WorldWideScience

Sample records for cell cycle-dependent localization

  1. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Su; Kang, Jeeheon; Bang, Sung Woong; Hwang, Deog Su, E-mail: dshwang@snu.ac.kr

    2015-01-16

    Highlights: • Cdc6 protein is a component of the pre-replicative complex required for chromosomal replication initiation. • Cdc6 localized to centrosomes of S and G2 phases in a cell cycle-dependent manner. • The centrosomal localization was governed by centrosomal localization signal sequences of Cdc6. • Deletions or substitution mutations on the centrosomal localization signal interfered with centrosomal localization of the Cdc6 proteins. - Abstract: The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311–366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311–366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.

  2. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  3. Cell-cycle dependent localization of MELK and its new partner RACK1 in epithelial versus mesenchyme-like cells in Xenopus embryo

    Directory of Open Access Journals (Sweden)

    Isabelle Chartrain

    2013-08-01

    Maternal Embryonic Leucine zipper Kinase (MELK was recently shown to be involved in cell division of Xenopus embryo epithelial cells. The cytokinetic furrow of these cells ingresses asymmetrically and is developmentally regulated. Two subpopulations of xMELK, the mMELK (for “mitotic” xMELK and iMELK (“interphase” xMELK, which differ in their spatial and temporal regulation, are detected in Xenopus embryo. How cells regulate these two xMELK populations is unknown. In this study we show that, in epithelial cells, xMELK is present at a higher concentration at the apical junctional complex, in contrast to mesenchyme-like cells, which have uniform distribution of cortical MELK. Interestingly, mMELK and iMELK also differ by their requirements towards cell–cell contacts to establish their proper cortical localization both in epithelial and mesenchyme-like cells. Receptor for Activated protein Kinase C (RACK1, which we identified as an xMELK partner, co-localizes with xMELK at the tight junction. Moreover, a truncated RACK1 construct interferes with iMELK localization at cell–cell contacts. Collectively, our results suggest that iMELK and RACK1 are present in the same complex and that RACK1 is involved in the specific recruitment of iMELK at the apical junctional complex in epithelial cells of Xenopus embryos.

  4. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65. PMID:21053310

  5. Cell cycle dependent association of EBP50 with protein phosphatase 2A in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Anita Boratkó

    Full Text Available Ezrin-radixin-moesin (ERM-binding phosphoprotein 50 (EBP50 is a phosphorylatable PDZ domain-containing adaptor protein that is abundantly expressed in epithelium but was not yet studied in the endothelium. We report unusual nuclear localization of EBP50 in bovine pulmonary artery endothelial cells (BPAEC. Immunofluorescent staining and cellular fractionation demonstrated that EBP50 is present in the nuclear and perinuclear region in interphase cells. In the prophase of mitosis EBP50 redistributes to the cytoplasmic region in a phosphorylation dependent manner and during mitosis EBP50 co-localizes with protein phosphatase 2A (PP2A. Furthermore, in vitro wound healing of BPAEC expressing phospho-mimic mutant of EBP50 was accelerated indicating that EBP50 is involved in the regulation of the cell division. Cell cycle dependent specific interactions were detected between EBP50 and the subunits of PP2A (A, C, and Bα with immunoprecipitation and pull-down experiments. The interaction of EBP50 with the Bα containing form of PP2A suggests that this holoenzyme of PP2A can be responsible for the dephosphorylation of EBP50 in cytokinesis. Moreover, the results underline the significance of EBP50 in cell division via reversible phosphorylation of the protein with cyclin dependent kinase and PP2A in normal cells.

  6. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  7. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  8. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer

    Science.gov (United States)

    Grolmusz, Vince Kornél; Karászi, Katalin; Micsik, Tamás; Tóth, Eszter Angéla; Mészáros, Katalin; Karvaly, Gellért; Barna, Gábor; Szabó, Péter Márton; Baghy, Kornélia; Matkó, János; Kovalszky, Ilona; Tóth, Miklós; Rácz, Károly; Igaz, Péter; Patócs, Attila

    2016-01-01

    Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications.

  9. Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins.

    Directory of Open Access Journals (Sweden)

    Olga Wiens

    Full Text Available The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1, are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr, serine (p-Ser and threonine-proline (p-Thr-Pro epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.

  10. Cell cycle-dependent alteration in NAC1 nuclear body dynamics and morphology

    Science.gov (United States)

    Wu, Pei-Hsun; Hung, Shen-Hsiu; Ren, Tina; Shih, Ie-Ming; Tseng, Yiider

    2011-02-01

    NAC1, a BTB/POZ family member, has been suggested to participate in maintaining the stemness of embryonic stem cells and has been implicated in the pathogenesis of human cancer. In ovarian cancer, NAC1 upregulation is associated with disease aggressiveness and with the development of chemoresistance. Like other BTB/POZ proteins, NAC1 forms discrete nuclear bodies in non-dividing cells. To investigate the biological role of NAC1 nuclear bodies, we characterized the expression dynamics of NAC1 nuclear bodies during different phases of the cell cycle. Fluorescence recovery after photobleaching assays revealed that NAC1 was rapidly exchanged between the nucleoplasm and NAC1 nuclear bodies in interphase cells. The number of NAC1 bodies significantly increased and their size decreased in the S phase as compared to the G0/G1 and G2 phases. NAC1 nuclear bodies disappeared and NAC1 became diffuse during mitosis. NAC1 nuclear bodies reappeared immediately after completion of mitosis. These results indicate that a cell cycle-dependent regulatory mechanism controls NAC1 body formation in the nucleus and suggest that NAC1 body dynamics are associated with mitosis or cytokinesis.

  11. Cell-cycle-dependent PC-PLC regulation by APC/C(Cdc20)-mediated ubiquitin-proteasome pathway.

    Science.gov (United States)

    Fu, Da; Ma, Yushui; Wu, Wei; Zhu, Xuchao; Jia, Chengyou; Zhao, Qianlei; Zhang, Chunyi; Wu, Xing Zhong

    2009-07-01

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is involved in the cell signal transduction, cell proliferation, and apoptosis. The mechanism of its action, however, has not been fully understood, particularly, the role of PC-PLC in the cell cycle. In the present study, we found that cell division cycle 20 homolog (Cdc20) and PC-PLC were co-immunoprecipitated reciprocally by either antibody in rat hepatoma cells CBRH-7919 as well as in rat liver tissue. Using confocal microscopy, we found that PC-PLC and Cdc20 were co-localized in the perinuclear endoplasmic reticulum region (the "juxtanuclear quality control" compartment, JUNQ). The expression level and activities of PC-PLC changed in a cell-cycle-dependent manner and were inversely correlated with the expression of Cdc20. Intriguingly, Cdc20 overexpression altered the subcellular localization and distribution of PC-PLC, and caused PC-PLC degradation by the ubiquitin proteasome pathway (UPP). Taken together, our data indicate that PC-PLC regulation in cell cycles is controlled by APC/C(Cdc20)-mediated UPP.

  12. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  13. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle;

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle......-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude....

  14. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  15. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    Science.gov (United States)

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A.; Engeland, Kurt

    2012-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  16. Cell-cycle dependent micronucleus formation and mitotic disturbances induced by 5-azacytidine in mammalian cells

    OpenAIRE

    Stopper, Helga; Körber, C.; Schiffmann, D; Caspary, W J

    2012-01-01

    5-Azacytidine was originally developed to treat human myelogenous leukemia. However, interest in this compound has expanded because of reports of its ability to affect cell differentiation and to alter eukaryotic gene expression. In an ongoing attempt to understand the biochemical effects of this compound, we examined the effects of 5-azacytidine on mitosis and on micronucleus formation in mammalian cells. In L5178Y mouse cells, 5-azacytidine induced micronuclei at concentrations at which we ...

  17. Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba.

    Science.gov (United States)

    Polit, Justyna Teresa; Kaźmierczak, Andrzej; Walczak-Drzewiecka, Aurelia

    2012-01-01

    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition.

  18. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

    Directory of Open Access Journals (Sweden)

    Gersende Caron

    2015-11-01

    Full Text Available Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-β1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxymethylation, and cell fate determination.

  19. Differential regulation of survivin by p53 contributes to cell cycle dependent apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yan JIN; Yong WEI; Lei XIONG; Ying YANG; Jia Rui WU

    2005-01-01

    Recent studies indicate that cell-cycle checkpoints are tightly correlated with the regulation of apoptosis, in which p53 plays an important role. Our present works show that the expression of E6/E7 oncogenes of human papillomavirus in HeLa cells is inhibited in the presence of anti-tumor reagent tripchlorolide (TC), which results in the up-regulation of p53 in HeLa cells. Interestingly, under the same TC-treatment, the cells at the early S-phase are more susceptible to apoptosis than those at the middle S-phase although p53 protein is stabilized to the same level in both situations.Significant difference is exhibited between the two specified expression profiles. Further analysis demonstrates that anti-apoptotic gene survivin is up-regulated by p53 in the TC-treated middle-S cells, whereas it is down-regulated by p53 in the TC-treated early-S cells. Taken together, the present study indicates that the differential p53-regulated expression of survivin at different stages of the cell cycle results in different cellular outputs under the same apoptosis-inducer.

  20. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment

    OpenAIRE

    Zhang, Yi; Chen, Liuh-Yow; Han, Xin; XIE, Wei; Kim, Hyeung; Yang, Dong; Liu, Dan; Songyang, Zhou

    2013-01-01

    Telomere maintenance is essential for organisms with linear chromosomes and is carried out by telomerase during cell cycle. The precise mechanism by which cell cycle controls telomeric access of telomerase and telomere elongation in mammals remains largely unknown. Previous work has established oligonucleotide/oligosaccharide binding (OB) fold-containing telomeric protein TPP1, formerly known as TINT1, PTOP, and PIP1, as a key factor that regulates telomerase recruitment and activity. However...

  1. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  2. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul;

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...

  3. Differential repair of UV damage in Saccharomyces cerevisiae is cell cycle dependent.

    Science.gov (United States)

    Terleth, C; Waters, R; Brouwer, J; van de Putte, P

    1990-09-01

    In the yeast Saccharomyces cerevisiae the transcriptionally active MAT alpha locus is repaired preferentially to the inactive HML alpha locus after UV irradiation. Here we analysed the repair of both loci after irradiating yeast cells at different stages of the mitotic cell cycle. In all stages repair of the active MAT alpha locus occurs at a rate of 30% removal of dimers per hour after a UV dose of 60 J/m2. The inactive HML alpha is repaired as efficiently as MAT alpha following irradiation in G2 whereas repair of HML alpha is less efficient in the other stages. Thus differential repair is observed in G1 and S but not in G2. Apparently, in G2 a chromatin structure exists in which repair does not discriminate between transcriptionally active and inactive DNA or, alternatively, an additional repair mechanism might exist which is only operational during G2.

  4. The DREAM complex: master coordinator of cell cycle-dependent gene expression.

    Science.gov (United States)

    Sadasivam, Subhashini; DeCaprio, James A

    2013-08-01

    The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis. PMID:23842645

  5. The DREAM complex: Master coordinator of cell cycle dependent gene expression

    Science.gov (United States)

    Sadasivam, Subhashini; DeCaprio, James A.

    2014-01-01

    Preface The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cancers with poor prognosis. PMID:23842645

  6. The DREAM complex: Master coordinator of cell cycle dependent gene expression

    OpenAIRE

    Sadasivam, Subhashini; DeCaprio, James A.

    2013-01-01

    The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cance...

  7. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    Science.gov (United States)

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression.

  8. HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT.

    Directory of Open Access Journals (Sweden)

    Joshua L Andersen

    2006-12-01

    Full Text Available The HIV-1 accessory protein viral protein R (Vpr causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage-signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45alpha was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4-3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.

  9. Cell-Cycle-Dependent Variations in the FTIR Spectroscopy of HeLa Cells Treated with Trichostatin A

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng-qiu; QI Jian; YANG Zhan-guo

    2011-01-01

    It is quite complex to evaluate the mechanism of action for antitumor drugs on cancer cells.Studies have pointed out that there is an unique advantage of Fourier transform infrared spectrum to obtain a fingerprint of all molecules present in the cells when cancer cells were exposed to anti-cancer drugs.Trichostatin A (TSA) is a most potent reversible inhibitor of mammalian histone deacetylases.It can inhibit cancer cell growth in vitro and in vivo.In the present study,HeLa cells were exposed to 0,50,100,200,300 and 400 nmol · L-1 TSA,and FTIR spectra were applied to evaluate the effect of TSA on cancer cells.Results show that there is some significant relationship between the changes in FTIR absorption and cell cycle arresting.On the other hand,this investigation shows that the concentration of TSA had to be more than 200 nmol · L-1 in order to ensure A1080 cm-1/A1540cm-1 ≥1 for inhibiting cell proliferation.

  10. Using a GFP-gene fusion technique to study the cell cycle-dependent distribution of calmodulin in living cells

    Institute of Scientific and Technical Information of China (English)

    李朝军; 吕品; 张东才

    1999-01-01

    In this study, a green fluorescent protein (GFP)-calmodulin (CaM) fusion gene method was used to examine the distribution of calmodulin during various stages of cell cycle. First, it was found that the distribution of CaM in living cells changes with the cell cycle. CaM was found mainly in the cytoplasm during G1 phase. It began to move into the nucleus when the cell entered S phase. At G2 phase, CaM became more concentrated in the nucleus than in cytoplasm. Second, the accumulation of CaM in the nucleus during G2 phase appeared to be related to the onset of mitosis, since inhibiting the activation of CaM at this stage resulted in blocking the nuclear membrane breakdown and chromatin condensation. Finally, after the cell entered mitosis, a high concentration of CaM was found at the polar regions of the mitotic spindle. At this time, inhibiting the activity of CaM would cause a disruption of the spindle structure. The relationship between the stage-specific distribution of CaM and its function in regulat

  11. βTrCP-mediated ubiquitylation regulates protein stability of Mis18β in a cell cycle-dependent manner.

    Science.gov (United States)

    Kim, Ik Soo; Lee, Minkyoung; Park, Joo Hyeon; Jeon, Raok; Baek, Sung Hee; Kim, Keun Il

    2014-01-01

    Ubiquitin E3 ligases including SCF complex are key regulators of cell cycle. Here, we show that Mis18β, a component of Mis18 complex governing CENP-A localization, is a new substrate of βTrCP-containing SCF complex. βTrCP interacted with Mis18β exclusively during interphase but not during mitosis and mediated proteasomal degradation of Mis18β leading to the inactivation of Mis18 complex during interphase. In addition, uncontrolled stabilization of Mis18β caused cell death. Together, we propose that βTrCP-mediated regulation of Mis18β stability is a mechanism to restrict centromere function of Mis18 complex from late mitosis to early G1 phase. PMID:24269809

  12. The Human Papillomavirus Type 18 E2 Protein Is a Cell Cycle-Dependent Target of the SCFSkp2 Ubiquitin Ligase▿

    OpenAIRE

    Bellanger, Sophie; Tan, Chye Ling; Nei, Wenlong; He, Ping Ping; Thierry, Françoise

    2009-01-01

    The human papillomavirus type 18 (HPV-18) E2 gene is inactivated in cervical carcinoma after integration of the viral DNA into the host cellular genome. Since E2 represses the transcription of the two viral oncogenes E6 and E7, integration which allows their strong expression is considered a major step in transformation by HPV. We show here that E2 is specifically degraded at the end of the G1 phase in a Brd4-independent manner, implying that its regulatory functions are cell cycle dependent....

  13. Cell cycle-dependent deposition of CENP-A requires the Dos1/2-Cdc20 complex.

    Science.gov (United States)

    Gonzalez, Marlyn; He, Haijin; Sun, Siyu; Li, Chen; Li, Fei

    2013-01-01

    Centromeric histone CENP-A, a variant of canonical histone H3, plays a central role in proper chromosome segregation. Loading of CENP-A at centromeres is cell cycle-regulated: parental CENP-A is deposited at centromeres during S phase, whereas newly synthesized CENP-A is deposited during later stages of the cell cycle. The mechanisms involved in deposition of CENP-A at centromeres during S phase remain poorly understood. In fission yeast, loading of CENP-A during S phase is regulated by the GATA-type factor, Ams2. Here we show that the Dos1/2-Cdc20 complex, previously characterized as a silencing complex essential for inheritance of H3K9 methylation during S phase, is also required for localization of CENP-A(cnp1) at centromeres at this stage. Disruption of Dos1 (also known as Raf1/Clr8/Cmc1), Dos2 (also known as Raf2/Clr7/Cmc2), or Cdc20, a DNA polymerase epsilon subunit, results in dissociation of CENP-A from centromeres and mislocalization of the protein to noncentromeric sites. All three mutants display spindle disorganization and mitotic defects. Inactivation of Dos1 or Cdc20 also results in accumulation of noncoding RNA transcripts from centromeric cores, a feature common to mutants affecting kinetochore integrity. We further find that Dos1 physically associates with Ams2 and is required for the association of Ams2 with centromeric cores during S phase. Finally, we show that Dos2 associates with centromeric cores during S phase and that its recruitment to centromeric cores depends on Cdc20. This study identifies a physical link between DNA replication and CENP-A assembly machinery and provides mechanistic insight into how CENP-A is faithfully inherited during S phase. PMID:23267073

  14. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  15. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Pluripotency of embryonic stem cells (ESC is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb. Esrrb contributes to the relaxation of the G1 to S-phase (G1/S checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.

  16. Cell Cycle-dependent Expression of Thyroid Hormone Receptor-β Is a Mechanism for Variable Hormone SensitivityD⃞

    OpenAIRE

    Maruvada, Padma; Dmitrieva, Natalia I.; East-Palmer, Joyce; Yen, Paul M.

    2004-01-01

    Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors. Currently, little is known about the expression of TRs or other nuclear hormone receptors during the cell cycle. We thus developed a stable expression system to express green fluorescent protein-TRβ in HeLa cells under tetracycline regulation, and studied TR expression during the cell cycle by laser scanning cytometry. Only ∼9-15% of the nonsynchronized cell population expressed TR because the majority of cells were...

  17. Cell Cycle-dependent Regulation of the Forkhead Transcription Factor FOXK2 by CDK·Cyclin Complexes*

    OpenAIRE

    Marais, Anett; Ji, Zongling; Child, Emma S.; Krause, Eberhard; Mann, David J.; Sharrocks, Andrew D.

    2010-01-01

    Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occ...

  18. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas;

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle at...... the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non......-optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-, threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose...

  19. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma.

    Science.gov (United States)

    Kikuchi, Ken; Hettmer, Simone; Aslam, M Imran; Michalek, Joel E; Laub, Wolfram; Wilky, Breelyn A; Loeb, David M; Rubin, Brian P; Wagers, Amy J; Keller, Charles

    2014-01-01

    Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells. PMID:24453992

  20. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2014-01-01

    Full Text Available Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.

  1. The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae.

    Science.gov (United States)

    Plachta, Michal; Halas, Agnieszka; McIntyre, Justyna; Sledziewska-Gojska, Ewa

    2015-05-01

    Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae. PMID:25766643

  2. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    International Nuclear Information System (INIS)

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  3. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  4. Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals.

    Science.gov (United States)

    Smith, Stephen C; Joshi, Kamal K; Zik, Justin J; Trinh, Katherine; Kamajaya, Aron; Chien, Peter; Ryan, Kathleen R

    2014-09-30

    The cell-division cycle of Caulobacter crescentus depends on periodic activation and deactivation of the essential response regulator CtrA. Although CtrA is critical for transcription during some parts of the cell cycle, its activity must be eliminated before chromosome replication because CtrA also blocks the initiation of DNA replication. CtrA activity is down-regulated both by dephosphorylation and by proteolysis, mediated by the ubiquitous ATP-dependent protease ClpXP. Here we demonstrate that proteins needed for rapid CtrA proteolysis in vivo form a phosphorylation-dependent and cyclic diguanylate (cdG)-dependent adaptor complex that accelerates CtrA degradation in vitro by ClpXP. The adaptor complex includes CpdR, a single-domain response regulator; PopA, a cdG-binding protein; and RcdA, a protein whose activity cannot be predicted. When CpdR is unphosphorylated and when PopA is bound to cdG, they work together with RcdA in an all-or-none manner to reduce the Km of CtrA proteolysis 10-fold. We further identified a set of amino acids in the receiver domain of CtrA that modulate its adaptor-mediated degradation in vitro and in vivo. Complex formation between PopA and CtrA depends on these amino acids, which reside on alpha-helix 1 of the CtrA receiver domain, and on cdG binding by PopA. These results reveal that each accessory factor plays an essential biochemical role in the regulated proteolysis of CtrA and demonstrate, to our knowledge, the first example of a multiprotein, cdG-dependent proteolytic adaptor.

  5. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23 is controlled via a CHR promoter element bound by DREAM and MMB complexes.

    Directory of Open Access Journals (Sweden)

    Martin Fischer

    Full Text Available The microtubule-dependent molecular motor KIF23 (Kinesin family member 23 is one of two components of the centralspindlin complex assembled during late stages of mitosis. Formation of this complex is known as an essential step for cytokinesis. Here, we identified KIF23 as a new transcriptional target gene of the tumor suppressor protein p53. We showed that p53 reduces expression of KIF23 on the mRNA as well as the protein level in different cell types. Promoter reporter assays revealed that this repression results from downregulation of KIF23 promoter activity. CDK inhibitor p21(WAF1/CIP1 was shown to be necessary to mediate p53-dependent repression. Furthermore, we identified the highly conserved cell cycle genes homology region (CHR in the KIF23 promoter to be strictly required for p53-dependent repression as well as for cell cycle-dependent expression of KIF23. Cell cycle- and p53-dependent regulation of KIF23 appeared to be controlled by differential binding of DREAM and MMB complexes to the CHR element. With this study, we describe a new mechanism for transcriptional regulation of KIF23. Considering the strongly supporting function of KIF23 in cytokinesis, its p53-dependent repression may contribute to the prevention of uncontrolled cell growth.

  6. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes.

    Science.gov (United States)

    Fischer, Martin; Grundke, Inga; Sohr, Sindy; Quaas, Marianne; Hoffmann, Saskia; Knörck, Arne; Gumhold, Catalina; Rother, Karen

    2013-01-01

    The microtubule-dependent molecular motor KIF23 (Kinesin family member 23) is one of two components of the centralspindlin complex assembled during late stages of mitosis. Formation of this complex is known as an essential step for cytokinesis. Here, we identified KIF23 as a new transcriptional target gene of the tumor suppressor protein p53. We showed that p53 reduces expression of KIF23 on the mRNA as well as the protein level in different cell types. Promoter reporter assays revealed that this repression results from downregulation of KIF23 promoter activity. CDK inhibitor p21(WAF1/CIP1) was shown to be necessary to mediate p53-dependent repression. Furthermore, we identified the highly conserved cell cycle genes homology region (CHR) in the KIF23 promoter to be strictly required for p53-dependent repression as well as for cell cycle-dependent expression of KIF23. Cell cycle- and p53-dependent regulation of KIF23 appeared to be controlled by differential binding of DREAM and MMB complexes to the CHR element. With this study, we describe a new mechanism for transcriptional regulation of KIF23. Considering the strongly supporting function of KIF23 in cytokinesis, its p53-dependent repression may contribute to the prevention of uncontrolled cell growth.

  7. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence.

    Science.gov (United States)

    Litovchick, Larisa; Sadasivam, Subhashini; Florens, Laurence; Zhu, Xiaopeng; Swanson, Selene K; Velmurugan, Soundarapandian; Chen, Runsheng; Washburn, Michael P; Liu, X Shirley; DeCaprio, James A

    2007-05-25

    The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence. PMID:17531812

  8. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  9. Decreased radioiodine uptake of FRTL-5 cells after 131I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway

    International Nuclear Information System (INIS)

    In radioiodine therapy the ''stunning phenomenon'' is defined as a reduction of radioiodine uptake after diagnostic application of 131I. In the current study, we established an in vitro model based on the ''Fisher rat thyrocyte cell line no. 5'' (FRTL-5) to investigate the stunning. TSH-stimulated FRTL-5 cells were incubated with 131I. Time-dependent 131I uptake and the viability of FRTL-5 cells were evaluated at 4-144 h after radioiodine application. All data was corrected for number of viable cells, half life and 131I concentration. Sodium iodide symporter (NIS) and the housekeeping gene (β-actin, GAPDH) levels were quantified by quantitative polymerase chain reaction (qPCR). Additionally, immunohistochemical staining (IHC) of NIS on the cell membrane was carried out. FRTL-5 monolayer cell cultures showed a specific maximum uptake of 131I 24-48 h after application. Significantly decreased 131I uptake values were observed after 72-144 h. The decrease in radioiodine uptake was correlated with decreasing mRNA levels of NIS and housekeeping genes. In parallel, unlike in controls, IHC staining of NIS on FRTL-5 cells declined significantly after 131I long-term incubation. It could be demonstrated that during 131I incubation of FRTL-5 cells, radioiodine uptake decreased significantly. Simultaneously decreasing levels of NIS mRNA and protein expression suggest a NIS-associated mechanism. Since mRNA levels of housekeeping genes decreased, too, the reduced NIS expression might be provoked by a cell cycle arrest. Our investigations recommend the FRTL-5 model as a valuable tool for further molecular biological investigations of the stunning phenomenon. (orig.)

  10. CtIP is regulated by the APC/C-Cdh1 to mediate cell cycle-dependent control of DNA repair

    NARCIS (Netherlands)

    de Boer, Harmen R.; Lafranchi, Lorenzo; Neugebauer, Christine; Fehrmann, Rudolf; de Vries, Elisabeth G. E.; Sartori, Alessandro A.; van Vugt, Marcel

    2014-01-01

    Human cells have evolved elaborate mechanisms for responding to DNA damage to maintain genome stability and prevent carcinogenesis. For instance, the cell cycle can be arrested at different stages to allow time for DNA repair. The APC/C-Cdh1 ubiquitin ligase regulates mitotic exit but is also implic

  11. The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase.

    OpenAIRE

    Coqueret, O; Bérubé, G; Nepveu, A

    1998-01-01

    Cut is a homeodomain transcription factor which has the unusual property of containing several DNA-binding domains: three regions called Cut repeats and the Cut homeodomain. Genetic studies in Drosophila melanogaster indicate that cut plays important roles in the determination and maintenance of cell-type specificity. In the present study, we show that mammalian Cut proteins may yet play another biological role, specifically in proliferating cells. We found that the binding of Cut to a consen...

  12. Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors.

    Science.gov (United States)

    Vallejos, Maricarmen; Deforges, Jules; Plank, Terra-Dawn M; Letelier, Alejandro; Ramdohr, Pablo; Abraham, Christopher G; Valiente-Echeverría, Fernando; Kieft, Jeffrey S; Sargueil, Bruno; López-Lastra, Marcelo

    2011-08-01

    The 5' leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA harbors an internal ribosome entry site (IRES) that is functional during the G2/M phase of the cell cycle. Here we show that translation initiation mediated by the HIV-1 IRES requires the participation of trans-acting cellular factors other than the canonical translational machinery. We used 'standard' chemical and enzymatic probes and an 'RNA SHAPE' analysis to model the structure of the HIV-1 5' leader and we show, by means of a footprinting assay, that G2/M extracts provide protections to regions previously identified as crucial for HIV-1 IRES activity. We also assessed the impact of mutations on IRES function. Strikingly, mutations did not significantly affect IRES activity suggesting that the requirement for pre-formed stable secondary or tertiary structure within the HIV-1 IRES may not be as strict as has been described for other viral IRESes. Finally, we used a proteomic approach to identify cellular proteins within the G2/M extracts that interact with the HIV-1 5' leader. Together, data show that HIV-1 IRES-mediated translation initiation is modulated by cellular proteins. PMID:21482538

  13. Pulmonary dendritic cells: thinking globally, acting locally

    OpenAIRE

    Randall, Troy D.

    2010-01-01

    The phrase “think globally, act locally” was coined in the early 1970s and directed individuals to clean up their local environment with the ultimate goal of improving the health of the entire planet. Several recent studies indicate that similar considerations apply to the immune system, in which small numbers of leukocytes, such as pulmonary dendritic cells, can modify the local immune environment in the lung and promote a positive outcome for the organism.

  14. Cell-cycle-dependent variation in UV absorption spectrum of Hela cells treated with Trichostatin A%HeLa细胞经曲古菌素A处理后紫外光谱的细胞周期依赖性变化

    Institute of Scientific and Technical Information of China (English)

    Fengqiu Zhang; Xiaoxia Wang; Zhanguo Yang

    2012-01-01

    Objective: The aim of our study was to discovery the different cell cycle arrest effect after different densities HeLa cells treated with Trichostatin A (TSA). In addition, this study would find some important relationship between cycle arrest effect and UV absorption spectrum of cell. Methods: 0.2 μM TSA was applied to act on HeLa cells of different density. Then, the cycle arrest effect and UV absorption spectrum of cells were investigated, which provide support to analyze the effect of TSA on cancer cells. Results: Cell cycle arrest effect in G0/G1 of the lower density cells was more obvious than that in other groups. The other discovery in this work was that the cellular UV absorption value was higher when the density of cultured cell was lower. Conclusion: This experiment would guide the clinical study on early or late stage cancer patients in the future. On the other hand, this work indicates when cells were arrested in G0/G1 phase, the cellular absorption value increased at the same time, so UV absorption spectrum could characterize the change of cell cycle.

  15. Characterization and localization of side population cells in the lens

    OpenAIRE

    Oka, Mikako; Toyoda, Chizuko; Kaneko, Yuka; Nakazawa, Yosuke; Aizu-Yokota, Eriko; Takehana, Makoto

    2010-01-01

    Purpose Side population (SP) cells were isolated and the possibility whether lens epithelial cells contain stem cells was investigated. Methods Mouse lens epithelial cells were stained by Hoechst 33342 and then sorted by fluorescence-activated cell sorting (FACS). The expression of stem cell markers in sorted SP cells and the main population of epithelial cells were analyzed by quantitative real-time PCR. Localization of SP cells in the mouse lens was studied by fluorescence microscopy. Resul...

  16. Business Cycle Dependent Unemployment Benefits with Wealth Heterogeneity and Precautionary Savings

    DEFF Research Database (Denmark)

    Kristoffersen, Mark Strøm

    In the wake of the financial and economic crisis the discussion about social insurance and optimal stabilization policies has re-blossomed. This paper adds to the literature by studying the effects of a business cycle dependent level of unemployment benefits in a model with labor market matching...... of the distortionary effect (on job creation) from providing unemployment insurance, whereas countercyclical benefits facilitate consumption smoothing....

  17. Immunoelectron microscopic localization of calmodulin in corn root cells

    Institute of Scientific and Technical Information of China (English)

    LIJIAXU; JIEWENLIU; DAYESUN

    1993-01-01

    Methods for the localization of plant calmodulin by immuno-gold and immuno-peroxidase electron microscopy have been developed. In both corn root-cap cells and meristematic cells, calmodulin was found to be localized in the nucleus, cytoplasm, mitochondria as well as in the cell wall, In the meristematic cells, calmodulin was distinctly localized on the plasma membrane, cytoplasmic face of rough endoplasmic rcticulum and polyribosomes. Characteristically, calmodulin was present in the amyloplasts of root-cap cells. The widespread distribution of calmodulin may reflect its plciotropic functions in plant cellular activities.

  18. Respiratory Cycle-Dependent Atrial Trachycardia; its Unique Characteristics and Relation with Autonomic Nerve System

    Directory of Open Access Journals (Sweden)

    Teppei Yamamoto, MD

    2012-12-01

    Full Text Available Respiration influences the sinus heart rate, however, little is still known about the tachyarrhythmias related to respiration. Atrial tachycardia (AT rarely emerges during inspiration and it also ceases during expiration. This type of AT is thus called respiratory cycle-dependent atrial tachycardia (RCAT, and it demonstrates a centrifugal activation pattern. Based on these peculiar P wave morphologies, the foci converged either around the right superior pulmonary vein (RSPV or inside the superior vena cava where the anterior right ganglionated plexi (ARGP is considered to be located. The mechanism of such AT is therefore thought to be related to the activity of the autonomic system.

  19. Local resolved electrochemical impedance spectroscopy of PEFC single cells

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.; Gulzow, E. [German Aerospace Center, Inst. of Technical Thermodynamics, Stuttgart (Germany)

    2009-07-01

    Experimental data on a spatial resolved level is needed to understand the integral behaviour of fuel cells as well as to validate models describing fuel cell behaviour. This paper described a new tool developed to increase the accuracy of current density measurements. Based on a printed circuit board, the tool integrated local electrochemical impedance spectroscopy techniques in order to determine local membrane resistance, electrochemical reactions, and transport processes. Solutions for locally resolved impedance spectroscopy measurements were presented. It was concluded that the tool will help to provide a more detailed understanding of fuel cell behaviour.

  20. MUSIC for localization of thunderstorm cells

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Rynne, T.M. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States)

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surface electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.

  1. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  2. Localization of ANP-synthesizing cells in rat stomach

    Institute of Scientific and Technical Information of China (English)

    Chun-Hui Li; Li-Hui Pan; Chun-Yu Li; Chang-Lin Zhu; Wen-Xie Xu

    2006-01-01

    AIM: To study the morphological positive expression of antrial natriuretic peptide (ANP)-synthesizing cells and ultrastructural localization and the relationship between ANP-synthesizing cells and microvessel density in the stomach of rats and to analyze the distribution of the three histologically distinct regions of ANP-synthesizing cells.METHODS: Using immunohistochemical techniques, we studied positive expression of ANP-synthesizing cells in rat stomach. A postembedding immunogold microscopy technique was used for ultrastructural localization of ANP-synthesizing cells. Microvessel density in the rat stomach was estimated using tannic acid-ferric chloride (TAFC) method staining. Distribution of ANP-synthesizing cells were studied in different regions of rat stomach histochemically.RESULTS: Positive expression of ANP-synthesizing cells were localized in the gastric mucosa of rats. Localization of ANP-synthesizing cells identified them to be enterochrochromaffin cells (EC) by using a postembedding immunogold electron microscopy technique. EC cells were in the basal third of the cardiac mucosa region.ANP-synthesizing cells existed in different regions of rat stomach and its density was largest in the gastric cardiac region, and the distribution order of ANP-synthesizing cells in density was cardiac region, pyloric region and fundic region in mucosa layer. We have also found a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats using TAFC staining.CONCLUSION: ANP-synthesizing cells are expressed in the gastric mucosa. EC synthesize ANP. There is a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats.The distribution density of ANP-synthesizing cells is largest in the gastric cardiac region.

  3. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  4. Time-resolved local strain tracking microscopy for cell mechanics

    Science.gov (United States)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  5. Localized subcritical convective cells in temperature-dependent viscosity fluids

    Science.gov (United States)

    Solomatov, V. S.

    2012-06-01

    Numerical simulations of infinite Prandtl number convection in the stagnant lid regime of temperature-dependent viscosity convection demonstrate the existence of spatially localized, stable convective cells below the critical Rayleigh number (subcritical convection). These solutions are in stark contrast to the usual, supercritical, convective planforms, where convective cells form in the entire layer. The isolated cell has a shape of an axisymmetric dome with an upwelling at the center and thus appears as a very weak plume. Formation of these structures requires subcritical conditions and a localized initial temperature perturbation but does not require any spatial heterogeneity in the material properties or the heat flux. When several localized plumes form, they tend to attract to each other and form stable clusters. This type of subcritical convection may play a role in the formation and longevity of localized features on planetary bodies, including the crustal dichotomy and Tharsis region on Mars and the asymmetric pattern of volcanism on Mercury.

  6. Local Helioseismology

    Directory of Open Access Journals (Sweden)

    Gizon Laurent

    2005-11-01

    Full Text Available We review the current status of local helioseismology, covering both theoretical and observational results. After a brief introduction to solar oscillations and wave propagation through inhomogeneous media, we describe the main techniques of local helioseismology: Fourier-Hankel decomposition, ring-diagram analysis, time-distance helioseismology, helioseismic holography, and direct modeling. We discuss local helioseismology of large-scale flows, the solar-cycle dependence of these flows, perturbations associated with regions of magnetic activity, and solar supergranulation.

  7. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal in any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.

  8. Localization of muscarinic acetylcholine receptor in plant guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  9. Cell surface localization and tissue distribution of a hepatocyte cell-cell adhesion glycoprotein (cell-CAM 105)

    OpenAIRE

    Ocklind, C; Forsum, U; Obrink, B

    1983-01-01

    We recently identified a 105,000-dalton plasma membrane glycoprotein, denoted cell-CAM 105 (CAM, cell adhesion molecule), that is involved in intercellular adhesion of reaggregating rat hepatocytes (Ocklind, C., and B. Obrink, 1982, J. Biol. Chem., 257:6788-6795). In this communication we used a monospecific rabbit antiserum against cell-CAM 105 to localize the antigen by indirect immunofluorescence on isolated rat cells and on frozen rat tissue sections. This antiserum stained the surface of...

  10. Localization and biosynthesis of polyamines in insulin-producing cells

    DEFF Research Database (Denmark)

    Hougaard, D M; Larsson, L I; Nielsen, Jens Høiriis

    1986-01-01

    Two recently developed fluorescence cytochemical methods, specific for spermidine and spermine, were used to localize polyamines in the endocrine pancreas. The polyamines were restricted to the insulin-producing beta-cells and were mainly associated with the secretory granules. Chemical polyamine...

  11. Octreotide scintigraphy localizes somatostatin receptor-positive islet cell carcinomas

    International Nuclear Information System (INIS)

    Tyr-3-octreotide is a synthetic derivative of somatostatin and a somatostatin-receptor analogue. The iodine-123-labelled compound localizes somatostatin-receptor-positive tumours. In this paper two patients are reported in whom somatostatin receptors were demonstrated in vitro. In a 60-year-old female with an islet cell carcinoma of the pancreas, multiple liver metastases and previously uncrecognized bone metastases in the right acetabulum could be diagnosed as the reason for a persistent hypoglycaemia. In a 60-year-old male an islet cell carcinoma of the pancreas was localized with 123I-Tyr-3-octreotide. The somatostatin receptors were demonstrated in vitro and the tumour was successfully treated with somatostatin. These studies demonstrate that 123I-Tyr-3-octreotide offers the possibility of localizing somatostatin-receptor-positive tumours and their metastases. Moreover the method makes it possible to determine the receptor status of a tumour in vivo. (orig.)

  12. Localized electroporation effect on adherent cells in modified electric cell-substrate impedance sensing circuits

    Science.gov (United States)

    Kim, Yu Jin; Ram Song, Ka; Kim, Hee-Dae; Park, Bum Chul; Kim, Young Keun; Kang, Chi Jung

    2016-10-01

    Electroporation is a physical transfection method for introducing foreign genes or drugs into cells. It does not require toxic reagents or transfection vectors. However, its applications have been limited because of cell damage and nonspecific transport. Here, we present an effective method for selective and localized electroporation using atomic force microscopy. This electroporation method is applied to adherent cells on substrates, instead of conventionally used suspended cells, and offers relatively effective cell transfection. Moreover, this method enables localized transfection into targeted areas at the single-cell level.

  13. Spectroscopic investigation of local mechanical impedance of living cells

    CERN Document Server

    Costa, Luca; Benseny-Cases, Núria; Mayeaux, Véronique; Chevrier, Joël; Comin, Fabio

    2013-01-01

    The mechanical properties of PC12 living cells have been studied at the nanoscale with a Force Feedback Microscope using two experimental approaches. Firstly, the local mechanical impedance of the cell membrane has been mapped simultaneously to the cell morphology at constant force. As the force of the interaction is gradually increased, we observed the appearance of the sub-membrane cytoskeleton. We shall compare the results obtained with this method with the measurement of other existing techniques. Secondly, a spectroscopic investigation has been performed varying the indentation of the tip in the cell membrane and consequently the force applied on it. In contrast with conventional dynamic atomic force microscopy techniques, here the small oscillation amplitude of the tip is not necessarily imposed at the cantilever first eigenmode. This allows the user to arbitrarily choose the excitation frequency in developing spectroscopic AFM techniques. The mechanical response of the PC12 cell membrane is found to be...

  14. Schelling model of cell segregation based only on local information

    Science.gov (United States)

    Nielsen, Alexander Valentin; Gade, Annika Lund; Juul, Jeppe; Strandkvist, Charlotte

    2015-11-01

    While biological studies suggest that motility of cells is involved in cell segregation, few computational models have investigated this mechanism. We apply a simple Schelling model, modified to reflect biological conditions, demonstrating how differences in cell motility arising exclusively from differences in the composition of the local environment can be sufficient to drive segregation. The work presented here demonstrates that the segregation behavior observed in the original Schelling model is robust to a relaxation of the requirement for global information and that the Schelling model may yield insight in the context of biological systems. In the model, the time course of cell segregation follows a power law in accord with experimental observations and previous work.

  15. The exocyst localizes to the primary cilium in MDCK cells.

    Science.gov (United States)

    Rogers, Katherine K; Wilson, Patricia D; Snyder, Richard W; Zhang, Xiaoyu; Guo, Wei; Burrow, Christopher R; Lipschutz, Joshua H

    2004-06-18

    Primary cilia play a role in the maintenance of tubular epithelial differentiation and ciliary dysfunction can result in abnormal cyst formation, such as occurs in autosomal dominant polycystic kidney disease (ADPKD). We previously showed that the exocyst, an eight-protein complex involved in the biogenesis of polarity from yeast to mammals, is centrally involved in cyst formation [Mol. Biol. Cell. 11 (2000) 4259]. Here we show that the exocyst complex localizes to the primary cilium in Madin-Darby canine kidney (MDCK) tubular epithelial cells. We further show that the exocyst is overexpressed in both cell lines and primary cell cultures of ADPKD origin, suggesting that the exocyst may be involved in the pathogenesis of ADPKD.

  16. Secondary Metabolite Localization by Autofluorescence in Living Plant Cells

    Directory of Open Access Journals (Sweden)

    Pascale Talamond

    2015-03-01

    Full Text Available Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla. This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment.

  17. Quantification and Localization of Mast Cells in Periapical Lesions

    Science.gov (United States)

    Mahita, VN; Manjunatha, BS; Shah, R; Astekar, M; Purohit, S; Kovvuru, S

    2015-01-01

    Background: Periapical lesions occur in response to chronic irritation in periapical tissue, generally resulting from an infected root canal. Specific etiological agents of induction, participating cell population and growth factors associated with maintenance and resolution of periapical lesions are incompletely understood. Among the cells found in periapical lesions, mast cells have been implicated in the inflammatory mechanism. Aim: Quantifications and the possible role played by mast cells in the periapical granuloma and radicular cyst. Hence, this study is to emphasize the presence (localization) and quantification of mast cells in periapical granuloma and radicular cyst. Materials and Methods: A total of 30 cases and out of which 15 of periapical granuloma and 15 radicular cyst, each along with the case details from the previously diagnosed cases in the department of oral pathology were selected for the study. The gender distribution showed male 8 (53.3%) and females 7 (46.7%) in periapical granuloma cases and male 10 (66.7%) and females 5 (33.3%) in radicular cyst cases. The statistical analysis used was unpaired t-test. Results: Mean mast cell count in periapical granuloma subepithelial and deeper connective tissue, was 12.40 (0.99%) and 7.13 (0.83%), respectively. The mean mast cell counts in subepithelial and deeper connective tissue of radicular cyst were 17.64 (1.59%) and 12.06 (1.33%) respectively, which was statistically significant. No statistical significant difference was noted among males and females. Conclusion: Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of mast cells in the pathogenesis of periapical lesions. PMID:25861530

  18. Tracking and localization of calmodulin in live cells.

    Science.gov (United States)

    Johnson, Carey K; Harms, Gregory S

    2016-08-01

    The calcium signaling protein calmodulin (CaM) interacts with many target proteins inside the cell to regulate a wide range of biological signals. CaM's availability to propagate signals depends on its mobility, which may be regulated by interactions with multiple target proteins. We detected single molecules of CaM labeled with a fluorescent dye and injected into living HEK 293 cells, and we used high-speed, wide-field, single-molecule imaging to track single CaM molecules. Single-molecule trajectories were analyzed to characterize the motions of individual CaM molecules. Single-molecule localization resolved CaM positions with a position accuracy of tracking demonstrated the presence of a wide range of mobilities of individual calmodulin molecules in a cell, with diffusion coefficients ranging from 10μm(2)s(-1). For molecules confined to small regions of the cell, super-resolved images of presumed signaling complexes were recovered. Individual trajectories were classified as normal diffusion, confined diffusion, or directed motion, and could suggest how the individual CaM molecules were bound in the cell. The results show that interactions of CaM with target proteins result in decreased translational mobilities of a significant fraction of CaM molecules inside cells. The work presented here illustrates methods that can characterize location, mobilities, and the availability of signaling molecules in live cells. PMID:27113857

  19. The local origin of decidual cells in pregnant mice

    International Nuclear Information System (INIS)

    In order to evaluate the participation of extrauterine cells in the formation of mouse antimesometrial decidua, [3H]-thymidine was administered ip on days 1, 5 and 6 of pregnancy and the animals were killed 1 h afterwards. A second group of mice received four ip injections of [3H]-thymidine at 6-h intervals on the 1st day of pregnancy and were killed on the 2nd, 5th or 6th day of pregnancy. A third group of virgin mice in estrus received [3H]-thymidine ip four times at 6-h intervals and was killed 96 h after the first injection. Radioautographs of the uteri showed that few endometrial stomal cells were labelled on the 1st and 2nd day of pregnancy. Although many decidual cells incorporated thymidine on the 5th and 6th day of pregnancy in pulse-labelled animals, only few labelled decidual cells were found on the 5th and 6th day of pregnancy in animals that received several injections of thymidine on the 1st and 2nd day of pregnancy. These results indicate that the antimesometrial decidual cells that develop at the beginning of pregnancy are mostly of local origin. The short-term migration of extraneous cells into the uterus to participate in decidualization is not supported by these data. (author)

  20. Radio(chemotherapy in locally advanced nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Markus Glatzer

    2016-03-01

    Full Text Available Definitive radiochemotherapy is the standard treatment for many patients with locally advanced nonsmall cell lung cancer (NSCLC. Treatment outcomes have improved over the last decades. Several treatment regimens have been shown effective and safe. This review summarises the results of significant studies between 1996 and 2015 on concomitant and sequential radiochemotherapy regimens and radiation dose per fraction. Beside therapy regimens, optimised radiotherapy planning is indispensable to improve outcome and minimise radiation-induced toxicity. An insight into the rationale of radiotherapy planning for stage III NSCLC is also provided.

  1. Ultrastructural localization of active genes in Allium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using the anti-RNA/DNA hybrid antibody as the probe, we labeled and analyzed the precise transcriptional sites of active genes in Allium cepa cells in situ. The results showed that the location of labeled signals appeared in mitochondrion was the same as that in chloroplast, generally concentrated at the central matrix space where there were no cristae and thylakoids. In the extranucleolar regions of nucleus, the labeled signals of transcriptional sites were situated at the perichromatin fibrils, which decondensed and stretched out from the chromosome territories. Our results also displayed the concentrations of labeled signals in a cer-tain region of nucleus, and this means that the gene tran-scription rich region actually existed in Allium cepa cells. In nucleolus, the synthetic sites of rRNA were localized not only to the periphery of fibrillar centers but also to the DFC near FC.

  2. Screen for localized proteins in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Jay H Russell

    Full Text Available Precise localization of individual proteins is required for processes such as motility, chemotaxis, cell-cycle progression, and cell division in bacteria, but the number of proteins that are localized in bacterial species is not known. A screen based on transposon mutagenesis and fluorescence activated cell sorting was devised to identify large numbers of localized proteins, and employed in Caulobacter crescentus. From a sample of the clones isolated in the screen, eleven proteins with no previously characterized localization in C. crescentus were identified, including six hypothetical proteins. The localized hypothetical proteins included one protein that was localized in a helix-like structure, and two proteins for which the localization changed as a function of the cell cycle, suggesting that complex three-dimensional patterns and cell cycle-dependent localization are likely to be common in bacteria. Other mutants produced localized fusion proteins even though the transposon has inserted near the 5' end of a gene, demonstrating that short peptides can contain sufficient information to localize bacterial proteins. The screen described here could be used in most bacterial species.

  3. AUV Localization Process using Computing Cells on FPGA

    Directory of Open Access Journals (Sweden)

    Abid Yahya

    2012-09-01

    Full Text Available Concurrent processors incorporated on a single chip for performing computations can be troublesome because as the size of problems increase, the execution time also increases. In order to make sure that the execution time is reduced, a traditional approach is used that implies that the problem will be computed by an array of processors that are interconnected over a high-speed interconnection network. A Duplicated process is presented in this paper to handle the complexity of computing arithmetic of AUV localization operation. A single clock cycle is sufficient for performing all the operations in this process. This type of process is referred to as Duplicated because each cell incorporates a variety of duplicated multipliers and adders. The minimum number of clock cycles are needed to complete each iteration. However, each cell takes up more area on the chip. The calculation rate of the duplicated process is high despite the fact that its throughput is significantly limited by the small number of cells that can be accommodated by the FPGA.

  4. Local pH tracking in living cells

    Science.gov (United States)

    Tsou, Chieh-Jui; Hsia, Chih-Hao; Chu, Jia-Yin; Hung, Yann; Chen, Yi-Ping; Chien, Fan-Ching; Chou, Keng C.; Chen, Peilin; Mou, Chung-Yuan

    2015-02-01

    Continuous and simultaneous 3D single-particle movement and local pH detection in HeLa cells were demonstrated for the first time by combining fluorescent mesoporous silica nanoparticles (FMSNs) and a single-particle tracking (SPT) technique with a precision of ~10 nm. FMSNs, synthesized by the co-condensation of both pH-sensitive and reference dyes with a silica/surfactant source, allow long-term reliable ratiometric pH measurements with a precision better than 0.3 pH unit because of their excellent brightness and stability. pH variation in the surrounding area of FMSNs during endocytosis was monitored in real-time. Acidification and low mobility of FMSNs were observed at the early endocytic stage, whereas basification and high mobility of FMSNs were observed at the late stage. Our results indicate that it is possible to monitor local pH changes in the environments surrounding nanoparticles during the cellular uptake process of FMSNs, which provides much needed information for designing an efficient drug delivery nanosystem.Continuous and simultaneous 3D single-particle movement and local pH detection in HeLa cells were demonstrated for the first time by combining fluorescent mesoporous silica nanoparticles (FMSNs) and a single-particle tracking (SPT) technique with a precision of ~10 nm. FMSNs, synthesized by the co-condensation of both pH-sensitive and reference dyes with a silica/surfactant source, allow long-term reliable ratiometric pH measurements with a precision better than 0.3 pH unit because of their excellent brightness and stability. pH variation in the surrounding area of FMSNs during endocytosis was monitored in real-time. Acidification and low mobility of FMSNs were observed at the early endocytic stage, whereas basification and high mobility of FMSNs were observed at the late stage. Our results indicate that it is possible to monitor local pH changes in the environments surrounding nanoparticles during the cellular uptake process of FMSNs, which

  5. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  6. A kinetic mechanism for cell sorting based on local variations in cell motility

    Science.gov (United States)

    Strandkvist, Charlotte; Juul, Jeppe; Baum, Buzz; Kabla, Alexandre J.; Duke, Tom

    2014-01-01

    Our current understanding of cell sorting relies on physical difference, either in the interfacial properties or motile force, between cell types. But is such asymmetry a prerequisite for cell sorting? We test this using a minimal model in which the two cell populations are identical with respect to their physical properties and differences in motility arise solely from how cells interact with their surroundings. The model resembles the Schelling model used in social sciences to study segregation phenomena at the scale of societies. Our results demonstrate that segregation can emerge solely from cell motility being a dynamic property that changes in response to the local environment of the cell, but that additional mechanisms are necessary to reproduce the envelopment behaviour observed in vitro. The time course of segregation follows a power law, in agreement with the scaling reported from experiment and in other models of motility-driven segregation. PMID:25485079

  7. Interplanetary magnetic field and solar cycle dependence of Northern Hemisphere F region joule heating

    Science.gov (United States)

    Bjoland, L. M.; Chen, X.; Jin, Y.; Reimer, A. S.; Skjæveland, Å.; Wessel, M. R.; Burchill, J. K.; Clausen, L. B. N.; Haaland, S. E.; McWilliams, K. A.

    2015-02-01

    Joule heating in the ionosphere takes place through collisions between ions and neutrals. Statistical maps of F region Joule heating in the Northern Hemisphere polar ionosphere are derived from satellite measurements of thermospheric wind and radar measurements of ionospheric ion convection. Persistent mesoscale heating is observed near postnoon and postmidnight magnetic local time and centered around 70° magnetic latitude in regions of strong relative ion and neutral drift. The magnitude of the Joule heating is found to be largest during solar maximum and for a southeast oriented interplanetary magnetic field. These conditions are consistent with stronger ion convection producing a larger relative flow between ions and neutrals. The global-scale Joule heating maps quantify persistent (in location) regions of heating that may be used to provide a broader context compared to small-scale studies of the coupling between the thermosphere and ionosphere.

  8. Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis.

    OpenAIRE

    Aeed, P. A.; Welch, D. R.

    1988-01-01

    Using a recently developed model for studying the biology of locally recurrent (LR) mammary tumours in the 13762NF rat mammary adenocarcinoma system, we examined the sensitivity to polymorphonuclear cell, macrophage and natural killer cell cytolysis. The parental MTF7(T20) cell line; the 'primary' tumours which arose following subcutaneous inoculation into the mammary fat pad, sc1 and sc3; and the local recurrences (following surgical excision) LR1 and LR1a from sc1, and LR3 from sc3 were all...

  9. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hui Shi

    Full Text Available Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM. We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  10. Chemotherapy alone for localized diffuse large B-cell lymphoma.

    Science.gov (United States)

    Sehn, Laurie H

    2012-01-01

    Approximately 25% to 30% of patients with diffuse large B-cell lymphoma (DLBCL) present with limited-stage disease, typically defined as those with nonbulky (approaches have been used, which have largely relied on the administration of systemic therapy followed by involved-field radiation therapy (IFRT) to all sites of disease. The use of IFRT has been associated with improved local control, but a significant impact on long-term outcome has not been demonstrated. Although the inclusion of IFRT may allow for an abbreviated course of chemotherapy to be administered, this benefit must be weighed against the potential for radiation-induced acute and delayed toxicity. With the advent of improved systemic therapy, the routine use of IFRT in all patients with limited-stage DLBCL seems no longer justifiable. A tailored-therapy approach, with choice of treatment guided by patient performance status and chemotherapy tolerance, sites of disease involvement, clinical risk factors, and early treatment response would seem rational. Ultimately, greater biologic insight into the heterogeneity of DLBCL will likely result in a personalized treatment approach that relies more on biologic characteristics than stage of disease. PMID:23006946

  11. Crypt region localization of intestinal stem cells in adults

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The intestinal epithelial lining plays a central role in the digestion and absorption of nutrients, but exists in a harsh luminal environment that necessitates continual renewal. This renewal process involves epithelial cell proliferation in the crypt base and later cell migration from the crypt base to the luminal surface. This process is dependent on multi-potent progenitor cells, or stem cells, located in each crypt. There are about 4 to 6 stem cells per crypt, and these stem cells are believed to generate distinct end-differentiated epithelial cell types, including absorptive cells, goblet cells, enteroendocrine cells and Paneth cells, while also maintaining their own progenitor cell state. Earlier studies suggested that intestinal stem cells were located either in the crypt base interspersed between the Paneth cells [i.e. Crypt base columnar (CBC) cell model] or at an average position of 4 cells from the crypt base [I.e. Label-retaining cells (LRC +4) model]. Recent studies have employed biomarkers in the in vivo mammalian state to more precisely evaluate the location of these progenitor cells in the intestinal crypt. Most notable of these novel markers are Lgr5, a gene that encodes a G-protein-coupled receptor with expression restricted to CBC cells, and Bmi 1, which encodes a chromatin remodeling protein expressed by LRC. These studies raise the possibility that there may be separate stem cell lines or different states of stem cell activation involved in the renewal of normal mammalian intestinal tract.

  12. Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating.

    Science.gov (United States)

    Merlini, Laura; Khalili, Bita; Bendezú, Felipe O; Hurwitz, Daniel; Vincenzetti, Vincent; Vavylonis, Dimitrios; Martin, Sophie G

    2016-04-25

    Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation. PMID:27020743

  13. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures

    OpenAIRE

    1989-01-01

    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  14. Localization of a new serine protease, ingobsin, in goblet cells in rat, pig and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part...... of the intestine. In the electron microscope, the immunoreaction was localized mainly to the rough endoplasmic reticulum of the goblet cells and to the secretion being extruded from the cells....

  15. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events.

  16. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  17. From Global Stresses to Local Cell Packing During Development

    Science.gov (United States)

    Lubensky, David

    2011-03-01

    To perform their functions, cells in epithelial tissues must often adopt highly regular packings. It is still not fully understood how these ordered arrangements of cells arise from disordered, proliferative epithelia during development. I will use experimental and theoretical studies on an attractive model system, the cone cell mosaic in fish retina, to illustrate some ways that mechanical forces and cell signaling can interact to produce this transformation. Experiments examining the response to surgical lesions suggest that the correct mechanical environment at the tissue scale is essential to induce cone cells to rearrange into a rectangular lattice. Starting from this observation, I will argue that large-scale mechanical stresses naturally couple to and orient cell polarization and that this coupling can lead cells to line up in regular rows, as observed in the fish retina. This model predicts that cells in the rows will adopt characteristic trapezoidal shapes and that fragments of rows will persist even in tissue where the mosaic pattern is disrupted by lesions; these predictions are borne out by an analysis of cell packings at the level of the zonula occludens in wildtype and lesioned retinas. Supported by NSF grant IOS-0952873.

  18. LOCAL IN-SITU ANALYSIS OF PEM FUEL CELLS BY IMPEDANCE SPECTROSCOPY AND RAMAN MEASUREMENTS

    OpenAIRE

    Gülzow, Erich; Schulze, Mathias; Friedrich, Andreas; Fischer, Peter; Bettermann, Hans

    2011-01-01

    An understanding of the processes inside of low temperature fuel cells on a local scale is required for an effective improvement strategy. For this purpose in situ Raman spectroscopy and local impedance spectroscopy is being developed. The contribution describes the modifications to the cell, and installations of additional devices and the experimental detection systems for integrating both methods into a single cell set up. First results to verify the combined results were carried out and ar...

  19. Giant germ cell tumor with mediastinal localization: A report of two cases

    Directory of Open Access Journals (Sweden)

    Fatih Meteroğlu

    2010-06-01

    Full Text Available Germ celled tumors frequently localize in anterior mediastinum.In this study we presented two germ cell tumors with different localization and huge size. We discussed two cases with germ cell tumors operated in our clinic togetherwith literature findings. Chest x-ray, computerized tomography (CT and transthorasic tru-cut biopsy were used for diagnosis. The huge intratorasic teratomas are rarely seen and surgical full resection is the most importantfactor in survival.

  20. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    Science.gov (United States)

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  1. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells.

    Directory of Open Access Journals (Sweden)

    Nurdan Ozkucur

    Full Text Available BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm and weak (< or = 5 V/cm dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological

  2. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...

  3. Octreotide scintigraphy localizes somatostatin receptor-positive islet cell carcinomas

    NARCIS (Netherlands)

    W. Becker (W.); J. Marienhagen (J.); R. Scheubel (R.); A. Saptogino (A.); W.H. Bakker (Willem); W.A.P. Breeman (Wouter); F. Wolf (F.)

    1991-01-01

    textabstractTyr-3-Octreotide is a synthetic derivative of somatostatin and a somatostatin-receptor analogue. The iodine-123-labelled compound localizes somatostatin-receptor-positive tumours. In this paper two patients are reported in whom somatostatin receptors were demonstrated in vitro. In a 60-y

  4. Localization of adenovirus DNA replication in KB cells

    NARCIS (Netherlands)

    Vlak, J.M.; Rozijn, Th.H.; Spies, F.

    1975-01-01

    The localization of adenovirus type 5 DNA replication has been investigated by both fractionation of isolated nuclei and electron-microscope autoradiography. Nuclear fractionation by means of the M-band-technique of Tremblay et al. (Tremblay, G. Y., Daniels, M. J., and Schaechter, M. (1969). J. Mol.

  5. Asymmetric localization of Numb:EGFP in dividing neuroepithelial cells during neurulation in Danio rerio.

    Science.gov (United States)

    Reugels, Alexander M; Boggetti, Barbara; Scheer, Nico; Campos-Ortega, José A

    2006-04-01

    In the neural plate and tube of the zebrafish embryo, cells divide with their mitotic spindles oriented parallel to the plane of the neuroepithelium, whilst in the neural keel and rod, the spindle is oriented perpendicular to it. This change is achieved by a 90 degrees rotation of the mitotic spindle. We cloned zebrafish homologues of the gene for the Drosophila cell fate determinant Numb, and analyzed the localization of EGFP fusion proteins in vivo in dividing neuroepithelial cells during neurulation. Whereas Numb isoform 3 and the related protein Numblike are localized in the cytoplasm, Numb isoform 1 is localized to the cell membrane. Time-lapse analyses showed that Numb 1 is distributed uniformly around the cell cortex in dividing cells during plate and keel stages, but becomes localized at the basolateral membrane of some dividing cells during the transition from neural rod to tube. Using in vitro mutagenesis and Numb:EGFP deletion constructs, we showed that the first 196 amino acids of Numb are sufficient for this localization. Furthermore, we found that an 11-amino acid insertion in the PTB domain is essential for localization to the cortex, whereas amino acids 2-12 mediate the basolateral localization in the neural tube stage.

  6. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Science.gov (United States)

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  7. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus

    DEFF Research Database (Denmark)

    Leonardy, Simone; Freymark, Gerald; Hebener, Sabrina;

    2007-01-01

    Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as ...

  8. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  9. Model of local velocity in the primary visual cortical cells.

    Science.gov (United States)

    Sherman, I; Spitzer, H

    1995-06-01

    A motion model for the early stages of motion processing in the visual cortex that focuses on velocity properties is presented. The model presents analytically the correlation between the velocity tuning curve and various cell parameters. The building block for this model is the rebound response, which makes possible the detection of spatial and temporal edges. The model suggests that adjacent subunits in the primary cortical cells display different strengths in their rebound responses, and thus a synergistic response is evoked in the preferred direction. The analysis deals separately with the two cutoff points of the velocity tuning curves. The model predicts a linear relation between the low cutoff point and the receptive-field size and an inverse correlation with the integration time. The high cutoff point is inversely correlated with the cell threshold. PMID:7769506

  10. Localized giant cell tumors in the spinal column radiologic presentation

    International Nuclear Information System (INIS)

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  11. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts

    OpenAIRE

    Pan, Qian Sheng; Fang, Zhi Ping; Huang, Feng Jie

    2000-01-01

    AIM: To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species.

  12. Cystic local recurrence of renal cell carcinoma after laparoscopic radical nephrectomy in a hemodialysis patient.

    Science.gov (United States)

    Ito, Kazuyo; Takagi, Toshio; Kondo, Tsunenori; Yoshida, Kazuhiko; Iizuka, Junpei; Kobayashi, Hirohito; Tomita, Eri; Hashimoto, Yasunobu; Tanabe, Kazunari

    2014-03-01

    Although local recurrence of renal cell carcinoma after laparoscopic radical nephrectomy is sometimes reported, cystic local recurrence of renal cell carcinoma has rarely been reported. We report the case of a 59-year-old man with hemodialysis who developed cystic local recurrence of renal cell carcinoma accompanied by acquired cystic disease of the kidney in the retroperitoneal space after laparoscopic radical nephrectomy. A cystic tumor of 5.1 cm in diameter occurred in the left retroperitoneal space 15 months after left laparoscopic radical nephrectomy, and enlarged to 7.2 cm in diameter with enhanced mass along the wall of the cyst 36 months after surgery. The cystic tumor was removed and showed local recurrence of renal cell carcinoma on pathological examination.

  13. Alterations in Kainate Receptor and TRPM1 Localization in Bipolar Cells after Retinal Photoreceptor Degeneration

    OpenAIRE

    Gayet-Primo, Jacqueline; Puthussery, Theresa

    2015-01-01

    Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that ma...

  14. Alterations in kainate receptor and TRPM1 localization in bipolar cells after retinal photoreceptor degeneration

    OpenAIRE

    Jacqueline eGayet-Primo; Theresa ePuthussery

    2015-01-01

    Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that ma...

  15. Surgical Management of Local Recurrences of Renal Cell Carcinoma

    Science.gov (United States)

    Acar, Ömer; Şanlı, Öner

    2016-01-01

    Surgical resection either in the form of radical nephrectomy or in the form of partial nephrectomy represents the mainstay options in the treatment of kidney cancer. In most instances, resecting the tumor bearing kidney or the tumor itself provides durable cancer specific survival rates. However, recurrences may rarely develop in the renal fossa or remnant kidney. Despite its rarity, locally recurrent RCC is a challenging condition in terms of the possible management options and relatively poor prognosis. If technically feasible, wide surgical excision and ensuring negative surgical margins are the most effective treatment options. Repeat surgeries (completion nephrectomy, excision of locally recurrent tumor, or repeat partial nephrectomy) may often be complicated, and perioperative morbidity is a major concern. Open approach has been extensively applied in this context and 5-year cancer specific survival rates have been reported to be around 50%. The roles of minimally invasive surgical options (laparoscopic and robotic approach) and nonsurgical alternatives (cryoablation, radiofrequency ablation) have yet to be described. In selected patients, surgical resection may have to be complemented with (neo)adjuvant radiotherapy or medical treatment. PMID:26925458

  16. Surgical Management of Local Recurrences of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ömer Acar

    2016-01-01

    Full Text Available Surgical resection either in the form of radical nephrectomy or in the form of partial nephrectomy represents the mainstay options in the treatment of kidney cancer. In most instances, resecting the tumor bearing kidney or the tumor itself provides durable cancer specific survival rates. However, recurrences may rarely develop in the renal fossa or remnant kidney. Despite its rarity, locally recurrent RCC is a challenging condition in terms of the possible management options and relatively poor prognosis. If technically feasible, wide surgical excision and ensuring negative surgical margins are the most effective treatment options. Repeat surgeries (completion nephrectomy, excision of locally recurrent tumor, or repeat partial nephrectomy may often be complicated, and perioperative morbidity is a major concern. Open approach has been extensively applied in this context and 5-year cancer specific survival rates have been reported to be around 50%. The roles of minimally invasive surgical options (laparoscopic and robotic approach and nonsurgical alternatives (cryoablation, radiofrequency ablation have yet to be described. In selected patients, surgical resection may have to be complemented with (neoadjuvant radiotherapy or medical treatment.

  17. Is the surface area of the red cell membrane skeleton locally conserved?

    OpenAIRE

    Fischer, T M

    1992-01-01

    The incompressibility of the lipid bilayer keeps the total surface area of the red cell membrane constant. Local conservation of membrane surface area requires that each surface element of the membrane skeleton keeps its area when its aspect ratio is changed. A change in area would require a flow of lipids past the intrinsic proteins to which the skeleton is anchored. in fast red cell deformations, there is no time for such a flow. Consequently, the bilayer provides for local area conservatio...

  18. Probabilistic mapping and image clustering for quantitative assessment of fluorescent protein localizations in Arabidopsis guard cells

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Takumi Higaki, Natsumaro Kutsuna & Seiichiro Hasezawa ### Abstract The protocol reported here describes a method to quantitatively evaluate fluorescently-tagged protein localizations from fluorescent microscopic images with a combination of probabilistic mapping and image clustering. We demonstrate the use of this protocol using kidney-shaped guard cells of plants. ### Introduction Microscopic assessment of protein localizations with fluorescent protein taggin...

  19. Self-assembled mannan nanogel : cytocompatibility and cell localization

    OpenAIRE

    Ferreira, Sílvia A.; Carvalho, Vera; Vilanova, Manuel; Costa, Carla Isabel; Teixeira, João P.; Gama, F. M.

    2012-01-01

    Amphiphilic mannan, produced by the Michael addition of hydrophobic 1-hexadecanethiol to vinyl methacrylated mannan, self-assembles in aqueous medium through hydrophobic interactions among alkyl chains. Resultant nanogel is stable, spherical, polydisperse, with 50–140 nm mean hydrodynamic diameter depending on the polymer degree of substitution, and nearly neutral negative surface charge. No cytotoxicity of mannan nanogel is detected up to about 0.4 mg/mL in mouse embryo fibroblast cell line ...

  20. Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip.

    Science.gov (United States)

    Chen, Sheng-Chiech; Santra, Tuhin Subhra; Chang, Chia-Jung; Chen, Tsung-Ju; Wang, Pen-Cheng; Tseng, Fan-Gang

    2012-10-01

    Single cell electroporation is one of the nonviral method which successfully allows transfection of exogenous macromolecules into individual living cell. We present localized cell membrane electroporation at single-cell level by using indium tin oxide (ITO) based transparent micro-electrodes chip with inverted microscope. A focused ion beam (FIB) technique has been successfully deployed to fabricate transparent ITO micro-electrodes with submicron gaps, which can generate more intense electric field to produce very localized cell membrane electroporation. In our approach, we have successfully achieved 0.93 μm or smaller electroporation region on the cell surface to inject PI (Propidium Iodide) dye into the cell with 60 % cell viability. This experiments successfully demonstrate the cell self-recover process from the injected PI dye intensity variation. Our localized cell membrane electroporation technique (LSCMEP) not only generates reversible electroporation process but also it provides a clear optical path for potentially monitoring/tracking of drugs to deliver in single cell level.

  1. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  2. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  3. Protein subcellular localization in human and hamster cell lines: employing local ternary patterns of fluorescence microscopy images.

    Science.gov (United States)

    Tahir, Muhammad; Khan, Asifullah; Kaya, Hüseyin

    2014-01-01

    Discriminative feature extraction technique is always required for the development of accurate and efficient prediction systems for protein subcellular localization so that effective drugs can be developed. In this work, we showed that Local Ternary Patterns (LTPs) effectively exploit small variations in pixel intensities; present in fluorescence microscopy based protein images of human and hamster cell lines. Further, Synthetic Minority Oversampling Technique is applied to balance the feature space for the classification stage. We observed that LTPs coupled with data balancing technique could enable a classifier, in this case support vector machine, to yield good performance. The proposed ensemble based prediction system, using 10-fold cross-validation, has yielded better performance compared to existing techniques in predicting various subcellular compartments for both 2D HeLa and CHO datasets. The proposed predictor is available online at: http://111.68.99.218/Protein_SubLoc/, which is freely accessible to the public. PMID:23988793

  4. Judging diatoms by their cover: variability in local elasticity of Lithodesmium undulatum undergoing cell division.

    Directory of Open Access Journals (Sweden)

    Lee Karp-Boss

    Full Text Available Unique features of diatoms are their intricate cell covers (frustules made out of hydrated, amorphous silica. The frustule defines and maintains cell shape and protects cells against grazers and pathogens, yet it must allow for cell expansion during growth and division. Other siliceous structures have also evolved in some chain-forming species as means for holding neighboring cells together. Characterization and quantification of mechanical properties of these structures are crucial for the understanding of the relationship between form and function in diatoms, but thus far only a handful of studies have addressed this issue. We conducted micro-indentation experiments, using atomic force microscopy (AFM, to examine local variations in elastic (Young's moduli of cells and linking structures in the marine, chain-forming diatom Lithodesmium undulatum. Using a fluorescent tracer that is incorporated into new cell wall components we tested the hypothesis that new siliceous structures differ in elastic modulus from their older counterparts. Results show that the local elastic modulus is a highly dynamic property. Elastic modulus of stained regions was significantly lower than that of unstained regions, suggesting that newly formed cell wall components are generally softer than the ones inherited from the parent cells. This study provides the first evidence of differentiation in local elastic properties in the course of the cell cycle. Hardening of newly formed regions may involve incorporation of additional, possibly organic, material but further studies are needed to elucidate the processes that regulate mechanical properties of the frustule during the cell cycle.

  5. Regulation of CD8+ T cell responses to retinal antigen by local FoxP3+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Scott W McPherson

    2012-06-01

    Full Text Available While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal on a retina-specific promoter (arrβgal mice were backcrossed to mice expressing green fluorescent protein and diphtheria toxin receptor under control of the Foxp3 promoter (Foxp3-DTR/GFP mice, and to T cell receptor transgenic mice that produce βgal specific CD8 T cells (BG1 mice. These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 x Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP x arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of diphtheria toxin to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3+ regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immunoregulation to be responsive to local conditions.

  6. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    Science.gov (United States)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance

  7. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival

    OpenAIRE

    Mathiesen, Randi R.; Borgen, Elin; Renolen, Anne; Løkkevik, Erik; Nesland, Jahn M; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Kvalheim, Gunnar; Lønning, Per E.; Naume, Bjørn

    2012-01-01

    Introduction Presence of disseminated tumor cells (DTCs) in bone marrow (BM) and circulating tumor cells (CTC) in peripheral blood (PB) predicts reduced survival in early breast cancer. The aim of this study was to determine the presence of and alterations in DTC- and CTC-status in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NACT) and to evaluate their prognostic impact. Methods ...

  8. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C;

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...

  9. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  10. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  11. Localization of Cell Division Protein FtsQ by Immunofluorescence Microscopy in Dividing and Nondividing Cells of Escherichia coli

    Science.gov (United States)

    Buddelmeijer, Nienke; Aarsman, Mirjam E. G.; Kolk, Arend H. J.; Vicente, Miguel; Nanninga, Nanne

    1998-01-01

    The localization of cell division protein FtsQ in Escherichia coli wild-type cells was studied by immunofluorescence microscopy with specific monoclonal antibodies. FtsQ could be localized to the division site in constricting cells. FtsQ could also localize to the division site in ftsQ1(Ts) cells grown at the permissive temperature. A hybrid protein in which the cytoplasmic domain and the transmembrane domain were derived from the γ form of penicillin-binding protein 1B and the periplasmic domain was derived from FtsQ was also able to localize to the division site. This result indicates that the periplasmic domain of FtsQ determines the localization of FtsQ, as has also been concluded by others for the periplasmic domain of FtsN. Noncentral FtsQ foci were found in the area of the cell where the nucleoid resides and were therefore assumed to represent sites where the FtsQ protein is synthesized and simultaneously inserted into the cytoplasmic membrane. PMID:9829918

  12. Establishing and maintaining cell polarity with mRNA localization in Drosophila.

    Science.gov (United States)

    Barr, Justinn; Yakovlev, Konstantin V; Shidlovskii, Yulii; Schedl, Paul

    2016-03-01

    How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.

  13. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    Science.gov (United States)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  14. Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells.

    Science.gov (United States)

    Moore, P J; Darvill, A G; Albersheim, P; Staehelin, L A

    1986-11-01

    PLANT CELL WALLS SERVE SEVERAL FUNCTIONS: they impart rigidity to the plant, provide a physical and chemical barrier between the cell and its environment, and regulate the size and shape of each cell. Chemical studies have provided information on the biochemical composition of the plant cell walls as well as detailed knowledge of individual cell wall molecules. In contrast, very little is known about the distribution of specific cell wall components around individual cells and throughout tissues. To address this problem, we have produced polyclonal antibodies against two cell wall matrix components; rhamnogalacturonan I (RG-I), a pectic polysaccharide, and xyloglucan (XG), a hemicellulose. By using the antibiodies as specific markers we have been able to localize these polymers on thin sections of suspension-cultured sycamore cells (Acer pseudoplatanus). Our results reveal that each molecule has a unique distribution. XG is localized throughout the entire wall and middle lamella. RG-I is restricted to the middle lamella and is especially evident in the junctions between cells. These observations indicate that plant cell walls may have more distinct chemical (and functional?) domains than previously envisaged.

  15. A Putative NES Mediates Cytoplasmic Localization of Apoptin in Normal Cells

    Institute of Scientific and Technical Information of China (English)

    Qing-Ming WANG; Guo-Cai FAN; Ji-Zhong CHEN; Hui-Peng CHEN; Fu-Chu HE

    2004-01-01

    Apoptin, a protein expressed by chicken anemia virus, is found predominantly in the cytoplasm in normal cells, whereas it localizes in the nucleus in transformed and malignant cells. However, the mechanisms that regulate the different subcellular localization of Apoptin in normal and tumor cells have not been fully clarified. In this work, a putative nuclear export signal (NES) in Apoptin was predicted. It was testified that the putative NES (pNES) of Apoptin was not a functional NES, but actually acted as a cytoplasmic retention signal. Deletion of the pNES led to the nuclear accumulation of Apoptin in normal cells. In addition,when a strong nuclear localization signal was introduced into Apoptin, it exclusively translocated to the nucleus in normal cells. These observations indicated that the cytoplasmic localization of Apoptin in normal cells results from the balance between cytoplasmic retention and nuclear import. On the other hand, the pNES was also proved to be necessary for Apoptin multimerization. Mutants lacking the pNES did not form obviously visible globular aggregates in normal or tumor cells.

  16. Local modulation of chemoattractant concentrations by single cells: dissection using a bulk-surface computational model

    Science.gov (United States)

    Nolan, M.

    2016-01-01

    Chemoattractant gradients are usually considered in terms of sources and sinks that are independent of the chemotactic cell. However, recent interest has focused on ‘self-generated’ gradients, in which cell populations create their own local gradients as they move. Here, we consider the interplay between chemoattractants and single cells. To achieve this, we extend a recently developed computational model to incorporate breakdown of extracellular attractants by membrane-bound enzymes. Model equations are parametrized, using the published estimates from Dictyostelium cells chemotaxing towards cyclic AMP. We find that individual cells can substantially modulate their local attractant field under physiologically appropriate conditions of attractant and enzymes. This means the attractant concentration perceived by receptors can be a small fraction of the ambient concentration. This allows efficient chemotaxis in chemoattractant concentrations that would be saturating without local breakdown. Similar interactions in which cells locally mould a stimulus could function in many types of directed cell motility, including haptotaxis, durotaxis and even electrotaxis. PMID:27708760

  17. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, P.D.

    1988-01-01

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with (/sup 3/H) penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that is required for cell division is identified. PBP 1B competes for ..beta..-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl-/sup 3/H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography.

  18. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs−/−) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  19. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  20. Preliminary Study of Local Immunotherapy with Autologous Cytokine-Induced Killer Cells for Glioma Patients

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Yonggao Mu; Zhongping Chen

    2008-01-01

    OBJECTIVE Cytokine-induced killer (CIK) cells are T-cells that display effective anti-tumor activity. In this study, we investigated the anti-tumor activity of CIK cells in vitro, and conducted a preliminary investigation using autologous CIK cells to treat glioma patients through local administration.METHODS The CIK cells were derived from peripheral blood monocytes (PBMCs) of the glioma patients. The anti-tumor activity of the CIK cells against human T98-G glioma cell was tested In vitro. In addition, the autologous CIK cells were locally administrated into the tumor cavity in the malignant glioma patients through an Ommaya reservoir which was pre-inserted during tumor resection. The 4×108 CIK cells in a 5 ml suspension were injected once a week 2 times per cycle. Five hundreds KU of IL-2 was injected every other day.RESULTS (I) With incubation, the CIK cells showed dual staining of CD3+CD56+ with a positive rate of 3.45% on day 10 and 55.2% on day 30. In vitro anti-tumor activity (againstT98-G cells) of the CIK cells reached the highest level after 18 days of incubation with different effector/target (E:T) ratios. (ii)Six patients received autologous CIK cell treatment (10 cycles).Two patients showed no recurrence and are still alive (24 and 10 months), while 4 cases had a recurrence 3 of which have died. The mean survival time from the first CIK cell treatment to the end of follow-up was 12.5 months. The main side-effects of the local CIK cell treatment was brain edema, which was controlled by mannitol in most of the cases. However for one patient injection of CIK cells and IL-2 had to be discontinued.CONCLUSION In vitro CIK cells are effective anti-glioma T-cells. Local therapy with CIK cells has potential anti-glioma efficacy and tolerable side-effects.

  1. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    Science.gov (United States)

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells. PMID:27515077

  2. Local 3D matrix confinement determines division axis through cell shape.

    Science.gov (United States)

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  3. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  4. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.;

    2008-01-01

    YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy....... YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial...... origin may be related to cell motility and cell-cell adhesion, features associated with invasion and migration potential of tumor cells Udgivelsesdato: 2008...

  5. TREATMENT OF RAT HEPATOMA BY LOCALLY INJECTION OF MURINE IL-12 RETROVIRUS PACKAGING CELL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the therapeutic effects of the murine IL-12 (mIL-12) retrovirus packaging cell line on hepatoma injected locally. Methods: The retrovirus vector encoding mIL-12 gene was constructed and transfected into packaging cell line PA317. The cells were then used to treat the rats with experimental orthotopic hepatoma at different time. The therapeutic effects, immune functions of the hosts, pathological and toxicological responses were documented. Results: the results showed that the mIL-12 retrovirus packaging cell line could significantly inhibit the growth of the hepatoma cells injected locally to the hepatoma. The early treatment made the rats survive long, while the medium or late stage treatment could prolong the life time of the rats compared with the bland control group or bland vector control group, though the rats did not survive. The number of NK cells and T cells increased significantly in the treatment group. The effects of the early treatment were superior to those of the medium and late stage treatment. Moreover, the transfection of IL-12 gene locally in the hepatoma tissue could make the hepatoma disappear from other liver lobe. This phenomenon demonstrated that IL-12 could activate the immune cells of the host to kill the untransfected tumor cells. This is very important for IL-12 to be used in gene therapy clinically. Meanwhile, the hepatoma would not recur in the rats that had survived more than 2 months from the early treatment after being re-challenged with tumor cells. Conclusion: the results showed that IL-12 gene injected locally in the hepatoma tissue could enhance the anti-tumor immunity of the host.

  6. Challenges in optimizing chemoradiation in locally advanced non small-cell lung cancers in India

    OpenAIRE

    Sushma Agrawal

    2013-01-01

    Data supporting use of concurrent chemoradiation in locally advanced lung cancers comes from clinical trials from developed countries. Applicability and outcomes of such schedules in developing countries is not widely reported. There are various challenges in delivering chemoradiation in locally advanced non small cell lung cancer in developing countries which is highlighted by an audit of patients treated with chemoradiation in our center. This article deals with the challenges in the contex...

  7. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Tavassoli, Arash; Lim, Chan; Kolodziej, Joanna; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-08-01

    Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed.

  8. Suppression of local immune response by GrB expression in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    周业江; 熊玉霞; 李昌平; 时德

    2004-01-01

    Little information is available so far on local anti-tumour immune response in gastric cancer (GC). Moreover, studies in malignant lymphomas demonstrated that neoplastic cells expressed cytotoxic proteins GrB.1,2 Studies here were designed to detect by immunohistochemistry the density of dendritic cells labelled by S-100 protein (S-100+DCs) and activated cytotoxic T lymphocyte and nature killer cells labelled by GrB (GrB+CTL, NK) and observe whether benign/malignant gastric epithelium cells also express GrB.

  9. Planar Cell Polarity Protein Localization in the Secretory Ameloblasts of Rat Incisors

    OpenAIRE

    Nishikawa, Sumio; Kawamoto, Tadafumi

    2012-01-01

    The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes’ processes of inner enamel–secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel– and outer enamel–secretory ameloblasts, where N-cadherin and β-...

  10. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  11. [The Langerhans cell histiocytosis with thymic localization as initial and exclusive place].

    Science.gov (United States)

    Hernández Pérez, J M; Franquet Casas, T; Rodríguez, S; Giménez, A

    2007-10-01

    The Langerhans' cell histiocytosis (LCH), also known as Histiocitosis X it is an illness not very frequent granulomatosus etiology not clarified yet, that it can have different manifestations and localizations, however the thymic localization as initial and exclusive place gives presentation HCL it is quite unusual. The present case is presented a patient that debuted with a clinical unspecific, where the tests give image they put she gives apparent a mass in previous mediastinum and that after the pathologic and immunohistochemical analysis they evidenced a proliferation Langerhans s cells and eosinophils it being positive for CD1a and S-100 confirming the diagnosis of the LCH.

  12. Subcellular localization of regulator of G protein signaling RGS7 complex in neurons and transfected cells.

    Science.gov (United States)

    Liapis, Evangelos; Sandiford, Simone; Wang, Qiang; Gaidosh, Gabriel; Motti, Dario; Levay, Konstantin; Slepak, Vladlen Z

    2012-08-01

    The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.

  13. DISTINCTIVE LOCALIZATION OF GROUP 3 LATE EMBRYOGENESIS ABUNDANT SYNTHESIZING CELLS DURING BRINE SHRIMP DEVELOPMENT.

    Science.gov (United States)

    Kim, Bo Yong; Song, Hwa Young; Kim, Mi Young; Lee, Bong Hee; Kim, Kyung Joo; Jo, Kyung Jin; Kim, Suhng Wook; Lee, Seung Gwan; Lee, Boo Hyung

    2015-07-01

    Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp. PMID:25781424

  14. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    DEFF Research Database (Denmark)

    Tormin, Ariane; Li, Ou; Brune, Jan Claas;

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype...... phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located...... in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34⁺ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non...

  15. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    Science.gov (United States)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  16. Interspecific variation of intracellular localization and postirradiation movement of Ku70-protein in fibroblastic cells

    International Nuclear Information System (INIS)

    Ku (Ku70 and Ku80) Proteins are known as components of DNA-dependent protein kinase (DNA-PK) and play an important role for DNA repair. We previously reported that more than 70% of Ku proteins were located in cytoplasm of rat cells, the Ku proteins moved into nuclei of normal rat cells after X-irradiation, Ku proteins also moved into nuclei after X-irradiation but were not retained in nucleus of radiosensitive LEC rat cells. While reports have been shown about mechanisms on nuclear localization of Ku proteins, how Ku proteins export from nucleus is poorly understood. Here we show that C-terminal region of Ku70 protein is important for its cytoplasmic localization. When transfected into LEC rat cells, exogenous intact Ku70 (1-609) tagged with enhanced green fluorescent protein (EGFP-Ku70) localized mainly in the cytoplasm, whereas C-terminal-deletion mutant of Ku70 (1-593) tagged with EGFP (EGFP-Ku70D) was mainly localized in the nucleus. After X-irradiation, the endogenous intact EGFP-Ku70 once moved into nucleus, but returned into the cytoplasm. On the other hand, EGFP-Ku70D was retained in nucleus for two hours after X-irradiation. These results suggest that C-terminal region of Ku70 is included in the postirradiation nuclear export. Next, we investigated the intracellular localization of Ku70 proteins and the movement after X-irradiation of fibroblastic cells prepared from some mammalian species. Ku70 proteins were localized in nucleus and the postirradiation-extranuclear transport was not observed in human and African green monkey cells. On the other hand, Ku70 proteins were mainly localized in cytoplasm and moved into nucleus in mouse, Chinese hamster, Golden hamster, cotton rat, squirrel, cat and dog cells. These results may show that alternatively Ku70 protein is localized in the cytoplasm or nucleus depends on species and translocation of cytoplasmic Ku70 into nucleus is a response against low dose irradiation in fibroblasts of rodents, cats and dogs

  17. Epidermal Th22 and Tc17 Cells Form a Localized Disease Memory in Clinically Healed Psoriasis

    OpenAIRE

    Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona; Eidsmo, Liv

    2014-01-01

    Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartmen...

  18. Mechanical coupling of smooth muscle cells using local and global stimulations

    Science.gov (United States)

    Copeland, Craig; Chen, Christopher; Reich, Daniel

    2012-02-01

    Mechanical stresses can directly alter many cellular processes, including signal transduction, growth, differentiation, and survival. These stresses, generated primarily by myosin activity within the cytoskeleton, regulate both cell-substrate and cell-cell interactions. We report studies of mechanical cell-cell and cell-substrate interactions using patterned arrays of flexible poly(dimethylsiloxane) (PDMS) microposts combined with application of global stretch or local chemical stimulation. Bovine pulmonary artery smooth muscle cells are patterned onto micropost arrays to create multicellular structures to probe intercellular coupling. Global stimulation is applied by building the micropost arrays on a flexible membrane that can be stretched while allowing simultaneous observation of cell traction forces. Results for triangle wave stretches of single cells show increasing traction forces with increasing strain, and immediate weakening of traction forces as strain is decreased. ``Spritzing,'' a laminar flow technique, is used to expose a single cell within a construct to a drug treatment while cell traction forces are recorded via the microposts. Results will be described showing the response of cells to external stimulation both directly and through intercellular coupling.

  19. Immunofluorescence on avian sarcoma virus-transformed cells: localization of the src gene product.

    Science.gov (United States)

    Rohrschneider, L R

    1979-01-01

    The localization of the avian sarcoma virus src gene product (termed p60src) was examined by indirect immunofluorescence in cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup D (SR-RSV-D). Antiserum to p60src was obtained from rabbits bearing SR-RSV-D-induced tumors, and immunofluorescence was performed on chicken embryo fibroblasts (CEF) transformed with SR-RSV-D, as well as normal rat kidney (NRK) cells transformed by the same virus (termed SR-RK cells). Both acetone and formaldehyde fixation were used for the immunofluorescence tests. The specificity of the anti-tumor serum was first demonstrated in both cell systems by gel electrophoresis of immunoprecipitates prepared from 35S--methionine-labeled cells. Anti-tumor serum precipitated p60src from SR-RSV-D-transformed CEF but not from CEF infected with a transformation-defective mutant of SR-RSV-D. All viral structural proteins and precursors contained in these immunoprecipitates could be eliminated by competition with unlabeled virus. Similar experiments on SR-RK cells indicated that no viral proteins other than p60src were expressed in these cells, and this observation was supported by immunofluorescence tests using antiserum to whole virus. For immunofluorescence localization of p60src, reactions with viral structural proteins were blocked with unlabeled virus. This presaturation step, obligatory for p60src detection in the SR-RSV-D-transformed CEF, was unnecessary when antitumor serum was tested on SR-RK cells, since p60src was the only viral protein detectable in these cells. With acetone-fixed cells, p60src-specific immunofluorescence revealed a characteristic fluorescence pattern which was similar in both cell systems. The principal pattern was diffuse and situated in the cytoplasm. A clear nuclear fluorescence was never observed. Immunofluorescence on formaldehyde-fixed cells also indicated the cytoplasmic location of p60src and revealed a specific subcytoplasmic concentration

  20. Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K.; Okullo, W.; van Dyk, E.E.; Vorster, F.J. [Physics Department, Nelson Mandela Metropolitan University, P O Box 77000, Port Elizabeth 6031 (South Africa)

    2010-12-15

    Focused sunlight can act as a localized source of excess minority carriers in a solar cell. Current signal generated by these carriers gives considerable information about the electrical properties of the cell's material. Point by point current-voltage data were measured for a back point-contact concentrator photovoltaic cell when illuminated by focused sunlight. Two numerical curve fitting procedures: a non-linear two-point interval division and particle swarm optimization algorithm were then applied to extract local parameters (i.e. as function of position) from the current-voltage data at each measurement point. Extracted parameters plotted yields relative spatial information about the electrical properties of a solar cell in a two or three dimensional mapping. The curve fitting routines applied to current-voltage data reveal that performance parameters: short circuit current, open circuit voltage, maximum power and fill factor show distinct variations in the vicinity of the observed current reducing feature. The relative values of the diode ideality factors, series resistance, shunt resistance and reverse saturation currents from both methods showed no significant measurable features that could be distinguished. This shows that the observed reduction in photo-induced current was due to severe recombination in the bulk or around the highly diffused point contacts and not the quality of the multiple p-n junctions of the cell. These approaches allow one to obtain a set of parameters at each local point on the cell which are reasonable and representative of the physical system. (author)

  1. In situ localization of epidermal stem cells using a novel multi epitope ligand cartography approach.

    Science.gov (United States)

    Ruetze, Martin; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Knott, Anja

    2010-06-01

    Precise knowledge of the frequency and localization of epidermal stem cells within skin tissue would further our understanding of their role in maintaining skin homeostasis. As a novel approach we used the recently developed method of multi epitope ligand cartography, applying a set of described putative epidermal stem cell markers. Bioinformatic evaluation of the data led to the identification of several discrete basal keratinocyte populations, but none of them displayed the complete stem cell marker set. The distribution of the keratinocyte populations within the tissue was remarkably heterogeneous, but determination of distance relationships revealed a population of quiescent cells highly expressing p63 and the integrins alpha(6)/beta(1) that represent origins of a gradual differentiation lineage. This population comprises about 6% of all basal cells, shows a scattered distribution pattern and could also be found in keratinocyte holoclone colonies. The data suggest that this population identifies interfollicular epidermal stem cells.

  2. Glyoxylate Reductase Isoform 1 is Localized in the Cytosol and Not Peroxisomes in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Steven L. K. Ching; Satinder K. Gidda; Amanda Rochon; Owen R. van Cauwenberghe; Barry J. Shelp; Robert T. Mullen

    2012-01-01

    Glyoxylate reductase (GLYR) is a key enzyme in plant metabolism which catalyzes the detoxification of both photorespiratory glyoxylate and succinic semialdehdye,an intermediate of the γ-aminobutyrate (GABA) pathway.Two isoforms of GLYR exist in plants,GLYR1 and GLYR2,and while GLYR2 is known to be localized in plastids,GLYR1 has been reported to be localized in either peroxisomes or the cytosol.Here,we reappraised the intracellular localization of GLYR1 in Arabidopsis thaliana L.Heynh (ecotype Lansberg erecta) using both transiently-transformed suspension cells and stably-transformed plants,in combination with fluorescence microscopy.The results indicate that GLYR1 is localized exclusively to the cytosol regardless of the species,tissue and/or cell type,or exposure of plants to environmental stresses that would increase flux through the GABA pathway.Moreover,the C-terminal tripeptide sequence of GLYR1,-SRE,despite its resemblance to a type 1 peroxisomal targeting signal,is not sufficient for targeting to peroxisomes.Collectively,these results define the cytosol as the intracellular location of GLYR1 and provide not only important insight to the metabolic roles of GLYR1 and the compartmentation of the GABA and photorespiratory pathways in plant cells,but also serve as a useful reference for future studies of proteins proposed to be localized to peroxisomes and/or the cytosol.

  3. NKT cell activation by local α-galactosylceramide administration decreases susceptibility to HSV-2 infection

    DEFF Research Database (Denmark)

    Iversen, Marie Beck; Jensen, Simon Kok; Hansen, Anne Louise;

    2015-01-01

    that received local pre-treatment with αGalCer prior to intra-vaginal HSV-2 infection had a lower mean disease score, mortality and viral load in the vagina following infection, compared to mice that did not receive αGalCer pre-treatment. Further, we found increased numbers of CD45 and NK1.1 positive cells...

  4. Localization study of co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S.Y.; Chikishev, A.Y.; Koroteev, N.I.; Greve, J.; Otto, C.; Sijtsema, N.M.

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  5. Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S Y; Chikishev, A Y; Koroteev, N I; Greve, J; Otto, C; Sijtsema, N M

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  6. Immunocytochemical localization of the elongation factor Tu in E. coli cells

    NARCIS (Netherlands)

    Slot, J.W.; Schilstra, M.J.; Meide, P.H. van der; Posthuma, G.; Cremers, A.F.M.; Bosch, L.

    1984-01-01

    The localization of the elongation factor Tu (EF-Tu) in ultrathin cryosections of E. coli cells was determined with the electron microscope using a highly specific immunological labellin technique. EF-Tu is distributed almost homogeneously throughout the cytoplasm. Although it has often been suggest

  7. Progression of Intravesical Condyloma Acuminata to Locally Advanced Poorly Differentiated Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Khambati

    2016-07-01

    Full Text Available Condyloma acuminata (CA is a common sexually transmitted disease caused by Human Papilloma Virus (HPV infection. CA of the bladder, however, is an exceedingly rare lesion. We present a rare case of poorly differentiated locally invasive squamous cell carcinoma (SCC arising from recurrent CA of the bladder in an immunocompetent patient and discuss pathophysiology and management of this unusual condition.

  8. LOCALIZATION OF BRANCHING ENZYME IN POTATO-TUBER CELLS WITH THE USE OF IMMUNOELECTRON MICROSCOPY

    NARCIS (Netherlands)

    KRAM, AM; OOSTERGETEL, GT; VANBRUGGEN, EFJ

    1993-01-01

    Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma a

  9. Experimental and numerical studies of local current mapping on a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hwnag, J.J. [Department of Environment and Energy, National University of Tainan, Tainan 700 (China); Chang, W.R. [Department of Landscape Architecture, Chung-Hua University, Hsinchu 300 (China); Peng, R.G. [Department of Mechanical Engineering, National Chiao Tong University, Hsinchu 300 (China); Chen, P.Y. [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300 (China); Su, A. [Department of Mechanical Engineering and Fuel Cell Center, Yuan Ze University, Taoyuan (China)

    2008-10-15

    Local current distribution on a PEM fuel cell has been mapped experimentally by using a special-designed single cell fixture. It is composed of a composite cathodic flow-field plate, a membrane electrode assembly (MEA) and a stainless-steel anodic flow-field plate. An array of 16 individual conductive segments was distributed on the composite plate. A self-made MEA is in direct contact with the segmented current collectors. Regional-averaged current through each segment is determined by using the Hall-effect sensor. To ensure the data reliability, a comparison of polarization curves was made between the composite flow-field plate and the conventional flow-field plate. Then, the effects of flow-field patterns, dew points of the cathodic feedings and cathodic stoichiometrics on the local current distribution were examined. The transient variation of the local current distribution on the cathode under supersaturated conditions was further visualized to illustrate the flooding phenomena in different flow patterns. This technique developed by the present work has contributed to knowledge and understanding the local current distributions in a PEM fuel cell that is helpful in designing the fuel-cell components. (author)

  10. Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes

    NARCIS (Netherlands)

    deVries, H; deJonge, JC; Schrage, C; vanderHaar, ME; Hoekstra, D

    1997-01-01

    In oligodendrocytes (OLG), the mRNAs for the various myelin proteins localize to different intracellular sites, Whereas the confinement of myelin basic protein (MBP) mRNA to the processes of the cell has been well established, we demonstrate that most other myelin mRNA species are mainly present in

  11. Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells

    Science.gov (United States)

    This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

  12. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    Science.gov (United States)

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.

  13. Digital Holographic Tomography and Fluorescence Used to Localize sGC in HEK293 Cells

    Science.gov (United States)

    Sheldrake, Eric; Mann, Christopher; Gage, Matthew

    2014-03-01

    Digital Holographic Tomography (DHT) is used to analyze and localize the intracellular protein soluble guanylate cyclase (sGC) in human embryonic kidney 293 (HEK293) cells. DHT is a non-invasive phase microscopy technique that provides three dimensional quantitative information of HEK293 cells including variance of index of refraction or physical thickness. A fluorescence component will be added to the microscope to further studies of sGC localization. The signaling pathway including nitric oxide (NO) and sGC is studied and has been linked to various cardiovascular diseases, platelet aggregation, and variations in blood pressure via vasodilation. sGC will be labeled using a fluorescent antibody and analyzed using the DHT microscope. DHT will be used to analyze changes in sGC localization in its natural environment and when stimulated by NO. An understanding of how sGC interacts with its surroundings is vital to further research in cardiovascular disease.

  14. Challenges in optimizing chemoradiation in locally advanced non small-cell lung cancers in India

    Directory of Open Access Journals (Sweden)

    Sushma Agrawal

    2013-01-01

    Full Text Available Data supporting use of concurrent chemoradiation in locally advanced lung cancers comes from clinical trials from developed countries. Applicability and outcomes of such schedules in developing countries is not widely reported. There are various challenges in delivering chemoradiation in locally advanced non small cell lung cancer in developing countries which is highlighted by an audit of patients treated with chemoradiation in our center. This article deals with the challenges in the context of a developing country. We conclude that sequential chemoradiotherapy is better tolerated than concurrent chemoradiation in Indian patients with locally advanced non-small cell lung cancers. Patients with stage IIIa, normal weight or overweight, and adequate baseline pulmonary function should be offered concurrent chemoradiation.

  15. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer

    Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.

  16. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  17. Application of Local Activity Theory of Cellular Neural Network with Two Ports to the Coupled Lorenz-Cell Model

    Institute of Scientific and Technical Information of China (English)

    MIN LeQuan; YU Na

    2002-01-01

    Some criteria for the local activity theory in two-port cellular neural network cells with three local state variables are applied to a coupled Lorenz-cell model. The numerical simulation exhibited that emergence may exist if the selected cell parameters are nearby or on the edge of chaos domain. The local activity theory has provided a new tool of studying the complexity of high dimensional coupled nonlinear physical systems.

  18. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    Science.gov (United States)

    Zhang, Yu; Mi, Lan; Xiong, Rongling; Wang, Pei-Nan; Chen, Ji-Yao; Yang, Wuli; Wang, Changchun; Peng, Qian

    2009-07-01

    Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  19. Button sequestrum in a case of localized Langerhans' cell histiocytosis of the ilium: case report

    International Nuclear Information System (INIS)

    Langerhans' cell histiocytosis (LCH) is characterized by a proliferation of cells exhibiting the same immunohistochemical and ultra-structural characteristics as Langerhans' cells of the epidermis. Eosinophilic granuloma, chronic polyostotic disease (Hand-Schuller-Christian disease) and multisystemic disease (Letterer-Siwe disease) all belong to the spectrum LCH. Osseous lesions are the most common findings. the radiological appearance of skeletal LCH depends on the site and on disease activity. Button sequestrum has been described as uncommon in LCH of the skull and exceedingly rare in LCH at other sites. We report a case of localized LCH of the ilium with a button sequestrum. (author)

  20. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    Directory of Open Access Journals (Sweden)

    Chen Ji-Yao

    2009-01-01

    Full Text Available Abstract Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  1. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

    Directory of Open Access Journals (Sweden)

    Kahlem Pascal

    2006-06-01

    Full Text Available Abstract Background Trisomy of human chromosome 21 (Chr21 results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb to MCM3AP (46.6 Mb, with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.

  2. Local Augmented Angiotensinogen Secreted from Apoptotic Vascular Endothelial Cells Is a Vital Mediator of Vascular Remodelling.

    Directory of Open Access Journals (Sweden)

    Shyh-Jong Wu

    Full Text Available Vascular remodelling is a critical vasculopathy found in atheromatous diseases and allograft failures. The local renin angiotensin system (RAS has been implicated in vascular remodelling. However, the mechanisms by which the augmented local RAS is associated with the initial event of endothelial cell apoptosis in injured vasculature remain undefined. We induced the apoptosis of human umbilical vein endothelial cells (HUVECs and vascular smooth muscle cells (VSMCs through serum starvation (SS. After the cells were subjected to SS, we found that the mRNA expression of angiotensinogen (AGT was increased by >3-fold in HUVECs and by approximately 2.5-fold in VSMCs. In addition, the expression of angiotensin-converting enzyme (ACE mRNA was increased in VSMCs but decreased to 50% in HUVECs during the same apoptotic process. Increases in the expression of AGT protein and angiotensin II (Ang II were found in a serum-free medium conditioned by HUVECs (SSC. The increased Ang II was suppressed using lisinopril (an ACE inhibitor treatment. Moreover, the activation of ERK1/2 induced by the SSC in VSMCs was also suppressed by losartan. In conclusion, we first demonstrated that the augmented AGT released from apoptotic endothelial cells acts as a vital progenitor of Ang II to accelerate vascular remodelling, and we suggest that blocking local augmented Ang II might be an effective strategy for restraining intimal hyperplasia.

  3. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis.

    Science.gov (United States)

    de Renty, Christelle; DePamphilis, Melvin L; Ullah, Zakir

    2014-01-01

    Proliferating trophoblast stem cells (TSCs) can differentiate into nonproliferating but viable trophoblast giant cells (TGCs) that are resistant to DNA damage induced apoptosis. Differentiation is associated with selective up-regulation of the Cip/Kip cyclin-dependent kinase inhibitors p57 and p21; expression of p27 remains constant. Previous studies showed that p57 localizes to the nucleus in TGCs where it is essential for endoreplication. Here we show that p27 also remains localized to the nucleus during TSC differentiation where it complements the role of p57. Unexpectedly, p21 localized to the cytoplasm where it was maintained throughout both the G- and S-phases of endocycles, and where it prevented DNA damage induced apoptosis. This unusual status for a Cip/Kip protein was dependent on site-specific phosphorylation of p21 by the Akt1 kinase that is also up-regulated in TGCs. Although cytoplasmic p21 is widespread among cancer cells, among normal cells it has been observed only in monocytes. The fact that it also occurs in TGCs reveals that p57 and p21 serve nonredundant functions, and suggests that the role of p21 in suppressing apoptosis is restricted to terminally differentiated cells.

  4. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Christelle de Renty

    Full Text Available Proliferating trophoblast stem cells (TSCs can differentiate into nonproliferating but viable trophoblast giant cells (TGCs that are resistant to DNA damage induced apoptosis. Differentiation is associated with selective up-regulation of the Cip/Kip cyclin-dependent kinase inhibitors p57 and p21; expression of p27 remains constant. Previous studies showed that p57 localizes to the nucleus in TGCs where it is essential for endoreplication. Here we show that p27 also remains localized to the nucleus during TSC differentiation where it complements the role of p57. Unexpectedly, p21 localized to the cytoplasm where it was maintained throughout both the G- and S-phases of endocycles, and where it prevented DNA damage induced apoptosis. This unusual status for a Cip/Kip protein was dependent on site-specific phosphorylation of p21 by the Akt1 kinase that is also up-regulated in TGCs. Although cytoplasmic p21 is widespread among cancer cells, among normal cells it has been observed only in monocytes. The fact that it also occurs in TGCs reveals that p57 and p21 serve nonredundant functions, and suggests that the role of p21 in suppressing apoptosis is restricted to terminally differentiated cells.

  5. Dickkopf-3, a tissue-derived modulator of local T cell responses

    Directory of Open Access Journals (Sweden)

    Michael eMeister

    2015-02-01

    Full Text Available The adaptive immune system protects organisms from harmful environmental insults. In parallel, regulatory mechanisms control immune responses in order to assure preservation of organ integrity. Yet, molecules involved in the control of T cell responses in peripheral tissues are poorly characterized. Here, we investigated the function of Dickkopf-3 in the modulation of local T cell reactivity. Dkk3 is a secreted, mainly tissue derived protein with highest expression in organs considered as immune privileged such as the eye, embryo, placenta and brain. While T cell development and activation status in naïve Dkk3 deficient mice was comparable to littermate controls, we found that Dkk3 contributes to the immunosuppressive microenvironment that protects transplanted, class-I mismatched embryoid bodies from T cell mediated rejection. Moreover, genetic deletion or antibody mediated neutralization of Dkk3 led to an exacerbated experimental autoimmune encephalomyelitis (EAE. This phenotype was accompanied by a change of T cell polarization displayed by an increase of IFNγ producing T cells within in the CNS. In the wild type situation, Dkk3 expression in the brain was up-regulated during the course of EAE in an IFNγ dependent manner. In turn, Dkk3 decreased IFNγ activity and served as part of a negative feedback mechanism. Thus, our findings suggest that Dkk3 functions as a tissue-derived modulator of local CD4+ and CD8+ T cell responses.

  6. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    Science.gov (United States)

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  7. CyDiv, a conserved and novel filamentous Cyanobacteria cell division protein involved in septum localization.

    Directory of Open Access Journals (Sweden)

    Dinka eMandakovic

    2016-02-01

    Full Text Available Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division, encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

  8. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  9. Localization of the Naturally Occurring Plasmid ColE1 at the Cell Pole▿

    OpenAIRE

    Yao, Shiyin; Helinski, Donald R.; Toukdarian, Aresa

    2006-01-01

    The naturally occurring plasmid ColE1 was found to localize as a cluster in one or both of the cell poles of Escherichia coli. In addition to the polar localization of ColE1 in most cells, movement of the plasmid to the midcell position was observed in time-lapse studies. ColE1 could be displaced from its polar location by the p15A replicon, pBAD33, but not by plasmid RK2. The displacement of ColE1 by pBAD33 resulted in an almost random positioning of ColE1 foci in the cell and also in a loss...

  10. Distinct effects of nuclear membrane localization on gene transcription silencing in Drosophila S2 cells and germ cells

    Institute of Scientific and Technical Information of China (English)

    Lu Sui; Yanhong Yang

    2011-01-01

    Nuclear envelope proteins have important roles in chromatin organization and signal-dependent transcriptional regulation. A previous study reported that the inner nuclear membrane protein, Otefin (Ote), was essential for germline stem cell (GSC) maintenance via interaction with Smad complex. The interaction of Otc with the Smad complex recruits the bam locus to the nuclear periphery and subsequently results in bam transcriptional silencing, revealing that nuclear peripheral localization is essential for bam gene regulation. However, it remains unknown whether the nuclear peripheral localization is sufficient for bam silencing. To address this issue, we have established a tethering system, in which the Gal4 DNA binding domain (DBD) of the Flag:Gal4 DBD:Ote △ LEM fusion protein physically interacts with the Gal4 binding sites upstream of bamP-gfp to artificially recruit the reporter gene gfp to the nuclear membrane. Our data demonstrated that the nuclear peripheral localization seemed to affect the expression of the target naked gene in S2 cells. By contrast, in Drosophila germ cells, the nuclear membrane localization was not sufficient for gene silencing.

  11. Physiological and pathological role of local and immigrating colonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Ferenc Sipos; Gábor Valcz; Béla Molnár

    2012-01-01

    The latest avenue of research is revealing the existence of and role for the colonic stem cells in the physiological renewal of the mucosa and in pathological circumstances where they have both positive and negative effects. In the case of human colon, different levels of stem cell compartments exist. First, the crypt epithelial stem cells, which have a role in the normal crypt epithelial cell dynamics and in colorectal carcinogenesis. Close to the crypts, the second layer of stem cells can be found; the local subepithelial stem cell niche, including the pericryptic subepithelial myofibroblasts that regulate the epithelial cell differentiation and have a crucial role in cancer progression and chronic inflammation-related fibrosis. The third level of stem cell compartment is the immigrating bone-marrow-derived stem cells, which have an important role in wound healing after severe mucosal inflammation, but are also involved in cancer invasion. This paper focuses on stem cell biology in the context of physiological and pathological processes in the human colon.

  12. Alterations in kainate receptor and TRPM1 localization in bipolar cells after retinal photoreceptor degeneration

    Directory of Open Access Journals (Sweden)

    Jacqueline eGayet-Primo

    2015-12-01

    Full Text Available Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that macaque and mouse Off bipolar cells receive glutamatergic input primarily through kainate-type glutamate receptors. Here, we studied the impact of photoreceptor degeneration on glutamate receptor associated proteins in Off and On bipolar cells. We show that the kainate receptor subunit, GluK1, persists in remodeled Off bipolar cell dendrites of the rd10 mouse retina. However, the pattern of expression is altered and the intensity of staining is reduced compared to wild-type retina. The kainate receptor auxiliary subunit, Neto1, also remains in Off bipolar cell dendrites after complete photoreceptor degeneration. Similar preservation of kainate receptor subunits was evident in human retina in which photoreceptors had degenerated due to serous retinal detachment. In contrast, photoreceptor degeneration leads to loss of synaptic expression of TRPM1 in mouse and human On bipolar cells, but strong somatic expression remains. These findings demonstrate that Off bipolar cells retain dendritic glutamate receptors during retinal degeneration and could thus serve as a conduit for signal transmission from transplanted or optogenetically-restored photoreceptors.

  13. In vivo distribution and tissue localization of highly purified rat lymphokine-activated killer (LAK) cells

    International Nuclear Information System (INIS)

    A highly purified population of effector lymphokine-activated killer (LAK) cells was generated by culturing nylon-wool column nonadherent rat splenocytes in the presence of interleukin 2 (IL-2), and the cells which became adherent to the plastic flasks were separated and maintained in culture for a total of 5 days. More than 95% of these cells had the morphology of large granular lymphocytes (LGL), expressed surface phenotypes characteristic of rat natural killer (NK) cells, and were able to kill NK-sensitive and NK-resistant tumor target cells. 51Cr-labeled purified A-LAK cells injected intravenously into syngeneic F344 rats localized primarily in the lungs 2 hr after injection but then redistributed to the liver and the spleen by 24 hr after injection. The effects of various immunological manipulations on the distribution pattern of the isolated LAK cells were evaluated. Treatment of the host with 500 rad total body X-irradiation 24 hr before cell injection resulted in an early uptake of LAK cells into the liver and the spleen, whereas treatment with cyclophosphamide 1 day before cell injection, resulted in an early uptake of LAK cells into the liver but not into the spleen. Treatment of the recipient rats with up to 120,000 units recombinant interleukin-2 intraperitoneally did not result in the accumulation of LAK cells at the site of IL-2 injection, nor did it result in a modulation of the overall distribution pattern or total recovery of radiolabeled LAK cells. Rather, the administration of IL-2 was necessary to maintain the cytotoxic activity of the injected LAK cells isolated from the liver and spleen

  14. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization.

    Science.gov (United States)

    Newick, Kheng; O'Brien, Shaun; Sun, Jing; Kapoor, Veena; Maceyko, Steven; Lo, Albert; Puré, Ellen; Moon, Edmund; Albelda, Steven M

    2016-06-01

    Antitumor treatments based on the infusion of T cells expressing chimeric antigen receptors (CAR T cells) are still relatively ineffective for solid tumors, due to the presence of immunosuppressive mediators [such as prostaglandin E2 (PGE2) and adenosine] and poor T-cell trafficking. PGE2 and adenosine activate protein kinase A (PKA), which then inhibits T-cell receptor (TCR) activation. This inhibition process requires PKA to localize to the immune synapse via binding to the membrane protein ezrin. We generated CAR T cells that expressed a small peptide called the "regulatory subunit I anchoring disruptor" (RIAD) that inhibits the association of PKA with ezrin, thus blunting the negative effects of PKA on TCR activation. After exposure to PGE2 or adenosine in vitro, CAR-RIAD T cells showed increased TCR signaling, released more cytokines, and showed enhanced killing of tumor cells compared with CAR T cells. When injected into tumor-bearing mice, the antitumor efficacy of murine and human CAR-RIAD T cells was enhanced compared with that of CAR T cells, due to resistance to tumor-induced hypofunction and increased T-cell infiltration of established tumors. Subsequent in vitro assays showed that both mouse and human CAR-RIAD cells migrated more efficiently than CAR cells did in response to the chemokine CXCL10 and also had better adhesion to various matrices. Thus, the intracellular addition of the RIAD peptide to adoptively transferred CAR T cells augments their efficacy by increasing their effector function and by improving trafficking into tumor sites. This treatment strategy, therefore, shows potential clinical application for treating solid tumors. Cancer Immunol Res; 4(6); 541-51. ©2016 AACR.

  15. FOXP3 subcellular localization predicts recurrence in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Donald T Weed

    Full Text Available Forkhead box protein P3 (FOXP3 expression in tumor infiltrating CD4(+T cells is generally associated with an intrinsic capacity to suppress tumor immunity. Based on this notion, different studies have evaluated the prognostic value of this maker in cancer but contradictory results have been found. Indeed, even within the same cancer population, the presence of CD4(+FOXP3(+T cells has been associated,with either a poor or a good prognosis, or no correlation has beenfound. Here, we demonstrate,in patients with oral squamous cell carcinoma (OSCC, that what really represents a prognostic parameter is not the overall expression of FOXP3 but its intracellular localization.While overallFOXP3 expression in tumor infiltrating CD4(+T cells does not correlate with tumor recurrence, its intracellular localization within the CD4 cells does: nuclear FOXP3 (nFOXP3 is associated with tumor recurrence within 3 years, while cytoplasmicFOXP3 (cFOXP3 is associated with a lower likelihood of recurrence. Thus, we propose elevated levels of the cFOXP3/nFOXP3 ratio within tumor infiltrating CD4(+ T cells as a predictor of OSCC recurrence.

  16. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Science.gov (United States)

    Trombetta, Mark; Packard, Matthew; Velosa, Claudia; Silverman, Jan; Werts, Day; Parda, David

    2011-03-30

    Merkel's cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  17. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Directory of Open Access Journals (Sweden)

    David Parda

    2011-03-01

    Full Text Available Merkel’s cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  18. Localization and relative quantification of carbon nanotubes in cells with multispectral imaging flow cytometry.

    Science.gov (United States)

    Marangon, Iris; Boggetto, Nicole; Ménard-Moyon, Cécilia; Luciani, Nathalie; Wilhelm, Claire; Bianco, Alberto; Gazeau, Florence

    2013-01-01

    Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light. PMID:24378540

  19. Multiphoton-generated localized electron plasma for membrane permeability modification in single cells

    Science.gov (United States)

    Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.

    2014-03-01

    Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.

  20. Reaction of cells to local, regional, and general low-intensive laser irradiation

    Science.gov (United States)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  1. Immunohistochemical localization of hepatopancreatic phospholipase in gastropods mollusc, Littorina littorea and Buccinum undatum digestive cells

    Directory of Open Access Journals (Sweden)

    Zarai Zied

    2011-11-01

    Full Text Available Abstract Background Among the digestive enzymes, phospholipase A2 (PLA2 hydrolyzes the essential dietary phospholipids in marine fish and shellfish. However, we know little about the organs that produce PLA2, and the ontogeny of the PLA2-cells. Accordingly, accurate localization of PLA2 in marine snails might afford a better understanding permitting the control of the quality and composition of diets and the mode of digestion of lipid food. Results We have previously producted an antiserum reacting specifically with mSDPLA2. It labeled zymogen granules of the hepatopancreatic acinar cells and the secretory materials of certain epithelial cells in the depths of epithelial crypts in the hepatopancreas of snail. To confirm this localization a laser capture microdissection was performed targeting stained cells of hepatopancreas tissue sections. A Western blot analysis revealed a strong signal at the expected size (30 kDa, probably corresponding to the PLA2. Conclusions The present results support the presence of two hepatopancreatic intracellular and extracellular PLA2 in the prosobranchs gastropods molluscs, Littorina littorea and Buccinum undatum and bring insights on their localizations.

  2. Co-localization of GSTP1 and JNK in transitional cell carcinoma of urinary bladder

    Directory of Open Access Journals (Sweden)

    Marija Pljesa-Ercegovac

    2010-01-01

    Full Text Available Transitional cell carcinoma (TCC of urinary bladder belongs to glutathione S-transferase P1 (GSTP1 overexpressing tumors. Upregulated GSTP1 in TCC is related to apoptosis inhibition. This antiapoptotic effects of GSTP1 might be mediated through protein:protein interaction with c-Jun NH2-terminal kinase (JNK. Herein, we analyzed whether a direct link between GSTP1 and JNK exists in TCC. The presence of GSTP1/JNK complexes was analyzed by immunoprecipitation and Western blotting in 20 TCC specimens, obtained after surgery. Co-localization of GSTP1 and JNK was also investigated in the 5637 TCC cell line by immunofluorescence confocal microscopy. By means of immunoprecipitation we show for the first time the presence of GSTP1/JNK complexes in all TCC samples studied. A co-localization of GSTP1 and JNK was also demonstrated in the 5637 TCC cell line by means of confocal microscopy. Protein-protein interactions, together with co-localization between GSTP1 and JNK provide evidence that GSTP1 most probably inhibits apoptosis in TCC cells by non-covalent binding to JNK.

  3. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions.

    Science.gov (United States)

    Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina

    2015-01-01

    There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate-radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932-2010, and cell characteristics in xylem and phloem increments formed in the years 2009-2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions. PMID:26442044

  4. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  5. AltMV TGB1 nucleolar localization requires homologous interaction and correlates with cell wall localization associated with cell-to-cell movement

    Science.gov (United States)

    The Potexvirus Alternanthera mosaic virus has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to for...

  6. Effect of resection on local failure in irradiated non-oat cell carcinoma of the lung

    International Nuclear Information System (INIS)

    From January 1969 through December 1979, 171 patients completed a course of high dose definitive radiotherapy alone for non-oat cell carcinoma of the lung. During the same period, 53 patients completed a course of definitive postoperative radiotherapy after undergoing resection of the primary tumor. The two groups were otherwise very similar with regard to patient related and tumor related variables. A detailed analysis of the incidence of clinically documented local (in-field) failure on the basis of clinical T and N stages was performed. A comparison of the incidence of local failure as the first site of failure for patients with T/sub 1-2/ tumors demonstrated a statistically significant decrease in local failure in patients whose primary tumors were resected. Histology (epidermoid vs. non-epidermoid) had no apparent effect on the frequency of local failure, either with or without resection. A review of past experience indicates that local failure is common after definitive irradiation alone, and is due to a low rate of sterilization of the primary tumor, even with tolerance doses of irradiation. Data are presented to support a reappraisal of the role of combined resection and irradiation in future clinical trials, to reduce the present unacceptably high rate of local failure in potentially curable patients treated by irradiation alone

  7. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Coulter JA

    2012-06-01

    Full Text Available Jonathan A Coulter,1 Suneil Jain,2 Karl T Butterworth,2 Laura Taggart,2 Glenn Dickson,2 Stephen J McMahon,3 Wendy Hyland,1 Mark F Muir,3 Coleman Trainor,2 Alan Hounsell,2,4 Joe M O'Sullivan,2,4 Giuseppe Schettino,2 Fred Currell,3 David G Hirst,1 Kevin M Prise21School of Pharmacy, McClay Research Centre, 2Centre for Cancer Research and Cell Biology, 3School of Mathematics and Physics, Queens University Belfast, 4Belfast Health and Social Care Trust, Belfast, IrelandBackground: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic

  8. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  9. Beta cell count instead of beta cell mass to assess and localize growth in beta cell population following pancreatic duct ligation in mice.

    Directory of Open Access Journals (Sweden)

    Marie Chintinne

    Full Text Available BACKGROUND: Pancreatic-tail duct ligation (PDL in adult rodents has been reported to induce beta cell generation and increase beta cell mass but increases in beta cell number have not been demonstrated. This study examines whether PDL increases beta cell number and whether this is caused by neogenesis of small clusters and/or their growth to larger aggregates. METHODOLOGY: Total beta cell number and its distribution over small (100 µm clusters was determined in pancreatic tails of 10-week-old mice, 2 weeks after PDL or sham. PRINCIPAL FINDINGS: PDL increased total beta cell mass but not total beta cell number. It induced neogenesis of small beta cell clusters (2.2-fold higher number which contained a higher percent proliferating beta cells (1.9% Ki67+cells than sham tails (<0.2%; their higher beta cell number represented <5% of total beta cell number and was associated with a similar increase in alpha cell number. It is unknown whether the regenerative process is causally related to the inflammatory infiltration in PDL-tails. Human pancreases with inflammatory infiltration also exhibited activation of proliferation in small beta cell clusters. CONCLUSIONS/SIGNIFICANCE: The PDL model illustrates the advantage of direct beta cell counts over beta cell mass measurements when assessing and localizing beta cell regeneration in the pancreas. It demonstrates the ability of the adult mouse pancreas for neogenesis of small beta cell clusters with activated beta cell proliferation. Further studies should investigate conditions under which neoformed small beta cell clusters grow to larger aggregates and hence to higher total beta cell numbers.

  10. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  11. Local positive feedback regulation determines cell shape in root hair cells.

    Science.gov (United States)

    Takeda, Seiji; Gapper, Catherine; Kaya, Hidetaka; Bell, Elizabeth; Kuchitsu, Kazuyuki; Dolan, Liam

    2008-02-29

    The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.

  12. Actin and Arp2/3 localize at the centrosome of interphase cells

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  13. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    Science.gov (United States)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  14. Protein-specific localization of a rhodamine-based calcium-sensor in living cells.

    Science.gov (United States)

    Best, Marcel; Porth, Isabel; Hauke, Sebastian; Braun, Felix; Herten, Dirk-Peter; Wombacher, Richard

    2016-06-28

    A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution. PMID:27072883

  15. Local electromechanical properties of different phenotype models of vascular smooth muscle cells using force microscopy

    Science.gov (United States)

    Thompson, Gary; Reukov, Vladimir; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey

    2010-03-01

    Vascular smooth muscle cells (VSMCs) exist as a spectrum of diverse phenotypes raning between contractile and synthetic, the latter being associated with disease states. Different VSMC phenotypes, modeled using serum-starvation, exhibit characteristic electromechanical responses that can be distinguished using band excitation piezoresponse force microscopy (BEPFM), which maps information at the same rate as the atomic force microscope (AFM) scan performed simultaneously. BEPFM image formation mechanism in the culture medium is determined using excitation steps from 1 mV to 100 V. High voltage improves contrast between cells and collagen-coated substrates. Viscoelasticity from AFM stress relaxation experiments and local elasticity from force maps correlate to BEPFM data providing a map of local mechanical properties on different VSMCs.

  16. Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale.

    Science.gov (United States)

    Szczurek, Aleksander; Xing, Jun; Birk, Udo J; Cremer, Christoph

    2016-01-01

    Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50-100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field. PMID:27446198

  17. Combined local current distribution measurements and high resolution neutron radiography of operating Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus; Mergel, Juergen; Lehnert, Werner; Stolten, Detlef [Institute of Energy Research, IEF-3: Fuel Cells, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Sanders, Tilman; Baumhoefer, Thorsten; Sauer, Dirk U. [Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstrasse 17-19, 52066 Aachen (Germany); Manke, Ingo; Banhart, John [Institute of Materials Science and Technology, Berlin Institute of Technology, Hardenbergstrasse 36, 10623 Berlin (Germany); Helmholtz Centre Berlin (Hahn-Meitner-Institute), SF3, Glienicker Strasse 100, 14109 Berlin (Germany); Kardjilov, Nikolay; Hilger, Andre; Schloesser, Jana [Helmholtz Centre Berlin (Hahn-Meitner-Institute), SF3, Glienicker Strasse 100, 14109 Berlin (Germany); Hartnig, Christoph [Centre for Solar Energy and Hydrogen Research (ZSW), Helmholtzstrasse 8, 89081 Ulm (Germany)

    2009-08-15

    The current and fluid distribution in Direct Methanol Fuel Cells (DMFCs) was investigated in situ by means of combined high resolution neutron radiography and locally resolved current distribution measurements. The used neutron radiography set-up allows high spatial resolutions down to 70 {mu}m at the full test cell area. A local formation of water droplets in the cathode flow field channels could be observed. Strongly inhomogeneous current distributions during cathodic flooding processes result in a performance loss of up to 30% of the initial value. Single CO{sub 2} bubbles can be observed at low current densities. The water and current distribution during bi-functional operation of a DMFC was measured for the first time. (author)

  18. Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale

    Science.gov (United States)

    Szczurek, Aleksander; Xing, Jun; Birk, Udo J.; Cremer, Christoph

    2016-01-01

    Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50–100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field. PMID:27446198

  19. Apical localization of PMCA2w/b is enhanced in terminally polarized MDCK cells

    OpenAIRE

    Antalffy, Géza; Caride, Ariel J.; Pászty, Katalin; Hegedus, Luca; Padanyi, Rita; STREHLER, EMANUEL E.; Enyedi, Ágnes

    2011-01-01

    The “w” splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amoun...

  20. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.

    Science.gov (United States)

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-11-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  1. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.

    Science.gov (United States)

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-11-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level.

  2. Localization and function of calmodulin in live-cells of Aspergillus nidulans.

    Science.gov (United States)

    Chen, Shaochun; Song, Yiju; Cao, Jinling; Wang, Gang; Wei, Hua; Xu, Xushi; Lu, Ling

    2010-03-01

    Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca(2+). Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP-CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP-CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP-CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.

  3. Immunoreactivity of glucose transporter 8 is localized in the epithelial cells of the choroid plexus and in ependymal cells.

    Science.gov (United States)

    Murakami, Ryuta; Chiba, Yoichi; Tsuboi, Kazuhito; Matsumoto, Koichi; Kawauchi, Machi; Fujihara, Ryuji; Mashima, Masato; Kanenishi, Kenji; Yamamoto, Tetsuji; Ueno, Masaki

    2016-08-01

    High fructose intake is known to be associated with increased plasma triglyceride concentration, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, excess fructose intake is also thought to be a risk factor for dementia. Previous immunohistochemical studies have shown the presence of glucose transporter 5 (GLUT5), a major transporter of fructose, in the epithelial cells of the choroid plexus and ependymal cells in the brains of humans, rats, and mice, while GLUT2, a minor transporter of fructose, was localized in the ependymal cells of rat brain. In this study, immunoreactivity for the fructose transporter GLUT8 was observed in the cytoplasm of the epithelial cells in the choroid plexus and in the ependymal cells of the brains of humans and mice. These structures were not immunoreactive for GLUT7, GLUT11, and GLUT12. Our findings support the hypothesis of the transport of intravascular fructose through the epithelial cells of the choroid plexus and the ependymal cells. PMID:27160096

  4. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells.

    Directory of Open Access Journals (Sweden)

    Miguel J Xavier

    Full Text Available BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.

  5. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes. PMID:27515076

  6. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    OpenAIRE

    Rebai Tarek; Bezzine Sofiane; Misery Laurent; Karray Aida; Boulais Nicholas; Zarai Zied; Gargouri Youssef; Mejdoub Hafedh

    2011-01-01

    Abstract Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used...

  7. Sumoylation regulates nuclear localization of lipin-1alpha in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Guang-Hui Liu

    Full Text Available Lipin-1 is a protein that has dual functions as a phosphatidic acid phosphohydrolase (PAP and a nuclear transcriptional coactivator. It remains unknown how the nuclear localization and coactivator functions of lipin-1 are regulated. Here, we show that lipin-1 (including both the alpha and beta isoforms is modified by sumoylation at two consensus sumoylation sites. We are unable to detect sumoylation of the related proteins lipin-2 and lipin-3. Lipin-1 is sumoylated at relatively high levels in brain, where lipin-1alpha is the predominant form. In cultured embryonic cortical neurons and SH-SY5Y neuronal cells, ectopically expressed lipin-1alpha is localized in both the nucleus and the cytoplasm, and the nuclear localization is abrogated by mutating the consensus sumyolation motifs. The sumoylation site mutant of lipin-1alpha loses the capacity to coactivate the transcriptional (co- activators PGC-1alpha and MEF2, consistent with its nuclear exclusion. Thus, these results show that sumoylation facilitates the nuclear localization and transcriptional coactivator behavior of lipin-1alpha that we observe in cultured neuronal cells, and suggest that lipin-1alpha may act as a sumoylation-regulated transcriptional coactivator in brain.

