein p21 and cyclin D1 were not affected by the treatments, whereas apoptosis related protein bax, Bcl-2, and clusterin were significantly regulated by As2O3 and/or DDP treatments compared with controls. The

  11. Transport of fragile X mental retardation protein via granules in neurites of PC12 cells

    NARCIS (Netherlands)

    Y. de Diego Otero (Yolanda); E.A.W.F.M. Severijnen (Lies-Anne); W.A. van Cappellen (Gert); M. Schrier (Mariëtte); R. Willemsen (Rob); B.A. Oostra (Ben)

    2002-01-01

    textabstractLack of fragile X mental retardation protein (FMRP) causes fragile X syndrome, a common form of inherited mental retardation. FMRP is an RNA binding protein thought to be involved in translation efficiency and/or trafficking of certain mRNAs. Recently, a subset of mRNAs

  12. Increased UV resistance in xeroderma pigmentosum group A cells after transformation with a human genomic DNA clone

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP) is an autosomal recessive disease in which the major clinical manifestation is a 2,000-fold enhanced probability of developing sunlight-induced skin tumors, and the molecular basis for the disease is a defective DNA excision repair system. To clone the gene defective XP complementation group A (XP-A), cDNA clones were isolated by a competition hybridization strategy in which the corresponding mRNAs were more abundant in cells of the obligately heterozygous parents relative to cells to the homozygous proband affected with the disease. In this report, a human genomic DNA clone that contains this cDNA was transformed into two independent homozygous XP-A cell lines, and these transformants displayed partial restoration of resistance to the killing effects of UV irradiation. The abundance of mRNA corresponding to this cDNA appears to correlate well with the observed UV cell survival. The results of unscheduled DNA synthesis after UV exposure indicate that the transformed cells are repair proficient relative to that of the control XP-A cells. However, using this same genomic DNA, transformation of an XP-F cell line did not confer any enhancement of UV survival or promote unscheduled DNA synthesis after UV exposure

  13. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.D.; Lu, Y.J.; Yuan, B.Z.; Castranova, V.; Shi, X.L.; Stauffer, J.L.; Demers, L.M.; Chen, F. [NIOSH, Morgantown, WV (US). Health Effects Laboratory Division

    2005-07-21

    Environmental or occupational exposure to mineral dusts, mainly silica and asbestos, is associated with an increased incidence of lung inflammation, fibrosis, and/or cancer. To better understand the molecular events associated with these pulmonary diseases, we attempted to identify genes that are regulated by mineral dusts. Using a differential display reverse transcription polymerase chain reaction technique and mRNAs of alveolar macrophages from both normal individuals and coal miners, we identified a novel mineral dust-induced gene named mdig, which had not been fully characterized. The expression of mdig mRNA was detected in alveolar macrophages from coal miners but not from normal subjects. The inducible expression of mdig could be observed in A549 cells exposed to silica particles in a time-dependent manner. The full-length mdig mRNA was expressed in human lung cancer tissues but was barely detectable in the adjacent normal tissues. In addition, a number of lung cancer cell lines constitutively express mdig. Alternative spliced transcripts of mdig were detected in some lung cancer cell lines. Silencing mdig mRNA expression in A549 lung cancer cells by siRNA-mediated RNA interference inhibits cell proliferation and sensitizes the cells to silica-induced cytotoxicity. These results suggest that the mdig gene may be involved in the regulation of cell growth and possibly the development of cancer.

  14. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells.

    Science.gov (United States)

    Price, D J; Miralem, T; Jiang, S; Steinberg, R; Avraham, H

    2001-03-01

    The expression of vascular endothelial growth factor (VEGF) by breast tumors has been previously correlated with a poor prognosis in the pathogenesis of breast cancer. Furthermore, VEGF secretion is a prerequisite for tumor development. Although most of the effects of VEGF have been shown to be attributable to the stimulation of endothelial cells, we present evidence here that breast tumor cells are capable of responding to VEGF. We show that VEGF stimulation of T-47D breast cancer cells leads to changes in cellular signaling and invasion. VEGF increases the cellular invasion of T-47D breast cancer cells on Matrigel/ fibronectin-coated transwell membranes by a factor of two. Northern analysis for the expression of the known VEGF receptors shows the presence of moderate levels of Flt-1 and low levels of Flk-1/KDR mRNAs in a variety of breast cancer cell lines. T-47D breast cancer cells bind 125I-labeled VEGF with a Kd of 13 x 10(-9) M. VEGF induces the activation of the extracellular regulated kinases 1,2 as well as activation of phosphatidylinositol 3'-kinase, Akt, and Forkhead receptor L1. These findings in T-47D breast cancer cells strongly suggest an autocrine role for VEGF contributing to the tumorigenic phenotype.

  15. Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors.

    Directory of Open Access Journals (Sweden)

    Fabien Delaspre

    Full Text Available Pluripotent embryonic stem cells (ESC are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh and bone morphogenetic protein (BMP pathways, fibroblast growth factors (FGF and retinoic acid (RA in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers. Subsequent plating in Matrigel® and concomitant modulation of FGF, glucocorticoid, and folllistatin signalling pathways involved in exocrine differentiation resulted in a significant increase of mRNAs encoding secretory enzymes and in the number of cells co-expressing their protein products. Also, pancreatic endocrine marker expression was down-regulated and accompanied by a significant reduction in the number of hormone-expressing cells with a limited presence of hepatic marker expressing-cells. These findings suggest a selective activation of the acinar differentiation program. The newly differentiated cells were able to release α-amylase and this feature was greatly improved by lentiviral-mediated expression of Rbpjl and Ptf1a, two transcription factors involved in the maximal production of digestive enzymes. This study provides a novel method to produce functional pancreatic exocrine cells from ESC.

  16. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  17. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  18. UVC-induced stress granules in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Mohamed Taha Moutaoufik

    Full Text Available Stress granules (SGs are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α. We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.

  19. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  20. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling.

    Science.gov (United States)

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-08-01

    Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H(3) thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification. PMID:27622053

  1. The Role of MicroRNAs in Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Martin Pichler

    2013-07-01

    Full Text Available The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs, act as endogenous suppressors of gene expression that exert their effect by binding to the 3'-untranslated region (UTR of large target messenger RNAs (mRNAs. MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and

  2. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  3. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

    Science.gov (United States)

    Geula, Shay; Moshitch-Moshkovitz, Sharon; Dominissini, Dan; Mansour, Abed AlFatah; Kol, Nitzan; Salmon-Divon, Mali; Hershkovitz, Vera; Peer, Eyal; Mor, Nofar; Manor, Yair S; Ben-Haim, Moshe Shay; Eyal, Eran; Yunger, Sharon; Pinto, Yishay; Jaitin, Diego Adhemar; Viukov, Sergey; Rais, Yoach; Krupalnik, Vladislav; Chomsky, Elad; Zerbib, Mirie; Maza, Itay; Rechavi, Yoav; Massarwa, Rada; Hanna, Suhair; Amit, Ido; Levanon, Erez Y; Amariglio, Ninette; Stern-Ginossar, Noam; Novershtern, Noa; Rechavi, Gideon; Hanna, Jacob H

    2015-02-27

    Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem