WorldWideScience

Sample records for cell cycle-dependent localization

  1. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells.

    Science.gov (United States)

    Cobb, Melanie M; Austin, Daniel C; Sack, Jon T; Trimmer, James S

    2015-12-04

    The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cell cycle dependent association of EBP50 with protein phosphatase 2A in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Anita Boratkó

    Full Text Available Ezrin-radixin-moesin (ERM-binding phosphoprotein 50 (EBP50 is a phosphorylatable PDZ domain-containing adaptor protein that is abundantly expressed in epithelium but was not yet studied in the endothelium. We report unusual nuclear localization of EBP50 in bovine pulmonary artery endothelial cells (BPAEC. Immunofluorescent staining and cellular fractionation demonstrated that EBP50 is present in the nuclear and perinuclear region in interphase cells. In the prophase of mitosis EBP50 redistributes to the cytoplasmic region in a phosphorylation dependent manner and during mitosis EBP50 co-localizes with protein phosphatase 2A (PP2A. Furthermore, in vitro wound healing of BPAEC expressing phospho-mimic mutant of EBP50 was accelerated indicating that EBP50 is involved in the regulation of the cell division. Cell cycle dependent specific interactions were detected between EBP50 and the subunits of PP2A (A, C, and Bα with immunoprecipitation and pull-down experiments. The interaction of EBP50 with the Bα containing form of PP2A suggests that this holoenzyme of PP2A can be responsible for the dephosphorylation of EBP50 in cytokinesis. Moreover, the results underline the significance of EBP50 in cell division via reversible phosphorylation of the protein with cyclin dependent kinase and PP2A in normal cells.

  3. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  4. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1

    DEFF Research Database (Denmark)

    Walmod, Peter S.; Hartmann-Petersen, Rasmus; Prag, S.

    2004-01-01

    was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels...... comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner......, and that an enhancement of Rac1 activity is sufficient for a delay of the reduced cell displacement otherwise seen in G2....

  5. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    International Nuclear Information System (INIS)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa; Yoon, Hyun-Joo; Yoo, Hae Yong; Choi, Cheol Yong

    2014-01-01

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis

  6. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  7. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...... differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro....

  8. Cell cycle dependency of 67gallium uptake and cytotoxicity in human cell lines of hematological malignancies.

    Science.gov (United States)

    Van Leeuwen-Stok, E A; Jonkhoff, A R; Visser-Platier, A W; Dräger, L M; Teule, G J; Huijgens, P C; Schuurhuis, G J

    1998-11-01

    67Gallium (67Ga) is a radionuclide which accumulates in hematological malignancies and is used for diagnostic imaging. We investigated in this in vitro study the cell cycle dependency of cellular uptake and cytotoxicity of 67Ga. Cell cycle synchronization of cells was achieved by counterflow centrifugal elutriation and the use of cytostatic drugs. The human lymphoma cell lines U-937 and U-715 were used and in elutriation experiments we also used the leukemic cell line HL-60. The transferrin receptor (CD71) expression, 67Ga uptake and cell proliferation inhibition were the parameters measured. We also studied cytotoxicity in various schedules for combination of 67Ga and drugs and the residual proliferative capacity was measured. The CD71 expression in the three cell lines increased from 106-177% on S phase cells and from 118-233% on G2M cells, as compared to the G0/G1 cell fraction. The 67Ga uptake varied from 108-127% for S cells and 128-139% for G2M cells. The drugs chosen induced cell cycle phase accumulation in S and/or G2M phase during preincubation. 67Ga preincubation induced accumulation in the G2M phase. Almost all combinations of 67Ga and drugs resulted in a non-interactive effect, except for methotrexate which resulted in an antagonistic effect. No preferential effect of any of the incubation schemes was seen. CD71 expression and 67Ga uptake were increased in S and G2M cells. Combination of 67Ga with drugs which arrest cells in these cell cycle phases did not result in a change in cytotoxicity. However, these results implicate that 67Ga and the cytostatic drugs tested except for methotrexate might be used together or sequentially in therapy.

  9. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure.

    Science.gov (United States)

    Grand, Ralph S; Pichugina, Tatyana; Gehlen, Lutz R; Jones, M Beatrix; Tsai, Peter; Allison, Jane R; Martienssen, Robert; O'Sullivan, Justin M

    2014-11-10

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Cell-cycle-dependent efficacy of photodynamic therapy with ATX-S10(Na).

    Science.gov (United States)

    Sano, Munetaka; Furuta, Takahisa; Takahira, Kenichiro; Kajimura, Masayoshi; Hanai, Hiroyuki; Kohno, Eiji; Hirano, Toru; Hishida, Akira

    2005-01-01

    Photodynamic therapy (PDT) is a useful strategy for treating various cancers. Details of the mechanisms of PDT have not been made clear yet. We intended to study the efficacy of PDT in relation to the cell cycle. HeLa S3 cells were synchronized by the thymidine block method. Cells in different cell cycle phases after release were treated with the water-soluble photosensitizer, ATX-S10(Na). The cellular viability after PDT was determined by the MTT assay. Intracellular levels of ATX-S10(Na) in different cell cycle phases were also determined. We found that cells in the S and G(2)/M phases were hypersensitive to PDT with ATX-S10(Na) in comparison with those in the G(1) phase, and that cellular levels of ATX-S10(Na) were increased in cells in the S and G(2)/M phases compared to those in the G(1) phase. We conclude that cellular ATX-S10(Na) levels differ among the different cell cycle phases, which is associated with the cell-cycle-dependent efficacy of PDT with ATX-S10(Na).

  11. Cell cycle-dependent alteration in NAC1 nuclear body dynamics and morphology

    International Nuclear Information System (INIS)

    Wu, Pei-Hsun; Hung, Shen-Hsiu; Ren, Tina; Tseng, Yiider; Shih, Ie-Ming

    2011-01-01

    NAC1, a BTB/POZ family member, has been suggested to participate in maintaining the stemness of embryonic stem cells and has been implicated in the pathogenesis of human cancer. In ovarian cancer, NAC1 upregulation is associated with disease aggressiveness and with the development of chemoresistance. Like other BTB/POZ proteins, NAC1 forms discrete nuclear bodies in non-dividing cells. To investigate the biological role of NAC1 nuclear bodies, we characterized the expression dynamics of NAC1 nuclear bodies during different phases of the cell cycle. Fluorescence recovery after photobleaching assays revealed that NAC1 was rapidly exchanged between the nucleoplasm and NAC1 nuclear bodies in interphase cells. The number of NAC1 bodies significantly increased and their size decreased in the S phase as compared to the G 0 /G 1 and G 2 phases. NAC1 nuclear bodies disappeared and NAC1 became diffuse during mitosis. NAC1 nuclear bodies reappeared immediately after completion of mitosis. These results indicate that a cell cycle-dependent regulatory mechanism controls NAC1 body formation in the nucleus and suggest that NAC1 body dynamics are associated with mitosis or cytokinesis

  12. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  13. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    National Research Council Canada - National Science Library

    Dovichi, Norman J

    2005-01-01

    .... Capillary sieving electrophoresis and capillary micellar electrophoresis were used to characterize proteins in single cells in one-dimensional separations, while the two techniques were combined...

  14. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle......-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude....

  15. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.

  16. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  17. Cell-cycle-dependent Xenopus TRF1 recruitment to telomere chromatin regulated by Polo-like kinase

    Science.gov (United States)

    Nishiyama, Atsuya; Muraki, Keiko; Saito, Motoki; Ohsumi, Keita; Kishimoto, Takeo; Ishikawa, Fuyuki

    2006-01-01

    Telomeres are regulated by a homeostatic mechanism that includes telomerase and telomeric repeat binding proteins, TRF1 and TRF2. Recently, it has been hypothesized that telomeres assume distinct configurations in a cell-cycle-dependent manner, although direct biochemical evidence is lacking. Here we demonstrated that Xenopus TRF1 (xTRF1) associates with telomere chromatin specifically in mitotic Xenopus egg extracts, and dissociates from it upon mitotic exit. Both the N-terminal TRF-homology (TRFH) domain and the linker region connecting the TRFH domain and the C-terminal Myb domain are required for this cell-cycle-dependent association of xTRF1 with chromatin. In contrast, Xenopus TRF2 (xTRF2) associates with chromatin throughout the cell cycle. We showed that Polo-like kinase (Plx1) phosphorylates xTRF1 in vitro. Moreover, the mitotic xTRF1–chromatin association was significantly impaired when Plx1 was immunodepleted from the extracts. Finally, high telomerase activities were detected in association with replicating interphase chromatin compared with mitotic chromatin. These results indicate that telomere chromatin is actively regulated by cell-cycle-dependent processes, and provide an insight for understanding how telomeres undergo DNA metabolisms during the cell cycle. PMID:16424898

  18. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell

    International Nuclear Information System (INIS)

    Stamato, T.D.; Weinstein, R.; Giaccia, A.; Mackenzie, L.

    1983-01-01

    A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma ray-sensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and then a flattening of the curve at about 10% survival. Subsequently, it was found that this cell is sensitive to gamma irradiation in G1, early S, and late G2 phases of the cell cycle, whereas in the resistant phase (late S phase) its survival approaches that of the parental cells. The D37 in the sensitive G1 period is approximately 30 rads, compared with 300 rads of the parental cell. This mutant cell is also sensitive to killing by the DNA breaking agent, bleomycin, but is relatively insensitive to UV light and ethyl methane sulfonate, suggesting that the defect is specific for agents that produce DNA strand breakage

  19. Cell-cycle-dependent Xenopus TRF1 recruitment to telomere chromatin regulated by Polo-like kinase

    OpenAIRE

    Nishiyama, Atsuya; Muraki, Keiko; Saito, Motoki; Ohsumi, Keita; Kishimoto, Takeo; Ishikawa, Fuyuki

    2006-01-01

    Telomeres are regulated by a homeostatic mechanism that includes telomerase and telomeric repeat binding proteins, TRF1 and TRF2. Recently, it has been hypothesized that telomeres assume distinct configurations in a cell-cycle-dependent manner, although direct biochemical evidence is lacking. Here we demonstrated that Xenopus TRF1 (xTRF1) associates with telomere chromatin specifically in mitotic Xenopus egg extracts, and dissociates from it upon mitotic exit. Both the N-terminal TRF-homology...

  20. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence

    International Nuclear Information System (INIS)

    Iliakis, George

    2009-01-01

    DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) in cells of higher eukaryotes are predominantly repaired by a pathway of non-homologous end joining (NHEJ) utilizing Ku, DNA-PKcs, DNA ligase IV, XRCC4 and XLF/Cernunnos (D-NHEJ) as central components. Work carried out in our laboratory and elsewhere shows that when this pathway is chemically or genetically compromised, cells do not shunt DSBs to homologous recombination repair (HRR) but instead use another form of NHEJ operating as a backup (B-NHEJ). Here I review our efforts to characterize this repair pathway and discuss its dependence on the cell cycle as well as on the growth conditions. I present evidence that B-NHEJ utilizes ligase III, PARP-1 and histone H1. When B-NHEJ is examined throughout the cell cycle, significantly higher activity is observed in G2 phase that cannot be attributed to HRR. Furthermore, the activity of B-NHEJ is compromised when cells enter the plateau phase of growth. Together, these observations uncover a repair pathway with unexpected biochemical constitution and interesting cell cycle and growth factor regulation. They generate a framework for investigating the mechanistic basis of HRR contribution to DSB repair.

  1. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation.

    Science.gov (United States)

    Erhardt, Sylvia; Mellone, Barbara G; Betts, Craig M; Zhang, Weiguo; Karpen, Gary H; Straight, Aaron F

    2008-12-01

    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.

  2. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle...... at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non...... that non-optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle-dependent dynamics...

  3. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA).

    Science.gov (United States)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa; Yoon, Hyun-Joo; Yoo, Hae Yong; Choi, Cheol Yong

    2014-01-03

    Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    Science.gov (United States)

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

    Directory of Open Access Journals (Sweden)

    Gersende Caron

    2015-11-01

    Full Text Available Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-β1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxymethylation, and cell fate determination.

  6. Cell cycle dependent x-ray-induced death in Chlamydomonas reinhardi

    International Nuclear Information System (INIS)

    Gruber, H.E.; Nachtwey, D.S.

    1976-01-01

    Light-dark (L-D) synchronized Chlamydomonas grow during a 12-hr light period and divide by a series of mitoses into 4 or 8 daughter cells during the early part of the following 12-hr dark period. Sensitivity to the lethal effects of 9108 R X-irradiation varies throughout the L-D cycle. Mortality rises from 20 percent at the 1st hour to 40 percent at the 9th hour, to 70 percent at the onset of the dark; it reaches a peak of about 85 percent at about the 14th hour, just before the first cytokinesis, and then returns to a level of about 45 percent when cell division has been completed (after data correction for multiplicity of targets per colony-forming unit). Most lethally affected cells complete at least one set of divisions (into 4 or 8 daughter cells) before they die; however, exposure shortly before the first nuclear division results in two sets of divisions before death, suggesting that these cells were committed in some way at the time of irradiation to divide again 24 hr later. Some single cells exposed prior to cytokinesis exhibit mixed-colony formation: About half of their progeny die and half survive, indicating that prior to cytokinesis there are perhaps two radiation-sensitive ''targets'' per cell

  7. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  8. Cell Cycle Dependent Expression of Plk1 in Synchronized Porcine Fetal Fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Anger, Martin; Kues, W. A.; Klíma, Jiří; Mielenz, M.; Kubelka, Michal; Motlík, Jan; Ešner, M.; Dvořák, P.; Carnwath, J. W.; Niemann, H.

    2003-01-01

    Roč. 65, č. 3 (2003), s. 245-253 ISSN 1040-452X R&D Projects: GA MŠk LN00A065 Grant - others:FIRCA(XX) R03-TW-05530-01 Institutional research plan: CEZ:AV0Z5045916 Keywords : Plk1 * serum deprivation * cell cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.543, year: 2003

  9. The DREAM complex: master coordinator of cell cycle-dependent gene expression.

    Science.gov (United States)

    Sadasivam, Subhashini; DeCaprio, James A

    2013-08-01

    The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.

  10. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1

    International Nuclear Information System (INIS)

    Park, Iha; Avraham, Hava Karsenty

    2006-01-01

    Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving γ-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation

  11. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription.

    Science.gov (United States)

    Müller, Gerd A; Engeland, Kurt

    2010-02-01

    The cell cycle-dependent element (CDE) and the cell cycle genes homology region (CHR) control the transcription of genes with maximum expression in G(2) phase and in mitosis. Promoters of these genes are repressed by proteins binding to CDE/CHR elements in G(0) and G(1) phases. Relief from repression begins in S phase and continues into G(2) phase and mitosis. Generally, CDE sites are located four nucleotides upstream of CHR elements in TATA-less promoters of genes such as Cdc25C, Cdc2 and cyclin A. However, expression of some other genes, such as human cyclin B1 and cyclin B2, has been shown to be controlled only by a CHR lacking a functional CDE. To date, it is not fully understood which proteins bind to and control CDE/CHR-containing promoters. Recently, components of the DREAM complex were shown to be involved in CDE/CHR-dependent transcriptional regulation. In addition, the expression of genes regulated by CDE/CHR elements is mostly achieved through CCAAT-boxes, which bind heterotrimeric NF-Y proteins as well as the histone acetyltransferase p300. Importantly, many CDE/CHR promoters are downregulated by the tumor suppressor p53. In this review, we define criteria for CDE/CHR-regulated promoters and propose to distinguish two classes of CDE/CHR-regulated genes. The regulation through transcription factors potentially binding to the CDE/CHR is discussed, and recently discovered links to central pathways regulated by E2F, the pRB family and p53 are highlighted.

  12. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Pluripotency of embryonic stem cells (ESC is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb. Esrrb contributes to the relaxation of the G1 to S-phase (G1/S checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.

  13. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  14. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2014-01-01

    Full Text Available Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.

  15. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  16. Cell cycle dependent oscillatory expression of estrogen receptor-α links Pol II elongation to neoplastic transformation.

    Science.gov (United States)

    Vantaggiato, Cristina; Tocchetti, Marta; Cappelletti, Vera; Gurtner, Aymone; Villa, Alessandro; Daidone, Maria Grazia; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2014-07-01

    Decades of studies provided a detailed view of the mechanism of estrogen receptor-α (ERα) regulated gene transcription and the physio-pathological relevance of the genetic programs controlled by this receptor in a variety of tissues. However, still limited is our knowledge on the regulation of ERα synthesis. Preliminary observations showed that the expression of ERα is cell cycle regulated. Here, we have demonstrated that a well described polymorphic sequence in the first intron of ERα (PvuII and XbaI) has a key role in regulating the ERα content in cycling cells. We have shown that the RNA Pol II (Pol II) elongation is blocked at the polymorphic site and that the proto-oncogene c-MYB modulates the release of the pausing polymerase. It is well known that the two SNPs are associated to an increased risk, progression, survival and mortality of endocrine-related cancers, here we have demonstrated that the c-MYB-dependent release of Pol II at a specific phase of the cell cycle is facilitated by the px haplotype, thus leading to a higher ERα mitogenic signal. In breast cancer, this mechanism is disrupted when the hormone refractory phenotype is established; therefore, we propose this oscillator as a novel target for the development of therapies aimed at sensitizing breast cancer resistant to hormonal treatments. Because PvuII and XbaI were associated to a broad range physio-pathological conditions beside neoplastic transformation, we expect that the ERα oscillator contributes to the regulation of the estrogen signal in several tissues.

  17. p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23 is controlled via a CHR promoter element bound by DREAM and MMB complexes.

    Directory of Open Access Journals (Sweden)

    Martin Fischer

    Full Text Available The microtubule-dependent molecular motor KIF23 (Kinesin family member 23 is one of two components of the centralspindlin complex assembled during late stages of mitosis. Formation of this complex is known as an essential step for cytokinesis. Here, we identified KIF23 as a new transcriptional target gene of the tumor suppressor protein p53. We showed that p53 reduces expression of KIF23 on the mRNA as well as the protein level in different cell types. Promoter reporter assays revealed that this repression results from downregulation of KIF23 promoter activity. CDK inhibitor p21(WAF1/CIP1 was shown to be necessary to mediate p53-dependent repression. Furthermore, we identified the highly conserved cell cycle genes homology region (CHR in the KIF23 promoter to be strictly required for p53-dependent repression as well as for cell cycle-dependent expression of KIF23. Cell cycle- and p53-dependent regulation of KIF23 appeared to be controlled by differential binding of DREAM and MMB complexes to the CHR element. With this study, we describe a new mechanism for transcriptional regulation of KIF23. Considering the strongly supporting function of KIF23 in cytokinesis, its p53-dependent repression may contribute to the prevention of uncontrolled cell growth.

  18. Cell Cycle-Dependent Expression of Adeno-Associated Virus 2 (AAV2) Rep in Coinfections with Herpes Simplex Virus 1 (HSV-1) Gives Rise to a Mosaic of Cells Replicating either AAV2 or HSV-1.

    Science.gov (United States)

    Franzoso, Francesca D; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F; Sutter, Sereina O; Tobler, Kurt; Vogt, Bernd; Greber, Urs F; Büning, Hildegard; Ackermann, Mathias; Fraefel, Cornel

    2017-08-01

    Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G 2 -phase cells, while HSV-1 DNA replication is restricted to G 1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G 2 -phase cells, suggesting that the preference for S/G 2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G 2 -phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time

  19. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  20. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-01-01

    Store-operated Ca 2+ entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca 2+ influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs

  1. Decreased radioiodine uptake of FRTL-5 cells after {sup 131}I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Meller, Birgit; Deisting, Wibke; Baehre, Manfred [University of Luebeck, Clinic of Radiology and Nuclear Medicine, Luebeck (Germany); Gaspar, Erzsebet; Wenzel, Bjoern E. [University of Luebeck, Clinic of Internal Medicine I, Luebeck (Germany); Czarnocka, Barbara [Medical Centre of Postgraduate Education, Department of Clinical Biochemistry and Molecular Biology, Warsaw (Poland)

    2008-06-15

    In radioiodine therapy the 'stunning phenomenon' is defined as a reduction of radioiodine uptake after diagnostic application of {sup 131}I. In the current study, we established an in vitro model based on the 'Fisher rat thyrocyte cell line no. 5' (FRTL-5) to investigate the stunning. TSH-stimulated FRTL-5 cells were incubated with {sup 131}I. Time-dependent {sup 131}I uptake and the viability of FRTL-5 cells were evaluated at 4-144 h after radioiodine application. All data was corrected for number of viable cells, half life and {sup 131}I concentration. Sodium iodide symporter (NIS) and the housekeeping gene ({beta}-actin, GAPDH) levels were quantified by quantitative polymerase chain reaction (qPCR). Additionally, immunohistochemical staining (IHC) of NIS on the cell membrane was carried out. FRTL-5 monolayer cell cultures showed a specific maximum uptake of {sup 131}I 24-48 h after application. Significantly decreased {sup 131}I uptake values were observed after 72-144 h. The decrease in radioiodine uptake was correlated with decreasing mRNA levels of NIS and housekeeping genes. In parallel, unlike in controls, IHC staining of NIS on FRTL-5 cells declined significantly after {sup 131}I long-term incubation. It could be demonstrated that during {sup 131}I incubation of FRTL-5 cells, radioiodine uptake decreased significantly. Simultaneously decreasing levels of NIS mRNA and protein expression suggest a NIS-associated mechanism. Since mRNA levels of housekeeping genes decreased, too, the reduced NIS expression might be provoked by a cell cycle arrest. Our investigations recommend the FRTL-5 model as a valuable tool for further molecular biological investigations of the stunning phenomenon. (orig.)

  2. Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Antoni Hurtado

    2008-01-01

    Full Text Available Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ remain elusive.

  3. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of gammaH2AX- and NBS1-positive repair foci

    Czech Academy of Sciences Publication Activity Database

    Suchánková, Jana; Kozubek, Stanislav; Legartová, Soňa; Sehnalová, Petra; Kuntzinger, T.; Bártová, Eva

    2015-01-01

    Roč. 107, č. 12 (2015), s. 440-454 ISSN 0248-4900 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA ČR(CZ) GA13-07822S Institutional support: RVO:68081707 Keywords : Cell cycle * DNA repair * Interphase Subject RIV: BO - Biophysics Impact factor: 2.552, year: 2015

  4. Human DNA-binding peptidyl-prolyl cis/trans isomerase Par14 is cell cycle dependently expressed and associates with chromatin in vivo.

    Science.gov (United States)

    Saningong, Akuma D; Bayer, Peter

    2015-02-03

    Par14, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases that is involved in rRNA processing, microtubule formation and the glucose metabolism and has been suggested to play a role in chromatin remodeling on basis of sequence and structural identities to HMG proteins. Par14 is enriched in the nucleus and binds to double-stranded DNA in vitro. By means of sub-nuclear biochemical fractionations, we demonstrate that cellular Par14 is associated with chromatin 3-fold higher than with the nuclear matrix in vivo. Par14 is released from the chromatin fraction after treatment with DNase I and elutes at high NaCl concentrations from the nucleic acid-binding fraction. Using qRT-PCR and western blotting we demonstrate that Par14 is up-regulated during the S and G2/M phases in synchronised human foreskin fibroblasts cells. In the light of our results, Par14 can be described as an endogenous non-histone chromatin protein, which binds DNA in vivo. We propose that Par14 is involved in a DNA-dependent activity such as transcription.

  5. Cell cycle-dependent changes in localization of a 210-kDa microtubule-interacting protein in .I.Leishmania./I..

    Czech Academy of Sciences Publication Activity Database

    Libusová, Lenka; Dráberová, Eduarda; Juliano, C.; Viklický, Vladimír; Fiori, P. L.; Cappuccinelli, P.; Dráber, Petr

    2001-01-01

    Roč. 266, č. 2 (2001), s. 270-278 ISSN 0014-4827 R&D Projects: GA ČR GA304/00/0553; GA AV ČR IAA5052004 Keywords : microtubule-associated proteins * Leishmania-antibody Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.096, year: 2001

  6. Business Cycle Dependent Unemployment Benefits with Wealth Heterogeneity and Precautionary Savings

    DEFF Research Database (Denmark)

    Kristoffersen, Mark Strøm

    In the wake of the financial and economic crisis the discussion about social insurance and optimal stabilization policies has re-blossomed. This paper adds to the literature by studying the effects of a business cycle dependent level of unemployment benefits in a model with labor market matching......, wealth heterogeneity, precautionary savings, and aggregate fluctuations in productivity. The results are ambiguous: both procyclical and countercyclical unemployment benefits can increase welfare relative to business cycle invariant benefits. Procyclical benefits are beneficial due to countercyclicality...

  7. MUSIC for localization of thunderstorm cells

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Rynne, T.M. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States)

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surface electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.

  8. Dividing Cells Regulate Their Lipid Composition and Localization

    Science.gov (United States)

    Atilla-Gokcumen, G. Ekin; Muro, Eleonora; Relat-Goberna, Josep; Sasse, Sofia; Bedigian, Anne; Coughlin, Margaret L.; Garcia-Manyes, Sergi; Eggert, Ulrike S.

    2014-01-01

    Summary Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology. PMID:24462247

  9. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  10. LOCALIZATION OF ANTIGEN IN TISSUE CELLS

    Science.gov (United States)

    Coons, Albert H.; Leduc, Elizabeth H.; Kaplan, Melvin H.

    1951-01-01

    The fate of three proteins, crystalline hen's egg albumin, crystalline bovine plasma albumin, and human plasma γ-globulin, was traced after intravenous injection into mice. This was done by preparing frozen sections of quick-frozen tissue, allowing what foreign protein might be present in the section to react with homologous antibody labelled with fluorescein, and examining the section under the fluorescence microscope. By this means, which employs the serological specificity of the protein as a natural "marker," all three of these proteins were found in the cells of the reticulo-endothelial system, the connective tissue, the vascular endothelium, the lymphocytes of spleen and lymph node, and the epithelium of the kidney tubules, the liver, and in very small amounts in the adrenal. The central nervous system was not studied. All three persisted longest in the reticulo-endothelial system and the connective tissue, and in the doses employed egg white (10 mg.) was no longer detectable after 1 day, bovine albumin (10 mg.) after 2 days, and human γ-globulin (4 mg.) after 6 days, although in a somewhat higher dose (10 mg.) human γ-globulin persisted longer than 8 days. Egg albumin differed from the others in not being detectable in the cells of the renal glomerulus. It was found that each of the three proteins was present in the nuclei of each cell type enumerated above, often in higher concentration than in the cytoplasm. Further, some of the nuclei not only contained antigen, soon after injection, but were also surrounded by a bright ring associated with the nuclear membrane. By means of photographic records under the fluorescence microscope of sections stained for antigen, and direct observation under the light microscope of the same field subsequently stained with hematoxylin and eosin, it could be determined that the antigen was not adsorbed to chromatin or nucleoli, but was apparently in solution in the nuclear sap. PMID:14803641

  11. In vivo localization of cloned IL-2-dependent T cells

    International Nuclear Information System (INIS)

    Carroll, A.M.; Palladino, M.A.; Oettgen, H.; De Sousa, M.

    1983-01-01

    The quantitative organ distribution and tissue microenvironment positioning of radioisotopically labeled cloned T cells were characterized. Intravenous (iv) injection of 51chromium ( 51 Cr)-labeled, long-term cultured cloned T-helper cells and cells from several cloned cytolytic T-lymphocyte lines (CTLL) resulted in poor localization of these cells in recipient lymphoid tissues, similar to results reported for activated lymphoblastoid cells. Simultaneous administration of interleukin 2 (IL-2) with labeled cells resulted in enhanced recovery from recipient spleen. By the intraperitoneal (ip) injection route, overall percentage recovery of injected radioactivity was lower than by the iv route, but significant localization to lymph nodes occurred. Examination of autoradiographs of tissue sections from recipients of [ 3 H]adenosine-labeled cells showed most label associated with intact, isolated cells in the liver, lungs, spleen, and small intestine. By 24 hr after iv injection, labeled cells in spleen sections were distributed to both nonlymphoid and T- and B-lymphoid areas. These findings suggest that poor localization of these cells to recipient lymphoid tissue is due both to intrinsic characteristics of cultured lymphocytes and to the possible reduced viability of IL-2-dependent cells in vivo

  12. Cell cycle dependent expression of Plk 1 in synchronized porcine fetal fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Anger, M.; Kues, W. A.; Klíma, J.; Mielenz, M.; Kubelka, M.; Motlík, J.; Ešner, M.; Dvořák, Petr; Carnwath, J. W.; Niemann, H.

    2003-01-01

    Roč. 65, - (2003), s. 245-253 ISSN 1040-452X R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906 Keywords : serum deprivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.543, year: 2003

  13. Regulation of NKT Cell Localization in Homeostasis and Infection

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection. PMID:26074921

  14. Regulation of NKT Cell Localization in Homeostasis and Infection.

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.

  15. Immunocytochemical localization of cholinergic amacrine cells in the bat retina.

    Science.gov (United States)

    Park, Eun-Bee; Gu, Ya-Nan; Jeon, Chang-Jin

    2017-05-01

    The purpose of this study was to localize the cholinergic amacrine cells, one of the key elements of a functional retina, in the retina of a microbat, Rhinolophus ferrumequinum. The presence and localization of choline acetyltransferase-immunoreactive (ChAT-IR) cells in the microbat retina were investigated using immunocytochemistry, confocal microscopy, and quantitative analysis. These ChAT-IR cells were present in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL), as previously reported in various animals. However, the bat retina also contained some ChAT-IR cells in the outer part of the INL. The dendrites of these cells extended into the outer plexiform layer, and those of the cells in the inner INL extended within the outer part of the inner plexiform layer (IPL). The dendrites of the ChAT-IR cells in the GCL extended into the middle of the IPL and some fibers ramified up to the outer IPL. The average densities of ChAT-IR cells in the GCL, inner INL, and outer INL were 259±31cells/mm 2 , 469±48cells/mm 2 , and 59±8cells/mm 2 , respectively. The average total density of the ChAT-IR cells was 788±58cells/mm 2 (mean±S.D.; n=3; 2799±182 cells/retina). We also found that the cholinergic amacrine cells in the bat retina contained calbindin, one of the calcium-binding proteins, but not calretinin or parvalbumin. As the cholinergic amacrine cells play key roles in the direction selectivity and optokinetic eye reflex in the other mammalian retinas, the present study might provide better information of the cytoarchitecture of bat retina and the basic sources for further physiological studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Localization of functional memory B cells at sites of antigen localization and its relationship to local aspects of immunological memory

    International Nuclear Information System (INIS)

    Ponzio, N.M.; Baine, Y.; Thorbecke, G.J.

    1980-01-01

    Experiments are described which have been designed to test whether antigen in a draining lymph node can mediate local accumulation of passively transferred antigen-specific memory B cells, using recipients whose own immune response is inhibited via γ-irradiation or by injection of cyclophosphamide. (Auth.)

  17. Effect of localized polycrystalline silicon properties on solar cell performance

    Science.gov (United States)

    Leung, D.; Iles, P. A.; Hyland, S.; Kachare, A.

    1984-01-01

    Several forms of polycrystalline silicon, mostly from cast ingots, (including UCP, SILSO and HEM) were studied. On typical slices, localized properties were studied in two ways. Small area (about 2.5 sq mm) mesa diodes were formed, and localized photovoltaic properties were measured. Also a small area (about .015 sq mm) light spot was scanned across the cells; the light spot response was calibrated to measure local diffusion length directly. Using these methods, the effects of grain boundaries, or of intragrain imperfections were correlated with cell performance. Except for the fine grain portion of SILSO, grain boundaries played only a secondary role in determining cell performance. The major factor was intra-grain material quality and it varied with position in ingots and probably related to solidification procedure.

  18. Localized tenosynovial giant cell tumor in both knee joints

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Kwon, Jong Won; Ahn, Jin Hwan; Chang, Moon Jong; Cho, Eun Yoon

    2010-01-01

    Tenosynovial giant cell tumor, previously called pigmented villonodular synovitis (PVNS), is a rare benign neoplastic process that may involve the synovium of the joint. The disorder is usually monoarticular and only a few cases have been reported on polyarticular involvement. Herein, we present a case of localized intra-articular tenosynovial giant cell tumor in a 29-year-old man involving both knee joints with a description of the MR imaging and histological findings. (orig.)

  19. The ultrastructural localization of von Willebrand factor in endothelial cells.

    Science.gov (United States)

    Warhol, M J; Sweet, J M

    1984-11-01

    Factor VIII-related antigen was localized ultrastructurally in a variety of human tissues (smooth muscle, skeletal muscle, breast, capillary hemangioma) with the use of a low-temperature embedding protein A-gold technique with both polyclonal and monoclonal antisera directed against von Willebrand factor. All endothelial cells examined localized the anti-von Willebrand factor to Weibel-Palade bodies. Cisternae of the endoplasmic reticulum, and cytoplasmic vacuoles were also labeled. These results establish the distribution of factor VIII-related antigen at the subcellular level. The observed distribution suggests that the endothelial cells synthesize von Willebrand factor, store it in Weibel-Palade bodies, and release it by exocytosis. These observations provide in vivo confirmation for previous biochemical and immunocytochemical data obtained from studies on cultured endothelial cells.

  20. A numerical model of localized convection cells of Euglena suspensions

    Science.gov (United States)

    Iima, Makoto; Shoji, Erika; Yamaguchi, Takayuki

    2014-11-01

    Suspension of Euglena gracilis shows localized convection cells when it is illuminated form below with strong light intensity. Experiments in an annular container shows that there are two elementary localized structures. One consists of a pair of convection cells and a single region where number density of Euglena is high. The other consists a localized traveling wave. Based on the measurements of the flux of number density, we propose a model of bioconvection incorporating lateral phototaxis effect proportional to the light intensity gradient. Using pseudo spectral method, we performed numerical simulation of this model. We succeed in reproducing one of the localized structures, a convection pair with single region of high number density. Also, when the aspect ratio is large, there are a parameter region where the localized structure and conductive state are both stable, which is suggested by experiments. Spatial distribution of the number density implies that the accumulation of microorganism due to the convective flow causes such bistability. CREST(PJ74100011) and KAKENHI(26400396).

  1. Local cell-mediated immune reactions in cancer patients

    International Nuclear Information System (INIS)

    Bilynskij, B.T.; Vasil'ev, N.V.; Volod'ko, N.A.; Akademiya Meditsinskikh Nauk SSSR, Tomsk. Onkologicheskij Nauchnyj Tsentr)

    1988-01-01

    The analysis of 178 cases of stage I-II breast cancer showed morphological features of local cell-mediated immune reactions to be of limited prognostic value. A comparative evaluation of some characteristics of cell surface receptors, such as ability to spontaneous rosette formation with sheep erythrocytes and sensitivty to theophylline, was carried out in lymphocyte samples obtained from tumor tissue and peripheral blood of 76 cancer patients subjected to preoperative radiotherapy. The said parameters were studied in breast cancer patients of rosette-forming cell reaction to theophylline were identified, the incidence of some of them being determined by the presence or absence of regional metastases. The level and functional activity of surface receptors of tumor mononuclear cells proved to influence prognosis

  2. Local Actions of Melatonin in Somatic Cells of the Testis.

    Science.gov (United States)

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-05-31

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.

  3. Secondary Metabolite Localization by Autofluorescence in Living Plant Cells

    Directory of Open Access Journals (Sweden)

    Pascale Talamond

    2015-03-01

    Full Text Available Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla. This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment.

  4. Internalization and localization of basal insulin peglispro in cells.

    Science.gov (United States)

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  5. Passive versus active local microrheology in mammalian cells and amoebae

    Science.gov (United States)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  6. Diffuse Large B-Cell Lymphoma with Calf Muscle Localization

    Directory of Open Access Journals (Sweden)

    Laura Bourdeanu

    2011-01-01

    Full Text Available Although diffuse large B-cell lymphoma (DLBCL usually occurs in the lymph nodes, approximately 30–40% of the time it can have an extranodal site of involvement and it can arise in nearly every body site such as intestine, bone, breast, liver, skin, lung, and central nervous system. Muscle involvement of DLBCL is especially uncommon, comprising 0.5% of extranodal NHL. We report a case of a 72-year-old man with extranodal DLBCL of a unique manifestation in the calf muscle, involving predominantly the gastrocnemius muscle. The patient achieved complete response and remained free of local recurrence or metastasis following diagnosis.

  7. Radio(chemotherapy in locally advanced nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Markus Glatzer

    2016-03-01

    Full Text Available Definitive radiochemotherapy is the standard treatment for many patients with locally advanced nonsmall cell lung cancer (NSCLC. Treatment outcomes have improved over the last decades. Several treatment regimens have been shown effective and safe. This review summarises the results of significant studies between 1996 and 2015 on concomitant and sequential radiochemotherapy regimens and radiation dose per fraction. Beside therapy regimens, optimised radiotherapy planning is indispensable to improve outcome and minimise radiation-induced toxicity. An insight into the rationale of radiotherapy planning for stage III NSCLC is also provided.

  8. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  9. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    PRAKASH

    . Localization of the three major cell types within the migrating slug stage is a dynamic process (Sternfeld 1992;. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to ...

  10. R-matrix formalism for local cells of arbitrary geometry

    Science.gov (United States)

    Nesbet, R. K.

    1984-10-01

    The R matrix of Wigner and Eisenbud has been widely used in nuclear scattering theory and in the theory of electron scattering by atoms and molecules. To consider problems in solid-state or surface physics, where atoms are in complex environments, this theory must be put into a form that is valid for volumes enclosed by surfaces of arbitrary shape. A variational principle for an operator in general geometry is derived. This operator relates function values to normal derivatives on a surface Σ of a closed volume Ω inside which the function satisfies Schrödinger's equation. Using a spherically averaged potential function, the operator for a Wigner-Seitz atomic cell can be computed from solutions of the local radial Schrödinger equation. Formulas that eliminate a common interface between adjacent cells are derived. With these methods, calculations carried out in modular subcells can be extended to larger structures. For regular solids, it is shown that periodic boundary conditions applied to functions and normal derivatives at the surface of a translational unit cell lead to a secular determinant expressed in terms of the operator for the unit cell, whose zeros determine energy-band structure.

  11. Axonal and presynaptic RNAs are locally transcribed in glial cells.

    Science.gov (United States)

    Giuditta, Antonio; Chun, Jong Tai; Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Crispino, Marianna

    2007-01-01

    In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.

  12. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon; Kim, Sewoon; Seo, Eunjeong; Jho, Eek-Hoon; Kee, Sun-Ho

    2009-01-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3β) without producing any notable changes in cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3β in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor

  13. Update on contemporary management of clinically localized renal cell carcinoma.

    Science.gov (United States)

    Jorns, J J; Thiel, D D; Castle, E P

    2012-12-01

    Renal cell carcinoma (RCC) continues to increase in incidence with the largest increase manifesting in small, organ-confined tumors. This review outlines the epidemiology and current data pertaining to the management of clinically-localized RCC. In this manuscript, the current data outlining the benefit of nephron sparing to the overall survival of the patient is described. The data pertaining to minimally invasive nephron sparing is also explained in detail. From laparoscopic and robotic partial nephrectomy to watchful waiting and percutaneous ablation, the urologist is continually assaulted with new data for the management of clinically-localized RCC. The data can be confusing, and much of it is conflicting. The addition of new scoring systems or nomograms may aid in predicting which therapy would be most beneficial in certain patient groups. New scoring systems may also predict the difficulty of surgical resection and predict surgical complications. The limitations of the data pertaining to the management of clinically-localized RCC are also outlined.

  14. Sustained accumulation of antigen-presenting cells after infection promotes local T-cell immunity.

    Science.gov (United States)

    Collins, Nicholas; Hochheiser, Katharina; Carbone, Francis R; Gebhardt, Thomas

    2017-11-01

    Antigen-presenting cells (APC), such as dendritic cells (DC) and macrophages, are critical for T-cell-mediated immunity. Although it is established that memory T cells accumulate and persist in peripheral tissues after the resolution of infection, whether this is also the case for APC remains unclear. Here, we report that CCR2-dependent cells infiltrate skin during acute infection with herpes simplex virus (HSV)-1 and subsequently give rise to localized populations of DCs and macrophages. These APC are found at elevated numbers at sites of resolved infection or inflammation compared with unaffected regions of skin. Importantly, this local accumulation of APC is sustained for prolonged periods of time and has important functional consequences, as it promotes interferon-γ responses by virus-specific CD4 + T cells upon localized challenge infection with HSV-1. Thus, our results highlight how infection history determines long-term changes in immune cell composition in skin and how different types of immune cells accumulate, persist and co-operate to provide optimal immunity at this critical barrier site.

  15. A Unique cis-Encoded Small Noncoding RNA Is Regulating Legionella pneumophila Hfq Expression in a Life Cycle-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Giulia Oliva

    2017-01-01

    Full Text Available Legionella pneumophila is an environmental bacterium that parasitizes protozoa, but it may also infect humans, thereby causing a severe pneumonia called Legionnaires’ disease. To cycle between the environment and a eukaryotic host, L. pneumophila is regulating the expression of virulence factors in a life cycle-dependent manner: replicating bacteria do not express virulence factors, whereas transmissive bacteria are highly motile and infective. Here we show that Hfq is an important regulator in this network. Hfq is highly expressed in transmissive bacteria but is expressed at very low levels in replicating bacteria. A L. pneumophila hfq deletion mutant exhibits reduced abilities to infect and multiply in Acanthamoeba castellanii at environmental temperatures. The life cycle-dependent regulation of Hfq expression depends on a unique cis-encoded small RNA named Anti-hfq that is transcribed antisense of the hfq transcript and overlaps its 5′ untranslated region. The Anti-hfq sRNA is highly expressed only in replicating L. pneumophila where it regulates hfq expression through binding to the complementary regions of the hfq transcripts. This results in reduced Hfq protein levels in exponentially growing cells. Both the small noncoding RNA (sRNA and hfq mRNA are bound and stabilized by the Hfq protein, likely leading to the cleavage of the RNA duplex by the endoribonuclease RNase III. In contrast, after the switch to transmissive bacteria, the sRNA is not expressed, allowing now an efficient expression of the hfq gene and consequently Hfq. Our results place Hfq and its newly identified sRNA anti-hfq in the center of the regulatory network governing L. pneumophila differentiation from nonvirulent to virulent bacteria.

  16. Local therapy for small cell carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nakamura, C.; Chen, Y.; DuBeshter, B.; Angel, C.; Dawson, A.; Casey, W.

    1996-01-01

    Objective: Small cell carcinoma of the uterine cervix is a rare and aggressive tumor. This tumor is similar to small cell carcinoma of the lung with a tendency to metastasize early. While there has been an increasing interest in the use of chemotherapy regimens similar to those used for small cell carcinoma of the lung, the optimum local therapy for small cell carcinoma of the cervix remains unknown. We reviewed the treatment outcome of patients with small cell carcinoma of the cervix diagnosed in our cancer center with an emphasis on the local/regional disease control. Material and Methods: Between 1983 and 1993, medical records of patients diagnosed with carcinoma of the uterine cervix were reviewed. There were 281 patients with carcinoma of the uterine cervix referred to our department for radiation treatment. Seven patients had pathologic diagnosis of either small cell or neuroendocrine histology. Details of the treatments and follow-up information of these patients were reviewed with a medium follow-up period of three years (range - 1 to 4 years). Results: Five patients had pure small cell histology. Two patients had mixed histology: one with mixed small cell anaplastic neuroendocrine cells and a small foci of adenocarcinoma, the other had mixed small cell and squamous cell histology. Four patients had clinical stage IB disease. The others had IIA, IIB, and IIIB disease, respectively. All patients received either irradiation (XRT) alone or as part of the local therapy. Three patients received XRT alone, one received surgery followed by XRT, one received XRT followed by surgery, and the remaining two had triple modality treatment (chemotherapy, surgery, and XRT). Three patients were alive without evidence of disease recurrence at the last follow-up. Two of these received adjuvant chemotherapy in addition to local therapy. The third patient, whose tumor was smaller than one cm at the time of diagnosis, received XRT alone. Four patients died with disease

  17. Evidence for local dendritic cell activation in pulmonary sarcoidosis

    Directory of Open Access Journals (Sweden)

    Berge Bregje

    2012-04-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation. Methods We analyzed myeloid DCs (mDCs and plasmacytoid DCs (pDCs in broncho-alveolar lavage (BAL and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs or cultured from monocytes (mo-DCs, were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies. Results mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients. Conclusion Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.

  18. Ultrastructural localization of Leu M1 in Reed-Sternberg cells and normal myeloid cells.

    Science.gov (United States)

    Warhol, M J; Pinkus, G S; Said, J W

    1987-08-01

    An antigen Leu M1 has been localized to myelomonocytic cells and Reed-Sternberg cells by light microscopic immunocytochemical studies. We used both pre- and post-embedding immunoelectron microscopy to define the ultrastructural distribution of this antigen. Post-embedding techniques heavily labeled the granules of polymorphonuclear leukocytes and the nonspecific granules of eosinophils. At high concentrations there was labeling of the specific granules of the eosinophil. The antibody consistently labeled the perinuclear granules and vesicles of Reed-Sternberg cells. Some Reed-Sternberg cells also exhibited labeling of the endoplasmic reticulum, suggesting that these cells have the capacity to synthesize this antigen. Although plasma membranes were labeled with the post-embedding technique, these structures were most heavily labeled with the pre-embedding method. These results indicate that Leu M1 is synthesized and packaged by Reed-Sternberg cells and represents an integral structural component of these cells.

  19. Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions.

    Science.gov (United States)

    Mardakheh, Faraz K; Paul, Angela; Kümper, Sandra; Sadok, Amine; Paterson, Hugh; Mccarthy, Afshan; Yuan, Yinyin; Marshall, Christopher J

    2015-11-09

    Polarization of cells into a protrusive front and a retracting cell body is the hallmark of mesenchymal-like cell migration. Many mRNAs are localized to protrusions, but it is unclear to what degree mRNA localization contributes toward protrusion formation. We performed global quantitative analysis of the distributions of mRNAs, proteins, and translation rates between protrusions and the cell body by RNA sequencing (RNA-seq) and quantitative proteomics. Our results reveal local translation as a key determinant of protein localization to protrusions. Accordingly, inhibition of local translation destabilizes protrusions and inhibits mesenchymal-like morphology. Interestingly, many mRNAs localized to protrusions are translationally repressed. Specific cis-regulatory elements within mRNA UTRs define whether mRNAs are locally translated or repressed. Finally, RNAi screening of RNA-binding proteins (RBPs) enriched in protrusions revealed trans-regulators of localized translation that are functionally important for protrusions. We propose that by deciphering the localized mRNA UTR code, these proteins regulate protrusion stability and mesenchymal-like morphology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  1. Localization of ORC1 During the Cell Cycle in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2011-01-01

    Full Text Available The interaction of the origin recognition complex (ORC with replication origins is a critical parameter in eukaryotic replication initiation. In mammals the ORC remains bound except during mitosis, thus the localization of ORC complexes allows localization of origins. A monoclonal antibody that recognizes human ORC1 was used to localize ORC complexes in populations of human MOLT-4 cells separated by cell cycle position using centrifugal elutriation. ORC1 staining in cells in early G1 is diffuse and primarily peripheral. As the cells traverse G1, ORC1 accumulates and becomes more localized towards the center of the nucleus, however around the G1/S boundary the staining pattern changes and ORC1 appears peripheral. By mid to late S phase ORC1 immunofluorescence is again concentrated at the nuclear center. During anaphase, ORC1 staining is localized mainly in the pericentriolar regions. These findings suggest that concerted movements of origin DNA sequences in addition to the previously documented assembly and disassembly of protein complexes are an important aspect of replication initiation loci in eukaryotes.

  2. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    Science.gov (United States)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  3. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    International Nuclear Information System (INIS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-01-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I 2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I 2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I 2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs. (paper)

  4. Screen for localized proteins in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Jay H Russell

    2008-03-01

    Full Text Available Precise localization of individual proteins is required for processes such as motility, chemotaxis, cell-cycle progression, and cell division in bacteria, but the number of proteins that are localized in bacterial species is not known. A screen based on transposon mutagenesis and fluorescence activated cell sorting was devised to identify large numbers of localized proteins, and employed in Caulobacter crescentus. From a sample of the clones isolated in the screen, eleven proteins with no previously characterized localization in C. crescentus were identified, including six hypothetical proteins. The localized hypothetical proteins included one protein that was localized in a helix-like structure, and two proteins for which the localization changed as a function of the cell cycle, suggesting that complex three-dimensional patterns and cell cycle-dependent localization are likely to be common in bacteria. Other mutants produced localized fusion proteins even though the transposon has inserted near the 5' end of a gene, demonstrating that short peptides can contain sufficient information to localize bacterial proteins. The screen described here could be used in most bacterial species.

  5. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  6. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation.

    Science.gov (United States)

    Theodosiou, Eleni; Frick, Oliver; Bühler, Bruno; Schmid, Andreas

    2015-07-29

    Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free L-proline into trans-4-hydroxy-L-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and (13)C-metabolic flux analysis ((13)C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-L-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose

  7. Functional mapping of cell surface proteins with localized stimulation of single cells

    Science.gov (United States)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  8. Nuclear Localization of Diacylglycerol Kinase Alpha in K562 Cells Is Involved in Cell Cycle Progression.

    Science.gov (United States)

    Poli, Alessandro; Fiume, Roberta; Baldanzi, Gianluca; Capello, Daniela; Ratti, Stefano; Gesi, Marco; Manzoli, Lucia; Graziani, Andrea; Suh, Pann-Ghill; Cocco, Lucio; Follo, Matilde Y

    2017-09-01

    Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture.

    Science.gov (United States)

    Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Kohli, Shrey; Rani, Vibha

    2012-09-01

    In situ zymography is a unique technique for detection and localization of enzyme-substrate interactions majorly in histological sections. Substrate with quenched fluorogenic molecule is incorporated in gel over which tissue sections are mounted and then incubated in buffer. The enzymatic activity is observed in the form of fluorescent signal. With the advancements in the field of biological research, use of in vitro cell culture has become very popular and holds great significance in multiple fields including inflammation, cancer, stem cell biology and the still emerging 3-D cell cultures. The information on analysis of enzymatic activity in cell lines is inadequate presently. We propose a single-step methodology that is simple, sensitive, cost-effective, and functional to perform and study the 'in position' activity of enzyme on substrate for in vitro cell cultures. Quantification of enzymatic activity to carry out comparative studies on cells has also been illustrated. This technique can be applied to a variety of enzyme classes including proteases, amylases, xylanases, and cellulases in cell cultures.

  10. Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Taipei 22305 (China); Peng, Xiao-Feng [Laboratory of Phase Change and Interfacial Transport Phenomena, Tsinghua University, Beijing 100084 (China)

    2008-01-03

    The flow field design in bipolar plates is very important for improving reactant utilization and liquid water removal in proton exchange membrane fuel cells (PEMFCs). A three-dimensional model was used to analyze the effect of the design parameters in the bipolar plates, including the number of flow channel bends, number of serpentine flow channels and the flow channel width ratio, on the cell performance of miniature PEMFCs with the serpentine flow field. The effect of the liquid water formation on the porosities of the porous layers was also taken into account in the model while the complex two-phase flow was neglected. The predictions show that (1) for the single serpentine flow field, the cell performance improves as the number of flow channel bends increases; (2) the single serpentine flow field has better performance than the double and triple serpentine flow fields; (3) the cell performance only improves slowly as the flow channel width increases. The effects of these design parameters on the cell performance were evaluated based on the local oxygen mass flow rates and liquid water distributions in the cells. Analysis of the pressure drops showed that for these miniature PEMFCs, the energy losses due to the pressure drops can be neglected because they are far less than the cell output power. (author)

  11. Hedgehog Pathway Inhibition for Locally Advanced Periocular Basal Cell Carcinoma and Basal Cell Nevus Syndrome.

    Science.gov (United States)

    Ozgur, Omar K; Yin, Vivian; Chou, Eva; Ball, Sharon; Kies, Merrill; William, William N; Migden, Michael; Thuro, Bradley A; Esmaeli, Bita

    2015-08-01

    To review our experience treating patients with the Hedgehog pathway inhibitor, vismodegib, in patients with orbital or periocular locally advanced or metastatic basal cell carcinoma (BCC) or basal cell nevus syndrome. Retrospective interventional case series. We reviewed all patients with locally advanced or metastatic orbital or periocular BCC or basal cell nevus syndrome treated with the Hedgehog pathway inhibitor, vismodegib, at a comprehensive cancer center from 2009 through 2015. Reviewed data included age; sex; American Joint Commission on Cancer tumor, node, metastasis staging system designation; type and grade of drug-related side effects; response to treatment; duration of follow-up, and status at last follow-up. The study included 10 white men and 2 white women; the median age was 64.5 years. Ten patients had locally advanced BCC; 2 had basal cell nevus syndrome. Among the patients with locally advanced BCC, 5 had T3bN0M0 disease at presentation; 1 each had T3aN0M0, T3bN1M0, T2N1M1, T4N1M1, and T4N2cM1 disease. Overall, 3 patients had a complete response, 6 had a partial response, and 3 had stable disease at last follow-up. Two patients developed progressive disease after a complete response for 38 months and stable disease for 16 months, respectively. All patients developed grade I drug-related adverse effects, most commonly muscle spasms (12 patients), weight loss (10), dysgeusia (9), alopecia (9), decreased appetite (5), and fatigue (4). Five patients developed grade II adverse effects. At last follow-up, none of the 5 patients presenting with T3bN0M0, nor the patient with T3bN1M0 disease, had required orbital exenteration. Hedgehog pathway inhibition produces a significant clinical response in most patients with locally advanced or metastatic orbital or periocular BCC or basal cell nevus syndrome and can obviate orbital exenteration in some patients. Drug-related adverse effects are manageable in most patients. Copyright © 2015 Elsevier Inc. All

  12. Localization of a new serine protease, ingobsin, in goblet cells in rat, pig and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part of the inte...... of the intestine. In the electron microscope, the immunoreaction was localized mainly to the rough endoplasmic reticulum of the goblet cells and to the secretion being extruded from the cells....

  13. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  15. Quantification and Localization of Mast Cells in Periapical Lesions ...

    African Journals Online (AJOL)

    Conclusion: Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of ...

  16. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  17. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  18. A new epigenetic marker: The replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail

    Czech Academy of Sciences Publication Activity Database

    Fidlerová, Helena; Kalinová, Jana; Blechová, Miroslava; Velek, Jiří; Raška, Ivan

    2009-01-01

    Roč. 167, č. 1 (2009), s. 76-82 ISSN 1047-8477 R&D Projects: GA ČR(CZ) GA304/06/1691 Grant - others:GA MŠk(CZ) LC535 Program:LC Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : epigenetics * H4K16 * H4K20 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.673, year: 2009

  19. Interaction of localized convection cells in the bioconvection of Euglena gracilis

    Science.gov (United States)

    Iima, Makoto; Yamaguchi, Takayuki

    2016-11-01

    Euglena gracilis is a unicellular flagellated photosynthetic alga. The suspension of Euglena has behavioral responses to light, which causes a macroscopic localized bioconvection pattern when illuminated from below. One of the fundamental structures of this is a pair of convection cells, and high cell density region exists in the middle of the pair. Experimental studies show various types of interaction in the localized convection cells; bound state, collision, etc. We performed numerical simulation of a hydrodynamic model of this system, and show results of the interactions. Long-range interaction due to the conservation of cell number and merging process of two localized structures will be discussed. KAKENHI.

  20. From Global Stresses to Local Cell Packing During Development

    Science.gov (United States)

    Lubensky, David

    2011-03-01

    To perform their functions, cells in epithelial tissues must often adopt highly regular packings. It is still not fully understood how these ordered arrangements of cells arise from disordered, proliferative epithelia during development. I will use experimental and theoretical studies on an attractive model system, the cone cell mosaic in fish retina, to illustrate some ways that mechanical forces and cell signaling can interact to produce this transformation. Experiments examining the response to surgical lesions suggest that the correct mechanical environment at the tissue scale is essential to induce cone cells to rearrange into a rectangular lattice. Starting from this observation, I will argue that large-scale mechanical stresses naturally couple to and orient cell polarization and that this coupling can lead cells to line up in regular rows, as observed in the fish retina. This model predicts that cells in the rows will adopt characteristic trapezoidal shapes and that fragments of rows will persist even in tissue where the mosaic pattern is disrupted by lesions; these predictions are borne out by an analysis of cell packings at the level of the zonula occludens in wildtype and lesioned retinas. Supported by NSF grant IOS-0952873.

  1. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells.

    Directory of Open Access Journals (Sweden)

    Nurdan Ozkucur

    Full Text Available BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm and weak (< or = 5 V/cm dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological

  2. Localization of calcium changes in stimulated rat mast cells.

    Science.gov (United States)

    Horoyan, M; Soler, M; Benoliel, A M; Fraterno, M; Passerel, M; Subra, H; Martin, J M; Bongrand, P; Foa, C

    1992-01-01

    We studied intracellular free, bound, and sequestered calcium in rat mast cells after various stimulations. The use of a fluorescent probe combined with digitized imaging on individual living cells demonstrated transient increases of free Ca2+ in the micromolar range. The use of histochemical techniques (K pyroantimonate and anhydrous fixation), together with X-ray microanalysis, energy electron-loss spectroscopy, and electron spectroscopic imaging, revealed large amounts of stored calcium within the cells (in the millimolar range). Chelation experiments and stimulations enabled us to identify at least two pools of bound calcium which exhibited different dynamic behaviors. Stimulation in the presence of EGTA did not modify calcium from granules, granule membranes, and heterochromatin, whereas it decreased calcium from other cell compartments. Stimulation triggered variations in the amount of bound calcium but they did not parallel free calcium movements. Hence, whereas free calcium is implicated in exocytosis, bound calcium may be involved in altogether different cell functions.

  3. Preparation of Cells for Assessing Ultrastructural Localization of Nanoparticles with Transmission Electron Microscopy

    Science.gov (United States)

    2010-01-01

    SUBTITLE Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy 5a. CONTRACT NUMBER...a–h). Plate and grow cells (a), prepare nanoparticle (NP)-dosing solutions (b), dose cells with NPs (c), cell processing (d), resin embedding and...modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid Interface Sci. 283, 352–357

  4. A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells.

    Science.gov (United States)

    Lai, Fangfang; Shen, Zhengwei; Wen, Hui; Chen, Jialing; Zhang, Xiang; Lin, Ping; Yin, Dali; Cui, Huaqing; Chen, Xiaoguang

    2017-01-08

    Cell cytotoxicity assays include cell activity assays and morphological identification assays. Currently, all frequently used cytotoxicity assays belong to cell activity assays but suffer from detection limitations. Morphological identification of cell death remains as the gold standard, although the method is difficult to scale up. At present there is no generally accepted morphological identification based cell cytotoxicity assay. In this study, we applied previous developed cell cytoplasm-localized fluorescent probe (CLFP) to display cell morphologies. Under fluorescence microscopy, the fluorescence morphology and intensity of living cells are distinct from dead cells. Based on these characters we extracted the images of living cells from series of samples via computational analysis. Thus, a novel cell morphological identification cytotoxicity assay (CLFP assay) is developed. The performance of the CLFP assay was similar to cell activity assay (MTT assay), but the accuracy of the CLFP assay was superior when measuring the cytotoxicity of active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Localization of adenovirus DNA replication in KB cells

    NARCIS (Netherlands)

    Vlak, J.M.; Rozijn, Th.H.; Spies, F.

    1975-01-01

    The localization of adenovirus type 5 DNA replication has been investigated by both fractionation of isolated nuclei and electron-microscope autoradiography. Nuclear fractionation by means of the M-band-technique of Tremblay et al. (Tremblay, G. Y., Daniels, M. J., and Schaechter, M. (1969). J. Mol.

  6. Purinergic Receptors in Quiescence and Localization of Leukemic Stem Cells

    Science.gov (United States)

    2012-05-01

    samples, five human acute leukemia samples (AML) (M0 or M1) were chosen based on FAB classification , cytogenetic abnormalities, CD34 and CD14...treatment) to xenotransplanted human leukemia cells. 9 Patient Age FAB Cytogenetic abnormalities Blast CD34+ CD14+ 104 66 M0/M1 Negative PML-RARA...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT How leukemia stem cells gained resistance to

  7. Local stimulation of cultured myocyte cells by femtosecond laser-induced stress wave

    Science.gov (United States)

    Kuo, Yung-En; Wu, Cheng-Chi; Hosokawa, Yoichiroh; Maezawa, Yasuyo; Okano, Kazunori; Masuhara, Hiroshi; Kao, Fu-Jen

    2010-12-01

    When an 800 nm femtosecond laser is tightly focused into cell culture medium a stress wave is generated at the laser focal point. Since the stress wave localizes in a few tens of μm, it is possible to locally stimulate single cells in vitro. In this work, several kinds of cultured mammalian cells, HeLa, PC12, P19CL6, and C2C12, were stimulated by the stress wave and the cell growth after the stress loading with the laser irradiation was investigated. In comparison with the control conditions, cell growth after the laser irradiation was enhanced for the cells of C2C12 and P19CL6, which can differentiate into myocytes, and suppressed for PC12 and HeLa cell lines. These results suggest a possibility of cell growth enhancement due to myogenic cells response to the femtosecond laser-induced stress.

  8. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus

    DEFF Research Database (Denmark)

    Leonardy, Simone; Freymark, Gerald; Hebener, Sabrina

    2007-01-01

    Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as ...

  9. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  10. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  11. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    International Nuclear Information System (INIS)

    Chabot, J.G.; Morel, G.; Belles-Isles, M.; Jeandel, L.; Heisler, S.

    1988-01-01

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125 I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125 I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  12. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xianying Amy; Singh, Bhag; Park, Jae [Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ont., Canada L8N3Z5 (Canada); Gupta, Radhey S., E-mail: gupta@mcmaster.ca [Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ont., Canada L8N3Z5 (Canada)

    2009-10-09

    Two isoforms of adenosine kinase (AdK) have been identified in mammalian organisms with the long isoform (AdK-long) containing extra 20-21 amino acids at the N-terminus (NTS). The subcellular localizations of these isoforms are not known and they contain no identifiable targeting sequence. Immunofluorescence labeling of mammalian cells expressing either only AdK-long or both isoforms with AdK-specific antibody showed only nuclear labeling or both nucleus and cytoplasmic labeling, respectively. The AdK-long and -short isoforms fused at the C-terminus with c-myc epitope also localized in the nucleus and cytoplasm, respectively. Fusion of the AdK-long NTS to green fluorescent protein also resulted in its nuclear localization. AdK-long NTS contains a cluster of conserved amino acids (PKPKKLKVE). Replacement of KK in this sequence with either AA or AD abolished its nuclear localization capability, indicating that this cluster likely serves as a nuclear localization signal. AdK in nucleus is likely required for sustaining methylation reactions.

  13. Localized giant cell tumors in the spinal column radiologic presentation

    International Nuclear Information System (INIS)

    Fernandez Echeverria, M.A.; Parra Blanco, J.A.; Pagola Serrano, M.A.; Mellado Santos, J.M.; Bueno Lopez, J.; Gonzalez Tutor, A.

    1994-01-01

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  14. Local stem cell depletion model for radiation myelitis

    International Nuclear Information System (INIS)

    Yaes, R.J.; Kalend, A.

    1988-01-01

    We propose a model for normal tissue damage based on the assumption that adult mammalian stem cells have limited mobility and, consequently, for each organ, there is a maximum volume (the critical volume, Vc), that can be repopulated and repaired by a single surviving stem cell. This concept is applied to a simple, 1-dimensional model of the spinal cord, where the critical volume is a slice of thickness, t, assumed to be small compared to lengths of spinal cord usually irradiated clinically. The probability of myelitis is explicitly obtained as a function of the dose, dose per fraction, length of cord irradiated, slice thickness, number of stem cells per slice and parameters alpha and beta of the stem cell survival curve. The complication probability is expressed as a triple negative exponential function of dose analogous to the double negative exponential function for tumor control, resulting in a steep dose-response curve with short tails in both the high dose and low dose regions. We show that the model predictions are compatible with the experimental data for radiation myelitis in the rat. We discuss how this concept can be applied to other organs such as skin and to organs composed of structurally and functionally distinct subunits, such as the kidney

  15. Localization and characterization of immunocompetent cells in the human retina

    NARCIS (Netherlands)

    Yang, P.; Das, P. K.; Kijlstra, A.

    2000-01-01

    Recent studies have shown that experimental uveitis can be induced by the appropriate administration of various retinal antigens. Little is known about the in-situ interactions between immune cells in the retina as a prerequisite for understanding the mechanisms involving the presentation of

  16. Quantification and Localization of Mast Cells in Periapical Lesions

    African Journals Online (AJOL)

    Dr. Manjunatha BS,. Department of Dental Anatomy and Oral Biology, Basic Dental. Sciences, Faculty of Dentistry,. Taif University, Al‑Taif‑21944,. Kingdom of Saudi Arabia. E‑mail: drmanju26@hotmail.com. Introduction. Mast cell is resident of connective tissue and contains many granules rich in histamine and heparin.

  17. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  18. Funnel for localizing biological cell placement and arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Soscia, David; Benett, William J.; Mukerjee, Erik V.

    2018-03-06

    The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality of distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.

  19. α-Crystallin localizes to the leading edges of migrating lens epithelial cells

    International Nuclear Information System (INIS)

    Maddala, Rupalatha; Vasantha Rao, P.

    2005-01-01

    α-crystallin (αA and αB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of αA and αB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of αB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While αB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of αB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. αA-crystallin, which has 60% sequence identity to αB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of αB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of αB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated αB-crystallin in SB202190-treated migrating lens epithelial cells. αB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, αB-crystallin exhibited a clear co-localization with the actin meshwork, β-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE

  20. Radioactive seed localization of renal cell carcinoma in a patient with Von Hippel-Lindau disease

    DEFF Research Database (Denmark)

    Hassing, Christina Marie Schiottz; Tvedskov, Tove Filtenborg; Kroman, Niels

    2017-01-01

    This report describes the case of a patient, who had successful radioactive seed localization (RSL) performed to improve the identification and excision of a renal cell carcinoma. RSL is a new method of preoperative localization, which can ease the surgical procedure, minimize tissue trauma...

  1. Regulation of CD8+ T cell responses to retinal antigen by local FoxP3+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Scott W McPherson

    2012-06-01

    Full Text Available While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal on a retina-specific promoter (arrβgal mice were backcrossed to mice expressing green fluorescent protein and diphtheria toxin receptor under control of the Foxp3 promoter (Foxp3-DTR/GFP mice, and to T cell receptor transgenic mice that produce βgal specific CD8 T cells (BG1 mice. These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 x Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP x arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of diphtheria toxin to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3+ regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immunoregulation to be responsive to local conditions.

  2. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  3. Radioresistance of intermediate TCR cells and their localization in the body of mice revealed by irradiation

    International Nuclear Information System (INIS)

    Kimura, Motohiko; Watanabe, Hisami; Ohtsuka, Kazuo; Iiai, Tsuneo; Tsuchida, Masanori; Sato, Shotaro; Abo, Toru

    1993-01-01

    Extrathymic generation of T cells in the liver and in the intestine was recently demonstrated. We investigated herein whether such T cells, especially those in the liver, are present in other organs of mice. This investigation is possible employing our recently introduced method with which even a minor proportion of extrathymic, intermediate T-cell receptor (TCR) cells in organs other than the liver can be identified. Intermediate TCR cells expressed higher levels of IL-2Rβ and lymphocyte function-associated antigen-1 (LFA-1) than bright TCR cells (i.e., T cells of thymic origin) as revealed by two-color staining. Although intermediate TCR cells were present at a small proportion in the spleen and thymus, they predominated in these organs after irradiation (9 Gy) and bone marrow reconstitution, or after low dose irradiation (6 Gy). This was due to that intermediate TCR cells were relatively radioresistant, whereas bright TCR cells were radiosensitive. Microscopic observation and immunochemical staining showed that intermediate TCR cells in the spleen localized in the red pulp and those in the thymus localized in the medulla. These intermediate TCR cells displayed a large light scatter, similar to such cells in the liver. The present results suggest that intermediate TCR cells may proliferate at multiple sites in the body. (author)

  4. Judging diatoms by their cover: variability in local elasticity of Lithodesmium undulatum undergoing cell division.

    Directory of Open Access Journals (Sweden)

    Lee Karp-Boss

    Full Text Available Unique features of diatoms are their intricate cell covers (frustules made out of hydrated, amorphous silica. The frustule defines and maintains cell shape and protects cells against grazers and pathogens, yet it must allow for cell expansion during growth and division. Other siliceous structures have also evolved in some chain-forming species as means for holding neighboring cells together. Characterization and quantification of mechanical properties of these structures are crucial for the understanding of the relationship between form and function in diatoms, but thus far only a handful of studies have addressed this issue. We conducted micro-indentation experiments, using atomic force microscopy (AFM, to examine local variations in elastic (Young's moduli of cells and linking structures in the marine, chain-forming diatom Lithodesmium undulatum. Using a fluorescent tracer that is incorporated into new cell wall components we tested the hypothesis that new siliceous structures differ in elastic modulus from their older counterparts. Results show that the local elastic modulus is a highly dynamic property. Elastic modulus of stained regions was significantly lower than that of unstained regions, suggesting that newly formed cell wall components are generally softer than the ones inherited from the parent cells. This study provides the first evidence of differentiation in local elastic properties in the course of the cell cycle. Hardening of newly formed regions may involve incorporation of additional, possibly organic, material but further studies are needed to elucidate the processes that regulate mechanical properties of the frustule during the cell cycle.

  5. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  6. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  7. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    International Nuclear Information System (INIS)

    Akkiprik, Mustafa; Hu, Limei; Sahin, Aysegul; Hao, Xishan; Zhang, Wei

    2009-01-01

    Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells

  8. Locally Advanced Basal Cell Carcinoma with Intraocular Invasion

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2018-01-01

    Full Text Available We present a 103 - year - old patient, with duration of complaints of about ten years. The initial complaint had been presented as a small nodule, located on the eyebrow, which subsequently ulcerated and encompassed larger regions of the upper and lower eyelids. For the past three years, the patient also had complaints of a worsening of his vision, without seeking for medical help. Within the dermatological examination, an intraocular and periocular localised tumour was established, characterised by a raised peripheral edge and central ulceration. More careful examination revealed that the bulb was fully consumed. The patient refused further diagnosis and treatment. Advanced basal cell carcinomas with intraocular invasion are rare in general. If the patient refuses surgery, radiotherapy and systemic therapy with modern medications such as Vismodegib or Sonidegib are available as treatment options.

  9. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    Unknown

    (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM. Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiat- ing and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.

  10. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification ...

  11. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization.

    Science.gov (United States)

    Ursell, Tristan S; Nguyen, Jeffrey; Monds, Russell D; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W; Huang, Kerwyn Casey

    2014-03-18

    Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization.

  12. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    Science.gov (United States)

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  13. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Miki, Kensuke [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan); Fujii, Michihiko, E-mail: mifuji@yokohama-cu.ac.jp [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ayusawa, Dai [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan)

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  14. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  15. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets

    Directory of Open Access Journals (Sweden)

    Hillsamer Peter

    2011-09-01

    Full Text Available Abstract Background It is well established that PD-1 is expressed by follicular T cells but its function in regulation of human T helper cells has been unclear. We investigated the expression modality and function of PD-1 expressed by human T cells specialized in helping B cells. Results We found that PD-1-expressing T cells are heterogeneous in PD-1 expression. We identified three different PD-1-expressing memory T cell subsets (i.e. PD-1low (+, PD-1medium (++, and PD-1high (+++ cells. PD-1+++ T cells expressed CXCR5 and CXCR4 and were localized in the rim of germinal centers. PD-1+ or PD-1++ cells expressed CCR7 and were present mainly in the T cell area or other parts of the B cell follicles. Utilizing a novel antigen density-dependent magnetic sorting (ADD-MS method, we isolated the three T cell subsets for functional characterization. The germinal center-located PD-1+++ T cells were most efficient in helping B cells and in producing IL-21 and CXCL13. Other PD-1-expressing T cells, enriched with Th1 and Th17 cells, were less efficient than PD-1+++ T cells in these capacities. PD-1+++ T cells highly expressed Ki-67 and therefore appear active in cell activation and proliferation in vivo. IL-2 is a cytokine important for proliferation and survival of the PD-1+++ T cells. In contrast, IL-21, while a major effector cytokine produced by the PD-1-expressing T helper cells, had no function in generation, survival, or proliferation of the PD-1-expressing helper T cells at least in vitro. PD-1 triggering has a suppressive effect on the proliferation and B cell-helping function of PD-1+++ germinal center T cells. Conclusion Our results revealed the phenotype and effector function of PD-1-expressing T helper cell subsets and indicate that PD-1 restrains the B cell-helping function of germinal center-localized T cells to prevent excessive antibody response.

  16. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells.

    Science.gov (United States)

    Fernández-Ponce, Cecilia; Durán-Ruiz, Maria C; Narbona-Sánchez, Isaac; Muñoz-Miranda, Juan P; Arbulo-Echevarria, Mikel M; Serna-Sanz, Antonio; Baumann, Christian; Litrán, Rocío; Aguado, Enrique; Bloch, Wilhelm; García-Cozar, Francisco

    2017-01-01

    Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4 + T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4 + T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4 + T cells.

  17. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  18. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  19. Local application of periodontal ligament stromal cells promotes soft tissue regeneration.

    Science.gov (United States)

    Baik, H S; Park, J; Lee, K J; Chung, C

    2014-09-01

    To test the potential stimulatory effect of local application of periodontal ligament (PDL) stromal cells on soft tissue regeneration. Fluorescently labeled PDL cells outgrown from extracted human premolars or phosphate-buffered saline were locally injected to the cutaneous wounds created on mice. Soft tissue regeneration was evaluated for 14 days using photographs and histomorphometry. PDL cell engraftment was tracked with confocal microscopy. To detect the paracrine effect of the PDL cells on soft tissue regeneration, PDL cell-conditioned medium (CM) was evaluated for the concentration of secretory factors, transforming growth factor-beta 1 (TGFβ1). The effect of PDL CM on the proliferation and migration of dermal fibroblast and keratinocyte was tested using MTT assay and migration assay. The application of PDL cells significantly promoted soft tissue regeneration compared with the application of PBS. Self-replicating PDL cells were engrafted into the hair follicles of the host tissue. Dermal fibroblast proliferation and keratinocyte migration were significantly enhanced by the treatment with PDL CM. Physiologically significant amount of TGFβ1 was secreted from PDL cells into the CM. Local injection of PDL cells promoted soft tissue regeneration in part by the enhancement of fibroblast proliferation and keratinocyte migration through a paracrine mechanism. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  1. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    Science.gov (United States)

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

  2. Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Shen Gao

    Full Text Available The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77 as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44's location in the cell.

  3. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    Science.gov (United States)

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells.

  4. CellWhere: graphical display of interaction networks organized on subcellular localizations.

    Science.gov (United States)

    Zhu, Lu; Malatras, Apostolos; Thorley, Matthew; Aghoghogbe, Idonnya; Mer, Arvind; Duguez, Stéphanie; Butler-Browne, Gillian; Voit, Thomas; Duddy, William

    2015-07-01

    Given a query list of genes or proteins, CellWhere produces an interactive graphical display that mimics the structure of a cell, showing the local interaction network organized into subcellular locations. This user-friendly tool helps in the formulation of mechanistic hypotheses by enabling the experimental biologist to explore simultaneously two elements of functional context: (i) protein subcellular localization and (ii) protein-protein interactions or gene functional associations. Subcellular localization terms are obtained from public sources (the Gene Ontology and UniProt-together containing several thousand such terms) then mapped onto a smaller number of CellWhere localizations. These localizations include all major cell compartments, but the user may modify the mapping as desired. Protein-protein interaction listings, and their associated evidence strength scores, are obtained from the Mentha interactome server, or power-users may upload a pre-made network produced using some other interactomics tool. The Cytoscape.js JavaScript library is used in producing the graphical display. Importantly, for a protein that has been observed at multiple subcellular locations, users may prioritize the visual display of locations that are of special relevance to their research domain. CellWhere is at http://cellwhere-myology.rhcloud.com. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Microscale localization and isolation of light emitting imperfections in monocrystalline silicon solar cells

    Science.gov (United States)

    Gajdoš, Adam; Škvarenina, Lubomír.; Škarvada, Pavel; Macků, Robert

    2017-12-01

    An imperfections or defects may appear in fabricated monocrystalline solar cells. These microstructural imperfections could have impact on the parameters of whole solar cell. The research is divided into two parts, firstly, the detection and localization defects by using several techniques including current-voltage measurement, scanning probe microscopy (SPM), scanning electron microscope (SEM) and electroluminescence. Secondly, the defects isolation by a focused ion beam (FIB) milling and impact of a milling process on solar cells. The defect detection is realized by I-V measurement under reverse biased sample. For purpose of localization, advantage of the fact that defects or imperfections in silicon solar cells emit the visible and near infrared electroluminescence under reverse biased voltage is taken, and CCD camera measurement for macroscopic localization of these spots is applied. After rough macroscopic localization, microscopic localization by scanning probe microscopy combined with a photomultiplier (shadow mapping) is performed. Defect isolation is performed by a SEM equipped with the FIB instrument. FIB uses a beam of gallium ions which modifies crystal structure of a material and may affect parameters of solar cell. As a result, it is interesting that current in reverse biased sample with isolated defect is smaller approximately by 2 orders than current before isolation process.

  6. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  7. Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition.

    Science.gov (United States)

    Dubový, P; Klusáková, I; Kučera, L; Osičková, J; Chovancová, J; Loja, T; Mayer, J; Doubek, M; Joukal, M

    2017-09-01

    Existing experimental studies of the effect of sympathetic nerve fibers on bone marrow cells are based on the systemic administration of neurotoxic 6-hydroxydopamine. The method of global chemical sympathectomy has some serious disadvantages and could lead to questionable results. We describe a new method of local chemical sympathectomy of rat femoral bone marrow using guanethidine (Ismelin) delivery using an osmotic mini pump. Local guanethidine treatment for 14days led to complete elimination of sympathetic fibers in femoral bone marrow in contrast to bone marrow of contralateral or naïve femurs. Ablation of sympathetic fibers was associated with a loss of rat endothelial cell marker (RECA) indicating immunophenotype changes in blood vessel endothelial cells, but no significant effect of guanethidine was found on the survival of endothelial cells and mesenchymal stem cells in vitro. Moreover, local guanethidine treatment also elicited a significant reduction of Nestin+/SDF1+ mesenchymal stem cells and c-Kit+/CD90+ hematopoietic stem cells in femoral bone marrow. Tissue-specific chemical sympathectomy of rat bone marrow by guanethidine overcomes some of the drawbacks of systemic administration of neurotoxic compounds like 6-hydroxydopamine and delivers unequivocal evidence on the effects of sympathetic innervation on the cell content of bone marrow. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  9. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    International Nuclear Information System (INIS)

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio; Aina, Roberta; Varotto, Serena; Barcaccia, Gianni

    2006-01-01

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G 1 and S. It becomes concentrated in punctuate and fibrillar structures in G 2 as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death

  10. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  11. Cervical cancer stem cells and correlation with radiation response in locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Chopra, Supriya; Goda, Jayant Sastri; Deodhar, Kedar

    2016-01-01

    While tumour-initiating cells (TIC) have been reported across solid tumours, there is dearth of data regarding TICs and radiation response in cervical cancer. From October, 2013- July, 2015 patients with locally advanced cervical cancer were included. Pretreatment biopsy was obtained. IHC was performed for SOX-2,OCT-4, Nanog (ESC), CD44 and Podoplanin (TIC). Semiquantitative scoring was used for IHC. All patients received uniform concurrent chemoradiation and brachytherapy. On follow up, local control and distant relapse was recorded

  12. Synaptic connections of starburst amacrine cells and localization of acetylcholine receptors in primate retinas.

    Science.gov (United States)

    Yamada, Elizabeth S; Dmitrieva, Nina; Keyser, Kent T; Lindstrom, Jon M; Hersh, Louis B; Marshak, David W

    2003-06-16

    Starburst amacrine cells in the macaque retina were studied by electron microscopic immunohistochemistry. We found that these amacrine cells make a type of synapse not described previously; they are presynaptic to axon terminals of bipolar cells. We also confirmed that starburst amacrine cells are presynaptic to ganglion cell dendrites and amacrine cell processes. In order to determine the functions of these synapses, we localized acetylcholine receptors using a monoclonal antibody (mAb210) that recognizes human alpha3- and alpha5-containing nicotinic receptors and also antisera against the five known subtypes of muscarinic receptors. The majority of the mAb210-immunoreactive perikarya were amacrine cells and ganglion cells, but a subpopulation of bipolar cells was also labeled. A subset of bipolar cells and a subset of horizontal cells were labeled with antibodies to M3 muscarinic receptors. A subset of amacrine cells, including those that contain cholecystokinin, were labeled with antibodies to M2 receptors. Taken together, these results suggest that acetylcholine can modulate the activity of retinal ganglion cells by multiple pathways. Copyright 2003 Wiley-Liss, Inc.

  13. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  14. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  15. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    Directory of Open Access Journals (Sweden)

    Adam M. Perez

    2017-02-01

    Full Text Available Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.

  16. Antigen Exposure History Defines CD8 T Cell Dynamics and Protection during Localized Pulmonary Infections

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Martin, Matthew D.; Hartwig, Stacey M.; Legge, Kevin L.; Badovinac, Vladimir P.; Harty, John T.

    2017-01-01

    Unlike systemic infections, little is known about the role of repeated localized infections on (re)shaping pathogen-specific memory CD8 T cell responses. Here, we used primary (1°) and secondary (2°) intranasal influenza virus infections of mice as a model to study intrinsic memory CD8 T cell properties. We show that secondary antigen exposure, relative to a single infection, generates memory CD8 T cell responses of superior magnitude in multiple tissue compartments including blood, spleen, draining lymph nodes, and lung. Unexpectedly, regardless of the significantly higher number of 2° memory CD8 T cells, similar degree of protection against pulmonary challenge was observed in both groups of mice containing 1° or 2° memory CD8 T cells. Mechanistically, using pertussis toxin-induced migration block, we showed that superior antigen-driven proliferation and ability to relocate to the site of infection allowed 1° memory CD8 T cells to accumulate in the infected lung during the first few days after challenge, compensating for the initially lower cell numbers. Taken together, the history of antigen exposures to localized pulmonary infections, through altering basic cell biology, dictates dynamic properties of protective memory CD8 T cell responses. This knowledge has important implications for a design of novel and an improvement of existing vaccines and immunization strategies. PMID:28191007

  17. Localization microscopy study of FtsZ structures in E. coli cells during SOS-response

    Science.gov (United States)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Borchsenius, S. N.; Fedorova, Y. V.; Melnikov, A. S.; Serdobintsev, P. Yu; Khodorkovskii, M. A.

    2014-10-01

    Localization microscopy allows visualization of biological structures with resolution well below the diffraction limit. This is achieved by temporal separation of single fluorophore molecules emission and subsequent localization of them with the precision of few tens of nanometers. This method was previously successfully used to obtain images of FtsZ structures in Escherichia coli cells using FtsZ fusion with fluorescent protein mEos2. In this work we obtained superresolution images of FtsZ structures in fixed E. coli cells using immunocytochemical labeling. Comparison of superresolution FtsZ structures in cells undergoing SOS-response and "healthy" cells shows that FtsZ structures are partially disassembled during SOS-response, but still retain some periodicity.

  18. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    OpenAIRE

    Khorshed, Reema?A.; Hawkins, Edwin?D.; Duarte, Delfim; Scott, Mark?K.; Akinduro, Olufolake?A.; Rashidi, Narges?M.; Spitaler, Martin; Lo?Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is ...

  19. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    Science.gov (United States)

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  20. Local expression and exocytosis of viral glycoproteins in multinucleated muscle cells

    OpenAIRE

    1992-01-01

    We have analyzed the distribution of enveloped viral infections in multinucleated L6 muscle cells. A temperature-sensitive vesicular stomatitis virus (mutant VSV ts045) was utilized at the nonpermissive temperature (39 degrees C). As expected, the glycoprotein (G protein) of this mutant was restricted to the ER when the multinucleated cells were maintained at 39 degrees C. We demonstrate that this G protein remained localized when the infection was performed at low dose. By 4 h after infectio...

  1. Interspecific variation of intracellular localization and postirradiation movement of Ku70-protein in fibroblastic cells

    International Nuclear Information System (INIS)

    Endoh, Daiji; Hayashi, Masanobu; Okui, Toyo; Kawase, Shiro; Kon, Yasushiro

    2003-01-01

    Ku (Ku70 and Ku80) Proteins are known as components of DNA-dependent protein kinase (DNA-PK) and play an important role for DNA repair. We previously reported that more than 70% of Ku proteins were located in cytoplasm of rat cells, the Ku proteins moved into nuclei of normal rat cells after X-irradiation, Ku proteins also moved into nuclei after X-irradiation but were not retained in nucleus of radiosensitive LEC rat cells. While reports have been shown about mechanisms on nuclear localization of Ku proteins, how Ku proteins export from nucleus is poorly understood. Here we show that C-terminal region of Ku70 protein is important for its cytoplasmic localization. When transfected into LEC rat cells, exogenous intact Ku70 (1-609) tagged with enhanced green fluorescent protein (EGFP-Ku70) localized mainly in the cytoplasm, whereas C-terminal-deletion mutant of Ku70 (1-593) tagged with EGFP (EGFP-Ku70D) was mainly localized in the nucleus. After X-irradiation, the endogenous intact EGFP-Ku70 once moved into nucleus, but returned into the cytoplasm. On the other hand, EGFP-Ku70D was retained in nucleus for two hours after X-irradiation. These results suggest that C-terminal region of Ku70 is included in the postirradiation nuclear export. Next, we investigated the intracellular localization of Ku70 proteins and the movement after X-irradiation of fibroblastic cells prepared from some mammalian species. Ku70 proteins were localized in nucleus and the postirradiation-extranuclear transport was not observed in human and African green monkey cells. On the other hand, Ku70 proteins were mainly localized in cytoplasm and moved into nucleus in mouse, Chinese hamster, Golden hamster, cotton rat, squirrel, cat and dog cells. These results may show that alternatively Ku70 protein is localized in the cytoplasm or nucleus depends on species and translocation of cytoplasmic Ku70 into nucleus is a response against low dose irradiation in fibroblasts of rodents, cats and dogs

  2. In situ localization of epidermal stem cells using a novel multi epitope ligand cartography approach.

    Science.gov (United States)

    Ruetze, Martin; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Knott, Anja

    2010-06-01

    Precise knowledge of the frequency and localization of epidermal stem cells within skin tissue would further our understanding of their role in maintaining skin homeostasis. As a novel approach we used the recently developed method of multi epitope ligand cartography, applying a set of described putative epidermal stem cell markers. Bioinformatic evaluation of the data led to the identification of several discrete basal keratinocyte populations, but none of them displayed the complete stem cell marker set. The distribution of the keratinocyte populations within the tissue was remarkably heterogeneous, but determination of distance relationships revealed a population of quiescent cells highly expressing p63 and the integrins alpha(6)/beta(1) that represent origins of a gradual differentiation lineage. This population comprises about 6% of all basal cells, shows a scattered distribution pattern and could also be found in keratinocyte holoclone colonies. The data suggest that this population identifies interfollicular epidermal stem cells.

  3. Selective individual primary cell capture using locally bio-functionalized micropores.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available BACKGROUND: Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. METHODOLOGY/PRINCIPAL FINDINGS: We locally deposited oligodeoxynucleotide (ODN and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. CONCLUSIONS/SIGNIFICANCE: The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures.

  4. Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Charlene Hawkins

    2017-01-01

    Full Text Available Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p<0.05, enhanced apoptosis (p<0.01, and increased PD-1 expression (p<0.001. BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p<0.05. Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p<0.05. Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion.

  5. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer

    2009-07-01

    Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.

  6. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Qiong Deng

    2017-01-01

    Full Text Available The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  7. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    Science.gov (United States)

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  8. Nanoparticle uptake and their co-localization with cell compartments - a confocal Raman microscopy study at single cell level

    Science.gov (United States)

    Estrela-Lopis, I.; Romero, G.; Rojas, E.; Moya, S. E.; Donath, E.

    2011-07-01

    Confocal Raman Microscopy, a non-invasive, non-destructive and label-free technique, was employed to study the uptake and localization of nanoparticles (NPs) in the Hepatocarcinoma human cell line HepG2 at the level of single cells. Cells were exposed to carbon nanotubes (CNTs) the surface of which was engineered with polyelectrolytes and lipid layers, aluminium oxide and cerium dioxide nanoparticles. Raman spectra deconvolution was applied to obtain the spatial distributions of NPs together with lipids/proteins in cells. The colocalization of the NPs with different intracellular environments, lipid bodies, protein and DNA, was inferred. Lipid coated CNTs associated preferentially with lipid rich regions, whereas polyelectrolyte coated CNTs were excluded from lipid rich regions. Al2O3 NPs were found in the cytoplasm. CeO2 NPs were readily taken up and have been observed all over the cell. Raman z-scans proved the intracellular distribution of the respective NPs.

  9. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  10. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Science.gov (United States)

    Behr, Julie; Gaskin, Byron; Fu, Changliang; Dong, Cheng; Kunz, Robert

    2015-01-01

    This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC) and substrate adherent polymorphonuclear neutrophils (PMN) is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD) framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  11. Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S Y; Chikishev, A Y; Koroteev, N I; Greve, J; Otto, C; Sijtsema, N M

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  12. Localization Study of Co-Phthalocyanines in Cells by Raman Micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S.Y.; Arzhantsev, S.Y.; Chikishev, A.Y.; Chikishev, A.Y.; Koroteev, N.I.; Greve, Jan; Otto, Cornelis; Sijtsema, N.M.

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  13. LOCALIZATION OF BRANCHING ENZYME IN POTATO-TUBER CELLS WITH THE USE OF IMMUNOELECTRON MICROSCOPY

    NARCIS (Netherlands)

    KRAM, AM; OOSTERGETEL, GT; VANBRUGGEN, EFJ

    Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma

  14. Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes

    NARCIS (Netherlands)

    deVries, H; deJonge, JC; Schrage, C; vanderHaar, ME; Hoekstra, D

    1997-01-01

    In oligodendrocytes (OLG), the mRNAs for the various myelin proteins localize to different intracellular sites, Whereas the confinement of myelin basic protein (MBP) mRNA to the processes of the cell has been well established, we demonstrate that most other myelin mRNA species are mainly present in

  15. Progression of Intravesical Condyloma Acuminata to Locally Advanced Poorly Differentiated Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Khambati

    2016-07-01

    Full Text Available Condyloma acuminata (CA is a common sexually transmitted disease caused by Human Papilloma Virus (HPV infection. CA of the bladder, however, is an exceedingly rare lesion. We present a rare case of poorly differentiated locally invasive squamous cell carcinoma (SCC arising from recurrent CA of the bladder in an immunocompetent patient and discuss pathophysiology and management of this unusual condition.

  16. The effect of local breast radiotherapy on circulating CD34+ cells

    International Nuclear Information System (INIS)

    Alajez, Nehad M.; Wang Wei; Biswas, Debashis; Teh, Amy; Sutherland, Robert; Pintilie, Melania; Minden, Mark; Messner, Hans; Fyles, Anthony; Gospodarowicz, Mary; Keating, Armand; Liu, Fei-Fei

    2011-01-01

    The number of circulating CD34 + (hematopoietic stem) cells (HSCs) was observed to decline by 15% in breast cancer patients after starting adjuvant radiation therapy, regardless of age or preceding chemotherapy. These data demonstrate that local radiation therapy can profoundly affect HSC homeostasis, which might have a myriad of important implications.

  17. Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells.

    Science.gov (United States)

    Sochacki, Kem A; Taraska, Justin W

    2017-01-01

    Platinum replicas of unroofed mammalian cells can be imaged with a transmission electron microscope (TEM) to produce high contrast, high resolution images of the structure of the cytoplasmic side of a plasma membrane. A complementary approach, super-resolution fluorescence localization microscopy, can be used to localize labeled molecules with better than 20 nm precision in cells. Here, we describe a correlative method that couples these two techniques and produces images where localization microscopy data can be used to highlight specific proteins of interest within the structural context of the platinum replica TEM image. This combined method is uniquely suited to investigate the nanometer-scale structural organization of the plasma membrane and its associated organelles and proteins.

  18. Challenges in optimizing chemoradiation in locally advanced non small-cell lung cancers in India

    Directory of Open Access Journals (Sweden)

    Sushma Agrawal

    2013-01-01

    Full Text Available Data supporting use of concurrent chemoradiation in locally advanced lung cancers comes from clinical trials from developed countries. Applicability and outcomes of such schedules in developing countries is not widely reported. There are various challenges in delivering chemoradiation in locally advanced non small cell lung cancer in developing countries which is highlighted by an audit of patients treated with chemoradiation in our center. This article deals with the challenges in the context of a developing country. We conclude that sequential chemoradiotherapy is better tolerated than concurrent chemoradiation in Indian patients with locally advanced non-small cell lung cancers. Patients with stage IIIa, normal weight or overweight, and adequate baseline pulmonary function should be offered concurrent chemoradiation.

  19. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel

    2006-01-01

    protein (GFP) as reporter proteins, proved that the 169 N-terminal amino acids are sufficient to target the protein to the cell surface. Furthermore, the enolase-GFP fusion co-localized with a plasma membrane marker. Enolase was also identified among membrane proteins obtained by a purification protocol...... that different experimental approaches (genetics, cellular biology and proteomics) show that yeast enolase can reach the cell surface and describe the protein regions involved in its cell surface targeting. Hybrid enolase truncates, fused at their C terminus with the yeast internal invertase or green fluorescent...

  20. Button sequestrum in a case of localized Langerhans' cell histiocytosis of the ilium: case report

    International Nuclear Information System (INIS)

    Tordeur, M.; Wybier, M.; Laporte, J.L.; Grenier, P.; Laredo, J.D.

    2000-01-01

    Langerhans' cell histiocytosis (LCH) is characterized by a proliferation of cells exhibiting the same immunohistochemical and ultra-structural characteristics as Langerhans' cells of the epidermis. Eosinophilic granuloma, chronic polyostotic disease (Hand-Schuller-Christian disease) and multisystemic disease (Letterer-Siwe disease) all belong to the spectrum LCH. Osseous lesions are the most common findings. the radiological appearance of skeletal LCH depends on the site and on disease activity. Button sequestrum has been described as uncommon in LCH of the skull and exceedingly rare in LCH at other sites. We report a case of localized LCH of the ilium with a button sequestrum. (author)

  1. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    Directory of Open Access Journals (Sweden)

    Chen Ji-Yao

    2009-01-01

    Full Text Available Abstract Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  2. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-11

    Science.gov (United States)

    Hyun, Young-Min; Chung, Hung-Li; McGrath, James L.; Waugh, Richard E.; Kim, Minsoo

    2009-01-01

    Lymphocyte migration from blood into lymphoid tissues or to sites of inflammation occurs through interactions between cell surface integrins and their ligands expressed on the vascular endothelium and the extracellular matrix. Very Late Antigen-4 (VLA-4, α4β1) is a key integrin in the effective trafficking of lymphocytes. Although it has been well established that integrins undergo functionally significant conformational changes to mediate cell adhesion, there is no mechanistic information that explains how these are dynamically and spatially regulated during lymphocyte polarization and migration. Using dynamic fluorescence resonance energy transfer (FRET) analysis of a novel VLA-4 FRET sensor under total internal reflection fluorescence (TIRF) microscopy, we show that VLA-4 activation localizes to the lamellipodium in living cells. During T cell migration on VCAM-1, VLA-4 activation concurs with spatial redistribution of chemokine receptor and active Rap1 at the leading edge. Selective inhibition of the activated VLA-4 at leading edge with a small molecule inhibitor is sufficient to block T cell migration. These data suggest that a subpopulation of activated VLA-4 is mainly localized to the leading edge of polarized human T cells, and is critical for T cell migration on VCAM-1. PMID:19542447

  3. Dickkopf-3, a tissue-derived modulator of local T cell responses

    Directory of Open Access Journals (Sweden)

    Michael eMeister

    2015-02-01

    Full Text Available The adaptive immune system protects organisms from harmful environmental insults. In parallel, regulatory mechanisms control immune responses in order to assure preservation of organ integrity. Yet, molecules involved in the control of T cell responses in peripheral tissues are poorly characterized. Here, we investigated the function of Dickkopf-3 in the modulation of local T cell reactivity. Dkk3 is a secreted, mainly tissue derived protein with highest expression in organs considered as immune privileged such as the eye, embryo, placenta and brain. While T cell development and activation status in naïve Dkk3 deficient mice was comparable to littermate controls, we found that Dkk3 contributes to the immunosuppressive microenvironment that protects transplanted, class-I mismatched embryoid bodies from T cell mediated rejection. Moreover, genetic deletion or antibody mediated neutralization of Dkk3 led to an exacerbated experimental autoimmune encephalomyelitis (EAE. This phenotype was accompanied by a change of T cell polarization displayed by an increase of IFNγ producing T cells within in the CNS. In the wild type situation, Dkk3 expression in the brain was up-regulated during the course of EAE in an IFNγ dependent manner. In turn, Dkk3 decreased IFNγ activity and served as part of a negative feedback mechanism. Thus, our findings suggest that Dkk3 functions as a tissue-derived modulator of local CD4+ and CD8+ T cell responses.

  4. Testicular germ cell cancer despite previous local radiotherapy to the testis.

    Science.gov (United States)

    Dieckmann, K-P; Lauke, H; Michl, U; Winter, E; Loy, V

    2002-06-01

    Testicular intraepithelial neoplasia (TIN, also carcinoma in situ of the testis) is the uniform precursor of testicular germ cell cancer. Local radiotherapy to the testis with dosages of 18-20 Gy has been found to safely eradicate TIN and germ cells, too. Thus, the general assumption is that the development of invasive germ cell tumours can be prevented by this radiotherapy. Herein, we report two patients with one-sided testicular tumour and biopsy-proven contralateral TIN. Both of them developed germ cell neoplasms in the remaining testis although local radiotherapy with 20 Gy had been applied to the testis. One patient developed pure seminoma 7 years after completion of radiotherapy, the other developed a combined tumour consisting of embryonal carcinoma and seminoma after 5 years. Treatment consisted of orchiectomy in each of the cases. Histologically, both had TIN in the testicular tissue surrounding the new growths. Pathogenetically, a small fraction of radioresistent TIN cells overcoming irradiation and progressing to full-blown germ cell cancer in the later course may be the histogenetic clue to explain these unexpected events. Other explanations, though less probable, could be technical radiotherapeutic failure due to targeting problems and a pre-existing radioresistent germ cell tumour in the irradiated testicle.

  5. A rare chest wall localized soft tissue sarcoma: Clear cell sarcoma

    Directory of Open Access Journals (Sweden)

    Ulaş Alabalık

    2013-03-01

    Full Text Available The clear cell sarcomas of soft tissue are rare tumorsoriginating from neural crest cells and presenting withpoor prognosis. By the reason of the resemblance ofhistological properties to malign melanoma (eg. the immunoreactivityto S100 and HMB45, the presence of melanosomesultrastructurally, these tumors are also definedas malign melanomas of soft tissue. But distinctivelyfrom cutaneous melanoma, clear cell sarcoma is almostalways deeply localized and the biological behaviour ofthe last one is also different. The differential diagnosisbetween clear cell sarcoma and desmoplastic or spindlecell malign melanoma may be more difficult because ofthe dermal localization of the last ones. In our case, itwas observed an infiltrative tumor composed of uniformseeming cells with vesicular nuclei, distinct nucleoli, paleeosinophilic and sometimes clear, scant cytoplasms, inaddition to necrotic areas. On immunohistochemical examination,the tumoral cells showed a positive immunoreactivityto vimentin, S100, HMB45, and SMA, while showingnegative immunoreactivity with CD34, PanCK, EMA,LCA, CD99 and desmin. Ki-67 proliferation index was determinedas approximately 50%. Because of deep localizationand different morphological-immunohistochemicalfindings of the tumor, the case was diagnosed as “clearcell sarcoma”. It was observed a tumor with similar morphologyin the biopsy sample taken from vertebra of thepatient one month later than the first material and this wascommented as the metastasis of the tumor to vertebra.Key words: Clear cell sarcoma, chest wall, metastasis,vertebral, HMB-45, S-100

  6. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  7. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  8. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  9. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse. PMID:22163556

  10. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  11. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-06-01

    Full Text Available The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC that are based on micro-electro-mechanical systems (MEMS. The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  12. Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential

    Science.gov (United States)

    Abidine, Y.; Laurent, V. M.; Michel, R.; Duperray, A.; Verdier, C.

    2015-10-01

    The rheological properties of bladder cancer cells of different invasivities have been investigated using a microrheological technique well adapted in the range [1-300Hz] of interest to understand local changes in the cytoskeleton microstructure, in particular actin fibres. Drugs disrupting actin and acto-myosin functions were used to study the resistance of such cancer cells. Results on a variety of cell lines were fitted with a model revealing the importance of two parameters, the elastic shear plateau modulus G N 0 as well as the glassy transition frequency f T. These parameters are good markers for invasiveness, with the notable exception of the cell periphery, which is stiffer for less invasive cells, and could be of importance in cancer metastasis.

  13. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)

    2007-10-11

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)

  14. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells.

    Science.gov (United States)

    Verbrugghe, Phebe; Kujala, Pekka; Waelput, Wim; Peters, Peter J; Cuvelier, Claude A

    2008-03-01

    The follicle-associated epithelium (FAE) overlying the follicles of mucosa-associated lymphoid tissue is a key player in the initiation of mucosal immune responses. We recently reported strong clusterin expression in the FAE of murine Peyer's patches. In this study, we examined the expression of clusterin in the human gut-associated lymphoid tissue (GALT) and Waldeyer's ring. Immunohistochemistry for clusterin in human Peyer's patches, appendix and colon lymphoid follicles revealed expression in M cells and in follicular dendritic cells (FDCs). Using cryo-immunogold electron microscopy in Peyer's patches, we observed cytosolic immunoreactivity in M cells and labeling in the ER/Golgi biosynthetic pathway in FDCs. In palatine tonsils and adenoids, we demonstrated clusterin expression in germinal centers and in the lymphoepithelium in the crypts where M cells are localized. In conclusion, clusterin is expressed in M cells and follicular dendritic cells at inductive sites of human mucosa-associated lymphoid tissue suggesting a role for this protein in innate immune responses. Moreover, the use of clusterin as a human M cell marker could prove to be a valuable tool in future M cell research.

  15. Multiphoton-generated localized electron plasma for membrane permeability modification in single cells

    Science.gov (United States)

    Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.

    2014-03-01

    Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.