  8. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  9. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM. PMID:26683826

  10. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis.

    Science.gov (United States)

    Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona; Eidsmo, Liv

    2014-04-01

    Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartment of the skin, TRM may contribute to tissue pathology during psoriasis. In this study, we investigated whether resolved psoriasis lesions contain TRM cells with the ability to maintain and potentially drive recurrent disease. Three common and effective therapies, narrowband-UVB treatment and long-term biologic treatment systemically inhibiting TNF-α or IL-12/23 signaling were studied. Epidermal T cells were highly activated in psoriasis and a high proportion of CD8 T cells expressed TRM markers. In resolved psoriasis, a population of cutaneous lymphocyte-associated Ag, CCR6, CD103, and IL-23R expressing epidermal CD8 T cells was highly enriched. Epidermal CD8 T cells expressing the TRM marker CD103 responded to ex vivo stimulation with IL-17A production and epidermal CD4 T cells responded with IL-22 production after as long as 6 y of TNF-α inhibition. Our data suggest that epidermal TRM cells are retained in resolved psoriasis and that these cells are capable of producing cytokines with a critical role in psoriasis pathogenesis. We provide a potential mechanism for a site-specific T cell-driven disease memory in psoriasis. PMID:24610014

  11. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  12. Immunohistochemical localization of renin-containing cells in two elasmobranch species.

    Science.gov (United States)

    Lacy, E R; Reale, E; Luciano, L

    2016-06-01

    Renin immunoreactivity was localized at the light and electron microscopic level in two elasmobranch fish species, the Atlantic stingray, Dasyatis sabina, and river ray, Potamotrygon humerosa. At the light microscopic level, the peroxidase-anti-peroxidase method showed a positive immunoreactivity in modified smooth muscle cells in kidney afferent arterioles as well as in arterioles of several organs: rectal gland, inter-renal gland, conus arteriosus, and gill. Electron microscopic renin-positive immunogold localization was confined to the contents of membrane bound granules in the modified smooth muscle cells of these arterioles. The presence of renin-containing granules in the modified smooth muscle, "granular cells," of the renal glomerular afferent arteriole of these two stingray species adds support to earlier studies which showed the structural components of a complete juxtaglomerular apparatus and some of the biochemical and molecular components of a renin-angiotensin system (RAS) as found in teleost fish, reptiles, birds, and mammals. A notable result, however, was the renin-positive immunoreaction in the arteriolar wall of all other organs studied here. The presence of this "diffuse renin system" in the connective tissue of various organs suggests that in these two stingray species in addition to local organ-specific functions, the RAS may act as a systemic mechanism to regulate blood pressure and blood flow in the body. PMID:26746846

  13. SEU-hardened silicon bipolar and GaAs MESFET SRAM cells using local redundancy techniques

    International Nuclear Information System (INIS)

    Silicon bipolar and GaAs FET SRAM's have proven to be more difficult to harden with respect to single-event upset mechanisms than have silicon CMOS SRAM's. This is a fundamental property of bipolar and JFET or MESFET device technologies which do not have a high-impedance, nonactive isolation between the control electrode and the current or voltage being controlled. All SEU circuit level hardening techniques applied at the local level must use some type of information storage redundancy so that information loss on one node due to an SEU event can be recovered from information stored elsewhere in the cell. In CMOS technologies, this can be achieved by the use of simple cross-coupling resistors, whereas in bipolar and FET technologies, no such simple approach is possible. Several approaches to the use of local redundancy in bipolar and FET technologies are discussed in this paper. At the expense of increased cell complexity and increased power consumption and write time, several approaches are capable of providing complete SEU hardness at the local cell level

  14. Local failure in patients treated with radiotherapy and multidrug chemotherapy for small cell lung cancer

    International Nuclear Information System (INIS)

    Fifty-three patients with small cell carcinoma of the lung were treated with chemotherapy and radiotherapy, 40 Gy in the chest tumor. Intrathoracic failure occurred in 89% of the cases with extensive disease and in 60% of those with limited disease. Since 86% of all failures were localized within the target volume, one can conclude that in most cases the radiation dose was too low for eradication of the tumour. The treatment technique resulted in dose inhomogeneities of more than ±5% in 45% of the cases. The high local failure rate might indicate the need of improved radiotherapy, in the first place higher radiation dose. However, 82% of the patients with limited disease and local failure and 50% of those without local failure also developed distant metastases. This might indicate that the curative potential of improved thoracic radiotherapy probably is limited. Besides, lethal treatment toxicity affected particularly patients in whom local cure had been achieved, indicating the difficulty of increasing the treatment intensity without increasing the lethal toxicity in potentially curable cases. (orig.)

  15. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip.

    Science.gov (United States)

    TermehYousefi, Amin; Bagheri, Samira; Shahnazar, Sheida; Rahman, Md Habibur; Kadri, Nahrizul Adib

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney-Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. PMID:26652417

  16. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    Science.gov (United States)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  17. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle.

    Science.gov (United States)

    Tapia, Rocio; Huerta, Miriam; Islas, Socorro; Avila-Flores, Antonia; Lopez-Bayghen, Esther; Weiske, Jörg; Huber, Otmar; González-Mariscal, Lorenza

    2009-02-01

    Here, we have studied the effect of the tight junction protein zona occludens (ZO)-2 on cyclin D1 (CD1) protein expression. CD1 is essential for cell progression through the G1 phase of the cell cycle. We have found that in cultures of synchronized Madin-Darby canine kidney cells, ZO-2 inhibits cell proliferation at G0/G1 and decreases CD1 protein level. These effects occur in response to a diminished CD1 translation and an augmented CD1 degradation at the proteosome triggered by ZO-2. ZO-2 overexpression decreases the amount of Glycogen synthase kinase-3beta phosphorylated at Ser9 and represses beta-catenin target gene expression. We have also explored the expression of ZO-2 through the cell cycle and demonstrate that ZO-2 enters the nucleus at the late G1 phase and leaves the nucleus when the cell is in mitosis. These results thus explain why in confluent quiescent epithelia ZO-2 is absent from the nucleus and localizes at the cellular borders, whereas in sparse proliferating cultures ZO-2 is conspicuously present at the nucleus.

  18. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    2007-09-01

    Full Text Available Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP, affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged "canoe" shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features--cell shape, leading-edge shape, filamentous actin (F-actin distribution, cell speed, and directional persistence--that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes--which had VASP highly enriched at their leading edges and migrated fast with straight trajectories--to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and

  19. Local Anesthetics Induce Apoptosis in Human Thyroid Cancer Cells through the Mitogen-Activated Protein Kinase Pathway

    OpenAIRE

    Yuan-Ching Chang; Yi-Chiung Hsu; Chien-Liang Liu; Shih-Yuan Huang; Meng-Chun Hu; Shih-Ping Cheng

    2014-01-01

    Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 c...

  20. Localization of Vibrio vulnificus infection in dendritic cells and its effects on the cytoskeleton

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-gang; XU Shui-ling; SHAO Ping-yang; BAO Yi; CUI Ge; CAI Yu-jie

    2012-01-01

    Background Vibrio vulnificus (Vv) is an estuarine bacterium that can cause primary septicemia as well as serious wound infections.However,little is known about the mechanisms by which Vv infects dendritic cells (DCs) and its effects on cytoskeleton.In this study,we aimed to investigate the invasion,internalization,and the organelles damage of the cultured dendritic cells (a DC 2.4 strain) during Vv infection.Methods The study model was the cultured DCs infected by a Vv 1.758 strain.Electron microscopy was used to observe the localization of bacteria at the different time points of infection,cell morphology,and the process of organelles changes.The cytoskeleton structure including the microfilaments and the microtubules rearrangement was examined under a fluorescence microscope.Results The Vv were pinocytosised into the DC cells through double-sides,and localized at 1-2 μm of the inner side membrane.It took 1.3,1.9,and 3.4 hours to reach the infection ratio of 25%,50%,and 75%,respectively.Using electron microscopy,the DCs had been observed to have developed chromatin aggregation within 4.0 hours,and significant cytoskeleton structure disruption was noted within 6.0 hours.Conclusion The high lethality of Vv infection may be associated with the direct disruption of the DCs cytoskeleton structure.

  1. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  2. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. PMID:18080259

  3. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  4. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Donghua Liu; Ingrid Kottke

    2003-06-01

    The ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cd (100 M, 1 mM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes – high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.

  5. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    OpenAIRE

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  6. ELECTRON MICROSCOPIC AUTORADIOGRAPHIC STUDY ON SUBCELLULAR LOCALIZATION OF FISSION PRODUCT 147Pm IN TISSUE CELLS

    Institute of Scientific and Technical Information of China (English)

    朱寿彭; 汪源长

    1994-01-01

    The early risk of internal contaminated accumualtion of 147Pm is in blood cells and endothelial cells,especially in red blood cells.Then 147Pm is selectively deposited in ultrastructure of liver cells,such as in nucleus,nucleolus,rough endoplasmic reticulum,mitochondria and microbodies,Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle,and so dose in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule.With the prolongation of observing time,147Pm is selectively and steadily depostied in subcellular level of organic ocmponent for bone.Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts.Particularly,in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum.In addition,numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.

  7. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    Science.gov (United States)

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  8. TOR signaling regulates planarian stem cells and controls localized and organismal growth.

    Science.gov (United States)

    Peiris, T Harshani; Weckerle, Frank; Ozamoto, Elyse; Ramirez, Daniel; Davidian, Devon; García-Ojeda, Marcos E; Oviedo, Néstor J

    2012-04-01

    Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during cellular turnover and repair, have limited our understanding of how this kinase operates throughout the body. Here, we use the planarian model system to address TOR regulation at the organismal level. The planarian TOR homolog (Smed-TOR) is ubiquitously expressed, including stem cells (neoblasts) and differentiated tissues. Inhibition of TOR with RNA interference severely restricts cell proliferation, allowing the study of neoblasts with restricted proliferative capacity during regeneration and systemic cell turnover. Strikingly, TOR signaling is required for neoblast response to amputation and localized growth (blastema). However, in the absence of TOR signaling, regeneration takes place only within differentiated tissues. In addition, TOR is essential for maintaining the balance between cell division and cell death, and its dysfunction leads to tissue degeneration and lack of organismal growth in the presence of nutrients. Finally, TOR function is likely to be mediated through TOR Complex 1 as its disruption recapitulates signs of the TOR phenotype. Our data reveal novel roles for TOR signaling in controlling adult stem cells at a systemic level and suggest a new paradigm for studying TOR function during physiological turnover and regeneration. PMID:22427692

  9. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae).

    Science.gov (United States)

    Amrehn, Evelyn; Aschenbrenner, Anna-Katharina; Heller, Annerose; Spring, Otmar

    2016-03-01

    Capitate glandular trichomes (CGT) of sunflower, Helianthus annuus, synthesize bioactive sesquiterpene lactones (STLs) within a short period of only a few days during trichome development. In the current project, the subcellular localization of H. annuus germacrene A monooxygenase (HaGAO), a key enzyme of the STL biosynthesis in sunflower CGT, was investigated. A polyclonal antibody raised against this enzyme was used for immunolabelling. HaGAO was found in secretory and stalk cells of CGT. This correlated with the appearance of smooth endoplasmic reticulum in both cell types. Stalk cells and secretory cells differed in form, size and types of plastids, but both had structures necessary for secretion. No HaGAO-specific immunoreaction was found in sunflower leaf tissue outside of CGT or in developing CGT before the secretory phase had started. Our results indicated that not only secretory cells but also nearly all cells of the CGT were involved in the biosynthesis of STL and that this process was not linked to the presence or absence of a specific type of plastid. PMID:25956500

  10. Immunocytochemical identification and localization of APUD cells in the gut of seven stomachless teleost fishes

    Institute of Scientific and Technical Information of China (English)

    Qian Sheng Pan; Zhi Ping Fang; Ya Xin Zhao

    2000-01-01

    AIM To study the cell types, localization,distribution density and morphology of APUD cells in the intestinal mucosa of stomachless teleost fishes.METHOD By using the peroxidaseantiperoxidase complex ( PAP )immunocytochemical staining technique the identification, localization and morphology of immunoreactive (IR) endocrine cells seattered in the intestinal mucosa of grass carp ( Cyenopharyngodon idellus ), black carp (Mylopharyngodon piceus ) and common carp (Cyprinus carpio ) were investigated with 20 kinds of antisera prepared against mammalian peptide hormones of APUD cells, and likewise by using avidin-biotin-peroxidase complex (ABC)method those of silver carp ( Hypophthalmichthys molitrix ), bighead (Aristichthys nobilis ), silver crucian carp (Carassius gibelio ) and bluntnose black bream ( Megalobrama amblyocephala ) were also studied with 5 different antisera. The replacement of the first antiserum by phosphate buffered saline (PBS) was employed as a control. IR endocrine cells were counted with a square-mesh ocular micrometer from 10 fields selected randomly in every section of each part of the intestine specimen. The average number of IR endocrine cells per mm2 was counted to quantify their distribution density.RESULT Gastrin (GAS)-, Gastric inhibitory peptide (GIP)-, glucagon (GLU)-, glucagon-like immunoreactants ( GLI )-, bovine pancreatic polypeptide (BPP)-, leucine-enkephalin (ENK)-and substance P (SP)-IR endocrine cells were found in the gut of grass carp, black carp and common carp, and somatostatin ( SOM )-IR endocrine cells were only seen in common carp.GAS-, GIP- and GLU-IR endocrine cells were found in the intestinal mucosa of silver carp,bighead, silver crucian carp and bluntnose black bream. Most of IR endocrine cells had the higher distribution density in the foregut and midgut,and were longer in shape. They had a long apical cytoplasmic process extended to the gut lumen and a basal process extended to adjacent cells or basement membrane and

  11. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna;

    2010-01-01

    by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents......-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  12. On modifying the condition for the local current density decoupling in fuel cell stacks for moderate perturbations

    International Nuclear Information System (INIS)

    Two adjacent cells in a fuel cell stack are said to be decoupled when they do not affect each other's local current density distribution. This paper proposes a condition for local current density decoupling between two adjacent cells with arbitrary degree of perturbations. The proposed condition in the form of a bound comprising some measure of the perturbation on a dimensionless number comprising the design, operating conditions, and material properties of the bipolar plate is correlated with the current redistribution between cells and verified with a non-isothermal proton exchange membrane fuel cell stack model

  13. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  14. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    Science.gov (United States)

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. PMID:26920757

  15. The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability

    NARCIS (Netherlands)

    Lages, Marta Carolina Afonso; Beilharz, Katrin; Angeles, Danae Morales; Veening, Jan-Willem; Scheffers, Dirk-Jan

    2013-01-01

    The shape of bacteria is maintained by the cell wall. The main component of the cell wall is peptidoglycan (PG) that is synthesized by penicillin binding proteins (PBPs). The correct positioning of PBPs is essential for the maintenance of cell shape. In the literature, two different models for local

  16. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases

    Directory of Open Access Journals (Sweden)

    MGS Vieira

    2002-10-01

    Full Text Available Biopsies from human localized cutaneous lesions (LCL n = 7 or disseminated lesions (DL n = 8 cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

  17. Expression of recombinant dystrophin and its localization to the cell membrane.

    Science.gov (United States)

    Lee, C C; Pearlman, J A; Chamberlain, J S; Caskey, C T

    1991-01-24

    Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies. PMID:1824797

  18. Chemotherapy related toxicity in locally advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bahl Amit

    2006-01-01

    Full Text Available Background: For inoperable non-small cell lung cancer combined chemotherapy and radiotherapy plays an important role as a therapeutic modality. The aim of the present study was to analyze neoadjuvant chemotherapy related acute toxicity in locally advanced lung cancer (stage IIIA and IIIB in Indian patients using Cisplatin and Etoposide combination chemotherapy. Material and methods: Forty patients of locally advanced Non small cell lung cancer received three cycles neoadjuvant chemotherapy using Injection Cisplatin and Etoposide. The patients were taken for Radical radiotherapy to a dose of 60 Gray over 30 fractions in conventional fractionation after completing chemotherapy. Chemotherapy associated toxicity was assessed using common toxicity criteria (CTC v2.0 Results: Forty patients were available for final evaluation. Median age of presentation of patients was fifty-six years. Thirteen patients had Non small cell lung cancer stage IIIA while twenty-seven patients had Stage IIIB disease. Anemia was the most common hematological toxicity observed (seen in 81% of patients. Nausea and vomiting were the most common non -hematological toxicity seen. Sensory neuropathy was seen in 38%of patients. 88% patients developed alopecia. Seven patients developed febrile neutropenias. Conclusion: Neo-adjuvant chemotherapy using Cisplatin and Etoposide continues to be a basic regimen in the Indian set up despite availability of higher molecules, since it is cost effective, well tolerated and therapeutically effective. Blood transfusions, growth factors and supportive care can be used effectively to over come toxicity associated with this regimen.

  19. Quantitative aspects of digital microscopy applied to cellular localization of heparin in smooth muscle cells

    Science.gov (United States)

    Johnston, Richard F.; Hanzel, David K.; Stack, Bob; Brandley, Brian; Castellot, John

    1995-04-01

    High Resolution digital acquisition allows a great deal of flexibility in the types of questions that can be directed to microscopic samples. To eliminate subjective bias and provide quantitative results we have approached microscopy with an automated digital format. This mode can return quantitative data at high resolution over large fields. The digital format makes accessible data including [data segmentation]: multispectral colocalization, seeding and connectivity, particle size and shape distribution and population analysis. We have begun a program to investigate this approach using the confocal microscope. Scanning larger fields-of-view at lower spatial resolutions (e.g., low magnification objective) defines large maps that allow alignment of high spatial resolution (diffraction limited) sampling. The [objective] selection of the field-of-view with low spatial resolution reduces the subjective nature of the selection of a 'typical staining pattern'. High resolution digital scanning in three dimensions contribute both to the 'objective' nature of the analysis and allow for quantitation of characteristics not historically available/accessible. The complex carbohydrate heparin is implicated in tumor growth and wound healing by affecting angiogenesis, cell proliferation and motility. The internal localization of heparin within vascular cells appears to be a good predictor of the sensitivity of those cells to the action of heparin. Cells resistant to the antiproliferative action of heparin are able to sequester the heparin in large vacuoles whereas those cells sensitive to the carbohydrate do not exhibit these structures. We have applied our approach to QUANTITATIVE DIGITAL MICROSCOPY to the analysis of intracellular heparin distribution.

  20. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    Directory of Open Access Journals (Sweden)

    Rebai Tarek

    2011-06-01

    Full Text Available Abstract Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2 has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+ granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.

  1. Periodic, quasiperiodic, and chaotic potentials generated by electrochemical concentration cells: Local and global dynamics

    Science.gov (United States)

    Zeyer, K.-P.; Münster, A. F.; Hauser, M. J. B.; Schneider, F. W.

    1994-09-01

    We extend previous work describing the passive electrical coupling of two periodic chemical states to include quasiperiodic and chaotic states. Our setup resembles an electrochemical concentration cell (a battery) whose half cells [continuous-flow stirred tank reactors (CSTRs)] each contain the Belousov-Zhabotinsky (BZ) reaction. For a closed electrical circuit the two half cells are weakly coupled by an external variable resistance and by a constant low mass flow. This battery may produce either periodic, quasiperiodic, or chaotic alternating current depending on the dynamic BZ states chosen in the half cells. A lower fractal dimensionality is calculated from the electrical potential of a single chaotic CSTR than from the difference potential (relative potential) of the two chaotic half cell potentials. A similar situation is observed in model calculations of a chaotic spatiotemporal system (the driven Brusselator in one space dimension) where the dimensionality derived from a local time series is lower than the dimensionality of the global trajectory calculated from the Karhunen-Loeve coefficients.

  2. Management of Locally Advanced Renal Cell Carcinoma with Invasion of the Duodenum

    Directory of Open Access Journals (Sweden)

    Andrew T. Schlussel

    2013-01-01

    Full Text Available Renal cell carcinoma (RCC is rare but aggressive, with greater than 20% of patients presenting with stage III or IV, disease. Surgical resection of the primary tumor regardless of stage is the treatment of choice, and en bloc resection of involved organs provides the only potential chance for cure. This case report describes a patient with metastatic right-sided RCC with invasion of the inferior vena cava and duodenum managed by en block resection and pancreaticoduodenectomy. This report will review the workup and treatment of locally advanced RCC, as well as the role of cytoreductive nephrectomy in the setting of metastatic disease.

  3. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  4. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.

    2015-01-01

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843

  5. Business Cycle Dependent Unemployment Insurance

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Svarer, Michael

    The consequences of business cycle contingencies in unemployment insurance systems are considered in a search-matching model allowing for shifts between "good" and "bad" states of nature. We show that not only is there an insurance argument for such contingencies, but there may also be an incentive...

  6. Chemotherapy and cyclic radiation therapy in locally advanced non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Nine patients with non-small cell lung carcinoma (4 squamous, 4 adenocarcinoma, 1 large cell) were treated with a combination of radiation therapy and cyclic chemotherapy with 5-fluorouracil, methotrexate and platinum. Four previously untreated patients had stage III, 2 having distant metastases, 5 previously treated patients were restaged as stage III with distant metastasis in one. Moderate hematologic toxicity was noted. Objective responses occurred in 67 per cent, regardless of previous treatment or performance status. Responders survived for a median of 11 months with one complete response patient surviving at 14 months while 5 partial response patients survived for a median of 10 months. This regimen is feasible and its utility as the initial treatment of locally advanced disease should be further investigated. (Auth.)

  7. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  8. Asymmetric Localization of Cdx2 mRNA during the First Cell-Fate Decision in Early Mouse Development

    Directory of Open Access Journals (Sweden)

    Maria Skamagki

    2013-02-01

    Full Text Available A longstanding question in mammalian development is whether the divisions that segregate pluripotent progenitor cells for the future embryo from cells that differentiate into extraembryonic structures are asymmetric in cell-fate instructions. The transcription factor Cdx2 plays a key role in the first cell-fate decision. Here, using live-embryo imaging, we show that localization of Cdx2 transcripts becomes asymmetric during development, preceding cell lineage segregation. Cdx2 transcripts preferentially localize apically at the late eight-cell stage and become inherited asymmetrically during divisions that set apart pluripotent and differentiating cells. Asymmetric localization depends on a cis element within the coding region of Cdx2 and requires cell polarization as well as intact microtubule and actin cytoskeletons. Failure to enrich Cdx2 transcripts apically results in a significant decrease in the number of pluripotent cells. We discuss how the asymmetric localization and segregation of Cdx2 transcripts could contribute to multiple mechanisms that establish different cell fates in the mouse embryo.

  9. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    Science.gov (United States)

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  10. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    Science.gov (United States)

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  11. Intraarterial chemotherapy with gemcitabine and cisplatin in locally advanced or recurrent penile squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jian-Ye Liu; Yong-Hong Li; Zhuo-Wei Liu; Zhi-Ling Zhang; Yun-Lin Ye; Kai Yao; Hui Han; Zi-Ke Qin; Fang-Jian Zhou

    2013-01-01

    The prognosis of locally advanced or recurrent squamous cell carcinoma (SCC) of the penis after conventional treatment is dismal. This study aimed to evaluate the therapeutic effects of intraarterial chemotherapy with gemcitabine and cisplatin on local y advanced or recurrent SCC of the penis. Between April 1999 and May 2011, we treated 5 patients with locally advanced penile SCC and 7 patients with recurrent disease with intraarterial chemotherapy. The response rate and toxicity data were analyzed, and survival rates were calculated. After 2 to 6 cycles of intraarterial chemotherapy with gemcitabine and cisplatin, 1 patients with locoregional y advanced disease achieved a complete response, and 4 achieved partial response. Of the 7 patients with recurrent disease, 2 achieved complete response, 3 achieved partial response, 3 had stable disease, and 1 developed progressive disease. An objective tumor response was therefore achieved in 10 of the 12 patients. The median overal survival for the patients was 24 months (range, 10-50 months). Three out of 10 patients who responded were long-term survivors after intraarterial chemotherapy. Intraarterial chemotherapy with gemcitabine and cisplatin may be effective and potential y curative in locoregional y advanced or recurrent penile SCC. The contribution of this therapy in the primary management of advanced or recurrent penile SCC should be prospectively investigated.

  12. Local Langerhans cell histiocytosis (eosinophilic granuloma in a six-month baby: a case report

    Directory of Open Access Journals (Sweden)

    Bahador M

    2008-12-01

    Full Text Available "nBackground: Langerhans cell histiocytosis (LCH is a group of idiopathic disorders characterized by the proliferation of specialized bone marrow-derived Langerhans cells and mature eosinophils. The estimated annual incidence ranges from 0.5-2 cases per 100,000 persons per year. The pathogenesis of LCH is unknown. The prevalence of LCH seems to be higher among whites and males. The most common complaints at presentation are those related to bone lesions. Treatment consists of surgery, chemotherapy and radiotherapy alone or in combination. The age of onset varies according to the variety of LCH. Solitary lesions may occur in bones or skin. Cutaneous lesions present with firm, painless papulonodules or vesicles. "nCase report: This six-month-old baby presented with firm papulonodules on her temporal skin, but fortunately her other organs were healthy. She underwent two surgeries, separated by a one-month interval. Due to local recurrence after a short period of time, she underwent a 10-Gy dose of radiation. Her response proved good during follow-up. "nConclusion: Radiotherapy is good for controlling local recurrence in LCH, with few sequelae related to treatment.

  13. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  14. Alterations in expression, proteolysis and intracellular localizations of clusterin in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hong-Zhi He; Xiao-Hang Zhao; Zhen-Mei Song; Kun Wang; Liang-Hong Teng; Fang Liu; You-Sheng Mao; Ning Lu; Shang-Zhong Zhang; Min Wu

    2004-01-01

    AIM: To investigate biogenesis and intracellular localizations of clusterin to elucidate the potential molecular mechanisms implicated in tumorigenesis of esophageal mucosa.METHODS: Semi-quantitative RT-PCR for multi-region alteration analysis, Western blot for different transcriptional forms and immunohistochemical staining for intracellular localizations of clusterin were carried out in both tissues and cell lines of ESCC.RESULTS: The N-terminal deletions of the clusterin gene and the appearance of a 50-53 ku nuclear clusterin, an uncleaved, nonglycosylated, and disulfide-linked isoform,were the major alterations in cancer cells of esophagus.Naturally the 40 ku clusterin was located in the connective tissue of the lamina propria of epithelial mucosa and right under the basal membrane of epithelia, but it was disappeared in stromal mucosa of esophagus and the pre-matured clusterin was found positive in cancerous epithelia.CONCLUSION: The N-terminal deletion of clusterin may be essential for its alterations of biogenesis in ESCC.

  15. Radiotherapy is associated with significant improvement in local and regional control in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Merkel cell carcinoma (MCC) is a rare tumour of skin. This study is a retrospective audit of patients with MCC from St Vincent’s and Mater Hospital, Sydney, Australia. The aim of this study was to investigate the influence of radiotherapy (RT) on the local and regional control of MCC lesions and survival of patients with MCC. The data bases in anatomical pathology, RT and surgery. We searched for patients having a diagnosis of MCC between 1996 and 2007. Patient, tumour and treatment characteristics were collected and analysed. Univariate survival analysis of categorical variables was conducted with the Kaplan-Meier method together with the Log-Rank test for statistical significance. Continuous variables were assessed using the Cox regression method. Multivariate analysis was performed for significant univariate results. Sixty seven patients were found. Sixty two who were stage I-III and were treated with radical intent were analysed. 68% were male. The median age was 74 years. Forty-two cases (68%) were stage I or II, and 20 cases (32%) were stage III. For the subset of 42 stage I and II patients, those that had RT to their primary site had a 2-year local recurrence free survival of 89% compared with 36% for patients not receiving RT (p<0.001). The cumulative 2-year regional recurrence free survival for patients having adjuvant regional RT was 84% compared with 43% for patients not receiving this treatment (p<0.001). Immune status at initial surgery was a significant predictor for OS and MCCSS. In a multivariate analysis combining macroscopic size (mm) and immune status at initial surgery, only immune status remained a significant predictor of overall survival (HR=2.096, 95% CI: 1.002-4.385, p=0.049). RT is associated with significant improvement in local and regional control in Merkel cell carcinoma. Immunosuppression is an important factor in overall survival

  16. External beam radiotherapy for basal cell carcinoma. Local control and cosmetic outcome

    International Nuclear Information System (INIS)

    Background: The basal cell carcinoma which is often occurring in the elderly can be well treated by surgery. For large and recurrent lesions and in cosmetically difficult locations external beam radiotherapy provides an equally effective treatment alternative. Patients and Methods: From 1986 to 1999, 60 females and 39 males received primary radiotherapy for a total of 127 histologically verified basal cell carcinoma lesions. Tumors were mostly localized in the face at the temple, nose and forehead. Radiotherapy was applied with orthovoltage equipment and energies of up to 100 kV. Single doses ranged from 2 to 5 Gy related to the 80%-isodose depth. Weekly doses ranged from 8 to 25 Gy and total doses from 25 to 60 Gy. The mean follow-up period was 36±21 months. The acute sequelae were scored according to CTC criteria. Radiogenic late effects as single events were related to the radiation portal. Results: 3 months after treatment all besides one patient (99%) experienced complete tumor remission (CR). In all cases, acute radiation reaction occurred within the radiation portal: CTC Grade 1 in 100%, CTC Grade 2 in 54% and CTC Grade 3 in 30% of the cases. All side effects regressed under simple local measures without further complications. Late sequelae were observed in three cases. Overall cosmetic outcome was good to excellent in almost all patients (98%). In two cases (2%) a local recurrence was observed 6 and 20 months after radiotherapy. Conclusion: External beam (orthovoltage) radiotherapy is very effective and yields high tumor control rates and good cosmetic results in long-term follow-up. Former dermatological treatment concepts should be replaced by an ICRU-based radiophysical dose prescription and should respect the newer radiobiological fractionation principles. (orig.)

  17. Survival advantage of partial over radical nephrectomy in patients presenting with localized renal cell carcinoma

    International Nuclear Information System (INIS)

    Partial nephrectomy (PN) preserves renal function and has become the standard approach for T1a renal cell carcinoma (RCC). However, there is still an ongoing debate as to which patients will actually derive greater benefit from partial than from radical nephrectomy (RN). The aim of this study was to retrospectively evaluate the impact of the type of surgery on overall survival (OS) in patients with localized RCC. Renal surgery was performed in 4326 patients with localized RCC (pT ≤ 3a N/M0) at six German tertiary care centers from 1980 to 2010: RN in 2955 cases (68.3%), elective (ePN) in 1108 (25.6%), and imperative partial nephrectomy (iPN) in 263 (6.1%) cases. The median follow-up for all patients was 63 months. Kaplan-Meier and Cox regression analyses were carried out to identify prognosticators for OS. PN was performed significantly more often than RN in patients presenting with lower tumor stages, higher RCC differentiation, and non-clear cell histology. Accordingly, the calculated 5 (10)-year OS rates were 90.0 (74.6)% for ePN, 83.9 (57.5)% for iPN, and 81.2 (64.7)% for RN (p < 0.001). However, multivariate analysis including age, sex, tumor diameter and differentiation, histological subtype, and the year of surgery showed that ePN compared to RN still qualified as an independent factor for improved OS (HR 0.79, 95% CI 0.66-0.94, p = 0.008). Even allowing for the weaknesses of this retrospective analysis, our multicenter study indicates that in patients with localized RCC, PN appears to be associated with better OS than RN irrespective of age or tumor size

  18. APOPTOSIS AND PROLIFERATION OF TUMOR CELLS IN LOCALLY ADVANCED CERVICAL CANCER AFTER NEOADJUVANT INTRAARTERIAL CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 岳天孚; 惠京; 张颖; 王德华

    2003-01-01

    Objective: Through observing the clinical response to neoadjuvant intraarterial chemotherapy in locally advanced cervical cancer and investigating the changes of p53 protein expression, proliferation and apoptosis of tumor cells after chemotherapy, to study the relationship between biological markers and chemotherapeutic response. Methods: 20 women with locally advanced squamous cervical cancer received consecutive infusion chemotherapy of five days of cisplatin and adriamycin via the superselective uterine artery. The response to chemotherapy was evaluated by gynecologic examination and ultrasonography 3 weeks after chemotherapy. The changes of apoptotic index (AI), proliferation index (PI) and p53 expression of tumor cells were detected by immunohistochemical technique. Results: The clinical response rate of locally advanced squamous cervical cancer to uterine artery infusion chemotherapy was 70%. No change of PI was found 3 weeks after treatment, but AI significantly increased from 2.79±0.76 to 4.29±1.13 (P<0.01), and AI/PI from 5.68±1.21 to 9.00±1.95 (P<0.05). On the contrary, the expression of p53 was significantly decreased (P<0.05). Patients who responded to chemotherapy showed higher PI before chemotherapy and significantly increased AI and AI/PI after chemotherapy than non-responders (P<0.05). Conclusion: Higher PI was an indication for neoadjuvant intraarterial chemotherapy. One more cycle of chemotherapy should be given to those who have significantly increased AI or AI/PI after chemotherapy, while definite treatment such as surgery or/and radiotherapy should be immediately given to those patients without increased AI or AI/PI.

  19. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Carmelo Luci

    Full Text Available Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC. Innate lymphoid cells (ILC are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.

  20. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine.

    Science.gov (United States)

    Luci, Carmelo; Bekri, Selma; Bihl, Franck; Pini, Jonathan; Bourdely, Pierre; Nouhen, Kelly; Malgogne, Angélique; Walzer, Thierry; Braud, Véronique M; Anjuère, Fabienne

    2015-01-01

    Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.

  1. A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus.

    Science.gov (United States)

    Tsokos, Christos G; Perchuk, Barrett S; Laub, Michael T

    2011-03-15

    Cellular asymmetry is critical to metazoan development and the life cycle of many microbes. In Caulobacter, cell cycle progression and the formation of asymmetric daughter cells depend on the polarly-localized histidine kinase CckA. How CckA is regulated and why activity depends on localization are unknown. Here, we demonstrate that the unorthodox kinase DivL promotes CckA activity and that the phosphorylated regulator DivK inhibits CckA by binding to DivL. Early in the cell cycle, CckA is activated by the dephosphorylation of DivK throughout the cell. However, in later stages, when phosphorylated DivK levels are high, CckA activation relies on polar localization with a DivK phosphatase. Localization thus creates a protected zone for CckA within the cell, without the use of membrane-enclosed compartments. Our results reveal the mechanisms by which CckA is regulated in a cell-type-dependent manner. More generally, our findings reveal how cells exploit subcellular localization to orchestrate sophisticated regulatory processes.

  2. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    Science.gov (United States)

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  3. DGCR8 Localizes to the Nucleus as well as Cytoplasmic Structures in Mammalian Spermatogenic Cells and Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Akane Nakano

    2013-01-01

    Full Text Available The localization of DGCR8 in spermatogenic cells and sperm from rat and mouse was studied by immunofluorescence and immunoelectron microscopy. Spermatogenic cells from these species yielded similar DGCR8 localization pattern. Immunofluorescence microscopy results showed that DGCR8 localized to both the cytoplasm and nucleus. In the cytoplasm, diffuse cytosolic and discrete granular staining was observed. Dual staining showed that DGCR8 colocalized to the granules with MAEL (a nuage marker. In the nucleus of spermatocytes, both the nucleoli and nucleoplasm were stained, whereas in the nucleus of early spermatids small spots were stained. In late spermatids, DGCR8 localized to the tip of their head and to small granules (neck granules of the neck cytoplasm. The neck granules were also observed in the neck of epididymal sperm. Immunoelectron microscopy results showed that DGCR8 localized to nuage structures. Moreover, DGCR8 localized to nonnuage structures in late spermatids. DGCR8 also localized to the nucleolus and euchromatin in spermatocytes and round spermatids and to small granules in the nucleus of late spermatids. The results suggest that in spermatogenic cells DGCR8 localizes not only to the nuclei but also to the cytoplasmic structures such as nuage and nonnuage structures. Furthermore, DGCR8 seems to be imported into the egg with neck granules in sperm during fertilization.

  4. Localized photovoltaic investigations on organic semiconductors and bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Newly synthesized organic electronics materials are often available in submicrogram amounts only. Photoelectrochemical scanning droplet cell microscopy is a powerful method that allows a comprehensive characterisation of such small amounts including oxidation, reduction potentials, doping, determination of charge carriers, band gap, charge capacity, over-oxidation sensitivity and many more. Localized photoelectrochemical characterization of the poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2, 6-diyl-alt-4-substituted-thieno [3,4-b] thiophene-2,6-diyl] (PBDTTT-c) and PBDTTT-c:PCBM bulk heterojunction was performed using photoelectrochemical scanning droplet cell microscopy (PE-SDCM). The optical properties and the real and imaginary part of the dielectric function, of the polymer were determined using spectroscopic ellipsometry. The photoelectrochemical characterizations were performed in a three and two electrode configuration of PE-SDCM under laser and white light illumination. The effect of illumination was characterized using dark/illumination sequences. The stability of the photocurrent was studied using longer term (600 s) illumination. Finally the effect of cell configuration and illumination conditions on the photovoltage was studied. (paper)

  5. Local ATP generation by brain-type creatine kinase (CK-B facilitates cell motility.

    Directory of Open Access Journals (Sweden)

    Jan W P Kuiper

    Full Text Available BACKGROUND: Creatine Kinases (CK catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.

  6. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system

    Directory of Open Access Journals (Sweden)

    Susanne Zibek

    2010-11-01

    Full Text Available Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution travelled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively.Numerical modelling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 µm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 µM acetylcholine independent of pore size were determined.

  7. Localization of human immunodeficiency virus antigens in infected cells by scanning/transmission-immunogold techniques

    International Nuclear Information System (INIS)

    An application of high resolution scanning/transmission electron microscopy (STEM) and gold-labelling techniques for the rapid detection of human immunodeficiency virus (HIV) in infected cells has been developed. Experimental in vitro studies for detecting two HIV structural proteins, gp41 and p17, were performed following an indirect labeling procedure that uses monoclonal anti-p17 and anti-gp41 antibodies as primary antibodies and 40 nm gold-linked goat antimouse IgG as secondary antibodies. The cells were then studied by STEM in the scanning mode. Unambiguous localization of the viral antigens was possible by combining the three-dimensional image provided by the secondary electron image and the atomic number-dependent backscattered electron image for the identification of the gold marker. This technique combines both the morphological information and the rapid procedures of scanning electron microscopy with the precise and sensitive antigen detection provided by the use of STEM and immunological methods. The preliminary results of its application to the study of peripheral blood mononuclear cells from four anti-HIV-seropositive patients showing the presence of specific labeling in all of them suggest that it might prove useful for early detection of HIV infection before seroconversion, as well as for quantitative studies

  8. Targeting the tumor-draining area : local immunotherapy and its effect on the systemic T cell response

    NARCIS (Netherlands)

    Herbert-Fransen, Marieke Fernande

    2012-01-01

    This dissertation deals with the role of local immune stimulation in the lymph node and tumor microenvironment and its effect on systemic CD8+ T cell responses, in particular the anti-tumor CD8+ T cell responses. In chapter 2 the use of a slow-release system is described to deliver the immune-acti

  9. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  10. MR-imaging of the breast at 0.5 Tesla: menstrual-cycle dependency of parenchymal contrast enhancement in healthy volunteers with oral contraceptive use?

    International Nuclear Information System (INIS)

    Introduction: To evaluate changes of contrast medium enhancement of the breast parenchyma due to menstrual cycle in healthy volunteers with oral contraceptive use in MR-imaging of the breast. Material and Methods: 15 healthy volunteers (age: 22 - 36, mean 28,2) without breast disease were examined two times during one menstrual cycle (days 7 - 14 and days 21 - 2). Two volunteers were examined only in the second part of the cycle (days 21 - 2). All volunteers used oral contraceptives for more than 6 month continuously. Examinations were performed with a 0,5 T magnet (dynamic 3D-gradient echo protocol with subtraction postprocessing). We evaluated the number of enhancing foci and the parenchymal contrast medium enhancement during the different phases of the cycle by region of interest. Results: Only a total of two enhancing foci were found in 2 of 17 volunteers. Time/signal intensity diagrams in these both cases were not suspicious (< 80% initial signal increase after of contrast medium injection, no wash-out phenomenon) and sonography of the breast in these two cases was inconspicuous. Contrast medium enhancement of breast parenchyma in cycle days 7 - 14 (mean enhancement: 0.12 - 0.26, minutes 1 - 9 p.i.) was not significantly different (p = 0.2209; Wilcoxon signed rank test) from cycle days 21 - 2 (mean: 0.13 - 0.32). Conclusion: Menstrual cycle dependency of parenchymal contrast medium enhancement seems to be of minor relevance for premenopausal women with use of oral contraceptives. (orig.)

  11. Primary squamous cell carcinoma of thyroid gland with local recurrence: ultrasonographic and computed tomographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ja Yoon; Kwon, Kye Won; Kim, Sang Wook [Bundang Jesaeng General Hospital, Seongnam (Korea, Republic of); Youn, In Young [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    Primary squamous cell carcinoma of the thyroid gland (PSCCT) is a rare malignancy that presents with advanced disease and poor prognosis. It is difficult to diagnose PSCCT in its early stage because of its rarity and lack of typical imaging findings. We experienced an elderly woman with PSCCT confirmed by surgery. Although preoperative fine-needle aspiration revealed no malignancy, surgical resection was performed because the ultrasonogram showed diffuse microcalcifications, which suggested malignancy, and clinically, the mass grew rapidly to compress the trachea. Local tumor recurrence was noted at 3 months after surgery. Surgical resection or repeat biopsy should be considered if a cytologically benign thyroid mass shows imaging or clinical features of malignancy.

  12. The magnetic field of Betelgeuse: a local dynamo from giant convection cells?

    CERN Document Server

    Auriere, M; Konstantinova-Antova, R; Perrin, G; Petit, P; Roudier, T

    2010-01-01

    Betelgeuse is an M supergiant with a complex and extended atmosphere, which also harbors spots and giant granules at its surface. A possible magnetic field could contribute to the mass loss and to the heating of the outer atmosphere. We observed Betelgeuse, to directly study and infer the nature of its magnetic field. We used the new-generation spectropolarimeter NARVAL and the least square deconvolution (LSD) method to detect circular polarization within the photospheric absorption lines of Betelgeuse. We have unambiguously detected a weak Stokes V signal in the spectral lines of Betelgeuse, and measured the related surface-averaged longitudinal magnetic field Bl at 6 different epochs over one month. The detected longitudinal field is about one Gauss and is apparently increasing on the time scale of our observations. This work presents the first direct detection of the magnetic field of Betelgeuse. This magnetic field may be associated to the giant convection cells that could enable a "local dynamo:.

  13. Primary squamous cell carcinoma of thyroid gland with local recurrence: ultrasonographic and computed tomographic findings

    Directory of Open Access Journals (Sweden)

    Ja yoon Jang

    2014-04-01

    Full Text Available Primary squamous cell carcinoma of the thyroid gland (PSCCT is a rare malignancy that presents with advanced disease and poor prognosis. It is difficult to diagnose PSCCT in its early stage because of its rarity and lack of typical imaging findings. We experienced an elderly woman with PSCCT confirmed by surgery. Although preoperative fine-needle aspiration revealed no malignancy, surgical resection was performed because the ultrasonogram showed diffuse microcalcifications, which suggested malignancy, and clinically, the mass grew rapidly to compress the trachea. Local tumor recurrence was noted at 3 months after surgery. Surgical resection or repeat biopsy should be considered if a cytologically benign thyroid mass shows imaging or clinical features of malignancy.