  16. Specific gut commensal flora locally alters T cell tuning to endogenous ligands.

    Science.gov (United States)

    Chappert, Pascal; Bouladoux, Nicolas; Naik, Shruti; Schwartz, Ronald H

    2013-06-27

    Differences in gut commensal flora can dramatically influence autoimmune responses, but the mechanisms behind this are still unclear. We report, in a Th1-cell-driven murine model of autoimmune arthritis, that specific gut commensals, such as segmented filamentous bacteria, have the ability to modulate the activation threshold of self-reactive T cells. In the local microenvironment of gut-associated lymphoid tissues, inflammatory cytokines elicited by the commensal flora dynamically enhanced the antigen responsiveness of T cells that were otherwise tuned down to a systemic self-antigen. Together with subtle differences in early lineage differentiation, this ultimately led to an enhanced recruitment of pathogenic Th1 cells and the development of a more severe form of autoimmune arthritis. These findings define a key role for the gut commensal flora in sustaining ongoing autoimmune responses through the local fine tuning of T-cell-receptor-proximal activation events in autoreactive T cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The presence of local and circulating autoreactive B cells in patients with advanced periodontitis.

    Science.gov (United States)

    Berglundh, Tord; Liljenberg, Birgitta; Tarkowski, Andrej; Lindhe, Jan

    2002-04-01

    The aim of the present investigation was to study the local (gingival) and systemic occurrence of autoreactive B cells (CD5+CD19 positive) in subjects with a high or low susceptibility to periodontitis. 2 groups of subjects (Group A and B) susceptible to periodontitis were included. Group A consisted of 22 adult patients (7 females and 15 males, aged 24-66 years) with advanced and generalized chronic periodontitis and group B comprised 7 children (4 girls and 3 boys aged 9-13 years) with localized aggressive periodontitis. 26 periodontally healthy subjects, Group C (aged 23-80 years, mean 49.6+/-16.3), were also recruited. Assessment of clinical and radiographical characteristics of periodontal disease was performed. Gingival biopsies and peripheral blood samples were obtained and prepared for immunohistochemical analysis. Blood samples only were obtained from the periodontally healthy subjects (group C). The proportion of autoreactive B cells (CD5+CD19 positive) of peripheral blood lymphocytes was about 6 times higher in group A and 4 times higher in group B than in the samples from the control subjects (group C). About 40-50% of the B cells in the peripheral blood of the periodontitis susceptible individuals expressed markers for autoreactive features while less than 15% of the circulating B cells in the subjects of group C exhibited such markers. The periodontitis lesion in the adult periodontitis patients contained a substantial number of B cells out of which about 30% demonstrated autoreactive features. It is suggested that both circulating and local B cells in periodontitis susceptible individuals have a higher propensity to autoreactive properties than B cells of patients with a low susceptibility to periodontitis.

  18. Beta Cell Count Instead of Beta Cell Mass to Assess and Localize Growth in Beta Cell Population following Pancreatic Duct Ligation in Mice

    Science.gov (United States)

    Chintinne, Marie; Stangé, Geert; Denys, Bart; Ling, Zhidong; In ‘t Veld, Peter; Pipeleers, Daniel

    2012-01-01

    Background Pancreatic-tail duct ligation (PDL) in adult rodents has been reported to induce beta cell generation and increase beta cell mass but increases in beta cell number have not been demonstrated. This study examines whether PDL increases beta cell number and whether this is caused by neogenesis of small clusters and/or their growth to larger aggregates. Methodology Total beta cell number and its distribution over small (100 µm) clusters was determined in pancreatic tails of 10-week-old mice, 2 weeks after PDL or sham. Principal findings PDL increased total beta cell mass but not total beta cell number. It induced neogenesis of small beta cell clusters (2.2-fold higher number) which contained a higher percent proliferating beta cells (1.9% Ki67+cells) than sham tails (beta cell number represented beta cell number and was associated with a similar increase in alpha cell number. It is unknown whether the regenerative process is causally related to the inflammatory infiltration in PDL-tails. Human pancreases with inflammatory infiltration also exhibited activation of proliferation in small beta cell clusters. Conclusions/significance The PDL model illustrates the advantage of direct beta cell counts over beta cell mass measurements when assessing and localizing beta cell regeneration in the pancreas. It demonstrates the ability of the adult mouse pancreas for neogenesis of small beta cell clusters with activated beta cell proliferation. Further studies should investigate conditions under which neoformed small beta cell clusters grow to larger aggregates and hence to higher total beta cell numbers. PMID:22952825

  19. Beta cell count instead of beta cell mass to assess and localize growth in beta cell population following pancreatic duct ligation in mice.

    Directory of Open Access Journals (Sweden)

    Marie Chintinne

    Full Text Available BACKGROUND: Pancreatic-tail duct ligation (PDL in adult rodents has been reported to induce beta cell generation and increase beta cell mass but increases in beta cell number have not been demonstrated. This study examines whether PDL increases beta cell number and whether this is caused by neogenesis of small clusters and/or their growth to larger aggregates. METHODOLOGY: Total beta cell number and its distribution over small (100 µm clusters was determined in pancreatic tails of 10-week-old mice, 2 weeks after PDL or sham. PRINCIPAL FINDINGS: PDL increased total beta cell mass but not total beta cell number. It induced neogenesis of small beta cell clusters (2.2-fold higher number which contained a higher percent proliferating beta cells (1.9% Ki67+cells than sham tails (<0.2%; their higher beta cell number represented <5% of total beta cell number and was associated with a similar increase in alpha cell number. It is unknown whether the regenerative process is causally related to the inflammatory infiltration in PDL-tails. Human pancreases with inflammatory infiltration also exhibited activation of proliferation in small beta cell clusters. CONCLUSIONS/SIGNIFICANCE: The PDL model illustrates the advantage of direct beta cell counts over beta cell mass measurements when assessing and localizing beta cell regeneration in the pancreas. It demonstrates the ability of the adult mouse pancreas for neogenesis of small beta cell clusters with activated beta cell proliferation. Further studies should investigate conditions under which neoformed small beta cell clusters grow to larger aggregates and hence to higher total beta cell numbers.

  20. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  1. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  2. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    Directory of Open Access Journals (Sweden)

    David Parda

    2011-03-01

    Full Text Available Merkel’s cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  3. Locally Advanced Basal Cell Carcinoma: Two Severe Case Presentations and Review.

    Science.gov (United States)

    Brown, Liza; David, Jennifer; Skopit, Stanley

    2018-03-01

    Basal cell carcinoma (BCC) is a common skin malignancy comprising 80% of non-melanoma skin cancers.1 Over 2.8 million cases are estimated to be diagnosed in the United States alone each year. Advanced BCCs are comprised of BCCs that have metastasized to local or distant lymph nodes or organs, or locally invasive BCCs that are extensive and infiltrate vital structures such as eyes, nose, or brain. Advanced BCC tumors represent roughly 1-10% of BCCs today. Two severe case presentations and treatment options will be discussed in this case report series and review. J Drugs Dermatol. 2018;17(3):358-362..

  4. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma.

    Science.gov (United States)

    Nair, Velu; Sharma, Ajay; Sharma, Sanjeevan; Das, Satyaranjan; Bhakuni, Darshan S; Narayanan, Krishnan; Nair, Vivek; Shankar, Subramanian

    2015-03-01

    Autologous hematopoietic stem cell transplant (HSCT) for rapidly progressive disease has not been reported in localized scleroderma. Our patient, a 16-year-old girl had an aggressive variant of localized scleroderma, mixed subtype (linear-generalized) with Parry Romberg syndrome, with no internal organ involvement, that was unresponsive to immunosuppressive therapy and was causing rapid disfigurement. She was administered autologous HSCT in June 2011 and has maintained drug-free remission with excellent functional status at almost 3.5 years of follow-up. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  5. Liver X receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization.

    Science.gov (United States)

    Courtaut, Flavie; Derangère, Valentin; Chevriaux, Angélique; Ladoire, Sylvain; Cotte, Alexia K; Arnould, Laurent; Boidot, Romain; Rialland, Mickaël; Ghiringhelli, François; Rébé, Cédric

    2015-09-29

    Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantly nuclear localization of LXRβ and were resistant to LXR ligand cytotoxicity. Our results showed that predominant cytoplasmic localization of LXRβ, which occurs in colon cancer cells but not in normal colon epithelial cells, allowed LXR ligand-induced pyroptosis. This study strengthens the hypothesis that LXRβ could be a promising target in cancer therapy.

  6. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    Science.gov (United States)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  7. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  8. Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Y. Premkumar Singh

    2013-01-01

    Full Text Available The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.

  9. Documentation and localization of force-mediated filamin A domain perturbations in moving cells

    Science.gov (United States)

    Nakamura, Fumihiko; Song, Mia; Hartwig, John H.; Stossel, Thomas P.

    2014-08-01

    Endogenously and externally generated mechanical forces influence diverse cellular activities, a phenomenon defined as mechanotransduction. Deformation of protein domains by application of stress, previously documented to alter macromolecular interactions in vitro, could mediate these effects. We engineered a photon-emitting system responsive to unfolding of two repeat domains of the actin filament (F-actin) crosslinker protein filamin A (FLNA) that binds multiple partners involved in cell signalling reactions and validated the system using F-actin networks subjected to myosin-based contraction. Expressed in cultured cells, the sensor-containing FLNA construct reproducibly reported FLNA domain unfolding strikingly localized to dynamic, actively protruding, leading cell edges. The unfolding signal depends upon coherence of F-actin-FLNA networks and is enhanced by stimulating cell contractility. The results establish protein domain distortion as a bona fide mechanism for mechanotransduction in vivo.

  10. Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model.

    Science.gov (United States)

    Pauley, Penelope; Matthews, Brya G; Wang, Liping; Dyment, Nathaniel A; Matic, Igor; Rowe, David W; Kalajzic, Ivo

    2014-09-01

    Osteogenesis imperfecta is a serious genetic disorder that results from improper type I collagen production. We aimed to evaluate whether bone marrow stromal cells (BMSC) delivered locally into femurs were able to engraft, differentiate into osteoblasts, and contribute to formation of normal bone matrix in the osteogenesis imperfect murine (oim) model. Donor BMSCs from bone-specific reporter mice (Col2.3GFP) were expanded in vitro and transplanted into the femoral intramedullary cavity of oim mice. Engraftment was evaluated after four weeks. We detected differentiation of donor BMSCs into Col2.3GFP+ osteoblasts and osteocytes in cortical and trabecular bone of transplanted oim femurs. New bone formation was detected by deposition of dynamic label in the proximity to the Col2.3GFP+ osteoblasts, and new bone showed more organized collagen structure and expression of type I α2 collagen. Col2.3GFP cells were not found in the contralateral femur indicating that transplanted osteogenic cells did not disseminate by circulation. No osteogenic engraftment was observed following intravenous transplantation of BMSCs. BMSC cultures derived from transplanted femurs showed numerous Col2.3GFP+ colonies, indicating the presence of donor progenitor cells. Secondary transplantation of cells recovered from recipient femurs and expanded in vitro also showed Col2.3GFP+ osteoblasts and osteocytes confirming the persistence of donor stem/progenitor cells. We show that BMSCs delivered locally in oim femurs are able to engraft, differentiate into osteoblasts and osteocytes and maintain their progenitor potential in vivo. This suggests that local delivery is a promising approach for introduction of autologous MSC in which mutations have been corrected.

  11. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.

    Science.gov (United States)

    Dermol-Cerne, Janja; Miklavcic, Damijan

    2018-02-01

    Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.

  12. Actin and Arp2/3 localize at the centrosome of interphase cells

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  13. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    TermehYousefi, Amin, E-mail: at.tyousefi@gmail.com [Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech) (Japan); Bagheri, Samira; Shahnazar, Sheida [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, Md. Habibur [Department of Computer Science and Engineering, University of Asia Pacific, Green Road, Dhaka-1215 (Bangladesh); Kadri, Nahrizul Adib [Department of Biomedical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. - Graphical abstract: This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well

  14. An Unusual Case of Locally Advanced Glycogen-Rich Clear Cell Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Beatriz Martín-Martín

    2011-09-01

    Full Text Available Glycogen-rich clear cell (GRCC is a rare subtype of breast carcinoma characterized by carcinoma cells containing an optically clear cytoplasm and intracytoplasmic glycogen. We present the case of a 55-year-old woman with a palpable mass in the right breast and clinical signs of locally advanced breast cancer (LABC. The diagnosis of GRCC carcinoma was based on certain histopathological characteristics of the tumor and immunohistochemical analysis. To our knowledge, this is the first case of GRCC LABC with intratumoral calcifications. There is no evidence of recurrence or metastatic disease after 14 months’ follow-up.

  15. Experience in local Glyciphon chemotherapy of basal cell carcinoma of the problem face areas

    Directory of Open Access Journals (Sweden)

    S. O. Podvyaznikov

    2017-01-01

    Full Text Available Basal cell carcinoma (BCC is the most common type of malignant skin tumors, characterized by selective localization on the head and neck. Currently there is a variety of treatment methods for this disease, but some of them are not feasible due to patients’ age, cancer localization, morphological type, size, or number of tumor lesions. In that respect, local chemotherapy of BCC, especially for the problem face areas, can serve as a good alternative. Clinical and experimental trials have shown a high treatment effect for 30 % Glyciphon ointment in patients with BCC. In this article we present successful examples of treatment of patients with BCC on the problem face areas using Glyciphon.

  16. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  17. Regulation of vesicle transport and cell motility by Golgi-localized Dbs

    Science.gov (United States)

    Fitzpatrick, Ethan R; Hu, Tinghui; Ciccarelli, Bryan T; Whitehead, Ian P

    2014-01-01

    DBS/MCF2L has been recently identified as a risk locus for osteoarthritis. It encodes a guanine nucleotide exchange factor (Dbs) that has been shown to regulate both normal and tumor cell motility. In the current study, we have determined that endogenous Dbs is predominantly expressed as 2 isoforms, a 130 kDa form (Dbs-130) that is localized to the Golgi complex, and an 80 kDa form (Dbs-80) that is localized to the endoplasmic reticulum (ER). We have previously described an inhibitor that binds to the RhoGEF domain of Dbs and blocks its transforming activity. Here we show that the inhibitor localizes to the Golgi, where it specifically interacts with Dbs-130. Inhibition of endogenous Dbs-130 activity is associated with reduced levels of activated Cdc42, enlarged Golgi, and resistance to Brefeldin A-mediated Golgi dispersal, suggesting a role for Dbs in vesicle transport. Cells treated with the inhibitor exhibit normal protein transport from the ER to the Golgi, but are defective in transport from the Golgi to the plasma membrane. Inhibition of Dbs-130 in MDA-MB-231 human breast tumor cells limits motility in both transwell and wound healing assays, but appears to have no effect on the organization of the microtubule cytoskeleton. The reduced motility is associated with a failure to reorient the Golgi toward the leading edge. This is consistent with the Golgi localization, and suggests that the Dbs-130 regulates aspects of the secretory pathway that are required to support cell polarization during directed migration. PMID:25483302

  18. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells.

    Directory of Open Access Journals (Sweden)

    Miguel J Xavier

    Full Text Available BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.

  19. Fluorescence exclusion: A simple versatile technique to calculate cell volumes and local heights (Conference Presentation)

    Science.gov (United States)

    Thouvenin, Olivier; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    Understanding volume regulation during mitosis is technically challenging. Indeed, a very sensitive non invasive imaging over time scales ranging from seconds to hours and over large fields is required. Therefore, Quantitative Phase Imaging (QPI) would be a perfect tool for such a project. However, because of asymmetric protein segregation during mitosis, an efficient separation of the refractive index and the height in the phase signal is required. Even though many strategies to make such a separation have been developed, they usually are difficult to implement, have poor sensitivity, or cannot be performed in living cells, or in a single shot. In this paper, we will discuss the use of a new technique called fluorescence exclusion to perform volume measurements. By coupling such technique with a simultaneous phase measurement, we were also able to recover the refractive index inside the cells. Fluorescence exclusion is a versatile and powerful technique that allows the volume measurement of many types of cells. A fluorescent dye, which cannot penetrate inside the cells, is mixed with the external medium in a confined environment. Therefore, the fluorescent signal depends on the inverse of the object's height. We could demonstrate both experimentally and theoretically that fluorescence exclusion can accurately measure cell volumes, even for cells much higher than the depth of focus of the objective. A local accurate height and RI measurement can also be obtained for smaller cells. We will also discuss the way to optimize the confinement of the observation chamber, either mechanically or optically.

  20. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  1. Computing local edge probability in natural scenes from a population of oriented simple cells.

    Science.gov (United States)

    Ramachandra, Chaithanya A; Mel, Bartlett W

    2013-12-31

    A key computation in visual cortex is the extraction of object contours, where the first stage of processing is commonly attributed to V1 simple cells. The standard model of a simple cell-an oriented linear filter followed by a divisive normalization-fits a wide variety of physiological data, but is a poor performing local edge detector when applied to natural images. The brain's ability to finely discriminate edges from nonedges therefore likely depends on information encoded by local simple cell populations. To gain insight into the corresponding decoding problem, we used Bayes's rule to calculate edge probability at a given location/orientation in an image based on a surrounding filter population. Beginning with a set of ∼ 100 filters, we culled out a subset that were maximally informative about edges, and minimally correlated to allow factorization of the joint on- and off-edge likelihood functions. Key features of our approach include a new, efficient method for ground-truth edge labeling, an emphasis on achieving filter independence, including a focus on filters in the region orthogonal rather than tangential to an edge, and the use of a customized parametric model to represent the individual filter likelihood functions. The resulting population-based edge detector has zero parameters, calculates edge probability based on a sum of surrounding filter influences, is much more sharply tuned than the underlying linear filters, and effectively captures fine-scale edge structure in natural scenes. Our findings predict nonmonotonic interactions between cells in visual cortex, wherein a cell may for certain stimuli excite and for other stimuli inhibit the same neighboring cell, depending on the two cells' relative offsets in position and orientation, and their relative activation levels.