  14. Pulsating Tandem Microbubble for Localized and Directional Single Cell Membrane Poration

    Science.gov (United States)

    Sankin, G.N.; Yuan, F.; Zhong, P.

    2013-01-01

    The interaction of laser-generated tandem microbubble (maximum diameter about 50 μm) with single (rat mammary carcinoma) cells is investigated in a 25-μm liquid layer. Anti-phase and coupled oscillation of the tandem microbubble leads to the formation of alternating, directional microjets (with max. microstreaming velocity of 10 m/s) and vortices (max. vorticity of 350,000 s−1) in opposite directions. Localized and directional membrane poration (200 nm to 2 μm in pore size) can be produced by the tandem microbubble in an orientation and proximity dependent manner, which is absence from a single oscillating microbubble of comparable size and at the same stand-off distance. PMID:20868077

  15. Improved radiotherapy for locally advanced Non-Small Cell Lung Carcinoma (NSCLC) patients

    DEFF Research Database (Denmark)

    Ottosson, Wiviann

    be reduced by the DIBH method for the lung cancer patients. The overall aim of the clinical part of this thesis was to clarify the potential benefit of offering DIBH gating, compared to free-breathing (FB), for lung cancer patients. Particularly, the benefits for locally advanced non-small cell lung cancer...... in the phantom. Severe dose deviations were observed, especially for small tumor sizes ≤ 2 cm in diameter. Our results imply that there exist severe tumor-size dependency, which potentially could have implications on the radiotherapy treatment planning of lung cancer. This thesis concludes that the clinical gain......Lung cancer is worldwide one of the most common cancer diseases with a high mortality rate. There is thus an urgent need for improving radiotherapy for these patients. Radiotherapy for lung cancer patients is challenging because the tumor and organs at risk (OARs) move with the breathing motion...

  16. AWireless Local Area Network Soft Cell Phone (SCP System with Multimedia and Data Services

    Directory of Open Access Journals (Sweden)

    Olakanmi O.Oladayo

    2014-01-01

    Full Text Available Most organizations concurrently maintain private Automatic Branch Exchange (PABX and Local Area Network (LAN for information interchange within their organization. This is obviously a waste of resources and avoidable duplication of communication systems. The existing LAN can be used as a communication backbone for the in house telephone operations with no extra cost and resources. In view of this, a portable and a platform independent Software-Based Cell Phone (SCP was proposed for the existing LANs infrastructure in the organizations. The SPC is a telephony application with a user friendly interface which is capable of handling voice, video and text messages without compromising the Quality of Service (QoS of the existing LAN.

  17. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    Science.gov (United States)

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.

  18. Estudo quantitativo das células de Langerhans em carcinomas basocelulares com maior e menor potencial de agressividade local Quantitative study of Langerhans cells in basal cell carcinoma with higher or lower potential of local aggressiveness

    Directory of Open Access Journals (Sweden)

    Itamar Santos

    2010-04-01

    Full Text Available FUNDAMENTOS - O carcinoma basocelular localiza-se principalmente em áreas expostas ao sol, apresentando formas clínicas e histológicas diferentes, algumas com grande e outras com pequena agressividade local. Células de Langerhans participam ativamente do sistema imune da pele. OBJETIVO - Avaliar quantitativamente as células de Langerhans sobrepostas aos carcinomas basocelulares de maior e menor potencial de agressividade local, assim como nas respectivas epidermes sãs adjacentes. MÉTODOS - Dois grupos com 14 preparações histológicas cada. No primeiro, carcinoma basocelular de menor potencial de agressividade local e, no segundo, carcinoma basocelular de maior potencial. Empregou-se a imunoistoquímica com proteína S100 para identificação das células de Langerhans. Utilizando microscópio óptico em aumento de 400 vezes e a grade morfométrica de Weibel, foram contadas as células de Langerhans presentes em sete campos, obtendo-se a média em cada lâmina. Foi utilizado teste estatístico de Wilcoxon para análise estatística. RESULTADOS - No grupo de menor potencial de agressividade local, na epiderme sã adjacente houve aumento significativo no número de células de Langerhans comparado ao da epiderme sobreposta ao carcinoma basocelular (p d 0,05. No grupo de maior potencial de agressividade local, não houve diferença com significado estatístico (p > 0,05. CONCLUSÃO - O maior número de células de Langerhans na epiderme sã vizinha à lesão tumoral de menor potencial de agressividade local poderia representar uma maior resistência imunológica da epiderme, limitando a agressividade da neoplasia.BACKGROUNDS - Basal cell carcinoma affects areas of the body that have been exposed to the sun, and this disorder has different clinical and histopathologic presentations. Some of these forms have a higher potential of local aggressiveness, while others have a lower potential. Langerhans cells actively participate in the skin

  19. Delayed postoperative radiation therapy in local control of squamous cell carcinoma of the tongue and floor of the mouth

    International Nuclear Information System (INIS)

    Objective: to evaluate the effect of time between surgery and postoperative radiation therapy on local recurrence of squamous cell carcinoma of the tongue and floor of the mouth. Methods: a total of 154 patients treated between 1996 and 2007 were selected considering local recurrence rate and time of the adjuvant radiotherapy. Results: local recurrence was diagnosed in 54 (35%) patients. Radiation therapy reduced the rate of local recurrences, although with no statistical significance. The time between surgery and initiation of postoperative radiotherapy did not significantly influence the risk of local recurrence in patients referred to adjuvant treatment (p=0.49). Conclusion: in the presence of risk factors for local recurrence, a short delay in starting the adjuvant radiation therapy does not contraindicate its performance. (author)

  20. Delayed postoperative radiation therapy in local control of squamous cell carcinoma of the tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Amar, Ali; Chedid, Helma Maria; Curioni, Otavio Alberto; Rapoport, Abrao, E-mail: arapoport@uol.com.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Dedivitis, Rogerio Aparecido; Cernea, Claudio Roberto; Brandao, Lenine Garcia [Hospital Heliopolis, Sao aulo, SP (Brazil)

    2014-10-15

    Objective: to evaluate the effect of time between surgery and postoperative radiation therapy on local recurrence of squamous cell carcinoma of the tongue and floor of the mouth. Methods: a total of 154 patients treated between 1996 and 2007 were selected considering local recurrence rate and time of the adjuvant radiotherapy. Results: local recurrence was diagnosed in 54 (35%) patients. Radiation therapy reduced the rate of local recurrences, although with no statistical significance. The time between surgery and initiation of postoperative radiotherapy did not significantly influence the risk of local recurrence in patients referred to adjuvant treatment (p=0.49). Conclusion: in the presence of risk factors for local recurrence, a short delay in starting the adjuvant radiation therapy does not contraindicate its performance. (author)

  1. Preoperative Erythrocyte Sedimentation Rate Independently Predicts Overall Survival in Localized Renal Cell Carcinoma following Radical Nephrectomy

    Directory of Open Access Journals (Sweden)

    Brian W. Cross

    2012-01-01

    Full Text Available Objectives. To determine the relationship between preoperative erythrocyte sedimentation rate (ESR and overall survival in localized renal cell carcinoma (RCC following nephrectomy. Methods. 167 patients undergoing nephrectomy for localized RCC had ESR levels measured preoperatively. Receiver Operating Characteristics curves were used to determine Area Under the Curve and relative sensitivity and specificity of preoperative ESR in predicting overall survival. Cut-offs for low (0.0–20.0 mm/hr, intermediate (20.1–50.0 mm/hr, and high risk (>50.0 mm/hr groups were created. Kaplan-Meier analysis was conducted to assess the univariate impact of these ESR-based groups on overall survival. Univariate and multivariate Cox regression analysis was conducted to assess the potential of these groups to predict overall survival, adjusting for other patient and tumor characteristics. Results. Overall, 55.2% were low risk, while 27.0% and 17.8% were intermediate and high risk, respectively. Median (95% CI survival was 44.1 (42.6–45.5 months, 35.5 (32.3–38.8 months, and 32.1 (25.5–38.6 months, respectively. After controlling for other patient and tumor characteristics, intermediate and high risk groups experienced a 4.5-fold (HR: 4.509, 95% CI: 0.735–27.649 and 18.5-fold (HR: 18.531, 95% CI: 2.117–162.228 increased risk of overall mortality, respectively. Conclusion. Preoperative ESR values represent a robust predictor of overall survival following nephrectomy in localized RCC.

  2. Intranuclear Localization of EGFP-mouse PPARγ1 in Bovine Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Sorayya Ghasemi

    2010-01-01

    Full Text Available Objective: The aim of this study was to clone PPARγ1 cDNA in an appropriate mammalianexpression vector, with a chimeric cDNA form, encompassing PPARγ with enhanced greenfluorescent protein (EGFP cDNA. This recombinant plasmid will be used for further analysesto investigate the molecular mechanism of PPARγ1 for neural differentiation process.Moreover, the nuclear localization of the PPARγ1 protein linked to EGFP marker was chasedby using transient transfection of a constructed plasmid into bovine fibroblast cells.Materials and Methods: Total RNA was extracted from the fatty tissue of an adult mouse.Using specific pair primers, PPARγ1 cDNA was synthesized and amplified to producethe entire length of ORF. RT-PCR products containing PPARγ1 cDNA were treated byenzymatic digestion and inserted into the pEGFP-C1 downstream from EGFP cDNA. Theconstructed vector was used for transformation into bacterial competent cells. Positivecolonies which showed inserted PPARγ1 cDNA were selected for plasmid preparationsand additional analysis was performed to ensure that PPARγ1 cDNA was inserted properly.Finally, to confirm the intracellular localization of EGFP-PPARγ1, bovine fibroblastcells were transfected with the recombinant plasmid.Results: Our results from enzymatic digestion and sequencing confirmed, as expected, thatPPARγ1 cDNA was amplified and cloned correctly. This cDNA gene encompassed 1428 bp.The related product was entered into the nucleus of bovine fibroblasts after transfection ofits cDNA.

  3. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    Science.gov (United States)

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  4. Activity of ABCG2 Is Regulated by Its Expression and Localization in DHT and Cyclopamine-Treated Breast Cancer Cells.

    Science.gov (United States)

    Chua, Vivian Y L; Larma, Irma; Harvey, Jennet; Thomas, Marc A; Bentel, Jacqueline M

    2016-10-01

    Elevated expression of the efflux transporter, ATP-binding cassette subfamily G isoform 2 (ABCG2) on the plasma membrane of cancer cells contributes to the development of drug resistance and is a key characteristic of cancer stem cells. In this study, gene expression analysis identified that treatment of the MCF-7 and T-47D breast cancer cell lines with the androgen, 5α-dihydrotestosterone (DHT), and the Hedgehog signaling inhibitor, cyclopamine downregulated ABCG2 mRNA levels. In MCF-7 cells, and in Hoechst 33342(lo) /CD44(hi) /CD24(lo) breast cancer stem-like cells isolated from MCF-7 cultures, ABCG2 was accumulated in cell-to-cell junction complexes and in large cytoplasmic aggresome-like vesicles. DHT treatments, which decreased cellular ABCG2 protein levels, led to diminished ABCG2 localization in both cell-to-cell junction complexes and in cytoplasmic vesicles. In contrast, cyclopamine, which did not alter ABCG2 protein levels, induced accumulation of ABCG2 in cytoplasmic vesicles, reducing its localization in cell-to-cell junction complexes. The reduced localization of ABCG2 at the plasma membrane of MCF-7 cells was associated with decreased efflux of the ABCG2 substrate, mitoxantrone, and increased sensitivity of cyclopamine-treated cultures to the cytotoxic effects of mitoxantrone. Together, these findings indicate that DHT and cyclopamine reduce ABCG2 activity in breast cancer cells by distinct mechanisms, providing evidence to advocate the adjunct use of analogous pharmaceutics to increase or prolong the efficacy of breast cancer treatments. J. Cell. Biochem. 117: 2249-2259, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917208

  5. EPHA7 and EPHA10 Physically Interact and Differentially Co-localize in Normal Breast and Breast Carcinoma Cell Lines, and the Co-localization Pattern Is Altered in EPHB6-expressing MDA-MB-231 Cells.

    Science.gov (United States)

    Johnson, Candace; Segovia, Briana; Kandpal, Raj P

    Erythropoietin-producing hepatocellular carcinoma cell (EPH) receptors comprise the most abundant receptor tyrosine kinase family characterized to date in mammals including humans. These proteins are involved in axon guidance, tissue organization, vascular development and the intricate process of various diseases including cancer. These diverse functions of EPH receptors are attributed, in part, to their abilities for heterodimerization. While the interacting partners of kinase-deficient EPHB6 receptor have been characterized, the interaction of the kinase-dead EPHA10 with any other receptor has not been identified. By using co-immunoprecipitation, we demonstrated physical interaction between kinase-deficient EPHA10 with kinase-sufficient EPHA7 receptor. Immunocytochemical analyses have revealed that these two receptors co-localize on the cell surface, and soluble portions of the receptors exist as a complex in the cytoplasm as well as the nuclei. While EPHA7 and EPHA10 co-localize similarly on the membrane in MCF10A and MCF7 cells, they were differentially co-localized in MDA-MB-231 cells stably transfected with empty pcDNA vector (MDA-MB-231-PC) or an expression construct of EPHB6 (MDA-MB-231-B6). The full-length isoforms of these receptors were co-localized on the cell surface, and the soluble forms were present as a complex in the cytoplasm as well as the nucleus in MDA-MB-231-PC cells. MDA-MB-231-B6 cells, on the other hand, were distinguished by the absence of any signal in the nuclei. Our results represent the first demonstration of physical interaction between EPHA10 and EPHA7 and their cellular co-localization. Furthermore, these observations also suggest gene-regulatory functions of the complex of the soluble forms of these receptors in breast carcinoma cells of differential invasiveness. PMID:27566654

  6. Microdomain Ca2+ Activation during Exocytosis in Paramecium Cells. Superposition of Local Subplasmalemmal Calcium Store Activation by Local Ca2+ Influx

    Science.gov (United States)

    Erxleben, Christian; Klauke, Norbert; Flötenmeyer, Matthias; Blanchard, Marie-Pierre; Braun, Claudia; Plattner, Helmut

    1997-01-01

    In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben, C., and H. Plattner. 1994. J. Cell Biol. 127:935– 945). We now show by voltage clamp and extracellular recordings that the product of current × time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from subplasmalemmal storage compartments, covering almost the entire cell surface, is a key event. In fact, after local stimulation, Ca2+ imaging with high time resolution reveals rapid, transient, local signals even when extracellular Ca2+ is quenched to or below resting intracellular Ca2+ concentration ([Ca2+]e ⩽ [Ca2+]i). Under these conditions, quenched-flow/freeze-fracture analysis shows that membrane fusion is only partially inhibited. Increasing [Ca2+]e alone, i.e., without secretagogue, causes rapid, strong cortical increase of [Ca2+]i but no exocytosis. In various cells, the ratio of maximal vs. minimal currents registered during maximal stimulation or single exocytotic events, respectively, correlate nicely with the number of Ca stores available. Since no quantal current steps could be observed, this is again compatible with the combined occurrence of Ca2+ mobilization from stores (providing close to threshold Ca2+ levels) and Ca2+ influx from the medium (which per se does not cause exocytosis). This implies that only the combination of Ca2+ flushes, primarily from internal and secondarily from external sources, can produce a signal triggering rapid, local exocytotic responses, as requested for Paramecium defense. PMID:9024690

  7. Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes

    Science.gov (United States)

    Perry, Nicola Helen

    Reducing the operating temperature of solid oxide fuel cells (SOFCs), to improve durability and lower cost, requires an increase in the low temperature oxygen-ion conductivity of the electrolyte. This work investigates whether the electrolyte conductivity could be increased by decreasing the grain size into the nanoscale. Bulk electrolytes - cubic yttria-stabilized zirconia (YSZ, with 8mol% Y2O3), tetragonal zirconia polycrystal (TZP, with 3mol% Y2O3), and Sr- and Mg- co-doped LaGaO3 (LSGM) - were fabricated with grain sizes ranging from 10nm to 3mum, using commercial or sol-gel-derived nanopowders and various sintering techniques. Local grain boundary and grain core conductivities and dielectric constants were analyzed over a range of temperatures and atmospheres using AC-impedance spectroscopy and our novel nano-Grain Composite Model, and interpreted in terms of grain-size dependent defect chemistry (e.g. space charge models, local thermodynamics, and impurity/ acceptor segregation). All three oxides exhibited qualitatively similar electrical/ dielectric behavior. Their single crystal/ grain core dielectric constants exhibited an upturn with temperature, which was attributed to the onset of dipolar relaxation. Grain boundary dielectric constants were consistently higher than grain core dielectric constants at the nanoscale. n-GCM-derived electrical grain boundary half-widths agreed well with measured acceptor dopant segregation widths at grain boundaries. The local grain boundary conductivity was consistently increased in nanocrystalline vs. microcrystalline samples, although the mechanisms responsible for this behavior differed in each material. Grain core conductivity did not change with grain size in each case. Despite the increase in local grain boundary conductivity at the nanoscale, the total conductivity decreased monotonically with decreasing grain size in all three electrolytes; the grain boundaries remain barriers to transport (relative to grain cores

  8. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma.

    Science.gov (United States)

    Giuliano, Antonio; Swift, Rebecca; Arthurs, Callum; Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M; Davies, Anthony J; Weetman, Malcolm; Garden, Oliver A; Masters, John R; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  9. Characterization of immune cells and cytokine localization in the rat utero-placental unit mid- to late gestation.

    Science.gov (United States)

    Tessier, Daniel R; Raha, Sandeep; Holloway, Alison C; Yockell-Lelièvre, Julien; Tayade, Chandrakant; Gruslin, Andrée

    2015-08-01

    The success of pregnancy is dependent on the precise regulation of the immune response within the utero-placental environment. Rats are beginning to be widely used as a model for human immune-related pregnancy complications. However, our knowledge of immune cells and cytokine localization in the rat utero-placental tissue is limited. The current study aimed to localize the immune cell populations, including uterine natural killer (uNK) cells, neutrophils, and macrophages within the rat utero-placental unit at two crucial gestational ages, gestational days 15.5 and 18.5. In addition, we characterized the distribution of the cytokines TNFα, IFNγ, and IL-10 in the utero-placental regions at both the above-mentioned gestational ages. Our study has demonstrated co-localization TNFα and IFNγ with uNK cells in perivascular regions of the rat mesometrial triangle at both gestational ages. Neutrophils and IL-10-positive cells were localized at the maternal-fetal interface and in the spiral artery lumen of the rat mesometrial triangle at both gestational ages. TNFα and IL-10 demonstrated a temporal change in the localization from GD15.5 to GD18.5, which coincides with the leading edge of trophoblast invasion into the mesometrial triangle. The current study furthers our knowledge of the localization of uterine immune cells and relevant cytokines, and provides a base from which to research the function of these immune cells and cytokines during rat pregnancy as a model to study human immune-related pregnancy complications. PMID:25725501

  10. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development.

    Science.gov (United States)

    Zhu, Minghua; Shen, Shudan; Liu, Yan; Granillo, Olivia; Zhang, Weiguo

    2005-01-01

    It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.

  11. Down-regulation of β-catenin Nuclear Localization by Aspirin Correlates with Growth Inhibition of Jurkat Cell Line

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this study, we examined the effects of aspirin on the growth rates, subcellar distribution of β-catenin protein, the expression of β-catenin/TCF signaling pathway target gene cyclinD1 mRNA,and cell cycle of Jurkat cell line (Human T-acute lymphoblastic leukemia). Our results showed that the treatment with aspirin inhibited the growth of Jurkat cell line. Jurkat cells treated with 3 mmol/L of aspirin could significantly decrease nuclear localization of β-catenin, and at 5 mmol/L of aspirin,the nuclear localization of β-catenin was undetectable. QRT-PCR showed that the target gene cyclinD1 mRNA expression was gradually decreased with the dosage of aspirin. Aspirin induced G0/G1cell cycle arrest in Jurkat cells. We are led to conclude that aspirin acts through β-catenin-independent mechanisms. The effects of aspirin include down-regulation of β-catenin nuclear localization and G0/G1 cell cycle arrest, which might serve as a means of growth inhibition in aspirin-treated human Jurkat cell line.

  12. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling

    Science.gov (United States)

    Liuzzi, Anna Rita; Kift-Morgan, Ann; Lopez-Anton, Melisa; Friberg, Ida M.; Zhang, Jingjing; Brook, Amy C.; Roberts, Gareth W.; Donovan, Kieron L.; Colmont, Chantal S.; Toleman, Mark A.; Bowen, Timothy; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Fraser, Donald J.

    2016-01-01

    The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2+ γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response. PMID:27527598

  13. Autoradiographic localization of /sup 3/H-digoxin binding by neural cells in the medulla

    Energy Technology Data Exchange (ETDEWEB)

    Traurig, H.H.; Bhagat, A.; Bass, N.H.

    1985-01-01

    The purpose of this investigation was to localize binding sites for the cardiac glycoside digoxin in the medulla of the rat in vivo. Adult male Sprague-Dawley rats were injected (IV) with /sup 3/H-digoxin and killed 30 minutes later. Autoradiographs of medullas showed evidence of /sup 3/H-digoxin binding to small- and medium-sized neural cells in the regions of the nucleus solitarius, dorsal motor nucleus of the vagus, area postrema, and in the zone between the area postrema and the underlying neuropil. However, the parasympathetic preganglionic neurons of the dorsal motor nucleus were not labeled. The /sup 3/H-digoxin-labeled cells in the medulla were located mainly in the commissural and medial portions of nucleus solitarius at the level of the area postrema. Animals injected with unlabeled digoxin followed by /sup 3/H-digoxin showed reduced binding of radioactivity. The small- and medium-sized neurons of the caudal portions of the nucleus solitarius are internuncial in position with respect to cardiovascular afferents of the glossopharyngeal and vagus nerves and sympathetic and parasympathetic cardiovascular efferent neurons of the medulla. The results of this study suggest that these /sup 3/H-digoxin-labeled cells, presumably neurons of nucleus solitarius, may possess high affinity binding sites for digoxin. Further, the area postrema, which lacks a blood-brain barrier, may provide a portal of entry for /sup 3/H-digoxin into regions of the medulla known to contain neurons that play a role in the regulation of cardiac rhythm.

  14. Golgi localization and dynamics of hyaluronan binding protein 1 (HABP1/p32/C1QBP) during the cell cycle

    Institute of Scientific and Technical Information of China (English)

    Aniruddha SENGUPTA; Bhaswati BANERJEE; Rakesh K. TYAGI; Kasturi DATTA

    2005-01-01

    Hyaluronan binding protein 1 (HABP1) is a negatively charged multifunctional mammalian protein with a unique structural fold. Despite the fact that HABP1 possesses mitochondrial localization signal, it has also been localized to other cellular compartments. Using indirect immunofluorescence, we examined the sub-cellular localization of HABP1 and its dynamics during mitosis. We wanted to determine whether it distributes in any distinctive manner after mitotic nuclear envelope disassembly or is dispersed randomly throughout the cell. Our results reveal the golgi localization of HABP1 and demonstrate its complete dispersion throughout the cell during mitosis. This distinctive distribution pattern of HABP1 during mitosis resembles its ligand hyaluronan, suggesting that in concert with each other the two molecules play critical roles in this dynamic process.

  15. Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition.

    Science.gov (United States)

    Cho, Yong Mee; Woodard, Grant L; Dunbar, Maureen; Gocken, Todd; Jimènez, Juan A; Foley, John

    2003-05-01

    The humoral hypercalcemia factor parathyroid hormone-related protein is a paracrine-signaling molecule that regulates the development of several organ systems, including the skin. In pathologic circumstances such as hypercalcemia and in development, parathyroid hormone-related protein signaling appears to be mediated by the type I parathyroid hormone/parathyroid hormone-related protein receptor. In order to clarify the role of the ligand and receptor pair in cutaneous biology, gene expression was monitored in a series of murine skin samples ranging from embryonic day 14 to 2 y with in situ hybridization and RNase protection. In all samples, high levels of parathyroid hormone-related protein transcripts were exclusively expressed in the developing and adult hair follicle but were not observed in the interfollicular epidermis. In the adult, parathyroid hormone-related protein mRNA expression was dynamically regulated as a function of the murine hair cycle in a way similar to other signaling molecules that regulate the anagen to catagen transition. PTH receptor transcripts were abundantly expressed in the developing dermis. In the adult skin, PTH receptor mRNA was markedly reduced, but again demonstrated hair-cycle-dependent expression. The dorsal skin of the keratin 14-parathyroid hormone-related protein mouse was used to evaluate the impact of overexpression of the peptide on the murine hair cycle. All types of hair were 30-40% shorter in adult keratin 14-parathyroid hormone-related protein mice as compared with wild-type littermates. This appeared to result from a premature entry into the catagen phase of the hair cycle. Finally, the relationship between parathyroid hormone-related protein signaling and other growth factors that regulate the hair cycle was examined by cross-breeding experiments employing keratin 14-parathyroid hormone-related protein mice and fibroblast growth factor-5-knockout mice. It appears that parathyroid hormone-related protein and

  16. Pre-embedding Method of Electron Microscopy for Glycan Localization in Mammalian Tissues and Cells Using Lectin Probes.

    Science.gov (United States)

    Akimoto, Yoshihiro; Takata, Kuniaki; Kawakami, Hayato

    2016-01-01

    In recent years, the study of glycans is progressing remarkably by the development of glycan analysis systems using mass spectrometry, glycan profiling systems using lectin microarrays, and glycoprotein analysis by the isotope-coded glycosylation site-specific tagging method. With these methodologies, glycan structures and biological functions are being elucidated. In the study of glycan function as well as disease diagnosis, it is important to examine the localization of glycans in tissues and cells. Histochemical methods using lectin probes can localize glycans in the tissues and cells. This chapter describes a pre-embedding electron microscopic method for glycan localization in which tissue sections and cells are incubated with lectin prior to embedding in resin. PMID:27515086

  17. PAT1 (SLC36A1) shows nuclear localization and affect growth of smooth muscle cells from rats

    DEFF Research Database (Denmark)

    Jensen, Anne; Figueiredo-Larsen, Evan Manuel; Holm, René;

    2014-01-01

    of A7r5. These results were confirmed in primary SMCs derived from rat aorta and colon. A 3'-untranslated region of the PAT1 transcript directed the nuclear localization. Neither cellular starvation nor cell division altered the nuclear localization. In agreement, uptake studies of L-proline, a PAT1...... to induced cellular growth suggesting a role for PAT1 in regulating cellular proliferation of SMCs....

  18. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  19. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  20. Identification and subcellular localization of molecular complexes of Gq/11α protein in HEK293 cells

    Institute of Scientific and Technical Information of China (English)

    Zdenka Drastichova; Jiri Novotny

    2012-01-01

    Heterotrimeric G-proteins localized in the plasma membrane convey the signals from G-protein-coupled receptors (GPCRs) to different effectors.At least some types of Gprotein o subunits have been shown to be partly released from plasma membranes and to move into the cytosol after receptor activation by the agonists.However,the mechanism underlying subcellular redistribution of trimeric G-proteins is not well understood and no definitive conclusions have been reached regarding the translocation of Gα subunits between membranes and cytosol.Here we used subcellular fractionation and clear-native polyacrylamide gel electrophoresis to identify molecular complexes of Gq/1 1α protein and to determine their localization in isolated fractions and stability in naive and thyrotropin-releasing hormone (TRH)-treated HEK293 cells expressing high levels of TRH receptor and G11α protein.We identified two high-molecular-weight complexes of 300 and 140 kDa in size comprising the Gq/11 protein,which were found to be membrane-bound.Both of these complexes dissociated after prolonged treatment with TRH.Still other Gq/11α protein complexes of lower molecular weight were determined in the cytosol.These 70 kDa protein complexes were barely detectable under control conditions but their levels markedly increased after prolonged (4-16 h)hormone treatment.These results support the notion that a portion of Gq/11α can undergo translocation from the membrane fraction into soluble fraction after a long-term activation of TRH receptor.At the same time,these findings indicate that the redistribution of Gq/11α is broughtabout by the dissociation of high-molecular-weight complexes and concomitant formation of low-molecular-weight complexes containing the Gq/11α protein.

  1. Recurrence pattern in patients with locally advanced renal cell carcinoma: The implications of clinicopathological variables

    Science.gov (United States)

    Sameh, Wael M.; Hashad, Mohammed M.; Eid, Ahmed A.; Abou Yousif, Tamer A.; Atta, Mohammed A.

    2012-01-01

    Objectives Recurrence rates for patients with locally advanced renal cell carcinoma (LARCC) remain high. To date the predictors of recurrence in those patients remain controversial. The aim of the present study was to assess the relapse pattern in those patients and identify predictors for recurrence. Patients and methods We evaluated retrospectively 112 consecutive patients who underwent surgery for LARCC (T3–T4N0M0) between January 2000 and December 2010. Clinical and pathological data were collected from hospital medical records and compiled into a computerized database. Studied variables were age, mode of presentation, Tumour-Node-Metastasis (TNM) stage, Fuhrman nuclear grade, histological subtype, tumour size, venous thrombus level, collecting-system invasion and sarcomatoid differentiation. Recurrence-free survival (RFS) was estimated using the Kaplan–Meier method. Univariate and multivariate analyses were conducted. Results Patients were followed for a mean and median follow-up of 33 and 24 months, respectively, after surgery. During the follow-up, recurrences (distant and/or local) were recorded in 58 patients, representing 52% of the cohort. The mean and median times to recurrence were 25 and 13 months, respectively. Sites of recurrence were multiple in 36 patients (62%), lung only in 14 (24%), and local in eight (14%). RFS rates at 1, 2, and 5 years were 50%, 43% and 34%, respectively, while the median RFS was 23.7 months. Using univariate analysis, RFS after nephrectomy was significantly shorter in patients aged <70 years, symptomatic at presentation, with larger tumours, higher nuclear grade, collecting-system invasion, and/or sarcomatoid differentiation. After multivariate analysis, T-stage, nuclear grade and sarcomatoid differentiation retained their power as independent predictors of RFS (P = 0.032, <0.001 and 0.003, respectively). Conclusions For patients with LARCC, T-stage, grade and sarcomatoid differentiation independently dictate the

  2. Chronic low-dose UVA irradiation induces local suppression of contact hypersensitivity, Langerhans cell depletion and suppressor cell activation in C3H/HeJ mice

    International Nuclear Information System (INIS)

    It has previously been demonstrated that chronic low-dose solar-simulated UV radiation could induce both local and systemic immunosuppression as well as tolerance to a topically applied hapten. In this study, we have used a chronic low-dose UV-irradiation protocol to investigate the effects of UVA on the skin immune system of C3H/HeJ mice. Irradiation with UVA+B significantly suppressed the local and systemic primary contact hypersensitivity (CHS) response to the hapten 2,4,6-trinitrochlorobenzene. Furthermore, UVA+B reduced Langerhans cell (LC) and dendritic epidermal T cell (DETC) densities in chronically UV-irradiated mice. Ultraviolet A irradiation induced local, but not systemic, immunosuppression and reduced LC (32%) but not DETC from the epidermis compared to the shaved control animals. Treatment of mice with both UVA+B and UVA radiation also induced an impaired secondary CHS response, and this tolerance was transferable with spleen cells. (Author)

  3. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    OpenAIRE

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  4. Concerted emission and local potentiometry of light-emitting electrochemical cells.

    Science.gov (United States)

    Rodovsky, Deanna B; Reid, Obadiah G; Pingree, Liam S C; Ginger, David S

    2010-05-25

    We study the operation of polymer light-emitting electrochemical cells (LECs) by combining scanning Kelvin probe microscopy with in situ imaging of the electroluminescence and photoluminescence on planar LECs. By combining these techniques on the same device in the same apparatus we directly map the relationship between the spatial distribution of electroluminescence and the local potential profile across the device. We find that the electroluminescence is always associated with a region of potential drop in LECs made with poly[2-methoxy-5-(3',7'-dimethyl-octyloxy)-p-phenylenevinylene] (MDMO-PPV), poly(ethylene oxide)(PEO), and potassium trifluoromethanesulfonate. Nevertheless, depending on the electrode metal used, we also find significant potential drops at or near the electrode/organic interfaces. We study the effects of using different electrodes and show that both the electroluminescence and potential profiles are strongly dependent on the electrode work function for thin junctions operated at low potentials. These results indicate injection barriers can affect the operation of LECs even in the presence of doping.

  5. Personalized therapy in locally advanced head and neck squamous-cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sánchez-Escribano R

    2013-11-01

    Full Text Available Introduction: Locally advanced head and neck squamous cell carcinoma patients (LAHNSCC represents a truly heterogeneous population with differences in comorbidities, primary tumor location and etiology. These are key factors in optimal treatment selection. Material and methods: An extensive literature review was made in order to identify the most relevant factor in the therapeutic decision, with special interest in induction chemotherapy as the latest and most debatable option. Results: In the therapeutic decision we have to take into account factors related to the patient, age and performance status are the most important, and others related to the tumor as stage, site of origin and etiology, between this ones l, viral subtypes (EBV and HPV are becoming relevant in the later decades. Chemoradiotherapy is considered the gold standard treatment, supported by several randomized trials and metaanalysis. Induction chemotherapy is one of the later options appeared in the therapeutic arena, improving results in organ preservation and survival. Although a substantial increase in toxicities and lack of prospective comparisons with the standard concurrent chemoradioterapy, warrants a cautious use. Conclusions: Therapeutic choice in the LAHNSCC patient is a complex and multidimensional process, that should be carried in a specialized and multidisciplinary team that can assure the highest efficiency and security for the patient

  6. A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehraeen, Shareghe [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; McKeown, Joseph T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Deshmukh, Pushkarraj V. [E.A. Fischione Instruments, Inc., Export, PA (United States); Evans, James E. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Abellan, Patricia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Xu, Pinghong [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science; Reed, Bryan W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Taheri, Mitra L. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science & Engineering; Fischione, Paul E. [E.A. Fischione Instruments, Inc., Export, PA (United States); Browning, Nigel D. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    2013-03-04

    We report that the advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

  7. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  8. Local transplantation of ex vivo expanded bone marrow-derived CD34-positive cells accelerates fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Alev, Cantas; Kawamoto, Atsuhiko; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Shoji, Taro; Fukui, Tomoaki; Masuda, Haruchika; Akimaru, Hiroshi; Mifune, Yutaka; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Kurosaka, Masahiro; Asahara, Takayuki

    2012-01-01

    Transplantation of bone marrow (BM) CD34(+) cells, an endothelial/hematopoietic progenitor-enriched cell population, has shown therapeutic efficiency in the treatment of ischemic diseases enhancing neovascularization. However, the number of CD34(+) cells obtained from bone marrow is not sufficient for routine clinical application. To overcome this issue, we developed a more efficient and clinically applicable CD34(+) cell expansion method. Seven-day ex vivo expansion culture of BM CD34(+) cells with a cocktail of five growth factors containing VEGF, SCF, IL-6, Flt-3 ligand, and TPO resulted in reproducible more than 20-fold increase in cell number. The favorable effect of the local transplantation of culture expanded (cEx)-BM CD34(+) cells on rat unhealing fractures was equivalent or higher than that of nonexpanded (fresh) BM CD34(+) cells exhibiting sufficient therapeutic outcome with frequent vasculogenic/osteogenic differentiation of transplanted cEx-BM CD34(+) cells and fresh BM CD34(+) cells as well as intrinsic enhancement of angiogenesis/osteogenesis at the treated fracture sites. Specifically, cEx-BM CD34(+) cell treatment demonstrated the best blood flow recovery at fracture sites compared with the nonexpanded BM CD34(+) cells. In vitro, cEx-BM CD34(+) cells showed higher colony/tube-forming capacity than nonexpanded BM CD34(+) cells. Both cells demonstrated differentiation potential into osteoblasts. Since fresh BM CD34(+) cells can be easily collected from fracture sites at the time of primary operation and stored for future use, autologous cEx-BM CD34(+) cell transplantation would be not only a simple but also a promising therapeutic strategy for unhealing fractures in the field of orthopedic trauma surgery.

  9. Estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract of female rats upon colon-bladder cross-sensitization.

    Directory of Open Access Journals (Sweden)

    Xiao-Qing Pan

    Full Text Available Co-morbidity of bladder, bowel, and non-specific pelvic pain symptoms is highly prevalent in women. Little evidence is present on modulation of pelvic pain syndromes by sex hormones, therefore, the objective of this study was to clarify the effects of hormonal fluctuations within the estrous cycle on regulatory neuropeptides in female rats using a model of neurogenic bladder dysfunction. The estrous cycle in female rats (Sprague-Dawley, 230-250 g was assessed by vaginal smears and weight of uterine horns. Neurogenic bladder dysfunction was induced by a single inflammatory insult to the distal colon. Protein expression of calcitonin gene related peptide (CGRP, substance P (SP, nerve growth factor (NGF, and brain derived neurotrophic factor (BDNF in the pelvic organs, sensory ganglia and lumbosacral spinal cord was compared in rats in proestrus (high estrogen vs diestrus (low estrogen. Under normal physiological conditions, concentration of SP and CGRP was similar in the distal colon and urinary bladder during all phases of the estrous cycle, however, acute colitis induced a significant up-regulation of CGRP content in the colon (by 63% and urinary bladder (by 54%, p≤0.05 to control of rats in proestrus. These changes were accompanied by a significant diminution of CGRP content in L6-S2 DRG after colonic treatment, likely associated with its release in the periphery. In rats with high estrogen at the time of testing (proestrus, experimental colitis caused a significant up-regulation of BDNF colonic content from 26.1±8.5 pg/ml to 83.4±32.5 pg/ml (N = 7, p≤0.05 to control and also induced similar effects on BDNF in the urinary bladder which was also up-regulated by 5-fold in rats in proestrus (p≤0.05 to respective control. Our results demonstrate estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract upon colon-bladder cross-sensitization, which may contribute to pain fluctuations in female patients

  10. Over-expression and localization of a host protein on the membrane of Cryptosporidium parvum infected epithelial cells.

    Science.gov (United States)

    Yang, Yi-Lin; Serrano, Myrna G; Sheoran, Abhineet S; Manque, Patricio A; Buck, Gregory A; Widmer, Giovanni

    2009-11-01

    The genus Cryptosporidium includes several species of intestinal protozoan parasites which multiply in intestinal epithelial cells. The impact of this infection on the transcriptome of cultured host cells was investigated using DNA microarray hybridizations. The expression of 14 genes found to be consistently up- or down-regulated in infected cell monolayers was validated with RT PCR. Using immunofluorescence we examined the expression of Protease Activated Receptor-2, which is encoded by one of the up-regulated genes. In infected cells this receptor localized to the host cell membrane which covers the intracellular trophozoites and meronts. This observation indicates that the composition of the host cell membrane is affected by the developing trophozoite, a phenomenon which has not been described previously.

  11. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Wang, Li; Xing, Jie; Cheng, Rui; Shao, Ying; Li, Peng; Zhu, Shengtao; Zhang, Shutian

    2015-01-01

    Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC) is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  12. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  13. Claudin-4 Undergoes Age-Dependent Change in Cellular Localization on Pig Jejunal Villous Epithelial Cells, Independent of Bacterial Colonization

    Directory of Open Access Journals (Sweden)

    J. Alex Pasternak

    2015-01-01

    Full Text Available Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs. In the present study, FcRn gene (FCGRT was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases.

  14. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  15. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures

    DEFF Research Database (Denmark)

    Tanner, V A; Ploug, Thorkil; Tao-Cheng, J H

    1996-01-01

    We demonstrated the subcellular localization of SV2, a transmembrane protein associated with neuroendocrine secretory vesicles, in NGF-treated PC12 cells by preembedding EM immunocytochemistry (ICC), using a small gold probe followed by silver enhancement. The use of a multiwell chamber slide...... substantially improved the efficiency of the preembedding EM ICC procedures for cell cultures. The advantages and related caveats of this method are discussed. SV2 was distinctly localized on dusters of synaptic vesicles and large dense-cored vesicles (LDCV). The distribution of SV2 on these two types...... organelle....

  16. Limited disease of extra-pulmonary small cell carcinoma. Impact of local treatment and nodal status, role of cranial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.C.; Gani, C.; Weinmann, M.; Bamberg, M.; Eckert, F. [Tuebingen Univ. (Germany). Dept. of Radiooncology; Mayer, F. [Tuebingen Univ. (Germany). Dept. of Medical Oncology; Sipos, B. [Tuebingen Univ. (Germany). Dept. of Pathology

    2012-03-15

    As extra-pulmonary small cell carcinoma (EPSCC) is a rare entity of tumors, the available treatment recommendations are mainly based on retrospective analyses and deduction from treatment of small cell lung cancer. The aim of this study was to provide a detailed analysis concerning prognostic factors and treatment modalities. A total of 20 patients with limited disease (LD) of EPSCC treated at our institution from 1999-2009 were retrospectively analyzed. Data were gathered from chart review. Localization, lymph node involvement, as well as local and systemic treatment were documented and their impact on pattern of failure and survival times statistically evaluated. With a median follow-up of 21 months, the estimated median overall- and disease-free survival were 59 and 25 months, respectively. Local control was excellent with 100% at 2 years. Nodal involvement was observed in 74% (n = 14/19) of evaluable patients. However, outcome was not altered by this parameter. Local treatment consisted of surgery in 10 cases, radiotherapy in 7 cases, and a combination of both in 3 cases. Only 3 patients (15%) developed hematogenous central nervous system metastases, while none of the patients received prophylactic cranial irradiation. Nodal involvement did not worsen prognosis. Local control was excellent irrespective of local treatment modality and the leading cause of failure was distant metastasis. Therefore, systemic treatment should not be omitted. Prophylactic cranial irradiation might be dispensable but discussed for head and neck malignancies.

  17. Modifying the NH2 and COOH termini of aquaporin-5: effects on localization in polarized epithelial cells.

    Science.gov (United States)

    Wellner, Robert B; Hong, Sohee; Cotrim, Ana P; Swaim, William D; Baum, Bruce J

    2005-01-01

    To reengineer polarized epithelial cell functions directly in situ, or ex vivo in the fabrication of an artificial organ, it is necessary to understand mechanisms that account for polarized membrane sorting. We have used the aquaporins (AQPs), a family of homotetrameric water channel proteins, as model membrane proteins for this purpose. AQP monomers contain six transmembrane-spanning domains linked by five interconnecting loops, with the NH2 and COOH termini residing in the cytosol. AQP5 is localized in the apical membranes of several different epithelia in vivo, and in stably transfected MDCK-II cells grown as a polarized monolayer. We wished to identify a structural region(s) within rat AQP5 (rAQP5) important for apical localization, and to study the MDCK-II cell localization of rAQP5s modified in either their NH2 or COOH terminus. We show that the NH2- terminal region does not play a major role in apical localization as deletion of the NH2 terminus produced a modified rAQP5 construct (AQP5-NT(del)) that was stably expressed and localized primarily to the apical membranes of MDCK-II cells. Attachment of a FLAG epitope to the NH2 terminus of AQP5 (AQP5(flag) construct) also did not perturb apical localization. In addition, we found that the exchange of NH2-terminal regions between rAQP5 and human AQP1 (hAQP1; a nonpolarized AQP isoform) produced a modified rAQP5 construct (AQP5-1NT) and a modified hAQP1 construct (AQP1-5NT), each of which localized as the parental AQP (apically, and to both apical and basolateral membranes, respectively). In contrast, we found that deletion of the COOH terminus resulted in a modified rAQP5 construct (AQP5-CT(del)) that was unstably expressed and localized to intracellular site(s) in MDCK-II cells. Substitution of the COOH terminus of AQP1 with the COOH terminus of AQP5 also produced a construct (AQP1-5CT) transiently expressed in intracellular compartment(s). However, substitution of the COOH terminus of rAQP5 with the COOH

  18. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Costello, F.; Huhtanen, M.;

    1996-01-01

    Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP...

  19. Acute esophagitis for patients with local-regional advanced non small cell lung cancer treated with concurrent chemoradiotherapy

    DEFF Research Database (Denmark)

    Pan, Yi; Brink, Carsten; Knap, Marianne;

    2016-01-01

    PURPOSE: Esophagitis is common in patients treated with definitive radiotherapy for local-regional advanced non small cell lung cancer (NSCLC). The purpose of this study was to estimate the dose-effect relationship using clinical and dosimetric parameters in patients receiving intensity modulated...

  20. Limited value of technetium 99m-labeled red cell scintigraphy in localization of lower gastrointestinal bleeding

    International Nuclear Information System (INIS)

    The aim of this study was to assess the accuracy of technetium 99m-labeled red cell scintigraphy in localizing the site of lower gastrointestinal bleeding. The outcome of 203 patients undergoing technetium 99m-labeled red cell scintigraphy was reviewed, and the scan result was compared with the true site of bleeding. The true site of bleeding was determined by other methods including angiography and surgical pathology. Fifty-two scans (26%) were positive and indicated a specific site of bleeding. A definitive bleeding site was identified in 22 patients by other means and correlated with the technetium scan in only 9 cases. The nuclear scan was incorrect in the remaining 13 cases, implying a localization error of 25% (13 of 52). A subgroup of 19 patients with a positive scan underwent a surgical procedure directed by the nuclear scan. Eight of these 12 patients had incorrect surgical procedures based upon findings of more definitive tests, indicating a surgical error of 42% (8 of 19). We conclude that the technetium 99m-labeled red cell scan's ability to accurately localize the site of lower gastrointestinal bleeding is limited. Furthermore, performing a surgical procedure that relies exclusively on localization by red cell scintigraphy will produce an undesirable result in at least 42% of patients

  1. Limited value of technetium 99m-labeled red cell scintigraphy in localization of lower gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J.M.; Pezim, M.E. (Univ. of British Columbia, Vancouver (Canada))

    1990-05-01

    The aim of this study was to assess the accuracy of technetium 99m-labeled red cell scintigraphy in localizing the site of lower gastrointestinal bleeding. The outcome of 203 patients undergoing technetium 99m-labeled red cell scintigraphy was reviewed, and the scan result was compared with the true site of bleeding. The true site of bleeding was determined by other methods including angiography and surgical pathology. Fifty-two scans (26%) were positive and indicated a specific site of bleeding. A definitive bleeding site was identified in 22 patients by other means and correlated with the technetium scan in only 9 cases. The nuclear scan was incorrect in the remaining 13 cases, implying a localization error of 25% (13 of 52). A subgroup of 19 patients with a positive scan underwent a surgical procedure directed by the nuclear scan. Eight of these 12 patients had incorrect surgical procedures based upon findings of more definitive tests, indicating a surgical error of 42% (8 of 19). We conclude that the technetium 99m-labeled red cell scan's ability to accurately localize the site of lower gastrointestinal bleeding is limited. Furthermore, performing a surgical procedure that relies exclusively on localization by red cell scintigraphy will produce an undesirable result in at least 42% of patients.

  2. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  3. Differential localization and high expression of SURVIVIN splice variants in human embryonic stem cells but not in differentiated cells implicate a role for SURVIVIN in pluripotency

    Directory of Open Access Journals (Sweden)

    Amber N. Mull

    2014-03-01

    Full Text Available The BIRC5 gene encodes the oncofetal protein SURVIVIN, as well as four additional splice variants (ΔEx3, 2B, 3B and 2α. SURVIVIN, an inhibitor of apoptosis, is also a chromosomal passenger protein (CPP. Previous results have demonstrated that SURVIVIN is expressed at high levels in embryonic stem cells and inhibition of SURVIVIN function results in apoptosis, however these studies have not investigated the other four splice variants. In this study, we demonstrate that all variants are expressed at significantly higher levels in human embryonic stem (hES cells than in differentiated cells. We examined the subcellular localization of the three most highly expressed variants. SURVIVIN displayed canonical CPP localization in mitotic cells and cytoplasmic localization in interphase cells. In contrast, SURVIVIN–ΔEx3 and SURVIVIN–2B did not localize as a CPP; SURVIVIN–ΔEx3 was found constitutively in the nucleus while SURVIVIN–2B was distributed along the chromosomes during mitosis and also to the mitotic spindle poles. We used inducible shRNA against SURVIVIN to inhibit expression in a titratable fashion. Using this system, we reduced the mRNA levels of these three variants to approx. 40%, resulting in a concomitant reduction of OCT4 and NANOG mRNA, suggesting a role for the SURVIVIN variants in pluripotency.

  4. Localization of lower gastrointestinal hemorrhage. Experience with red blood cells labeled in vitro with technetium Tc 99m

    International Nuclear Information System (INIS)

    Seventy-six patients clinically suspected of having lower gastrointestinal bleeding were studied by scintigraphy utilizing red blood cells labeled in vitro with technetium Tc 99m. Sixteen patients required emergency surgery; bleeding was accurately localized in 15 (94%). One patient (6%) had a normal scan. A 20-month mean follow-up of the 16 patients showed no recurrent bleeding. Of 60 patients not requiring emergency surgery, bleeding was localized in 11, but the bleeding ceased. Forty-nine of the 60 patients had normal scans and had no further hemorrhaging during hospitalization. A 21-month mean follow-up of 38 of the 49 patients showed no further bleeding episodes or surgical procedures in 29 patients; however, eight patients required surgical procedures, including seven for gastrointestinal malignancies. Scanning of red blood cells labeled in vitro with 99mTc is accurate and efficacious in localization of bleeding sites that require emergency surgery for lower gastrointestinal hemorrhage

  5. Combined Chemoradiotherapy vs Radiotherapy Alone for Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyeon Ju; Suh, Hyun Suk; Kim, Chul Soo; Kim, Re Hwe; Kim, Sung Rok [Inje University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Purpose : The traditional approach with surgery and/or radiotherapy(RT) for advanced head and neck cancer provides anticipated cure rates of 10-65% depending on stages and sites. Recently, combined modality with chemotherapy have been extensively investigated in attempts to improve survival and local control. We retrospectively analysed our experience of 31 patients with advanced head and neck cancer. Methods and Materials : From November 1983 to October 1994, 31 patients with Stage II and IV squamous cell head and neck cancer were treated with RT. Sixteen patients were treated with RT alone. and 15 patients were treated with combined RT plus chemotherapy. All patients were treated with 4-MV LINAC and radiation dose ranged from 5000 cGy to 7760 cGy(median 7010 cGy). In combined group. 7 patients were treated with cis-platin plus 5-FU, 2 patients were treated with methotrexate plus leucovorin plus 5-FU plus cisplatin or carboplatin, and 6 patients were treated with cisplatin as a radiosensitizer. Results : Median follow up period was 16 months (range 4-134 months). The major responses (CR+PR) were noted in 10 patient (66.6%) of the RT alone group and 14 patient (93.3%) of the chemoradiation group. There was no statistical difference in CR rate between the two groups. The overall survival rates at 5 years were 23.4% in the radiation alone group. 23.5% in the chemoradiation group. Disease-free survival rates at 3 year were 44.5% in the radiation alone group. 40% in the chemoradiation group. There was no statistical differences in overall survival rates and disease free survival rates between the two groups. Local recurrences occurred in 71.5% of the radiation alone group. 72.7% of the chemoradiation group and distant metastasis occurred in 14.4% of radiation alone group. 9.1% of the chemoradiation group. The frequencies of complications were comparable in both groups except hematologic toxicity. Conclusion : Total response rates in the combined chemotherapy and

  6. Button sequestrum in a case of localized Langerhans' cell histiocytosis of the ilium: case report

    Energy Technology Data Exchange (ETDEWEB)

    Tordeur, M. [Pitie-Salpetriere Teaching Hospital, Radiology Dept., Paris (France); Wybier, M. [Lariboisiere Teaching Hospital, Paris (France); Laporte, J.L. [Pitie-Salpetriere Teaching Hospital, Pathology Dept., Paris (France); Grenier, P. [Pitie-Salpetriere Teaching Hospital, Radiology Dept., Paris (France); Laredo, J.D. [Lariboisiere Teaching Hospital, Paris (France)

    2000-04-15

    Langerhans' cell histiocytosis (LCH) is characterized by a proliferation of cells exhibiting the same immunohistochemical and ultra-structural characteristics as Langerhans' cells of the epidermis. Eosinophilic granuloma, chronic polyostotic disease (Hand-Schuller-Christian disease) and multisystemic disease (Letterer-Siwe disease) all belong to the spectrum LCH. Osseous lesions are the most common findings. the radiological appearance of skeletal LCH depends on the site and on disease activity. Button sequestrum has been described as uncommon in LCH of the skull and exceedingly rare in LCH at other sites. We report a case of localized LCH of the ilium with a button sequestrum. (author)

  7. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, G H; Hösli, E; Belhage, B;

    1991-01-01

    GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA/benzodiazepine/chloride channel complex...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...... in dissociated primary cultures of cerebellar astrocytes....

  8. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Directory of Open Access Journals (Sweden)

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  9. Localization of Core Planar Cell Polarity Proteins, PRICKLEs, in Ameloblasts of Rat Incisors: Possible Regulation of Enamel Rod Decussation

    International Nuclear Information System (INIS)

    To confirm the possible involvement of planar cell polarity proteins in odontogenesis, one group of core proteins, PRICKLE1, PRICKLE2, PRICKLE3, and PRICKLE4, was examined in enamel epithelial cells and ameloblasts by immunofluorescence microscopy. PRICKLE1 and PRICKLE2 showed similar localization in the proliferation and secretory zones of the incisor. Immunoreactive dots and short rods in ameloblasts and stratum intermedium cells were evident in the proliferation to differentiation zone, but in the secretion zone, cytoplasmic dots decreased and the distal terminal web was positive for PRICKLE1 and PRICKLE2. PRICKLE3 and PRICKLE4 showed cytoplasmic labeling in ameloblasts and other enamel epithelial cells. Double labeling of PRICKLE2 with VANGL1, which is another planar cell polarity protein, showed partial co-localization. To examine the transport route of PRICKLE proteins, PRICKLE1 localization was examined after injection of a microtubule-disrupting reagent, colchicine, and was compared with CX43, which is a membrane protein transported as vesicles via microtubules. The results confirmed the retention of immunoreactive dots for PRICKLE1 in the cytoplasm of secretory ameloblasts of colchicine-injected animals, but fewer dots were observed in control animals. These results suggest that PRICKLE1 and PRICKLE2 are transported as vesicles to the junctional area, and are involved in pattern formation of distal junctional complexes and terminal webs of ameloblasts, further implying a role in the formed enamel rod arrangement

  10. Localized Langerhans cell histiocytosis masquerading as Brodie's abscess in a 2-year-old child: a case report

    Science.gov (United States)

    Chang, Wei-Fang; Hsu, Yi-Chih; Wu, Yi-Der; Kuo, Chun-Lang; Huang, Guo-Shu

    2016-01-01

    Langerhans cell histiocytosis (LCH), formerly known as histiocytosis X, refers to a spectrum of diseases characterized by idiopathic proliferation of histiocytes that produce either focal (localized LCH) or systemic manifestations (Hand-Schüller-Christian disease and Letterer-Siwe disease). Localized LCH accounts for approximately 60-70 % of all LCH cases. Osseous involvement is the most common manifestation and typically involves the flat bones, along with lesions of the skull, pelvis, and ribs. Localized LCH in bone shows a wide spectrum of clinical manifestations and radiologic features that may mimic those of infections as well as benign and malignant tumors. The diagnostic imaging findings of localized LCH are also diverse and challenging. The penumbra sign is a common and characteristic magnetic resonance imaging (MRI) feature of Brodie's abscess, but is rarely seen in localized LCH. In this report, we describe a case of localized LCH misdiagnosed as Brodie's abscess in a 2-year-old child based on clinical symptoms, laboratory findings, and pre-diagnostic MRI findings (penumbra sign). Therefore, the penumbra sign is not sufficient to clearly establish the diagnosis of Brodie's abscess, and the differential diagnosis of localized LCH should be considered when a child with an osteolytic lesion presents with a penumbra sign. PMID:27065773

  11. Localized Langerhans cell histiocytosis masquerading as Brodie's abscess in a 2-year-old child: a case report.

    Science.gov (United States)

    Chang, Wei-Fang; Hsu, Yi-Chih; Wu, Yi-Der; Kuo, Chun-Lang; Huang, Guo-Shu

    2016-01-01

    Langerhans cell histiocytosis (LCH), formerly known as histiocytosis X, refers to a spectrum of diseases characterized by idiopathic proliferation of histiocytes that produce either focal (localized LCH) or systemic manifestations (Hand-Schüller-Christian disease and Letterer-Siwe disease). Localized LCH accounts for approximately 60-70 % of all LCH cases. Osseous involvement is the most common manifestation and typically involves the flat bones, along with lesions of the skull, pelvis, and ribs. Localized LCH in bone shows a wide spectrum of clinical manifestations and radiologic features that may mimic those of infections as well as benign and malignant tumors. The diagnostic imaging findings of localized LCH are also diverse and challenging. The penumbra sign is a common and characteristic magnetic resonance imaging (MRI) feature of Brodie's abscess, but is rarely seen in localized LCH. In this report, we describe a case of localized LCH misdiagnosed as Brodie's abscess in a 2-year-old child based on clinical symptoms, laboratory findings, and pre-diagnostic MRI findings (penumbra sign). Therefore, the penumbra sign is not sufficient to clearly establish the diagnosis of Brodie's abscess, and the differential diagnosis of localized LCH should be considered when a child with an osteolytic lesion presents with a penumbra sign.

  12. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors

    Science.gov (United States)

    Zhang, Peisheng; Chen, Lei; Baird, Jason R.; Demidenko, Eugene; Turk, Mary Jo; Hoopes, P. Jack; Conejo-Garcia, Jose R.; Fiering, Steven

    2014-01-01

    Combinatorial use of iron oxide nanoparticles (IONPs) and an alternating magnetic filed (AMF) can induce local hyperthermia in tumors in a controlled and uniform manner. Heating B16 primary tumors at 43°C for 30 minutes activated dendritic cells (DCs) and subsequently CD8+ T cells in the draining lymph node (dLN) and conferred resistance against rechallenge with B16 (but not unrelated Lewis Lung carcinoma) given 7 days post hyperthermia on both the primary tumor side and the contralateral side in a CD8+ T cell-dependent manner. Mice with heated primary tumors also resisted rechallenge given 30 days post hyperthermia. Mice with larger heated primary tumors had greater resistance to secondary tumors. No rechallenge resistance occurred when tumors were heated at 45°C. Our results demonstrate the promising potential of local hyperthermia treatment applied to identified tumors in inducing anti-tumor immune responses that reduce the risk of recurrence and metastasis. PMID:24566274

  13. Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells

    International Nuclear Information System (INIS)

    Lymphocyte infiltration is a common feature of radiation-induced pneumonitis and fibrosis, but their contribution to the pathogenic processes is still unclear. Here, we addressed the impact of thorax irradiation on the T cell compartment with a focus on immunosuppressive regulatory T cells (Treg). C57BL/6 wild type mice (WT) received anesthesia only (sham controls, 0 Gy) or were exposed to a single dose of whole thorax irradiation (15 Gy). Immune cells from lung tissue, spleen, and cervical lymph nodes were collected 10 to 84 days post-irradiation and phenotypically characterized by flow cytometry. Whole thorax irradiation provoked an increased influx of CD3+ T cells at 42 and 84 days post-irradiation. In contrast, local irradiation caused a sustained reduction in CD3+ T cells in peripheral lymphoid tissues. Interestingly, we observed a significant local and systemic increase in the fraction of CD4+ T cells expressing the transcription factor forkhead box P3 (FoxP3), the phenotypic marker for murine Treg, at day 21 post-irradiation. The accumulation of Treg was associated with increased levels of T cells expressing surface proteins characteristic for recruitment and immunosuppressive activity, e.g. CD103, CTLA-4 and CD73. Importantly, Treg isolated at this time point were able to suppress CD4+ effector T cells to a similar extent as Treg isolated from control mice. The response of the adaptive immune system to whole thorax irradiation is characterized by local immunoactivation and systemic immunosuppression. The transient accumulation of immunosuppressive CD4+ FoxP3+ Treg may be required to protect the lung against excessive inflammation-induced tissue damage. Further investigations shall define the mechanisms underlying the accumulation of Treg and their role for the pathogenesis of radiation-induced lung disease

  14. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Dyrda

    Full Text Available BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+ and Cl(- currents were strictly dependent on the presence of Ca(2+. The Ca(2+-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+ permeability (PCa. These results indicate that local membrane deformations can transiently activate a Ca(2+ permeability pathway leading to increased [Ca(2+](i, secondary activation of Ca(2+-sensitive K(+ channels (Gardos channel, IK1, KCa3.1, and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+-mediated effects observed during the normal aging process of red blood cells, and

  15. Dose escalation for unresectable locally advanced non-small cell lung cancer: end of the line?

    Science.gov (United States)

    Hong, Julian C; Salama, Joseph K

    2016-02-01

    Radiation Therapy Oncology Group (RTOG) 0617 was a randomized trial that investigated both the impact of radiation dose-escalation and the addition of cetuximab on the treatment of non-small cell lung cancer (NSCLC). The results of RTOG 0617 were surprising, with the dose escalation randomization being closed prematurely due to futility stopping rules, and cetuximab ultimately showing no overall survival benefit. Locally advanced unresectable NSCLC has conventionally been treated with concurrent chemoradiation. Though advances in treatment technology have improved the ability to deliver adequate treatment dose, the foundation for radiotherapy (RT) has remained the same since the 1980s. Since then, progressive studies have sought to establish the safety and efficacy of escalating radiation dose to loco-regional disease. Though RTOG 0617 did not produce the anticipated result, much interest remains in dose escalation and establishing an explanation for the findings of this study. Cetuximab was also not found to provide a survival benefit when applied to an unselected population. However, planned retrospective analysis suggests that those patients with high epidermal growth factor receptor (EGFR) expression may benefit, suggesting that cetuximab should be applied in a targeted fashion. We discuss the results of RTOG 0617 and additional findings from post-hoc analysis that suggest that dose escalation may be limited by normal tissue toxicity. We also present ongoing studies that aim to address potential causes for mortality in the dose escalation arm through adaptive or proton therapy, and are also leveraging additional concurrent systemic agents such as tyrosine kinase inhibitors (TKIs) for EGFR-activating mutations or EML4-ALK rearrangements, and poly (ADP-ribose) polymerase (PARP) inhibitors.

  16. Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells

    Science.gov (United States)

    Nedukha, E. M.

    The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.

  17. Intracellular ZnO Nanorods Conjugated with Protoporphyrin for Local Mediated Photochemistry and Efficient Treatment of Single Cancer Cell

    Directory of Open Access Journals (Sweden)

    Larsson Per-Olof

    2010-01-01

    Full Text Available Abstract ZnO nanorods (NRs with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 μm diameter by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME, which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes.

  18. A Case for Distributed Control of Local Stem Cell Behavior in Plants.

    Science.gov (United States)

    Rahni, Ramin; Efroni, Idan; Birnbaum, Kenneth D

    2016-09-26

    The root meristem has a centrally located group of mitotically quiescent cells, to which current models assign a stem cell organizer function. However, evidence is emerging for decentralized control of stem cell activity, whereby self-renewing behavior emerges from the lack of cell displacement at the border of opposing differentiation gradients. We term this a "stagnation" model due to its reliance on passive mechanics. The position of stem cells is established by two opposing axes that reciprocally control each other's differentiation. Such broad tissue organization programs would allow plants, like some animal systems, to rapidly reconstitute stem cells from non-stem-cell tissues. PMID:27676436

  19. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    Directory of Open Access Journals (Sweden)

    Irene L Ibañez

    Full Text Available The Cyclin-dependent kinase inhibitor 1B (p27Kip1 is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2O(2 in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p at serine 10 (S10 and at threonine 198 (T198 because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2O(2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2O(2 (0.1 µM to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2O(2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization

  20. Altered Localization of Retinoid X Receptor α Coincides with Loss of Retinoid Responsiveness in Human Breast Cancer MDA-MB-231 Cells

    OpenAIRE

    Tanaka, T; Dancheck, B. L.; Trifiletti, L. C.; Birnkrant, R. E.; Taylor, B J; Garfield, S. H.; Thorgeirsson, U; De Luca, L M

    2004-01-01

    To understand the mechanism of retinoid resistance, we studied the subcellular localization and function of retinoid receptors in human breast cancer cell lines. Retinoid X receptor α (RXRα) localized throughout the nucleoplasm in retinoid-sensitive normal human mammary epithelial cells and in retinoid-responsive breast cancer cell line (MCF-7), whereas it was found in the splicing factor compartment (SFC) of the retinoid-resistant MDA-MB-231 breast cancer cell line and in human breast carcin...

  1. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines

    Directory of Open Access Journals (Sweden)

    Duncan Alice

    2012-10-01

    Full Text Available Abstract Background Fas expression and Fas-induced apoptosis are mechanisms attributed to the selective destruction of cells of the corpus luteum (CL during luteal regression. In certain cell-types, sensitivity to these death-inducing mechanisms is due to the loss or cleavage of keratin-containing intermediate filaments. Specifically, keratin 8/18 (K8/K18 filaments are hypothesized to influence cell death in part by regulating Fas expression at the cell surface. Methods Here, Fas expression on bovine luteal cells was quantified by flow cytometry during the early (Day 5, postovulation and late stages (Days 16–18, postovulation of CL function, and the relationship between Fas expression, K8/K18 filament expression and cytokine-induced cell death in vitro was evaluated. Results Both total and cell surface expression of Fas on luteal cells was greater for early versus late stage bovine CL (89% vs. 44% of cells for total Fas; 65% vs.18% of cells for cell surface Fas; respectively, P0.05, n=4 CL/stage, despite evidence these conditions increased Fas expression on HepG2 cells (P0.05 or stage of CL (P>0.05, n= 4 CL/stage on this outcome. Conclusion In conclusion, we rejected our null hypothesis that the cell surface expression of Fas does not differ between luteal cells of early and late stage CL. The results also did not support the idea that K8/K18 filaments influence the expression of Fas on the surface of bovine luteal cells. Potential downstream effects of these filaments on death signaling, however, remain a possibility. Importantly, the elevated expression of Fas observed on cells of early stage bovine CL compared to late stage bovine CL raises a provocative question concerning the physiological role(s of Fas in the corpus luteum, particularly during early luteal development.

  2. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem.

    Science.gov (United States)

    Burian, Agata; Ludynia, Michal; Uyttewaal, Magalie; Traas, Jan; Boudaoud, Arezki; Hamant, Olivier; Kwiatkowska, Dorota

    2013-12-01

    Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.

  3. Correlation of Local FOXP3-Expressing T Cells and Th1-Th2 Balance in Perennial Allergic Nasal Mucosa

    Directory of Open Access Journals (Sweden)

    Hideaki Shirasaki

    2011-01-01

    Full Text Available Regulatory T cells (Treg play some important roles in allergic rhinitis. The most specific marker for Treg is FOXP3, a recently identified transcription factor that is essential for Treg development. In order to clarify the levels of Treg in allergic nasal mucosa, we studied the relationship between FOXP3-expressing cells and Th1-Th2 balance in nasal mucosa by means of immunohistochemistry. Human turbinates were obtained after turbinectomy from 26 patients (14 patients with perennial allergic rhinitis and 12 patients with nonallergic rhinitis. To identify the cells expressing the FOXP3 protein, double immunostaining was performed by using anti-FOXP3 antibody and anti-CD3 antibody. There was no significant difference in the percentage of FOXP3+CD3+ cells among CD3+ cells in the nasal mucosa of two groups. The proportion of FOXP3+CD3+ cells tend to be correlated positively with GATA3+CD3+ cells/T-bet+CD3+ cells ratio (=0.56, =0.04. A positive correlation with GATA3+CD3+/T-bet+CD3+ ratio and FOXP3+CD3+/CD3+ ratio suggests the role of local regulatory T cells as a minimal control of the chronic allergen exposure in nasal mucosa.

  4. Development of confocal immunofluorescence FRET microscopy to Investigate eNOS and GSNOR localization and interaction in pulmonary endothelial cells

    Science.gov (United States)

    Rehman, Shagufta; Brown-Steinke, Kathleen; Palmer, Lisa; Periasamy, Ammasi

    2015-03-01

    Confocal FRET microscopy is a widely used technique for studying protein-protein interactions in live or fixed cells. Endothelial nitric oxide synthase (eNOS) and S-nitrosoglutathione reductase (GSNOR) are enzymes involved in regulating the bioavailability of S-nitrosothiols (SNOs) in the pulmonary endothelium and have roles in the development of pulmonary arterial hypertension. Labeling of endogenous proteins to better understand a disease process can be challenging. We have used immunofluorescence to detect endogenous eNOS and GSNOR in primary pulmonary endothelial cells to co-localize these proteins as well as to study their interaction by FRET. The challenge has been in selecting the right immunofluorescence labeling condition, right antibody, the right blocking reagent, the right FRET pair and eliminating cross-reactivity of secondary antibodies. We have used Alexa488 and Alexa568 as a FRET pair. After a series of optimizations, the data from Confocal Laser Scanning Microscopy (CLSM) demonstrate co-localization of eNOS and GSNOR in the perinuclear region of the pulmonary endothelial cell primarily within the cis-Golgi with lower levels of co-localization seen within the trans-Golgi. FRET studies demonstrate, for the first time, interaction between eNOS and GSNOR in both murine and bovine pulmonary endothelial cells. Further characterization of eNOSGSNOR interaction and the subcellular location of this interaction will provide mechanistic insight into the importance of S-nitrosothiol signaling in pulmonary biology, physiology and pathology.

  5. Construction of a fusion protein expression vector MK-EGFP and its subcellular localization in different carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Di-Yong Xu; Xing Yao; Li-Shan Min; Ning Zhao; Bo-Ying Xu; Zheng-Ping Xu; Yong-Liang Lu

    2006-01-01

    AIM: To construct an expression plasmid encoding human wild-type midkine (MK) and enhanced green fluorescence protein (EGFP) fusion protein (MK-EGFP), and to analyze the subcellular localization of MK in different carcinoma cell lines.METHODS: Two kinds of MK coding sequences with or without signal peptide were cloned into plasmid pEGFP-N2, and the recombinant plasmids constructed were introduced into HepG2, MCF7 and DU145 cells,respectively, by transfection. With the help of laser scanning confocal microscopy, the expression and subcellular localization of MK-GFP fusion protein could be detected.RESULTS: Compared with the GFP control, in which fluorescence was detected diffusely over the entire cell body except in the nucleolus, both kinds of fusion protein MK-GFP were localized exclusively to the nucleus and accumulated in the nucleolus in the three kinds of cancer cell lines.CONCLUSION: This study reveals the specific nucleolar translocation independent of signal peptide, which may be involved in the mechanism that MK works. It provides valuable evidence for further study on the functions of MK in nucleus and its possible mechanisms, in which ribosomal RNA transcription and ribosome assembly are involved.

  6. Knockdown of dystrophin Dp71 impairs PC12 cells cycle: localization in the spindle and cytokinesis structures implies a role for Dp71 in cell division.

    Directory of Open Access Journals (Sweden)

    Marcela Villarreal-Silva

    Full Text Available The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this protein in both nerve growth factor (NGF-induced neuronal differentiation and cell adhesion by isolation and characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic arrest. Dp71 associates with lamin B1 and β-dystroglycan, proteins involved in aspects of the cell division cycle; therefore, we compared the distribution of Dp71 with that of lamin B1 and β-dystroglycan in PC12 cells at mitosis and cytokinesis by means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and β-dystroglycan in Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division cycle by affecting lamin B1 and β-dystroglycan levels.

  7. Morphological study on permeating efficiency and localization of FCLA and HpD through membrane of lung cancer cell

    Science.gov (United States)

    Wu, Yunxia; Xing, Da; Tang, Yonghong

    2004-07-01

    It is reported that apoptosis of cancer cells in photodynamic therapy (PDT) is caused by 1O2 generated in photosensitization. In order to study the mechanism of this kind of 1O2-induced apoptosis, it is necessary to establish a special technique to dynamically detect intracellular production and localization of 1O2. FCLA, as a chemiluminescence probe to detect singlet oxygen (1O2) and superoxide (O2-.), has been used successfully in photodynamic and sonodynamic diagnosis in tissue level, recently. This paper reported a preliminary result of morphological study on permeating efficiency and localization of FCLA and hematoporphyrin derivative (HpD) through cellular membrane. Human lung cancer cell line (ASTC-a-1) was used in the experiment. The result of this research showed that both HpD and FCLA could permeate through cellular membrane and localize to prinuclear area, when HpD or FCLA was incubated with cells. Although the molecular weight of HpD is close to FCLA's, the permeating efficiency of HpD through membrane was different from that of FCLA. Intracellular FCLA concentration reached a peak after incubation for only 30 - 45 minutes, but amount of HpD in cells approached the equilibrium after incubation for near 22 h. In the experiment, we did not observe the evidence of FCLA or HpD penetrating into nucleolus. This study suggests that it is possibly to use a specific chemiluminescence probe to dynamcially detect the production and localization of 1O2 or 02-. in cell.

  8. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    Directory of Open Access Journals (Sweden)

    Yuan-Ching Chang

    Full Text Available Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2 activity and induced activation of p38 mitogen-activated protein kinase (MAPK and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer.

  9. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Chang, Yuan-Ching; Hsu, Yi-Chiung; Liu, Chien-Liang; Huang, Shih-Yuan; Hu, Meng-Chun; Cheng, Shih-Ping

    2014-01-01

    Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer. PMID:24586874

  10. Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida).

    Science.gov (United States)

    Yushin, Vladimir V; Claeys, Myriam; Bert, Wim

    2016-10-01

    The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of

  11. Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida).

    Science.gov (United States)

    Yushin, Vladimir V; Claeys, Myriam; Bert, Wim

    2016-10-01

    The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of

  12. Localization of the Arabidopsis Senescence- and Cell Death-Associated BFN1 Nuclease: From the ER to Fragmented Nuclei

    Institute of Scientific and Technical Information of China (English)

    Sarit Farage-Barhom; Shaul Burd; Lilian Sonego; Ana Mett; Eduard Belausov; David Gidoni; Amnon Lers

    2011-01-01

    Plant senescence- or PCD-associated nucleases share significant homology with nucleases from different organisms.However,knowledge of their function is limited.Intracellular localization of the Arabidopsis senescenceand PCD-associated nuclease BFN1 was investigated.Analysis of BFN1-GFP localization in transiently transformed tobacco protoplasts revealed initial localization in filamentous structures spread throughout the cytoplasm,which then clustered around the nuclei as the protoplasts senesced.These filamentous structures were identified as being of ER origin.In BFN1GFP-transgenic Arabidopsis plants,similar localization of BFN1-GFP was observed in young leaves,that is,in filamentous structures that reorganized around the nuclei only in senescing cells.In late senescence,BFN1-GFP was localized with fragmented nuclei in membrane-wrapped vesicles.BFN1's postulated function as a nucleic acid-degrading enzyme in senescence and PCD is supported by its localization pattern.Our results suggest the existence of a dedicated compartment mediating nucleic acid degradation in senescence and PCD processes.

  13. Differential localization of LGR5 and Nanog in clusters of colon cancer stem cells.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Freyhan, Ora; Fabrikant, Yakov; Melzer, Ehud; Givol, David

    2013-05-01

    One paradigm of cancer development claims that cancer emerges at the niche of tissue stem cells and these cells continue to proliferate in the tumor as cancer stem cells. LGR5, a membrane receptor, was recently found to be a marker of normal colon stem cells in colon polyps and is also expressed in colon cancer stem cells. Nanog, an embryonic stem cell nuclear factor, is expressed in several embryonic tissues, but Nanog expression is not well documented in cancerous stem cells. Our aim was to examine whether both LGR5 and Nanog are expressed in the same clusters of colon stem cells or cancer stem cells, using immunocytochemistry with specific antibodies to each antigen. We analyzed this aspect using paraffin embedded tumor tissue sections obtained from 18 polyps and 36 colon cancer specimens at stages I-IV. Antibodies to LGR5 revealed membrane and cytoplasm immunostaining of scattered labeled cells in normal crypts, with no labeling of Nanog. However, in close proximity to the tumors, staining to LGR5 was much more intensive in the crypts, including that of the epithelial cells. In cancer tissue, positive LGR5 clusters of stem cells were observed mainly in poorly differentiated tumors and in only a few scattered cells in the highly differentiated tumors. In contrast, antibodies to Nanog mainly stained the growing edges of carcinoma cells, leaving the poorly differentiated tumor cells unlabeled, including the clustered stem cells that could be detected even by direct morphological examination. In polyp tissues, scattered labeled cells were immunostained with antibodies to Nanog and to a much lesser extent with antibodies to LGR5. We conclude that expression of LGR5 is probably specific to stem cells of poorly differentiated tumors, whereas Nanog is mainly expressed at the edges of highly differentiated tumors. However, some of the cell layers adjacent to the carcinoma cell layers that still remained undifferentiated, expressed mainly Nanog with only a few cells

  14. Development and experimental basis of local subretinal technique of xenogenic’s injection stem cells labelled by magnetic perticles

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2014-10-01

    Full Text Available Purpose: is to develop a technique for local subretinal injection of xenogeneic stem cells labeled with magnetic particles and to prove experimentally its effectiveness.Material and methods: We used a line of stem cells HEK-293 GFP,labeled with magnetic particles. The study was made on 84 eyes of 42 chinchilla rabbits 6 months of age, the weight were from 2.5 to 3.5 kg. All right eyes were experimental (42 eyes and all left eyes (42 eyes were the control group. In the experimental group we used original complex of polymer elastic magnetic implant (PEMI with laser probe and fixed it to the sclera, then we made a median vitrectomy and injected HEK-293 GFP under the retina using a specially designed dispenser. In the control group PEMI was not fixed. We examined animals using biomicroscopy, ophthalmoscopy, ultrasound scanning, optical coherence tomography  OCT, computer tomography (CT, morphological study (cryohistological sections in 1, 3, 5, 7, 14 day and 1 month after surgery.Results: According the results of biomicroscopy in observation periods up to 3 days the vascular injection was visualized in the area operation. According the results of ophthalmoscopy and ultrasound scanning in 1 day the local retinal detachment was visualized in the area of local injection of the stem cells, which was not visualized in terms of further observations. CT helped us to confirm the local place of PEMI fixation. The morphological study results showed that cells were located in the subretinal space up to 14 days in the experimental group, and only up 3 days in the control group.Conclusion: The suggested surgical technique enables to control the injection of cells into the subretinal space, reduces the risk of tissue damage and exit cells in the vitreous space. The suggested methodology allows the fixing of the cellular material in the local place of the injection and enables to predict cells`s movement.

  15. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;

    2009-01-01

    in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep......Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  16. The use of fluorescamine as a permeant probe to localize phosphatidylethanolamine in intact friend erythroleukaemic cells

    NARCIS (Netherlands)

    Kamp, J.A.F. op den; Rawyler, A.; Roelofsen, B.

    1984-01-01

    Intact Friend erythroleukaemic cells (Friend cells) were incubated at 0–4°C with increasing amounts of fluorescamine. Phospholipids were extracted and the amounts of phosphatidylethanolamine and of its fluorescamine derivative were determined. (1). The plasma membrane of intact Friend cells appeared

  17. Leucine-enkephalin-like immunoreactivity is localized in luteinizing hormone-producing cells in the axolotl (Ambystoma mexicanum) pituitary.

    Science.gov (United States)

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2014-02-01

    In this study, we used immunohistochemical techniques to determine the cell type of leucine-enkephalin (Leu-ENK)-immunoreactive cells in the axolotl (Ambystoma mexicanum) pituitary. Immunoreactive cells were scattered throughout the pars distalis except for the dorso-caudal portion. These cells were immuno-positive for luteinizing hormone (LH), but they were immuno-negative for adrenocorticotrophic, growth, and thyroid-stimulating hormones, as well as prolactin. Immunoelectron microscopy demonstrated that Leu-ENK-like substance and LH co-localized within the same secretory granules. Leu-ENK secreted from gonadotrophs may participate in LH secretion in an autocrine fashion, and/or may participate in the release of sex steroids together with LH. PMID:24034715

  18. Leucine-enkephalin-like immunoreactivity is localized in luteinizing hormone-producing cells in the axolotl (Ambystoma mexicanum) pituitary.

    Science.gov (United States)

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2014-02-01

    In this study, we used immunohistochemical techniques to determine the cell type of leucine-enkephalin (Leu-ENK)-immunoreactive cells in the axolotl (Ambystoma mexicanum) pituitary. Immunoreactive cells were scattered throughout the pars distalis except for the dorso-caudal portion. These cells were immuno-positive for luteinizing hormone (LH), but they were immuno-negative for adrenocorticotrophic, growth, and thyroid-stimulating hormones, as well as prolactin. Immunoelectron microscopy demonstrated that Leu-ENK-like substance and LH co-localized within the same secretory granules. Leu-ENK secreted from gonadotrophs may participate in LH secretion in an autocrine fashion, and/or may participate in the release of sex steroids together with LH.

  19. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats

    Directory of Open Access Journals (Sweden)

    Shobhit Bhansali

    2015-01-01

    Full Text Available Background & objectives: Bone marrow is a rich source of adult stem cells that can differentiate into various cell types. Administration of mesenchymal stem cells (MSCs in irradiated diabetic rat model has transiently shown to decrease blood glucose level. This study examines the effect of high dose and multiple injections of MSCs on glycemic profile, their localization and regeneration of islet in diabetic Wistar rat. Methods: The study was carried out in male Wistar rats categorized into three groups (n=6, in each group: Group 1 as control, group 2 streptozotocin (STZ (50 mg/kg induced diabetic group and group 3 experimental group; 5-bromo-2-deoxyuridine (BrdU labelled allogenic MSCs were injected in the non-irradiated diabetic rat of the experimental group through tail vein. The blood glucose profile was subsequently monitored at regular intervals. Rats were sacrificed on day 45 and pancreas was examined for localization of BrdU labelled stem cells by immunofluorescence and islet-neogenesis by immunohistochemistry . Results: There was a significant reduction in blood glucose level after administration of MSCs in the experimental group (P<0.001. The presence of BrdU labelled MSCs in islet suggested their localization in the pancreas. Co-expression of anti-BrdU and anti-insulin antibody indicated trans-differentiation / fusion into insulin producing cells evidenced by significant increase in total number of islet (P=0.004 and insulin positive cells ( P<0.0001 in experimental group. Interpretation & conclusions: Our results showed that the MSCs administration in non-irradiated diabetic Wistar rat reduced hyperglycaemia and was accompanied by increased islet-neogengesis, possibly through trans- differentiation/fusion.

  20. Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells.

    Science.gov (United States)

    Robert, Damien; Fayol, Delphine; Le Visage, Catherine; Frasca, Guillaume; Brulé, Séverine; Ménager, Christine; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2010-03-01

    The in vitro generation of engineered tissue constructs involves the seeding of cells into porous scaffolds. Ongoing challenges are to design scaffolds to meet biochemical and mechanical requirements and to optimize cell seeding in the constructs. In this context, we have developed a simple method based on a magnetic tweezer set-up to manipulate, probe, and position magnetic objects inside a porous scaffold. The magnetic force acting on magnetic objects of various sizes serves as a control parameter to retrieve the local viscosity of the scaffolds internal channels as well as the stiffness of the scaffolds pores. Labeling of human stem cells with iron oxide magnetic nanoparticles makes it possible to perform the same type of measurement with cells as probes and evaluate their own microenvironment. For 18 microm diameter magnetic beads or magnetically labeled stem cells of similar diameter, the viscosity was equivalently equal to 20 mPa s in average. This apparent viscosity was then found to increase with the magnetic probes sizes. The stiffness probed with 100 microm magnetic beads was found in the 50 Pa range, and was lowered by a factor 5 when probed with cells aggregates. The magnetic forces were also successfully applied to the stem cells to enhance the cell seeding process and impose a well defined spatial organization into the scaffold. PMID:19932922

  1. Cell Based Autologous Immune Enhancement Therapy (AIET after Radiotherapy in a Locally Advanced Carcinoma of the Cervix

    Directory of Open Access Journals (Sweden)

    Sumana Premkumar

    2013-01-01

    Full Text Available Radiotherapy is the primary form of treatment in patients with locally advanced cervical carcinoma. However for residual disease in the form of the persistent lymph nodes, surgery or chemotherapy is recommended. As surgery is not acceptable by every patient and chemotherapy has associated side effects, we hereby report the positive outcome of in vitro expanded natural killer cell and activated T lymphocyte based autologous immune enhancement therapy (AIET for the residual lymphadenopathy in a patient with locally advanced cervical cancer after radiation. After six transfusions of AIET, there was complete resolution of residual lymph nodes and there was no evidence of local lesion. The patient also reported improvement in quality of life. As AIET has been reported as the least toxic among the available therapies for cancer, combining AIET with conventional forms of therapy in similar patients might not only improve the outcome but may also help the patients achieve a good quality of life.

  2. Localized committed differentiation of neural stem cells based on the topographical regulation effects of TiO2 nanostructured ceramics

    Science.gov (United States)

    Mou, Xiaoning; Wang, Shu; Guo, Weibo; Ji, Shaozheng; Qiu, Jichuan; Li, Deshuai; Zhang, Xiaodi; Zhou, Jin; Tang, Wei; Wang, Changyong; Liu, Hong

    2016-07-01

    In this study, a porous-flat TiO2 micropattern was fabricated with flat and nanoporous TiO2 ceramics for investigating the effect of topography on neural stem cell (NSC) differentiation. This finding demonstrates that localized committed differentiation could be achieved in one system by integrating materials with different topographies.In this study, a porous-flat TiO2 micropattern was fabricated with flat and nanoporous TiO2 ceramics for investigating the effect of topography on neural stem cell (NSC) differentiation. This finding demonstrates that localized committed differentiation could be achieved in one system by integrating materials with different topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01874b

  3. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  4. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    Science.gov (United States)

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly. PMID:19464754

  5. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    Science.gov (United States)

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-01

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  6. Expression of CD44, CD24 and ESA in pancreatic adenocarcinoma cell lines varies with local microenvironment

    Institute of Scientific and Technical Information of China (English)

    Hong-JiWei; TaoYin; ZhuZhu; Peng-FeiShi; YuanTian; Chun-YouWang

    2011-01-01

    BACKGROUND: Emerging evidence suggests that pancreatic adenocarcinoma is hierarchically organized and sustained by pancreatic cancer stem cells. Furthermore, elimination of these cells is possible and therapeutically relevant. This study aimed to investigate the expression patterns of pancreatic cancer stem cell surface markers CD44, CD24 and ESA in pancreatic adenocarcinoma cell lines and explore the influence of their local microenvironment. METHODS: Flow cytometry was used to analyze the expression patterns of CD44, CD24 and ESA in five pancreatic adenocarcinoma cell lines (PANC-1, PC-2, MIA-Paca-2, AsPC-1 and BxPC-3). In addition, the capacity for sphere-formation in serum-free medium of four cell lines (PANC-1, PC-2, MIA-Paca-2 and BxPC-3) was assessed. Then, the same assays were performed when tumor cell spheres were developed. The role of sonic hedgehog (SHH) in cell spheres from PANC-1 and MIA-Paca-2 were also assessed by RT-PCR. RESULTS:  CD44 and CD24 were detected in PANC-1. Only CD44 expression was detected in PC-2, MIA-Paca-2 and AsPC-1. CD44, CD24 and ESA were all detected in BxPC-3. Tumor cell spheres developed in PANC-1 and MIA-Paca-2 in serum-free medium. This was accompanied by an increase in CD24 expression and a decrease in CD44 expression in PANC-1. Interestingly, the expression of CD44 and CD24 returned to initial levels once the medium was changed back from serum-free to serum-containing medium. No significant change in the expression of CD44 was detected in MIA-Paca-2. Furthermore, the relative quantification of SHH mRNA in PANC-1 cell spheres was significantly higher than that in cells cultured in the serum-containing medium. CONCLUSION: The expression patterns of the pancreatic cancer stem cell surface markers CD44, CD24 and ESA were diverse in different pancreatic adenocarcinoma cell lines and changed with their local microenvironment.

  7. Localization and translocation of RhoA protein in the human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To elucidate the localization of RhoA in gastric SGC-7901 cancer cells and its translocation by lysophosphatidic acid (LPA) and/or 8-chlorophenylthio cAMP (CPT-cAMP). METHODS: Immunofluorescence microscopy was used to determine the localization of RhoA. Western blotting was used to detect both endogenous and exogenous RhoA in different cellular compartments (membrane, cytosol, nucleus) and the translocation of RhoA following treatment with LPA, CPT-cAMP, or CPT-cAMP+LPA. RESULTS: Immunofluorescence staining revealed endogenous RhoA to be localized in the membrane, the cytosol, and the nucleus, and its precise localization within the nucleus to be the nucleolus. Western blotting identified both endogenous and exogenous RhoA within different cellular compartments (membrane, cytosol, nucleus, nucleolus). After stimulation with LPA, the amount of RhoA within membrane and nuclear extracts increased, while it decreased in the cytosol fractions. After treatment with CPT-cAMP the amount of RhoA within the membrane and the nuclear extracts decreased, while it increased within the cytosol fraction. Treatment with a combination of both substances led to a decrease in RhoA in the membrane and the nucleus but to an increase in the cytosol. CONCLUSION: In SGC-7901 cells RhoA was found to be localized within the membrane, the cytosol, and the nucleus. Within the nucleus its precise localization could be demonstrated to be the nucleolus. Stimulation with LPA caused a translocation of RhoA from the cytosol towards the membrane and the nucleus; treatment with CPT-cAMP caused the opposite effect. Furthermore, pre-treatment with CPT-cAMP was found to block the effect of LPA.

  8. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy.

    Science.gov (United States)

    Groves, Chris; Reid, Obadiah G; Ginger, David S

    2010-05-18

    The use of organic photovoltaics (OPVs) could reduce production costs for solar cells because these materials are solution processable and can be manufactured by roll-to-roll printing. The nanoscale texture, or film morphology, of the donor/acceptor blends used in most OPVs is a critical variable that can dominate both the performance of new materials being optimized in the lab and efforts to move from laboratory-scale to factory-scale production. Although efficiencies of organic solar cells have improved significantly in recent years, progress in morphology optimization still occurs largely by trial and error, in part because much of our basic understanding of how nanoscale morphology affects the optoelectronic properties of these heterogeneous organic semiconductor films has to be inferred indirectly from macroscopic measurements. In this Account, we review the importance of nanoscale morphology in organic semiconductors and the use of electrical scanning probe microscopy techniques to directly probe the local optoelectronic properties of OPV devices. We have observed local heterogeneity of electronic properties and performance in a wide range of systems, including model polymer-fullerene blends such as poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), newer polyfluorene copolymer-PCBM blends, and even all polymer donor-acceptor blends. The observed heterogeneity in local photocurrent poses important questions, chiefly what information is contained and what is lost when using average values obtained from conventional measurements on macroscopic devices and bulk samples? We show that in many cases OPVs are best thought of as a collection of nanoscopic photodiodes connected in parallel, each with their own morphological and therefore electronic and optical properties. This local heterogeneity forces us to carefully consider the adequacy of describing OPVs solely by "average" properties such as the bulk carrier mobility

  9. Localization of motilin-immunopositive cells in the rat intestine by light microscopic immunocytochemistry.

    Science.gov (United States)

    Sakai, T; Satoh, M; Koyama, H; Iesaki, K; Umahara, M; Fujikura, K; Itoh, Z

    1994-01-01

    Motilin-immunopositive cells (Mo cells) are known to exist in the upper small intestine of many species including man. However, the possible presence of Mo cells in the rat gastrointestine has remained obscure because antiserum against it raised in rabbit was found not to cross-react with motilin in the rat gastrointestine. The present study was designed to investigate the distribution of Mo cells in the rat gastrointestine by the peroxidase-conjugated second antibody method using newly raised chicken anti-motilin serum (CPV3). This antiserum was suggested to recognize the N-terminal region of the motilin molecule by enzyme-linked immunosorbent assays and immunocytochemical absorption test. Mo cells detected in the rat gastrointestine by immunocytochemistry were found to be distributed in the duodenum (1.5 cells/mm2), jejunum (2.2 cells/mm2), and ileum (0.028 cells/mm2), and no positive cells were found in the gastric body, gastric antrum, cecum, colon, or pancreas. The immunopositive cells in the rat intestine were spindle shaped or polygonal, scattered throughout the epithelium of the villi and crypts, and similar to those commonly observed in the upper small intestine of other species. These results indicate for the first time that motilin-immunopositive cells do exist in the rat intestine.

  10. Immunohistochemical localization of polypeptide hormones in pancreatic endocrine cells of a dipnoan fish, Protopterus aethiopicus.

    Science.gov (United States)

    Scheuermann, D W; Adriaensen, D; Timmermans, J P; De Groodt-Lasseel, M H

    1991-01-01

    Light microscopical immunohistochemistry was used to demonstrate the regulatory peptides present in the endocrine pancreas of Protopterus aethiopicus. The peptides studied included insulin, glucagon, pancreatic polypeptide and somatostatin. The results showed that the 4 regulatory peptides commonly detected in the mammalian endocrine pancreas were immunologically discernible in this dipnoan fish. Large amounts of insulin-immunoreactive cells, in the centre of the pancreatic islets, were surrounded by a small rim of glucagon-or pancreatic polypeptide-immunoreactive cells. In addition, adjacent sections stained with anti-glucagon and anti-pancreatic polypeptide revealed that these hormones could be found in the same cells. Somatostatin-positive cells were scattered throughout the islets. Their processes were seen to contact many different endocrine pancreatic cells, suggesting that the somatostatin-immunoreactive cells control the functions of other endocrine pancreatic cells. PMID:1687100

  11. Nano- and microscale holes modulate cell-substrate adhesion, cytoskeletal organization, and -beta1 integrin localization in SV40 human corneal epithelial cells.

    Science.gov (United States)

    Karuri, Nancy W; Porri, Teresa J; Albrecht, Ralph M; Murphy, Christopher J; Nealey, Paul F

    2006-12-01

    Human corneal epithelial cells (HCECs) interface with a basement membrane in vivo that possesses complex nanoscale topographic features. We report that synthetic substrates patterned with nano- and microscale holes differentially modulate the proliferation, shape and adhesion of SV40 human corneal epithelial cells (SV40-HCECs) as a function of feature size: 1) Cell proliferation was inhibited on nanoscale features (features size less than 800 nm in pitch) compared to microscale features or planar substrates in identical culture conditions. 2) Cells on nanoscale holes had a stellate morphology compared to those on microscale features that were more evenly spread. 3) Cells adhered more to nanoscale features than to microscale features when exposed to shear stress in a laminar flow chamber. Transmission electron microscopy showed that cells cultured on the 400 nm pitch patterns had longer and more numerous filopodia and retraction fibers than cells cultured on the 1600 nm pitch patterns. Immunogold labeling of -beta1 integrins revealed that these receptors were localized at the cell periphery and in the aforementioned cytoskeletal elements. Our findings indicate that surface discontinuities and the activation of mechanochemical cell signaling mechanisms may contribute to the observed responses exhibited by SV40-HCECs cultured on nano- and microscale topography.

  12. Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control

    OpenAIRE

    Robinson William; Lewis Karl; Flaig Thomas; Gonzalez Rene; Schefter Tracey E; Kavanagh Brian D; Stinauer Michelle A; Chidel Mark; Glode Michael; Raben David

    2011-01-01

    Abstract Background Melanoma and renal cell carcinoma (RCC) are traditionally considered less radioresponsive than other histologies. Whereas stereotactic body radiation therapy (SBRT) involves radiation dose intensification via escalation, we hypothesize SBRT might result in similar high local control rates as previously published on metastases of varying histologies. Methods The records of patients with metastatic melanoma (n = 17 patients, 28 lesions) or RCC (n = 13 patients, 25 lesions) t...

  13. Intensity-Modulated Radiotherapy versus 3-Dimensional Conformal Radiotherapy Strategies for Locally Advanced Non-Small-Cell Lung Cancer

    OpenAIRE

    Selek, Uğur; Bölükbaşı, Yasemin; Welsh, James W.; Topkan, Erkan

    2014-01-01

    Chemoradiotherapy is the current standard of care in patients with advanced inoperable stage IIIA or IIIB non-small cell lung cancer (NSCLC). Three-dimensional radiotherapy (3DCRT) has been a trusted method for a long time and has well-known drawbacks, most of which could be improved by Intensity Modulated Radiotherapy (IMRT). IMRT is not currently the standard treatment of locally advanced NSCLC, but almost all patients could benefit to a degree in organ at risk sparing, dose coverage confor...

  14. Localization of HPV-18 E2 at Mitochondrial Membranes Induces ROS Release and Modulates Host Cell Metabolism

    OpenAIRE

    Deborah Lai; Chye Ling Tan; Jayantha Gunaratne; Ling Shih Quek; Wenlong Nei; Françoise Thierry; Sophie Bellanger

    2013-01-01

    Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk) HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when an...

  15. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes

    OpenAIRE

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-01-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use....

  16. Association Between the Cytogenetic Profile of Tumor Cells and Response to Preoperative Radiochemotherapy in Locally Advanced Rectal Cancer

    OpenAIRE

    González-González, María; Garcia, Jacinto; Alcazar, José A.; Gutiérrez, María L; Gónzalez, Luis M.; Bengoechea, Oscar; Abad, María M.; Santos-Briz, Angel; Blanco, Oscar; Martín, Manuela; Rodríguez, Ana; Fuentes, Manuel; Muñoz-Bellvis, Luis; ORFAO, ALBERTO; Sayagues, Jose M.

    2014-01-01

    Abstract Neoadjuvant radiochemotherapy to locally advanced rectal carcinoma patients has proven efficient in a high percentage of cases. Despite this, some patients show nonresponse or even disease progression. Recent studies suggest that different genetic alterations may be associated with sensitivity versus resistance of rectal cancer tumor cells to neoadjuvant therapy. We investigated the relationship between intratumoral pathways of clonal evolution as assessed by interphase fluorescence ...

  17. Localization of the catalytic subunit of cyclic AMP-dependent. Protein kinase in cultured cells using a specific antibody

    OpenAIRE

    1982-01-01

    We developed a specific antibody to the catalytic subunit (C-subunit) of cyclic AMP-dependent protein kinase and used it to localize C- subunit in cultured cells. C-subunit antigen was purified from bovine cardiac muscle and cross-linked to hemocyanin with glutaraldehyde. Immunized goat serum showed a low titer of antibody after boosting; it was enriched 100-fold by affinity chromatography on catalytic subunit- Sepharose. The antibody immunoprecipitated C-subunit from type I and type II holoe...

  18. Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation

    Science.gov (United States)

    Coppe, Alessandro; Ferrari, Francesco; Bisognin, Andrea; Danieli, Gian Antonio; Ferrari, Sergio; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Genes co-expressed may be under similar promoter-based and/or position-based regulation. Although data on expression, position and function of human genes are available, their true integration still represents a challenge for computational biology, hampering the identification of regulatory mechanisms. We carried out an integrative analysis of genomic position, functional annotation and promoters of genes expressed in myeloid cells. Promoter analysis was conducted by a novel multi-step method for discovering putative regulatory elements, i.e. over-represented motifs, in a selected set of promoters, as compared with a background model. The combination of transcriptional, structural and functional data allowed the identification of sets of promoters pertaining to groups of genes co-expressed and co-localized in regions of the human genome. The application of motif discovery to 26 groups of genes co-expressed in myeloid cells differentiation and co-localized in the genome showed that there are more over-represented motifs in promoters of co-expressed and co-localized genes than in promoters of simply co-expressed genes (CEG). Motifs, which are similar to the binding sequences of known transcription factors, non-uniformly distributed along promoter sequences and/or occurring in highly co-expressed subset of genes were identified. Co-expressed and co-localized gene sets were grouped in two co-expressed genomic meta-regions, putatively representing functional domains of a high-level expression regulation. PMID:19059999

  19. Intracellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Absence of Nucleolar Accumulation during Infection and after Expression as a Recombinant Protein in Vero Cells

    OpenAIRE

    Rowland, Raymond R. R.; Chauhan, Vinita; Fang, Ying; Pekosz, Andrew; Kerrigan, Maureen; Burton, Miriam D.

    2005-01-01

    The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS)...

  20. Graft-infiltrating cells expressing a CD200 transgene prolong allogeneic skin graft survival in association with local increases in Foxp3(+)Treg and mast cells.

    Science.gov (United States)

    Gorczynski, Reginald M; Chen, Zhiqi; Khatri, Ismat; Yu, Kai

    2011-12-01

    Expression of the molecule CD200 has been reported to increase allograft survival by suppression of inflammation and acquired immunity. In previous studies we have shown that increased skin and cardiac allograft survival in transgenic mice over-expressing CD200 (CD200(tg)) occurs in association with increased intra-graft expression of mRNAs for genes associated with altered T cell subset differentiation. We investigated changes in graft-infiltrating cells, Treg and mast cells in skin grafts post transplantation into control or CD200(tg) mice, using focused gene array and real-time PCR to assess altered gene expression, and FACS, immunohistology and MLC to determine numbers/function of those cells. Graft-infiltrating cells isolated from CD200(tg) recipients suppressed induction of CTL from control lymph node cells in vitro, and contained increased numbers of infiltrating, non-degranulating, mast cells and Foxp3(+)Treg. Mast cells were also evident in graft tissue of control animals, but there these cells showed evidence for degranulation, and fewer Foxp3(+)Treg were present than was the case of CD200(tg) mice. The infusion of a competitive inhibitor of CD200:CD200R interactions, CD200(tr), at high concentrations (50μg/mouse iv) caused rapid rejection of grafts in CD200(tg) mice, mast cell degranulation within graft tissue, and a decrease in Treg infiltrates. These effects were attenuated by simultaneous infusion of the mast cell stabilizer, sodium cromoglycate. We conclude that CD200 expression contributes to graft prolongation through local suppression of mast cell degranulation, attraction/expansion of Treg, and attenuation of T cell effector activation. PMID:21801836

  1. Predictors of Individual Tumor Local Control After Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Garsa, Adam A. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Badiyan, Shahed N.; DeWees, Todd; Simpson, Joseph R.; Huang, Jiayi; Drzymala, Robert E. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Barani, Igor J. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Dowling, Joshua L.; Rich, Keith M.; Chicoine, Michael R.; Kim, Albert H.; Leuthardt, Eric C. [Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri (United States); Robinson, Clifford G., E-mail: crobinson@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-10-01

    Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. A P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective

  2. A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death

    OpenAIRE

    Domínguez, Fernándo; Moreno Onorato, Francisco Javier; Cejudo Fernández, Francisco Javier

    2003-01-01

    The aleurone layer of cereal grains undergoes a gibberellin-regulated process of programmed cell death (PCD) following germination. We have applied a combination of ultrastructural and biochemical approaches to analyze aleurone PCD in intact wheat grains. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay revealed that PCD was initiated in aleurone cells proximal to the embryo and then extended to distal cells. DNA fragmentation and terminal deoxynucleotidyl trans...

  3. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.

    Science.gov (United States)

    Kong, Tao; Zeng, Jie; Wang, Xiaoping; Yang, Xiaoyan; Yang, Jing; McQuarrie, Steve; McEwan, Alexander; Roa, Wilson; Chen, Jie; Xing, James Z

    2008-09-01

    Gold nanoparticles (GNPs) and modified GNPs having two kinds of functional molecules, cysteamine (AET) and thioglucose (Glu), are synthesized. Cell uptake and radiation cytotoxicity enhancement in a breast-cancer cell line (MCF-7) versus a nonmalignant breast-cell line (MCF-10A) are studied. Transmission electron microscopy (TEM) results show that cancer cells take up functional Glu-GNPs significantly more than naked GNPs. The TEM results also indicate that AET-capped GNPs are mostly bound to the MCF-7 cell membrane, while Glu-GNPs enter the cells and are distributed in the cytoplasm. After MCF-7 cell uptake of Glu-GNPs, or binding of AET-GNPs, the in vitro cytotoxicity effects are observed at 24, 48, and 72 hours. The results show that these functional GNPs have little or no toxicity to these cells. To validate the enhanced killing effect on cancer cells, various forms of radiation are applied such as 200 kVp X-rays and gamma-rays, to the cells, both with and without functional GNPs. By comparison with irradiation alone, the results show that GNPs significantly enhance cancer killing. PMID:18712753

  4. Local Microenvironment Controls the Compartmentalization of NK Cell Responses during Systemic Inflammation in Mice.

    Science.gov (United States)

    Rasid, Orhan; Ciulean, Ioana Sonya; Fitting, Catherine; Doyen, Noelle; Cavaillon, Jean-Marc

    2016-09-15

    Systemic inflammatory response syndrome is a whole-body reaction to a triggering insult that often results in life-threatening illness. Contributing to the development of this inflammatory cascade are numerous cellular partners, among which NK cells were shown to play a key role. Accumulating evidence points to organ-specific properties of systemic inflammation and NK cells. However, little is known about compartment-specific activation of NK cells during systemic inflammatory response syndrome or the relative contribution of NK cell-intrinsic properties and microenvironmental cues. In this study, we undertook a sequential characterization of NK responses in the spleen, lungs, bone marrow, peritoneum, and blood using a mouse model of endotoxemia. We report that, despite similar systemic dynamics of NK cell responses, expression of activation markers (CD69 and CD25) and effector molecules (IFN-γ, granzyme B, and IL-10) display organ-specific thresholds of maximum activation. Using adoptive transfers of spleen and lung NK cells, we found that these cells have the capacity to quickly adapt to a new environment and adjust their response levels to that of resident NK cells. This functional adaptation occurs without significant alterations in phenotype and independently of subpopulation-specific trafficking. Thus, using a dynamic in vivo-transfer system, to our knowledge our study is the first to report the compartmentalization of NK cells responses during systemic inflammation and to show that NK cell-intrinsic properties and microenvironmental cues are involved in this process, in a sequential manner. PMID:27521338

  5. Study on development and localization of CTGF-immunoreactive cells in central nervous system of rats

    Institute of Scientific and Technical Information of China (English)

    SU Bing-yin; CAI Wen-qin; ZHANNG Cheng-gang; B.Perbal

    2001-01-01

    Objective: To study the development of connective tissue growth factor(CTGF) immunoreactive cells in the central nervous system (CNS) of E8-P300 rats. Methods: Immunocytochemistry was employed in our study. Results: No CTGF-immunoreactive cells were detected in the CNS of rats during prenatal stages. A few of CTGF-positive cells were detected in the early postnatal stage. However, the positive cells increased gradually in later stages. CTGF-immunoreactive cells widely distributed in the CNS of rats in the first 30 to 60 days postnatally, and the density of immunoreactive products was the highest in these days. The number and staining intensity of CTGF-positive cells decreased and their area of distribution diminished gradually with age. The positive cells included neurons mainly located in the cingulate cortex,striatum, hippocampus, hypothalamus and cerebellum, and astrocytes in white matter of the spinal cord and ependymal cells of the brain. Most of CTGF-immunoreactive cells were quite big in size with a long process. Conclusion: CTGF-immunoreactive cells were found in the CNS of rats, and their numbers and positive signal decreased with the age.

  6. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    Science.gov (United States)

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  7. Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B

    Directory of Open Access Journals (Sweden)

    Marinelli Raúl A

    2005-08-01

    Full Text Available Abstract Background Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs, a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast hybrid, which forms abundant bile canalicular structures. This cell line has been reported to be a good in vitro model for studying hepatocyte polarity. Results Using RT-PCR, immunoblotting and confocal immunofluorescence, we showed that WIF-B cells express the aquaporin water channels that facilitate the osmotically driven water movements in the liver, i.e. AQP8, AQP9, and AQP0; as well as the key solute transporters involved in the generation of canalicular osmotic gradients, i.e., the bile salt export pump Bsep, the organic anion transporter Mrp2 and the chloride bicarbonate exchanger AE2. The subcellular localization of the AQPs and the solute transporters in WIF-B cells was similar to that in freshly isolated rat hepatocytes and in intact liver. Immunofluorescent costaining studies showed intracellular colocalization of AQP8 and AE2, suggesting the possibility that these transporters are expressed in the same population of pericanalicular vesicles. Conclusion The hepatocyte cell line WIF-B retains the expression and subcellular localization of aquaporin water channels as well as key solute transporters for canalicular bile secretion. Thus, these cells can work as a valuable tool for regulatory and mechanistic studies of the biology of bile formation.

  8. Ultrastructure of Guerin's carcinoma cells after chemotherapy and local tumor irradiation

    International Nuclear Information System (INIS)

    It was established that administration of cisplatin (CP) resulted in pronounced disorders in Guerin's carcinoma cell ultrastructure and did not influence the number of mitoses in the tumor. Main effect of TT was significant reduction of mitotic activity in the tumor against a background of inconsiderable changes in the cell ultrastructure. Administration of CP followed by irradiation changed little in the structural functional state of Guerin's carcinoma cells while Taxotere administration prior to irradiation caused necroses of the tumor tissue and significant reduction of the number of mitoses in the survived cells

  9. Low-power, Confocal Imaging of Protein Localization in Living Cells (7214-150) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed technology genetically labels intracellular structures and visualizes protein interactions in living cells using a compact, confocal microscope with...

  10. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    Directory of Open Access Journals (Sweden)

    Rutger K. Balvers

    2014-08-01

    Full Text Available Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs, which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007. Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.

  11. Radiological response and survival in locally advanced non-small-cell lung cancer patients treated with three-drug induction chemotherapy followed by radical local treatment

    Directory of Open Access Journals (Sweden)

    Bonanno L

    2016-06-01

    Full Text Available Laura Bonanno,1 Giulia Zago,1 Giuseppe Marulli,2 Paola Del Bianco,3 Marco Schiavon,2 Giulia Pasello,1 Valentina Polo,1,4 Fabio Canova,1 Fabrizio Tonetto,5 Lucio Loreggian,5 Federico Rea,2 PierFranco Conte,1,4 Adolfo Favaretto1 1Medical Oncology Unit 2, Veneto Institute of Oncology IOV-IRCCS, 2Thoracic Surgery Department, University of Padova, 3Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology IOV-IRCCS, 4Department of Surgery, Oncology and Gastroenterology, University of Padova, 5Radiotherapy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy Objectives: If concurrent chemoradiotherapy cannot be performed, induction chemotherapy followed by radical-intent surgical treatment is an acceptable option for non primarily resectable non-small-cell lung cancers (NSCLCs. No markers are available to predict which patients may benefit from local treatment after induction. This exploratory study aims to assess the feasibility and the activity of multimodality treatment, including triple-agent chemotherapy followed by radical surgery and/or radiotherapy in locally advanced NSCLCs. Methods: We retrospectively collected data from locally advanced NSCLCs treated with induction chemotherapy with carboplatin (area under the curve 6, d [day]1, paclitaxel (200 mg/m2, d1, and gemcitabine (1,000 mg/m2 d1, 8 for three to four courses, followed by radical surgery and/or radiotherapy. We analyzed radiological response and toxicity. Estimated progression-free survival (PFS and overall survival (OS were correlated to response, surgery, and clinical features. Results: In all, 58 NSCLCs were included in the study: 40 staged as IIIA, 18 as IIIB (according to TNM Classification of Malignant Tumors–7th edition staging system. A total of 36 (62% patients achieved partial response (PR, and six (10% progressions were recorded. Grade 3–4 hematological toxicity was observed in 36 (62% cases. After chemotherapy, 37 (64% patients underwent surgery

  12. A novel human gene spindlin1,encoding a protein localized in the cell nucleus and inducing NIH3T3 cell's transformation

    Institute of Scientific and Technical Information of China (English)

    GAO Yanhong; QIN Lipeng; ZHANG Peng; CHEN Lin; YUAN Hongfeng; BAI Cixian; YAN Fang; YUE Wen; PEI Xuetao

    2004-01-01

    A novel human gene, spindlin1, recently cloned in our laboratory, is highly expressed in the tissue of ovary cancer. To study its biological function, a vector expressing green fluorescent-spindlin1 fusion protein was constructed and transfected into COS-7 and NIH3T3 cells by lipofectamine methods. The results showed that the fusion protein pEGFP-N1-spindlin1 was localized in the nucleus of COS-7 and NIH3T3 cells. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the parental NIH3T3 cells displayed a complete morphological change, improved the cell growth and increased the percentage of cells in G2/M phase (12.6% vs control cells at 3.4%). Furthermore, overexpressed spindlin1 cells formed colonies in soft agar, more motile in migration assay in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may be a prooncogene which is associated with tumorigenesis.

  13. VINDESINE WITH CYCLOPHOSPHAMIDE-EPIRUBICIN-CISPLATIN IN THE TREATMENT LOCALLY ADVANCED NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    HU Yan-ping; KE Yu-hua; FU Xiao-yu

    1999-01-01

    Objective: To evaluate the addition of vindesine to a cyclophosphamide-epirubicin-cisplatin (CAP) regimen for treating the patients with locally advanced non-small cell lung cancer (NSCLC). Methods: From May 1994to August 1998, 59 previously untreated patients with stage Ⅲa and Ⅲb non-small cell lung cancer were enrolled into this trial. Patients characteristics were the following: the median age was 52 years; the median performance status was 1; there were 19 stage Ⅲa and 40 stage Ⅲb; there were 47 adenocarcinoma, 10squamous cell carcinoma and 2 large cell carcinoma. All patients were treated with vindesine (2 mg/m2, on day 1and day 8), cyclophosphamide (0.6/m2, on day 1),epirubicin (40 mg/m2, on day 1) and cisplatin (60 mg/m2,on day 1) every 3 or 4 weeks. Results: Four achieved a complete response (6.8%), 29 achieved a partial response (49.2%), 15 had stable disease, and 10 had progressive disease. A clinical improvement was in 45 of 59 patients (76.3%). The most frequent major toxic effects were myelosuppression, nausea and vomiting.Conclusion: The vindesine with CAP regimen was active combination chemotherapy in patients with locally advanced NSCLC accompanied by the limited side effects.

  14. Truncated SSX protein suppresses synovial sarcoma cell proliferation by inhibiting the localization of SS18-SSX fusion protein.

    Directory of Open Access Journals (Sweden)

    Yasushi Yoneda

    Full Text Available Synovial sarcoma is a relatively rare high-grade soft tissue sarcoma that often develops in the limbs of young people and induces the lung and the lymph node metastasis resulting in poor prognosis. In patients with synovial sarcoma, specific chromosomal translocation of t(X; 18 (p11.2;q11.2 is observed, and SS18-SSX fusion protein expressed by this translocation is reported to be associated with pathogenesis. However, role of the fusion protein in the pathogenesis of synovial sarcoma has not yet been completely clarified. In this study, we focused on the localization patterns of SS18-SSX fusion protein. We constructed expression plasmids coding for the full length SS18-SSX, the truncated SS18 moiety (tSS18 and the truncated SSX moiety (tSSX of SS18-SSX, tagged with fluorescent proteins. These plasmids were transfected in synovial sarcoma SYO-1 cells and we observed the expression of these proteins using a fluorescence microscope. The SS18-SSX fusion protein showed a characteristic speckle pattern in the nucleus. However, when SS18-SSX was co-expressed with tSSX, localization of SS18-SSX changed from speckle patterns to the diffused pattern similar to the localization pattern of tSSX and SSX. Furthermore, cell proliferation and colony formation of synovial sarcoma SYO-1 and YaFuSS cells were suppressed by exogenous tSSX expression. Our results suggest that the characteristic speckle localization pattern of SS18-SSX is strongly involved in the tumorigenesis through the SSX moiety of the SS18-SSX fusion protein. These findings could be applied to further understand the pathogenic mechanisms, and towards the development of molecular targeting approach for synovial sarcoma.

  15. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  16. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells

    NARCIS (Netherlands)

    Kikkert, M.; Verschoor, A.; Kormelink, R.; Rottier, P.; Goldbach, R.

    2001-01-01

    The glycoprotein precursor (G1/G2) gene of tomato spotted wilt virus (TSWV) was expressed in BHK cells using the Semliki Forest virus expression system. The results reveal that in this cell system, the precursor is efficiently cleaved and the resulting G1 and G2 glycoproteins are transported from th

  17. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel;

    2006-01-01

    Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that...

  18. BIM-EL localization: The key to understanding anoikis resistance in inflammatory breast cancer cells

    OpenAIRE

    Buchheit, Cassandra L.; Schafer, Zachary T.

    2015-01-01

    Inflammatory breast cancer (IBC) is a highly metastatic and rare type of breast cancer, accounting for 2–6% of newly diagnosed breast cancer cases each year. The highly metastatic nature of IBC cells remains poorly understood. Here we describe our recent data regarding the ability of IBC cells to overcome anoikis.

  19. Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva.

    Science.gov (United States)

    Quan, Yadan; Zhang, Xinchun; Xu, Siying; Li, Kang; Zhu, Feng; Li, Qian; Cai, Xianxian; Lu, Rong

    2016-08-01

    Conjunctival integrity and preservation is indispensable for vision. The self-renewing capacity of conjunctival cells controls conjunctival homeostasis and regeneration; however, the source of conjunctival self-renewal and the underlying mechanism is currently unclear. Here, we characterize the biochemical phenotype and proliferative potential of conjunctival epithelial cells in adult mouse by detecting proliferation-related signatures and conducting clonal analysis. Further, we show that transcription factor 7-like 2 (T-cell-specific transcription factor 4), a DNA binding protein expressed in multiple types of adult stem cells, is highly correlated with proliferative signatures in basal conjunctival epithelia. Clonal studies demonstrated that Transcription factor 7-like 2 (Tcf7l2) was coexpressed with p63α and proliferating cell nuclear antigen (PCNA) in propagative colonies. Furthermore, Tcf7l2 was actively transcribed concurrently with conjunctival epithelial proliferation in vitro. Collectively, we suggest that Tcf7l2 may be involved in maintenance of stem/progenitor cells properties of conjunctival epithelial stem/progenitor cells, and with the fornix as the optimal site to isolate highly proliferative conjunctival epithelial cells in adult mice. PMID:27281479

  20. BIM-EL localization: The key to understanding anoikis resistance in inflammatory breast cancer cells.

    Science.gov (United States)

    Buchheit, Cassandra L; Schafer, Zachary T

    2016-01-01

    Inflammatory breast cancer (IBC) is a highly metastatic and rare type of breast cancer, accounting for 2-6% of newly diagnosed breast cancer cases each year. The highly metastatic nature of IBC cells remains poorly understood. Here we describe our recent data regarding the ability of IBC cells to overcome anoikis. PMID:27308529

  1. Treatment Advances in Locally Advanced and Metastatic Non-Small Cell Lung Cancer

    NARCIS (Netherlands)

    V.M.F. Surmont (Veerle)

    2010-01-01

    textabstractLung cancer is the leading cause of cancer mortality in the United States and Europe. Approximately 85% of the patients with lung cancer have non–small cell lung cancer (NSCLC), which can be classified into squamous, adeno, large cell and not otherwise specified (NOS) histologies. The mo

  2. Custom-Built Optical Tweezers for Locally Probing the Viscoelastic Properties of Cancer Cells

    Science.gov (United States)

    Tavano, Federica; Bonin, Serena; Pinato, Giulietta; Stanta, Giorgio; Cojoc, Dan

    2011-07-01

    We report a home built optical tweezers setup to investigate the mechanism of the membrane tether formation from single cells in vitro. Using an optically trapped microbead as probe, we have determined the force-elongation curve during tether formation and extracted several parameters characterizing the viscoelastic behavior of the cell membrane: tether stiffness, force, and viscosity. Breast cancer MDA-MB-231 cells have been studied in two different conditions, at room and physiological temperatures, showing a strong temperature dependence of the visoelastic properties of the cell membrane. To get detailed inside information about the tether formation mechanism we have extended the analysis of the force-elongation curves fitting them with a Kelvin model. These preliminary results are part of a larger project of whose goal is to compare the viscoelastic properties of several types of cancer cell lines, characterized by different aggressiveness and metastatic potential.

  3. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B;

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...... to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per microns plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed...

  4. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line

    OpenAIRE

    Serafim, Teresa; Oliveira, Paulo; Sardao, Vilma; Perkins, Ed; Parke, Donna; Holy, Jon

    2008-01-01

    Abstract Purpose Natural products represent a rich reservoir of potential small molecule inhibitors exhibiting antiproliferative and tumoricidal properties. An example is the isoquinoline alkaloid berberine, which is found in plants such as goldenseal (Hydrastis canadensis). Studies have shown that berberine is able to trigger apoptosis in different malignant cell lines, and can also lead to cell cycle arrest at sub-apoptotic doses. A particularly interesting feature of berberine is the fact...

  5. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy.

    Science.gov (United States)

    Peckys, Diana B; Korf, Ulrike; de Jonge, Niels

    2015-07-01

    The formation of HER2 homodimers plays an important role in breast cancer aggressiveness and progression; however, little is known about its localization. We have studied the intra- and intercellular variation of HER2 at the single-molecule level in intact SKBR3 breast cancer cells. Whole cells were visualized in hydrated state with correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM). The locations of individual HER2 receptors were detected using an anti-HER2 affibody in combination with a quantum dot (QD), a fluorescent nanoparticle. Fluorescence microscopy revealed considerable differences of HER2 membrane expression between individual cells and between different membrane regions of the same cell (that is, membrane ruffles and flat areas). Subsequent ESEM of the corresponding cellular regions provided images of individually labeled HER2 receptors. The high spatial resolution of 3 nm and the close proximity between the QD and the receptor allowed quantifying the stoichiometry of HER2 complexes, distinguishing between monomers, dimers, and higher-order clusters. Downstream data analysis based on calculating the pair correlation function from receptor positions showed that cellular regions exhibiting membrane ruffles contained a substantial fraction of HER2 in homodimeric state. Larger-order clusters were also present. Membrane areas with homogeneous membrane topography, on the contrary, displayed HER2 in random distribution. Second, HER2 homodimers appeared to be absent from a small subpopulation of cells exhibiting a flat membrane topography, possibly resting cells. Local differences in homodimer presence may point toward functional differences with possible relevance for studying metastasis and drug response. PMID:26601217

  6. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network

    International Nuclear Information System (INIS)

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U235, some of these bars also contain a concentration of Gd2O3 and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  7. Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance

    Science.gov (United States)

    Lu, Ronghua; Xu, Ling; Ge, Zhaoyun; Li, Rui; Xu, Jun; Yu, Linwei; Chen, Kunji

    2016-03-01

    Silicon is the most widely used material for solar cells due to its abundance, non-toxicity, reliability, and mature fabrication process. In this paper, we fabricated silicon nanoholes (SiNHS)/gold nanoparticles (AuNPS)/organic hybrid solar cells and investigated their spectral and opto-electron conversion properties. SiNHS nanocomposite films were fabricated by metal-assisted electroless etching (EE) method. Then, we modified the surface of the nanocomposite films by exposing the samples in the air. After that, polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) blended with AuNPS were spin-coated on the surface of the SiNHS nanocomposite films as a hole-transporting layer. The external quantum efficiency (EQE) values of the solar cells with AuNPS are higher than that of the samples without AuNPS in the spectral region of 600-1000 nm, which were essential to achieve high performance photovoltaic cells. The power conversion efficiency (PCE) of the solar cells incorporating AuNPS exhibited an enhancement of 27 %, compared with that of the solar cells without AuNPS. We thought that the improved efficiency were attributed to localized surface plasmon resonance (LSPR) triggered by gold nanoparticles in SiNHS nanocomposite films.

  8. Expression and localization of prohormone convertase PC1 in the calcitonin-producing cells of the bullfrog ultimobranchial gland.

    Science.gov (United States)

    Yaoi, Yuichi; Suzuki, Masakazu; Tomura, Hideaki; Kurabuchi, Shingo; Sasayama, Yuichi; Tanaka, Shigeyasu

    2003-11-01

    We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the ultimobranchial gland of the adult bullfrog using immunohistochemical (IHC) and in situ hybridization (ISH) techniques. In the ultimobranchial gland, PC1-immunoreactive cells were columnar, and were present in the follicular epithelium. When serial sections were immunostained with anti-calcitonin, anti-CGRP, anti-PC1, and anti-PC2 sera, PC1 was found only in the calcitonin/CGRP-producing cells. No PC2-immunopositive cells were detected. In the ISH, PC1 mRNA-positive cells were detected in the follicle cells in the ultimobranchial gland. No PC2 mRNA-positive cells were detected. RT-PCR revealed expression of the mRNAs of PC1 and the PC2 in the ultimobranchial gland. However, very little of the PC2 mRNA is probably translated because no PC2 protein was detected either by IHC staining or by Western blotting analysis. We conclude that the main prohormone convertase that is involved in the proteolytic cleavage of procalcitonin in the bullfrog is PC1. PMID:14566018

  9. Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry

    Indian Academy of Sciences (India)

    Donghua Liu; Ingrid Kottke

    2004-09-01

    The ultrastructural investigation of the root cells of Allium cepa L. exposed to 1 mM and 10 mM cadmium (Cd) for 48 and 72 h was carried out. The results indicated that Cd induced several obvious ultrastructural changes such as increased vacuolation, condensed cytoplasm with increased density of the matrix, reduction of mitochondrial cristae, severe plasmolysis and highly condensed nuclear chromatin. Electron dense granules appeared between the cell wall and plasmalemma. In vacuoles, electron dense granules encircled by the membrane were aggregated and formed into larger precipitates, which increase in number and volume as a consequence of excessive Cd exposure. Data from electron energy loss spectroscopy (EELS) confirmed that these granules contained Cd and showed that significantly higher level of Cd in vacuoles existed in the vacuolar precipitates of meristematic or cortical parenchyma cells of the differentiating and mature roots treated with 1 mM and 10 mM Cd. High levels of Cd were also observed in the crowded electron dense granules of nucleoli. However, no Cd was found in cell walls or in cells of the vascular cylinder. A positive Gomori-Swift reaction showed that small metallic silver grains were abundantly localized in the vesicles, which were distributed in the cytoplasm along the cell wall.

  10. ABCG2 Localizes to the Nucleus and Modulates CDH1 Expression in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shu-Ching Liang

    2015-03-01

    Full Text Available Breast cancer resistance protein [BCRP/ATP-binding cassette subfamily G member 2 (ABCG2] is a member of the ATP-binding cassette transporter family. The presence of ABCG2 on the plasma membrane in many kinds of human cancer cells contributes to multidrug resistance during chemotherapy, and it has been used as the side population marker for identifying cancer stem cells in lung cancers. We report here that, in addition to the membranous form, ABCG2 proteins are also found inside the nucleus, where they bind to the E-box of CDH1 (E-cadherin promoter and regulate transcription of this gene. Increased expression of ABCG2 causes an increase of E-cadherin and attenuates cell migration, whereas knockdown of ABCG2 downregulates E-cadherin and enhances cell motility. In mice, xenografted A549 cells that have less ABCG2 are more likely to metastasize from the subcutaneous inoculation site to the internal organs. However, for the cancer cells that have already entered the blood circulation, an increased level of ABCG2, and correspondingly increased E-cadherin, may facilitate circulating cancer cells to colonize at a distant site and form a metastatic tumor. We propose a novel role for nuclear ABCG2 that functions as a transcription regulator and participates in modulation of cancer metastasis.

  11. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  12. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    OpenAIRE

    Sahin Aysegul; Hu Limei; Akkiprik Mustafa; Hao Xishan; Zhang Wei

    2009-01-01

    Abstract Background Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly ...

  13. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    OpenAIRE

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; LÜTZ-MEINDL, URSULA

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essent...

  14. Local immunosuppressive microenvironment enhances migration of melanoma cells to lungs in DJ-1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chien

    Full Text Available DJ-1 is an oncoprotein that promotes survival of cancer cells through anti-apoptosis. However, DJ-1 also plays a role in regulating IL-1β expression, and whether inflammatory microenvironment built by dysregulated DJ-1 affects cancer progression is still unclear. This study thus aimed to compare the metastatic abilities of melanoma cells in wild-type (WT and DJ-1 knockout (KO mice, and to check whether inflammatory microenvironment built in DJ-1 KO mice plays a role in migration of cancer cells to lungs. First, B16F10 melanoma cells (at 6 × 10(4 were injected into the femoral vein of mice, and formation of lung nodules, levels of lung IL-1β and serum cytokines, and accumulation of myeloid-derived suppressor cells (MDSCs were compared between WT and DJ-1 KO mice. Second, the cancer-bearing mice were treated with an interleukin-1 beta (IL-1β neutralizing antibody to see whether IL-1β is involved in the cancer migration. Finally, cultured RAW 264.7 macrophage and B16F10 melanoma cells were respectively treated with DJ-1 shRNA and recombinant IL-1β to explore underlying molecular mechanisms. Our results showed that IL-1β enhanced survival and colony formation of cultured melanoma cells, and that IL-1β levels were elevated both in DJ-1 KO mice and in cultured macrophage cells with DJ-1 knockdown. The elevated IL-1β correlated with higher accumulation of immunosuppressive MDSCs and formation of melanoma module in the lung of DJ-1 KO mice, and both can be decreased by treating mice with IL-1β neutralizing antibodies. Taken together, these results indicate that immunosuppressive tissue microenvironment built in DJ-1 KO mice can enhance lung migration of cancer, and IL-1β plays an important role in promoting the cancer migration.

  15. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond

    Directory of Open Access Journals (Sweden)

    Alexander eChi

    2014-06-01

    Full Text Available Radiation dose in the setting of chemo-radiation for locally advanced non-small cell lung cancer (NSCLC has been historically limited by the risk of normal tissue toxicity and this has been hypothesized to correlate with the poor results in regard to local tumor recurrences. Dose escalation, as a means to improve local control, with concurrent chemotherapy has been shown to be feasible with three-dimensional conformal radiotherapy in early phase studies with good clinical outcome. However, the potential superiority of moderate dose escalation to 74 Gy has not been shown in phase III randomized studies. In this review, the limitations in target volume definition in previous studies; and the factors that may be critical to safe dose escalation in the treatment of locally advanced NSCLC, such as respiratory motion management, image guidance, intensity modulation, FDG-PET incorporation in the treatment planning process, and adaptive radiotherapy, are discussed. These factors, along with novel treatment approaches that have emerged in recent years, are proposed to warrant further investigation in future trials in a more comprehensive and integrated fashion.

  16. Limited-stage small cell lung cancer. Local failure after concurrent chemoradiotherapy with use of accelerated hyperfractionation

    International Nuclear Information System (INIS)

    The aim of this study was to update data of radiation therapy regimens for improvement in local control in patients with limited-stage small cell lung cancer, a retrospective study was conducted. Results of early concurrent chemoradiotherapy with accelerated hyperfractionation in 30 patients between 1998 and 2005 were retrospectively reviewed. The prescribed dose was 45 Gy in 30 fractions in all patients. All patients received a full dose of radiation therapy; however, interruptions for ≥5 days, mainly due to hematologic toxicity, were required in 18 patients (60%). The 5-year Kaplan-Meier survival rate and the median survival time were 26% and 26 months, respectively. The 4-year in-field control rate was 56%. Sites of relapse were local relapse in 9 patients (6 for in-field relapse, 3 for marginal relapse) and distant metastases in 16 patients (11 for distant metastases only, 5 for distant metastases with local relapse). The sites of marginal relapse were the upper margin in two patients and the peripheral margin in one patient. Grade 3 radiation esophagitis was observed in only three patients. Because in-field control was insufficient, a more effective approach should be sought to provide better local control. (author)

  17. Methods of Cell Propulsion through the Local Stroma in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available In the normal breast, cellular structures change cyclically in response to ovarian hormones. Cell proliferation, apoptosis, invasion, and differentiation are integral processes that are precisely regulated. Normal epithelial cells depend on the formation of intercellular adhesion contacts to form a continuous sheet of stratifying cell layers that are attached to one and other horizontally and vertically. Cells migrate by extending membrane protrusions to explore the extracellular space locating their targets in a chemotactic manner. The formation of cell protrusions is driven by the assembly of actin filaments at the leading edge. Reorganisation is regulated by a highly integrated signalling cascade that transduces extracellular stimuli to the actin filaments. This signalling cascade is governed by GTPases which act as molecular switches leading to actin polymerisation and the formation of filopodia and lamellipodia. This process is linked to downstream molecules known collectively as WASP proteins, which, in the presence of cortactin, form a complex leading to nucleation and formation of branched filaments. In breast cancer, the cortactin is over expressed leading to increased cellular motility and invasiveness. This hugely complex and integrated signalling cascade transduces extracellular stimuli. There are multiple genes related to cell motility which are dysregulated in human breast cancers.

  18. Localization of NOS-like protein in guard cells of Vicia faba L. And its possible function

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; WANG YouQun; JIA WenSuo; LOU ChengHou; ZHANG ShuQiu

    2007-01-01

    Using the immuno-fluorescence and immuno-gold electron microscope technology, localization of nitric oxide synthase (NOS)-like proteins was determined in guard cells of Vicia faba L. NOS is mainly localized in nucleus, cytoplasm, chloroplast, mitochondria and the cell wall of guard cells. Scorch and exogenous JA can enhance the level of nitric oxide (NO) and increase NOS activity in both leaf and epidermis, and the changing pattern of NOS activity was consistent with the change of NO. NOS inhibitor, L-NAME, inhibited JA-induced NO generation. From the results, we presumed that NO generation from NOS pathway is the main pathway in the stress and JA responses. The pharmacological experiment showed that increasing the Ca2+ at a suitable concentration promoted leaf NOS activity and the NO level, indicating that NOS activity together with the distribution of NO is Ca2+-dependent. NOS and NO are possibly involved in the regulation of stomatal movement thus playing an important role in plant stress responses.

  19. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.

    Science.gov (United States)

    Pratt, Evan P S; Owens, Jake L; Hockerman, Gregory H; Hu, Chang-Deng

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is a fluorescence imaging technique used to visualize protein-protein interactions (PPIs) in live cells and animals. One unique application of BiFC is to reveal subcellular localization of PPIs. The superior signal-to-noise ratio of BiFC in comparison with fluorescence resonance energy transfer or bioluminescence resonance energy transfer enables its wide applications. Here, we describe how confocal microscopy can be used to detect and quantify PPIs and their subcellular localization. We use basic leucine zipper transcription factor proteins as an example to provide a step-by-step BiFC protocol using a Nikon A1 confocal microscope and NIS-Elements imaging software. The protocol given below can be readily adapted for use with other confocal microscopes or imaging software. PMID:27515079

  20. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  1. Expression and localization of inwardly rectifying potassium channel Kit2.1 in glia cells of native bovine retina

    Institute of Scientific and Technical Information of China (English)

    PAN Ai-hua; LUO Xue-gang

    2005-01-01

    Objective The purpose of this study is to identify the molecular basis of the contacting -neuron membrane K+ conductance in glia cells of native bovine retina. Methods RT-PCR, Northern blot and Western blot analyses were used to detect the expression of the inwardly rectifying K+ (Kir) channel subunits Kir2.1 in native bovine RPE and neural retina. The distribution of Kir2.1 protein was determined in frozen sections of bovine retina-RPEchoroid by indirect immunofluorescence analysis. Results RT-PCR analysis reveals Kir2.1 transcript in both RPE and neural retina. In Northern blots, Kir2.1 probe hybridizes to an appropriately sized-transcript in neural retina but not in RPE. In Western blots, Kir2.1 antibody recognizes a major monomer of about 60 kDa in neural retina but not in RPE. Immunofluorescence reveals that Kir2.1 immunostaining is expressed at many parts of Muller cells, especially in the membrane domains of Muller cells that contact retinal neurons, i. e. , along the two stem processes,over the soma, and in the side branches extending into the synaptic layers. No immunostaining is seen in RPE. Doubling staining shows that Kir2.1 proteins and glutamine synthetase proteins which are a marker of Muller cell co-localized well. Conclusions These results reveal that Kir2.1 is localized in the Muller cells, no Kir2.1 in RPE. These data suggests that Kir2.1 may be involved in the transport of K+ in the bovine neural retina.

  2. Metastable states and information propagation in a 1D array of locally-coupled bistable cells

    OpenAIRE

    Anantram, M. P.; Roychowdhury, Vwani P.

    1998-01-01

    We study the effect of metastable states on the relaxation process (and hence information propagation) in locally coupled and boundary-driven structures. We first give a general argument to show that metastable states are inevitable even in the simplest of structures, a wire. At finite temperatures, the relaxation mechanism is a thermally assisted random walk. The time required to reach the ground state and its life time are determined by the coupling parameters. These time scales are studied...

  3. Locally advanced oral cavity squamous cell carcinoma: Barriers related to effective treatment

    Directory of Open Access Journals (Sweden)

    K C Lakshmaiah

    2015-01-01

    Full Text Available Background: Oral cavity cancer is a significant health problem in India. Majority of patients present with locally advanced disease requiring multimodality treatment. Compliance to recommended treatment is an important factor affecting outcome. Aims: The aim was to evaluate the outcome of locally advanced oral cavity cancer patients with regards to treatment adherence and to assess reasons of noncompliance. Materials and Methods: This was a prospective observational study. We included patients referred to Department of Medical Oncology for induction chemotherapy in view of locally advanced oral cavity cancer. Results: Only 15 (26% patients completed planned treatment schedule. Their 1 year overall survival was 93%. The remaining 43 patients who received inadequate treatment had a dismal 21% 1 year overall survival. Illiteracy, poverty, long waiting list for surgery, prolonged delay for health scheme treatment plan approval and dissatisfaction with attitude of hospital staffs are major barriers related to effective treatment of these patients. Conclusions: A detailed discussion with patient and their relatives regarding recommended treatment, proper implementation of health schemes, increasing trained manpower to avoid long waiting list for surgery, provision of additional financial support for family member accompanying the patient and a sympathetic approach toward patients are needed to help these patients overcome the battle.

  4. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  5. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus.

    Science.gov (United States)

    Kühn, Juliane; Briegel, Ariane; Mörschel, Erhard; Kahnt, Jörg; Leser, Katja; Wick, Stephanie; Jensen, Grant J; Thanbichler, Martin

    2010-01-20

    The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer-forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet-like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin-like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod-shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon- or rod-like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways.

  6. Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

    Science.gov (United States)

    Renard, Florent

    2016-01-01

    The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.

  7. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  8. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  9. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-03-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  10. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  11. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  12. Locally resolved measurements in a segmented HTPEM fuel cell with straight flow-fields

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, C. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany); University of Duisburg-Essen, Institut fuer Energie- und Umweltverfahrenstechnik, Lotharstr. 1, D-47048 Duisburg (Germany); Siegel Schleimer Ingenieurs-Conseils s.a r.l. - Engineering and research, 2A, rue d' Ehlerange, L-3918 Mondercange (Luxembourg); Bandlamudi, G.; Heinzel, A. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany); University of Duisburg-Essen, Institut fuer Energie- und Umweltverfahrenstechnik, Lotharstr. 1, D-47048 Duisburg (Germany); Filusch, F. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany)

    2011-08-15

    Significant advances have been reported in building and testing of high-temperature polymer electrolyte membrane (HTPEM) fuel cells and stacks during recent years. Quantity distribution measurement techniques (e.g. current density, temperature and electrochemical impedance spectroscopy (EIS)) using segmented cells are commonly used to characterise low-temperature PEM (LTPEM) fuel cells. Performing these measurements at higher temperatures is more difficult and a relatively new process. For this study, a fully operational segmented HTPEM fuel cell using a straight flow-field configuration was designed, constructed and tested. The cathode side bipolar half-plate consisted of 36 exchangeable segments, whereas, the anode side bipolar half-plate was not segmented. The cell was operated at various operating temperatures with various anode gas compositions and air (no backpressure). In addition to the experimental results, a simple computational fluid dynamics model based on COMSOL Multiphysics {sup registered} 3.5a was used to support the observed behaviour during segmented measurements. The computational domain consisted of the cathode side gas channels and the porous media. All of the boundary conditions and gas properties were defined in a manner similar to the experimental investigations. Some of the theoretical results were compared to the experimental results and conclusions were drawn. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Tissue specific localization of root infection by fungal pathogens: role of root border cells.

    Science.gov (United States)

    Gunawardena, Uvini; Hawes, Martha C

    2002-11-01

    When roots of pea seedlings were inoculated uniformly with spores of Nectria haematocca or other pea pathogenic fungi, more than 90% developed lesions in the region of elongation within 3 days. More mature regions of most roots as well as the tip showed no visible signs of infection. Yet, microscopic observation revealed that 'mantles,' comprised of fungal hyphae intermeshed with populations of border cells, covered the tips of most roots. After physical detachment of the mantle, the underlying tip of most roots was found to be free of infection. Mantle-covered root tips did not respond to invasion of their border cells by activation of known defense genes unless there was invasion of the tip itself, as revealed by the presence of a lesion. Concomitant with the activation of defense genes was the induction of a cell-wall degrading enzyme whose expression is a marker for renewed production of border cells. Mantle formation did not occur in response to nonpathogens. The data are consistent with the hypothesis that border cells serve as a host-specific 'decoy' that protects root meristems by inhibiting fungal infection of the root tip.

  14. Charge-driven selective localization of fluorescent nanoparticles in live cells.

    Science.gov (United States)

    Serdiuk, T; Alekseev, S A; Lysenko, V; Skryshevsky, V A; Géloën, A

    2012-08-10

    Covalent grafting of amino groups onto the carboxylic acid functionalities, naturally covering the surface of fluorescent nanoparticles produced from silicon carbide (SiC NPs), allowed tuning of their surface charge from negative to highly positive. Incubating 3T3-L1 fibroblast cells with differently charged SiC NPs demonstrates the crucial role of the charge in cell fluorescent targeting. Negatively charged SiC NPs concentrate inside the cell nuclei. Close to neutrally charged SiC NPs are present in both cytoplasm and nuclei while positively charged SiC NPs are present only in the cytoplasm and are not able to move inside the nuclei. This effect opens the door for the use of SiC NPs for easy and fast visualization of long-lasting biological processes taking place in the cell cytosol or nucleus as well as providing a new long-term cell imaging tool. Moreover, here we have shown that the interaction between charged NPs and nuclear pore complex plays an essential role in their penetration into the nuclei. PMID:22796738

  15. Concurrent radiochemotherapy in locally-regionally advanced oropharyngeal squamous cell carcinoma: analysis of treatment results and prognostic factors

    International Nuclear Information System (INIS)

    Concurrent radiochemotherapy is a recommended treatment option for patients with locally advanced squamous cell head and neck carcinomas with recent data showing the most significant absolute overall and event-free survival benefit achieved in patients with oropharyngeal tumours. The aim of this study was to analyse the results of three-dimensional conformal radiotherapy given with concomitant weekly cisplatin in patients with advanced oropharyngeal carcinoma and to identify prognostic factors influencing outcomes of this patients category. Sixty-five patients with stage III or IV squamous cell carcinoma of the oropharynx who underwent concurrent radiochemotherapy between January 2005 and December 2010 were retrospectively analyzed. All patients received radiotherapy to 70 Gy/35 fractions/2 Gy per fraction/5 fractions per week. Concurrent chemotherapy consisted of weekly cisplatin (30 mg/m2) started at the first day of radiotherapy. Median age was 57 years (range, 36 to 69 years) and 59 (90.8%) patients were male. Complete composite response was achieved in 47 patients (72.3%). Local and/or regional recurrence was the most frequent treatment failure present in 19 out of 25 patients (76.0%). At a median follow-up of 14 months (range, 5 to 72 months), 2-year local relapse-free, regional relapse-free, locoregional relapse-free, disease-free, and overall survival rates were 48.8%, 57.8%, 41.7%, 33.2% and 49.7%, respectively. On multivariate analysis the only significant factor for inferior regional relapse-free survival was the advanced N stage (p = 0.048). Higher overall stage was independent prognostic factor for poorer local relapse-free survival, locoregional relapse-free survival and disease-free survival (p = 0.022, p = 0.003 and p = 0.003, respectively). Pre-treatment haemoglobin concentration was an independent prognostic factor for local relapse-free survival, regional relapse-free survival, locoregional relapse-free survival, disease-free survival, and

  16. Concurrent radiochemotherapy in locally-regionally advanced oropharyngeal squamous cell carcinoma: analysis of treatment results and prognostic factors

    Directory of Open Access Journals (Sweden)

    Krstevska Valentina

    2012-05-01

    Full Text Available Abstract Background Concurrent radiochemotherapy is a recommended treatment option for patients with locally advanced squamous cell head and neck carcinomas with recent data showing the most significant absolute overall and event-free survival benefit achieved in patients with oropharyngeal tumours. The aim of this study was to analyse the results of three-dimensional conformal radiotherapy given with concomitant weekly cisplatin in patients with advanced oropharyngeal carcinoma and to identify prognostic factors influencing outcomes of this patients category. Methods Sixty-five patients with stage III or IV squamous cell carcinoma of the oropharynx who underwent concurrent radiochemotherapy between January 2005 and December 2010 were retrospectively analyzed. All patients received radiotherapy to 70 Gy/35 fractions/2 Gy per fraction/5 fractions per week. Concurrent chemotherapy consisted of weekly cisplatin (30 mg/m2 started at the first day of radiotherapy. Results Median age was 57 years (range, 36 to 69 years and 59 (90.8% patients were male. Complete composite response was achieved in 47 patients (72.3%. Local and/or regional recurrence was the most frequent treatment failure present in 19 out of 25 patients (76.0%. At a median follow-up of 14 months (range, 5 to 72 months, 2-year local relapse-free, regional relapse-free, locoregional relapse-free, disease-free, and overall survival rates were 48.8%, 57.8%, 41.7%, 33.2% and 49.7%, respectively. On multivariate analysis the only significant factor for inferior regional relapse-free survival was the advanced N stage (p = 0.048. Higher overall stage was independent prognostic factor for poorer local relapse-free survival, locoregional relapse-free survival and disease-free survival (p = 0.022, p = 0.003 and p = 0.003, respectively. Pre-treatment haemoglobin concentration was an independent prognostic factor for local relapse-free survival, regional relapse-free survival

  17. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells.

    Science.gov (United States)

    Andzinski, Lisa; Spanier, Julia; Kasnitz, Nadine; Kröger, Andrea; Jin, Lei; Brinkmann, Melanie M; Kalinke, Ulrich; Weiss, Siegfried; Jablonska, Jadwiga; Lienenklaus, Stefan

    2016-09-15

    The importance of endogenous Type I IFNs in cancer immune surveillance is well established by now. Their role in polarization of tumor-associated neutrophilic granulocytes into anti-tumor effector cells has been recently demonstrated. Yet, the cellular source of Type I IFNs as well as the mode of induction is not clearly defined. Here, we demonstrate that IFN-β is induced by growing murine tumors. Induction is mainly mediated via STING-dependent signaling pathways, suggesting tumor derived DNA as trigger. Transcription factors IRF3 and IRF5 were activated under these conditions which is consistent with tumor infiltrating dendritic cells (DCs) being the major cellular source of IFN-β at the tumor site. Besides DCs, tumor cells themselves are induced to contribute to the production of IFN-β. Taken together, our data provide further information on immune surveillance by Type I IFNs and suggest novel potent cellular targets for future cancer therapy. PMID:27116225

  18. Development of the CAS-LIBB single-particle microbeam for localized irradiation of living cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xufei; XU Mingliang; WU Lijun; WANG Shaohu; FENG Huiyun; ZHAN Furu; PENG Shixiang; HU Chundong; ZHANG Shuqing; CHENG Jianjun; SHI Zhongtao; WANG Xiaohua; YUAN Hang; YUAN Haitao; YU Zengliang; CHEN Lianyun; HU Zhiwen; LI Jun; WU Yu; CHEN Bin; HU Suhua; ZHANG Jun

    2004-01-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydrogen ions, produced by a van de Graaff accelerator, in an energy range of 2.0-3.0 MeV, into an area smaller than that of the nucleus of an individual living cell. The beam is collimated by a borosilicate glass capillary that forms the beam-line exit. An integrated computer program recognizes the cells and locates them one by one over the microbeam exit for irradiation. We present technical details of the CAS-LIBB microbeam facility, particularly on the collimator, hardware, control program, as well as cell irradiation protocols available. Various factors contributing to the targeting and positioning precision are discussed along with accuracy measurement results.

  19. Treatment outcome of locally advanced non-small cell lung cancer patients who received concurrent chemoradiotherapy with weekly paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Zy; Kim, Sung Whan; Shim, Byoung Yong [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)] (and others)

    2006-12-15

    To analyze the response, toxicity, patterns of failure and survival rate of patients with locally advanced non-small cell lung cancer who were treated with concurrent chemoradiotherapy with weekly paclitaxel. Twenty-three patients with locally advanced non-small cell lung cancer patients who received radical chemoradiotherapy from October 1999 to September 2004 were included in this retrospective study. Patients received total 55.4 {approx} 64.8 (median 64.8) Gy (daily 1.8 Gy per fraction, 5 days per weeks) over 7 {approx} 8 weeks. 50 or 60 mg/m{sup 2} of paclitaxel was administered on day 1, 8, 15, 22, 29 and 36 of radiotherapy. Four weeks after the concurrent chemoradiotherapy, three cycles of consolidation chemotherapy consisted of paclitaxel 135 mg/m{sup 2} and cisplatin 75 mg/m{sup 2} was administered every 3 weeks. Of the 23 patients, 3 patients refused to receive the treatment during the concurrent chemoradiotherapy. One patient died of bacterial pneumonia during the concurrent chemoradiotherapy. Grade 2 radiation esophagitis was observed in 4 patients (17%). Sixteen patients received consolidation chemotherapy. During the consolidation chemotherapy, 8 patients (50%) experienced grade 3 or 4 neutropenia and one of those patients died of neutropenic sepsis. Overall response rate for 20 evaluable patients was 90% including 4 complete responses (20%) and 14 partial responses (70%). Among 18 responders, 9 had local failure, 3 had local and distant failure and 2 had distant failure only. Median progression-free survival time was 9.5 months and 2-year progression-free survival rate was 19%. Eleven patients received second-line or third-line chemotherapy after the treatment failure. The median overall survival time was 21 months. 2-year and 5-year survival rate were 43% and 33%, respectively. Age, performance status, tumor size were significant prognostic factors for progression-free survival. Concurrent chemoradiotherapy with weekly paclitaxel revealed high

  20. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  1. FOXP3 Subcellular Localization Predicts Recurrence in Oral Squamous Cell Carcinoma

    OpenAIRE

    Donald T Weed; Gail Walker; Adriana C De La Fuente; Ronen Nazarian; Vella, Jennifer L.; Gomez-Fernandez, Carmen R.; Paolo Serafini

    2013-01-01

    Forkhead box protein P3 (FOXP3) expression in tumor infiltrating CD4(+)T cells is generally associated with an intrinsic capacity to suppress tumor immunity. Based on this notion, different studies have evaluated the prognostic value of this maker in cancer but contradictory results have been found. Indeed, even within the same cancer population, the presence of CD4(+)FOXP3(+)T cells has been associated,with either a poor or a good prognosis, or no correlation has beenfound. Here, we demonstr...

  2. Early embryo loss is associated with local production of nitric oxide by decidual mononuclear cells

    OpenAIRE

    1995-01-01

    In early embryo loss, the fetus may be considered to be an allograft and, therefore, may be rejected by maternal immunocytes. However, the cytotoxic mechanisms involved are still poorly understood. We have previously shown the involvement of natural killer (NK) cells and mononuclear cells expressing Mac-1 (CD11b) and F4/80 in resorbing compared to nonresorbing embryos. In this study, the role of nitric oxide (NO) in the mechanism of early embryo loss was studied. Pregnant CBA/J females mated ...

  3. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Science.gov (United States)

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  4. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  5. Regulatory B Cells from Hilar Lymph Nodes of Tolerant Mice in a Murine Model of Allergic Airway Disease are CD5+, Express TGF-β and Co-localize with CD4+Foxp3+ T Cells

    OpenAIRE

    Natarajan, Prabitha; Singh, Anurag; McNamara, Jeffrey T.; Secor, Eric R.; Guernsey, Linda A.; Thrall, Roger S.; Craig M. Schramm

    2012-01-01

    In a biphasic, ovalbumin (OVA)-induced murine asthma model where allergic airway disease is followed by resolution and the development of local inhalational tolerance (LIT), TGFβ-expressing CD5+ B cells were selectively expanded locally in hilar lymph nodes (HLN) of LIT mice. LIT HLN CD5+ B cells but not LIT HLN CD5− B cells induced expression of Foxp3 in CD4+ CD25− T cells in vitro. These CD5+ regulatory B cells and CD4+Foxp3+ T cells demonstrated similar increases in expression of chemokine...

  6. Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization.

    Science.gov (United States)

    Romero, F; Martínez-A, C; Camonis, J; Rebollo, A

    1999-01-01

    We searched for proteins that interact with Ras in interleukin (IL)-2-stimulated or IL-2-deprived cells, and found that the transcription factor Aiolos interacts with Ras. The Ras-Aiolos interaction was confirmed in vitro and in vivo by co-immunoprecipitation. Indirect immunofluorescence shows that IL-2 controls the cellular distribution of Aiolos and induces its tyrosine phosphorylation, required for dissociation from Ras. We also identified functional Aiolos-binding sites in the Bcl-2 promoter, which are able to activate the luciferase reporter gene. Mutation of Aiolos-binding sites within the Bcl-2 promoter inhibits transactivation of the reporter gene luciferase, suggesting direct control of Bcl-2 expression by Aiolos. Co-transfection experiments confirm that Aiolos induces Bcl-2 expression and prevents apoptosis in IL-2-deprived cells. We propose a model for the regulation of Bcl-2 expression via Aiolos. PMID:10369681

  7. [Cardiac invasion of ATLL cells and therapeutic effects of local along with systemic treatments].

    Science.gov (United States)

    Imoto, S; Nakagawa, T; Ito, M

    1989-07-01

    We report a rare case of adult T cell leukemia/lymphoma (ATLL) in which cardiac invasion was clinically demonstrated and treated effectively. A 45-year-old female was admitted because of exertional dyspnea and cervical tumors. The leukocyte count was 19,100/microliters with 20% of flower cells. HTLV-I antibody was positive. She was diagnosed as ATLL and treated with VEPA. She got remission for a short duration which was followed by relapse. OPEC was started as salvage therapy. In the course, extensive pericardial effusion was found in chest X-P. Pericardial puncture demonstrated ATLL cells and high titer of free IL-2 receptor (57,400U/ml) in the effusion. It was diagnosed as pericardial invasion of ATLL cells. Chemotherapy was started with new combination of drugs (cisplatin, mitoxantrone, ifosfamide, and prednisolone). Concomitantly pericardial drainage was performed and the drugs were administered directly into the pericardial cavity. The clinical improvement was obtained and pericardial effusion did not appear thereafter. She died 4 months after the diagnosis of cardiac invasion. On autopsy myocardial invasion was identified. The pericardium widely adhered and effusion measured 42 ml. PMID:2810792

  8. Protein kinase TTK interacts and co-localizes with CENP-E to the kinetochore of human cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spindle checkpoint is an important biochemical signaling cascade during mitosis which monitors the fidelity of chromosome segregation, and is mediated by protein kinases Mps1 and Bub1/BubR1. Our recent studies show that kinesin-related motor protein CENP-E interacts with BubR1 and participates in spindle checkpoint signaling. To elucidate the molecular mechanisms underlying spindle checkpoint signaling, we carried out proteomic dissection of human cell kinetochore and revealed protein kinase TTK, human homologue of yeast Mps1. Our studies show that TTK is localized to the kinetochore of human cells, and interacts with CENP-E, suggesting that TTK may play an important role in chromosome segregation during mitosis.

  9. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein. However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the plasma membrane, large core vesicles and small dense core vesicles around the nuclei, as well as in the nucleus in human glioma cell line U251 using immunocytochemistry and immunofluorescence staining. Meanwhile, we also showed that small dense core vesicles budded from large core vesicles, and interacted with the nuclear envelope. Accordingly, our results suggested that such a series of membrane compartments might be involved in the pathway of nuclear translocation of the transmembrane receptor TrkA.

  10. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line

    Institute of Scientific and Technical Information of China (English)

    GONG AiHua; ZHANG ZhiJian; XIAO DeSheng; YANG Yong; WANG YongZhong; CHEN YongChang

    2007-01-01

    A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein.However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the plasma membrane, large core vesicles and small dense core vesicles around the nuclei, as well as in the nucleus in human glioma cell line U251 using immunocytochemistry and immunofluorescence staining. Meanwhile, we also showed that small dense core vesicles budded from large core vesicles, and interacted with the nuclear envelope. Accordingly,our results suggested that such a series of membrane compartments might be involved in the pathway of nuclear translocation of the transmembrane receptor TrkA.

  11. Pharmacokinetics, tissue distribution, and cell localization of [35S]methionine-labeled recombinant human and murine alpha interferons in mice

    International Nuclear Information System (INIS)

    The pharmacokinetics, tissue distribution, cell localization, and penetration into tumor xenografts of recombinant [35S]methionine-labeled human alpha interferon (HuIFN-alpha) and murine alpha interferon (MuIFN-alpha) were examined in mice. Both interferons (IFNs) were removed from the blood in a rapid biphasic manner; HuIFN-alpha was cleared faster than MuIFN-alpha. Tissues were analyzed for radioactivity and over 90% of the IFNs was accounted for. The IFNs were detected predominantly in liver, kidney, gastrointestinal tract, pancreas, spleen, and lung. The levels of MuIFN-alpha compared with HuIFN-alpha were greater in the liver, spleen, and lung and less in the kidney, pancreas, and gastrointestinal tract. Heart, brain, testes, thymus, lymph nodes, fat, skin, and skeletal muscle contained much lower but measurable levels of both IFNs. There was penetration of HuIFN-alpha into tumor xenografts. The pharmacokinetics of IFN-alpha were independent of the strain of mouse, BALB/c or CBA, immune deprivation, or the presence of a tumor xenograft. Autoradiography of tissue sections from mice given injections of HuIFN-alpha or MuIFN-alpha indicated focal radioactivity in proximal convoluted tubules in the kidney and diffuse radioactivity in the liver, gastrointestinal tract, and pancrease. MuIFN-alpha, but not HuIFN-alpha, showed intense localization in cells in hepatic sinusoids, marginal zones in the spleen, and pulmonary alveolar walls, suggesting uptake by cells of the monocyte/macrophage lineage in these sites. The study shows the utility of biosynthetic labeling for pharmacokinetic studies of cytokines, clear differences in tissue distribution of IFN-alpha according to its species of origin, and targeting of homologous IFN-alpha to cells of the monocytic lineage

  12. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens

    OpenAIRE

    Zupan, John R.; Cameron, Todd A.; Anderson-Furgeson, James; Zambryski, Patricia C.

    2013-01-01

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about...

  13. FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines

    Indian Academy of Sciences (India)

    Fan-Lun Liu; Ting-Yi Liu; Fan-Lu Kung

    2014-03-01

    One of the pathological hallmarks of Alzheimer’s disease is the presence of insoluble extracellular amyloid plaques. These plaques are mainly constituted of amyloid beta peptide (A), a proteolytic product of amyloid precursor protein (APP). APP processing also generates the APP intracellular domain (AICD). We have previously demonstrated that AICD interacts with FKBP12, a peptidyl-prolyl cis-trans isomerase (PPIase) ubiquitous in nerve systems. This interaction was interfered by FK506, a clinically used immunosuppressant that has recently been reported to be neuroprotective. To elucidate the roles of FKBP12 in the pathogenesis of Alzheimer’s disease, the effect of FKBP12 overexpression on APP processing was evaluated. Our results revealed that APP processing was shifted towards the amyloidogenic pathway, accompanied by a change in the subcellular localization of APP, upon FKBP12 overexpression. This FKBP12-overexpression-induced effect was reverted by FK506. These findings support our hypothesis that FKBP12 may participate in the regulation of APP processing. FKBP12 overexpression may lead to the stabilization of a certain isomer (presumably the cis form) of the Thr668-Pro669 peptide bond in AICD, therefore change its affinity to flotillin-1 or other raft-associated proteins, and eventually change the localization pattern and cause a shift in the proteolytic processing of APP.

  14. The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells.

    Science.gov (United States)

    Sandoz, Kelsi M; Valiant, William G; Eriksen, Steven G; Hruby, Dennis E; Allen, Robert D; Rockey, Daniel D

    2014-07-01

    Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells. The antichlamydial and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization. Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized to host cell lipid droplets but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular growth in a host-cell-dependent manner and interrupts proper development of chlamydial inclusions, possibly through a lipid droplet-dependent process. PMID:24777097

  15. Palliative Local Radiotherapy in the Treatment of Tumor-stage Cutaneous T-cell Lymphoma/Mycosis Fungoides

    Institute of Scientific and Technical Information of China (English)

    Chen-chen Xu; Tao Zhang; Tao Wang; Jie Liu; Yue-hua Liu

    2014-01-01

    Objective To determine the efficacy of palliative radiotherapy in treating tumor-stage cutaneous T-cell lymphoma/mycosis fungoides (MF). Methods From January 2008 to January 2013, a total of 11 patients with tumor-stage MF were treated with local radiation therapy in Peking Union Medical College Hospital. The median age of these patients was 53.36±14.45 years. Female-male ratio was 1:1.2. The average course of disease was 10.82±3.37 years. All the patients were treated with local electronic beam irradiation with a total median dosage of 48.55±9.51 (40-74) Gy in an average of 24.55±5.57 (20-40) fractions, 5 fractions per week. Results The median follow-up time was 55.27±29.3 (13-103) months. No severe acute or chronic side effects of irradiation were observed. Complete clinical response (CR) rate of the radiated sites was 54.5%(6/11), partial response (PR) rate was 36.4%(4/11), and the overall response rate (CR+PR) was 90.9%. One patient showed no response. Conclusion Local radiotherapy with psolaren plus ultraviolet A and/or interferon maintaining treatment is an effective palliative therapy in the treatment of tumor-stage MF patients.

  16. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    OpenAIRE

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-...

  17. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells.

    Science.gov (United States)

    Allen-Worthington, Krystal; Xie, Jianjun; Brown, Jessica L; Edmunson, Alexa M; Dowling, Abigail; Navratil, Amy M; Scavelli, Kurt; Yoon, Hojean; Kim, Do-Geun; Bynoe, Margaret S; Clarke, Iain; Roberson, Mark S

    2016-09-01

    Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion. PMID:27482602

  18. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization

    OpenAIRE

    1984-01-01

    Biosynthesis of von Willebrand protein by human umbilical vein endothelial cells involved distinct processing steps marked by the presence of several intermediate molecular species. Examination of endoglycosidase H sensitivity of these intracellular intermediates indicated that the processing steps occurred in at least two separate cellular compartments. In the pre-Golgi apparatus (most probably the endoplasmic reticulum), the high mannose carbohydrates were added onto the precursor monomer c...

  19. Primary cutaneous anaplastic large cell lymphoma successfully treated with local thermotherapy using pocket hand warmers.

    Science.gov (United States)

    Honma, Masaru; Hashimoto, Makoto; Iwasaki, Takeshi; Iinuma, Shin; Takahashi, Hidetoshi; Ishida-Yamamoto, Akemi; Iizuka, Hajime

    2008-11-01

    Apart from for cutaneous deep fungal or mycobacterial infections, thermotherapy has been used for various malignant tumors. We report a case of primary cutaneous anaplastic large cell lymphoma, which responded quite well to topical thermotherapy using chemical pocket hand warmers. The treatment resulted in an immediate tumor regression without recurrence. This method is simple and might be a useful tool against solitary cutaneous lymphoma, especially of elderly patients with poor performance status or with various systemic complications. PMID:19120772

  20. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    Science.gov (United States)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. PMID:27473013

  1. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells

    Directory of Open Access Journals (Sweden)

    Jesse E. Jun

    2013-09-01

    Full Text Available The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and SOS-family GEFs.Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood.One large group of biomolecules critically involved in the control of Ras-GEFs´functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.

  2. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells.

    Directory of Open Access Journals (Sweden)

    Pao-Lin Kuo

    Full Text Available Serine/threonine kinase 31 (STK31 is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.

  3. Identification and localization of transformed cells in agrobacterium tumefaciens-induced plant tumors

    Science.gov (United States)

    Rezmer; Schlichting; Wachter; Ullrich

    1999-10-01

    Agrobacterium tumefaciens-induced tumors of dicotyledonous plants consist of well-defined vascular bundle-like structures originating from transformed cells. The current view that 25% of the tumor cells are transformed has been re-investigated by using beta-glucuronidase (gus)-gene-containing wild-type bacteria (A281 p35S gus-int). Regularly growing stem and leaf tumors showed irregular GUS-staining patterns in the different plant species, Ricinus communis L., Cucurbita maxima L., Vicia faba L. and Kalanchoe daigremontiana Hamet et Perrier. Variable staining and inconsistency between staining and tumor growth suggested an inhibition of gus expression. By polymerase chain reaction (PCR) and reverse transcriptase-PCR analyses it became evident that gus is also integrated into the DNA of unstainable tumor parts but not expressed. These results and area calculations of tissues unable to contain the bacterial transferred-DNA with gus provide strong evidence that in A. tumefaciens-induced tumors most cells, or even all, are transformed, i.e. ca. 100%. PMID:10550620

  4. Calmodulin Involvement in Stress-Activated Nuclear Localization of Albumin in JB6 Epithelial Cells.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Negash, Sewite; Smallwood, Heather S.; Ramos, Kenneth S.; Thrall, Brian D.; Squier, Thomas C.

    2004-06-15

    We report that in response to oxidative stress, albumin is translocated to the nucleus where it binds in concert with known transcription factors to an antioxidant response element (ARE), which controls the expression of glutathione-S-transferase and other antioxidant enzymes, functioning to mediate adaptive cellular responses. To investigate the mechanisms underlying this adaptive cell response, we have identified linkages between calcium signaling and the nuclear translocation of albumin in JB6 epithelial cells. Under resting conditions, albumin and the calcium regulatory protein, calmodulin (CaM), co-immunoprecipitate using antibodies against either protein, indicating a tight association. Calcium activation of CaM disrupts the association between CaM and albumin, suggesting that transient increases in cytosolic calcium levels function to mobilize intracellular albumin to facilitate its translocation into the nucleus. Likewise, nuclear translocation of albumin is induced by exposure of cells to hydrogen peroxide or a phorbol ester, indicating a functional linkage between reactive oxygen species, calcium, and PKC-signaling pathways. Inclusion of an antioxidant enzyme (i.e., superoxide dismutase) blocks nuclear translocation, suggesting that the oxidation of sensitive proteins functions to coordinate the adaptive cellular response. These results suggest that elevated calcium transients, and associated increases in reactive oxygen species, contribute to adaptive cellular responses through the mobilization and nuclear translocation of cellular albumin to mediate the transcriptional regulation of antioxidant responsive elements.

  5. Power electronics for local fuel cell/-battery plants; Leistungselektronik fuer dezentrale Brennstoffzellen/-Batterieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Krykunov, Oleksandr

    2009-10-13

    With their high efficiency and modular structure, fuel cells are an attractive option for decentral power supply. An important component of decentral power supply systems is the power-electronic control element for supply of electric power from the fuel cell to the three-phase electricity grid. Control elements can be constructed of a unidirectional DC/DC converter with a current inverter connnected in series. The investigation focused on the development of the DC/DC converter with minimum constructional and control requirements and optimum adaption of the DC/DC converter to the characteristics of the fuel cell. (orig.) [German] Die Brennstoffzelle stellt mit ihrem hohen Wirkungsgrad und ihrem modularen Aufbau eine attraktive Option fuer die Verwendung in einem dezentralen Energieversorgungssystem dar. Eine wichtige Komponente des dezentralen Energieversorgungssystems sind die leistungselektronischen Stellglieder fuer die Einspeisung der elektrischen Energie aus der Brennstoffzelle in das dreiphasige Netz. Die leistungselektronischen Stellglieder koennen aus einem undirektionalen DC/DC-Wandler und einem nachgeschalteten Wechselrichter realisiert werden. Die Entwicklung des DC/DC-Wandlers mit einem moeglichst geringeren Bauelemente- und Steuerungsaufwand fuer diese leistungselektronischen Stellglieder und die Anpassung des DC/DC-Wandlers an die Eigenschaften der Brennstoffzelle war das Ziel dieser Arbeit. (orig.)

  6. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  7. Regulation of ErbB2 localization and function in breast cancer cells by ERM proteins

    Science.gov (United States)

    Asp, Nagham; Kvalvaag, Audun; Sandvig, Kirsten; Pust, Sascha

    2016-01-01

    The ERM protein family is implicated in processes such as signal transduction, protein trafficking, cell proliferation and migration. Consequently, dysregulation of ERM proteins has been described to correlate with carcinogenesis of different cancer types. However, the underlying mechanisms are poorly understood. Here, we demonstrate a novel functional interaction between ERM proteins and the ErbB2 receptor tyrosine kinase in breast cancer cells. We show that the ERM proteins ezrin and radixin are associated with ErbB2 receptors at the plasma membrane, and depletion or functional inhibition of ERM proteins destabilizes the interaction of ErbB2 with ErbB3, Hsp90 and Ebp50. Accompanied by the dissociation of this protein complex, binding of ErbB2 to the ubiquitin-ligase c-Cbl is increased, and ErbB2 becomes dephosphorylated, ubiquitinated and internalized. Furthermore, signaling via Akt- and Erk-mediated pathways is impaired upon ERM inhibition. Finally, interference with ERM functionality leads to receptor degradation and reduced cellular levels of ErbB2 and ErbB3 receptors in breast cancer cells. PMID:27029001

  8. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia.

    Science.gov (United States)

    Knopf, Julia D; Tholen, Stefan; Koczorowska, Maria M; De Wever, Olivier; Biniossek, Martin L; Schilling, Oliver

    2015-10-01

    Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.

  9. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

    Directory of Open Access Journals (Sweden)

    Isabel Weinheimer

    Full Text Available Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae encodes a Class 1 RNase III endoribonuclease (RNase3 that suppresses post-transcriptional RNA interference (RNAi and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas. For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3 and RNA-dependent RNA polymerase 6 (RDR6. In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression.

  10. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

    Science.gov (United States)

    Weinheimer, Isabel; Haikonen, Tuuli; Ala-Poikela, Marjo; Moser, Mirko; Streng, Janne; Rajamäki, Minna-Liisa; Valkonen, Jari P T

    2016-01-01

    Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA) and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6). In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression. PMID:27391019

  11. Injection of sup 32 P colloid into squamous cell carcinoma of the esophagus for local disease control

    Energy Technology Data Exchange (ETDEWEB)

    Perakos, P.G.; Scheer, T.F. (Memorial Hospital of Laramie County and Wyoming College of Human Medicine, Wyoming (USA))

    1989-10-01

    Local treatment of squamous cell carcinoma of the esophagus is only modestly successful. To increase local control, we have developed a procedure to inject a boost dose of radiation into the tumor bed after completion of external beam radiotherapy. The boost dose is given with {sup 32}P, a readily available radiocolloid. {sup 32}P is a pure emitter and poses no significant radiation hazards. It can penetrate 10approx15 mm into the tumor mass and has a half-life of 14.3 days. After determination of the volume to be treated, the colloid is injected with endoscopic guidance using the same technique as used in injection scierotherapy of esophageal varices. We use the Pentax FG 34 JA operating gastroscope and a Bard disposable 0.5 cm 25 Ga retractable injection sclerotherapy needle. We deliver 150approx200 microCurie of {sup 32}P colloid diluted to 20 ml with normal saline at 10 to 20 injection sites. This boosts the radiotherapy dose of 5,500approx6,000 cGy to the range of 7,500approx8,000 cGy. We have treated five patients so far, with length of follow-up ranging from 8approx28 months. Local control and survival results have been excellent and no complications have been associated with the procedure. A combination of external beam radiotherapy and interstitial boost treatment with colloidal {sup 32}P appears to be a safe and effective method of managing squamous cell carcinoma of the esophagus. (author).

  12. EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: Differential response of cancer stem cells and nontumourigenic cells?

    International Nuclear Information System (INIS)

    Background and purpose: Waiting times before radiotherapy may reduce tumour control probability due to proliferation of tumour cells. The aim of the experiment was to test whether the growth inhibiting effect of epidermal growth factor receptor (EGFR)-inhibitors after surgery or tumour transplantation results in a lower tumour mass at time of irradiation and can thereby improve local tumour control. Materials and methods: The EGFR-tyrosine kinase inhibitor BIBX1382BS was applied over 14 days starting from microscopically non-in-sano-resection of FaDu tumours or from tumour transplantation, followed by irradiation (5f/5d). Endpoint was local tumour control. In addition, vital tumour areas, pimonidazole hypoxic fraction, BrdU labelling index, and colony forming ability in vitro were tested in control tumours and after BIBX1382BS treatment (starting from transplantation). Results: The tumour volume at start of irradiation was significantly lower in the BIBX1382BS treated tumours as compared to the control groups by factors of 11 (post-surgery setting) and 2.7 (transplantation setting). However, the reduced volume did not translate into improved local control after irradiation. The TCD50 values after surgery were 25.4 Gy [95% CI 18; 33 Gy] in the control group and 30.5 Gy [24; 37] in the BIBX1382BS group (p = 0.25). Treatment after transplantation resulted in TCD50 values of 41.1 Gy [35; 47] in the cont