  2. ADAM28 localizes to HLA-G+ trophoblasts and promotes column cell outgrowth.

    Science.gov (United States)

    De Luca, L C; Le, H T; Mara, D L; Beristain, A G

    2017-07-01

    Trophoblast progenitor cell differentiation towards the extravillous trophoblast (EVT) lineage initiates within proximal regions of anchoring columns of first trimester placental villi. While molecular processes controlling the initial stages of progenitor cell differentiation along the EVT pathway have been described, much remains unknown about factors important in distal column cell differentiation into invasive EVTs. ADAMs are proteases that regulate growth factor signaling, cell-matrix adhesion, and matrix proteolysis, and thus impact many processes relevant in placentation. Global gene expression studies identified the ADAM subtype, ADAM28, to be highly expressed in EVT-like trophoblasts, suggesting that it may play a role in EVT function. This study aims to test the functional importance of ADAM28 in column cell outgrowth and maintenance. ADAM28 mRNA levels and protein localization were determined by qPCR and immunofluorescence microscopy analyses in purified placental villi cell populations and tissues. ADAM28 function in trophoblast column outgrowth was examined using ADAM28-targetting siRNAs in Matrigel-imbedded placental explant cultures. Within placental villi, ADAM28 mRNA levels were highest in HLA-G + column trophoblasts, and consistent with this, ADAM28 was preferentially localized to HLA-G + trophoblasts within distal anchoring columns and decidual tissue. siRNA-directed loss of ADAM28 impaired trophoblast column outgrowth and resulted in increased apoptosis in matrix-invading trophoblasts. Our findings suggest that ADAM28 promotes column outgrowth by providing survival cues within anchoring column cells. This study also provides insight into a possible role for ADAM28 in driving differentiation of column trophoblasts into invasive HLA-G + EVT subsets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Location of tumor affects local and distant immune cell type and number.

    Science.gov (United States)

    Hensel, Jonathan A; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P; Ponnazhagan, Selvarangan

    2017-03-01

    Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid-derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4 + and CD8 + T-cell numbers, which was also observed in their spleens. These data indicate that alterations in tumor-reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci.

  4. High perirenal fat thickness predicts a poor progression-free survival in patients with localized clear cell renal cell carcinoma.

    Science.gov (United States)

    Huang, Haichao; Chen, Shi; Li, Wei; Wu, Xiurong; Xing, Jinchun

    2018-01-04

    The aim of the study was to assess the association between the progression-free survival (PFS) and perirenal fat thickness (PFT) in a population of histopathologically confirmed, localized clear cell renal cell carcinoma (ccRCC) patients. We retrospectively enrolled 174 patients with localized ccRCC at our center between December 2009 and December 2015. The preoperative visceral fat area (VFA), PFT, and subcutaneous fat area (SFA) were evaluated. Kaplan-Meier curves were used to assess the differences in PFS between the high and the low PFT groups within sexes. Potential independent prognostic factors of PFS were identified by univariable and multivariable Cox analyses. During the follow-up period (median, 38 months), 27 patients (21 with high PFT and 6 with low PFT) experienced tumor progression. Kaplan-Meier curves revealed that high PFT was associated with a worse PFS than low PFT (P = 0.005). In the univariable Cox analyses, high VFA, high PFT, T stage, and the presence of sarcomatoid differentiation were significantly associated with a poor PFS. Moreover, both high PFT and VFA retained significance in the multivariable analysis. We first report the evidence that high PFT presents as an independent risk factor of tumor progression in localized ccRCC. We suggest that this noninvasive and readily available preoperative parameter may help in the risk stratification of ccRCC patients before surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  6. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-07

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications.

  7. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    Science.gov (United States)

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  9. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy

    Science.gov (United States)

    Gao, Jing; Chen, Junling; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tong, Ti; Wang, Hongda

    2017-06-01

    Signal transducer and activator of transcription 3 (STAT3) plays a key role in various cellular processes such as cell proliferation, differentiation, apoptosis and immune responses. In particular, STAT3 has emerged as a potential molecular target for cancer therapy. The functional role and standard activation mechanism of STAT3 have been well studied, however, the spatial distribution of STAT3 during the cell cycle is poorly known. Therefore, it is indispensable to study STAT3 spatial arrangement and nuclear-cytoplasimic localization at the different phase of cell cycle in cancer cells. By direct stochastic optical reconstruction microscopy imaging, we find that STAT3 forms various number and size of clusters at the different cell-cycle stage, which could not be clearly observed by conventional fluorescent microscopy. STAT3 clusters get more and larger gradually from G1 to G2 phase, during which time transcription and other related activities goes on consistently. The results suggest that there is an intimate relationship between the clustered characteristic of STAT3 and the cell-cycle behavior. Meanwhile, clustering would facilitate STAT3 rapid response to activating signals due to short distances between molecules. Our data might open a new door to develop an antitumor drug for inhibiting STAT3 signaling pathway by destroying its clusters.

  10. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    Science.gov (United States)

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-07

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

  11. Intracellular localization of Saffold virus Leader (L) protein differs in Vero and HEp-2 cells.

    Science.gov (United States)

    Xu, Yishi; Victorio, Carla Bianca Luena; Ng, Qimei; Prabakaran, Mookkan; Tan, Yee-Joo; Chua, Kaw Bing

    2016-10-12

    The Saffold virus (SAFV) genome is translated as a single long polyprotein precursor and co-translationally cleaved to yield 12 separate viral proteins. Little is known about the activities of SAFV proteins although their homologs in other picornaviruses have already been described. To further support research on functions and activities of respective viral proteins, we investigated the spatio-temporal distribution of SAFV proteins in Vero and HEp-2 cells that had been either transfected with plasmids that express individual viral proteins or infected with live SAFV. Our results revealed that, with the exception of the Leader (L) protein, all viral proteins were localized in the cytoplasm at all the time points assayed. The L protein was found in the cytoplasm at an early time point but was subsequently translocated to the nucleus of HEp-2, but not Vero, cells. This was observed in both transfected and infected cells. Further mutational analysis of L protein revealed that Threonine 58 of the Ser/Thr-rich domain of L protein is crucial for protein trafficking between the cytoplasm and nucleus in HEp-2 cells. These findings contribute to a deeper understanding and stimulate investigation of the differetial cellular responses of HEp-2 cells in comparison to other mammalian cell lines during SAFV infection.

  12. Cell type-specific expression and localization of cytochrome P450 isoforms in tridimensional aggregating rat brain cell cultures.

    Science.gov (United States)

    Vichi, S; Sandström von Tobel, J; Gemma, S; Stanzel, S; Kopp-Schneider, A; Monnet-Tschudi, F; Testai, E; Zurich, M G

    2015-12-25

    Within the Predict-IV FP7 project a strategy for measurement of in vitro biokinetics was developed, requiring the characterization of the cellular model used, especially regarding biotransformation, which frequently depends on cytochrome P450 (CYP) activity. The extrahepatic in situ CYP-mediated metabolism is especially relevant in target organ toxicity. In this study, the constitutive mRNA levels and protein localization of different CYP isoforms were investigated in 3D aggregating brain cell cultures. CYP1A1, CYP2B1/B2, CYP2D2/4, CYP2E1 and CYP3A were expressed; CYP1A1 and 2B1 represented almost 80% of the total mRNA content. Double-immunolabeling revealed their presence in astrocytes, in neurons, and to a minor extent in oligodendrocytes, confirming the cell-specific localization of CYPs in the brain. These results together with the recently reported formation of an amiodarone metabolite following repeated exposure suggest that this cell culture system possesses some metabolic potential, most likely contributing to its high performance in neurotoxicological studies and support the use of this model in studying brain neurotoxicity involving mechanisms of toxication/detoxication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Local control rate and prognosis after sequential chemoradiation for small cell carcinoma of the bladder

    International Nuclear Information System (INIS)

    Meijer, Richard P.; Meinhardt, Wim; Poel, Henk G. van der; Rhijn, Bas W. van; Kerst, J. Martijn; Pos, Floris J.; Horenblas, Simon; Bex, Axel

    2013-01-01

    The objectives of this study were to assess the long-term outcome and the risk for local recurrence of patients with small cell carcinoma of the bladder (SCCB) treated with neoadjuvant chemotherapy followed by external beam radiotherapy (sequential chemoradiation). All consecutive patients with primary small cell carcinoma of the bladder (n=66), treated in our institution between 1993 and 2011 were retrospectively evaluated from an institutional database. Only patients with limited disease (Tx-4N0-1M0) small cell carcinoma of the bladder treated with sequential chemoradiation (n=27) were included in this study. Recurrence rates, overall survival and cancer-specific survival were analyzed using the Kaplan-Meier method. Median time to recurrence was 20 months, median overall survival 26 months, 5-year overall survival 22.2%, median cancer-specific survival 47 months and 5-year cancer-specific survival 39.6%. For complete responders after neoadjuvant chemotherapy (n=19), median cancer-specific survival was 52 months with a 5-year cancer-specific survival 45.9% versus a median cancer-specific survival of 22 months and 5-year cancer-specific survival 0.0% for incomplete responders (n=8; P=0.034). Eight patients (29.6%) underwent transurethral resections (TUR-BT) for local recurrences in the bladder. At the end of follow up, four patients had undergone cystectomy for recurrence of disease resulting in a bladder-preservation rate of 85.2%. Median time to local recurrence was 29 months and median time to distant recurrence was 10 months. Sequential chemoradiation for limited disease small cell carcinoma of the bladder results in a reasonable outcome with a high bladder preservation rate. Response to neoadjuvant chemotherapy represents a significant prognostic factor in this patient population. (author)

  14. Nanoparticle uptake and their co-localization with cell compartments - a confocal Raman microscopy study at single cell level

    Energy Technology Data Exchange (ETDEWEB)

    Estrela-Lopis, I; Donath, E [Institute of Medical Physics and Biophysics, Leipzig University, Haertelstrasse 16, 04107 Leipzig (Germany); Romero, G; Rojas, E; Moya, S E, E-mail: Irina.Estrela-Lopis@medizin.uni-leipzig.de [CIC biomaGUNE, Paseo Miramon 182 Edificio Empresarial C, 20009 San Sebastian, Gipuzkoa (Spain)

    2011-07-06

    Confocal Raman Microscopy, a non-invasive, non-destructive and label-free technique, was employed to study the uptake and localization of nanoparticles (NPs) in the Hepatocarcinoma human cell line HepG2 at the level of single cells. Cells were exposed to carbon nanotubes (CNTs) the surface of which was engineered with polyelectrolytes and lipid layers, aluminium oxide and cerium dioxide nanoparticles. Raman spectra deconvolution was applied to obtain the spatial distributions of NPs together with lipids/proteins in cells. The colocalization of the NPs with different intracellular environments, lipid bodies, protein and DNA, was inferred. Lipid coated CNTs associated preferentially with lipid rich regions, whereas polyelectrolyte coated CNTs were excluded from lipid rich regions. Al{sub 2}O{sub 3} NPs were found in the cytoplasm. CeO{sub 2} NPs were readily taken up and have been observed all over the cell. Raman z-scans proved the intracellular distribution of the respective NPs.

  15. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases

    Directory of Open Access Journals (Sweden)

    MGS Vieira

    2002-10-01

    Full Text Available Biopsies from human localized cutaneous lesions (LCL n = 7 or disseminated lesions (DL n = 8 cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

  16. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna

    2010-01-01

    by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents......-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  17. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  18. Radiotherapy is associated with significant improvement in local and regional control in Merkel cell carcinoma

    Directory of Open Access Journals (Sweden)

    Kang Susan H

    2012-10-01

    Full Text Available Abstract Introduction Merkel cell carcinoma (MCC is a rare tumour of skin. This study is a retrospective audit of patients with MCC from St Vincent’s and Mater Hospital, Sydney, Australia. The aim of this study was to investigate the influence of radiotherapy (RT on the local and regional control of MCC lesions and survival of patients with MCC. Method The data bases in anatomical pathology, RT and surgery. We searched for patients having a diagnosis of MCC between 1996 and 2007. Patient, tumour and treatment characteristics were collected and analysed. Univariate survival analysis of categorical variables was conducted with the Kaplan-Meier method together with the Log-Rank test for statistical significance. Continuous variables were assessed using the Cox regression method. Multivariate analysis was performed for significant univariate results. Results Sixty seven patients were found. Sixty two who were stage I-III and were treated with radical intent were analysed. 68% were male. The median age was 74 years. Forty-two cases (68% were stage I or II, and 20 cases (32% were stage III. For the subset of 42 stage I and II patients, those that had RT to their primary site had a 2-year local recurrence free survival of 89% compared with 36% for patients not receiving RT (p Conclusions RT is associated with significant improvement in local and regional control in Merkel cell carcinoma. Immunosuppression is an important factor in overall survival.

  19. Mapping of the Sequences Directing Localization of the Drosophila Germ Cell-Expressed Protein (GCE).

    Science.gov (United States)

    Greb-Markiewicz, Beata; Sadowska, Daria; Surgut, Natalia; Godlewski, Jakub; Zarębski, Mirosław; Ożyhar, Andrzej

    2015-01-01

    Drosophila melanogaster germ cell-expressed protein (GCE) belongs to the family of bHLH-PAS transcription factors that are the regulators of gene expression networks that determine many physiological and developmental processes. GCE is a homolog of D. melanogaster methoprene tolerant protein (MET), a key mediator of anti-metamorphic signaling in insects and the putative juvenile hormone receptor. Recently, it has been shown that the functions of MET and GCE are only partially redundant and tissue specific. The ability of bHLH-PAS proteins to fulfill their function depends on proper intracellular trafficking, determined by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). Nevertheless, until now no data has been published on the GCE intracellular shuttling and localization signals. We performed confocal microscopy analysis of the subcellular distribution of GCE fused with yellow fluorescent protein (YFP) and YFP-GCE derivatives which allowed us to characterize the details of the subcellular traffic of this protein. We demonstrate that GCE possess specific pattern of localization signals, only partially consistent with presented previously for MET. The presence of a strong NLS in the C-terminal part of GCE, seems to be unique and important feature of this protein. The intracellular localization of GCE appears to be determined by the NLSs localized in PAS-B domain and C-terminal fragment of GCE, and NESs localized in PAS-A, PAS-B domains and C-terminal fragment of GCE. NLSs activity can be modified by juvenile hormone (JH) and other partners, likely 14-3-3 proteins.

  20. Combined modality therapy for locally advanced non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Recine, D.; Rowland, K.; Reddy, S.; Lee, M.S.; Bonomi, P.; Taylor, S.; Faber, L.P.; Warren, W.; Kittle, C.F.; Hendrickson, F.R.

    1990-01-01

    Multi-modality treatment consisting of cisplatin, VP-16, and 5-fluorouracil chemotherapy given concomitantly with external beam radiation was used to treat 64 patients with locally advanced Stage III non-small cell lung carcinoma. This regimen was used in a preoperative fashion for four cycles in patients considered surgically resectable and with curative intent for six cycles in the remainder of patients. The clinical response rate for the entire group was 84% and the overall local control rate was 74%. The median survival was 13 months with a median follow-up for live patients of 19 months. The actuarial 3-year survival and disease-free survival rates were 30% and 23%, respectively. Histologic complete response was 39% and appeared to predict for survival. The 3-year actuarial survival and disease-free survival rates for 23 resected patients were 69% and 45%, respectively, with the complete histologic responders having a disease-free survival of 78%. The pattern of first recurrence did not appear to differ by histology or presence of lymph nodes in this subset of patients. The actuarial 3-year survival and disease-free survival rates for inoperable patients receiving six cycles of treatment were 18% and 23%, respectively. The local control was 67% with the majority of these patients having Stage IIIB disease. The Mountain International staging system appeared to predict for operability, local recurrence, and survival. This concomitant treatment regimen is feasible, with the major toxicities being leukopenia, nausea, and vomiting

  1. Chemotherapy related toxicity in locally advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bahl Amit

    2006-01-01

    Full Text Available Background: For inoperable non-small cell lung cancer combined chemotherapy and radiotherapy plays an important role as a therapeutic modality. The aim of the present study was to analyze neoadjuvant chemotherapy related acute toxicity in locally advanced lung cancer (stage IIIA and IIIB in Indian patients using Cisplatin and Etoposide combination chemotherapy. Material and methods: Forty patients of locally advanced Non small cell lung cancer received three cycles neoadjuvant chemotherapy using Injection Cisplatin and Etoposide. The patients were taken for Radical radiotherapy to a dose of 60 Gray over 30 fractions in conventional fractionation after completing chemotherapy. Chemotherapy associated toxicity was assessed using common toxicity criteria (CTC v2.0 Results: Forty patients were available for final evaluation. Median age of presentation of patients was fifty-six years. Thirteen patients had Non small cell lung cancer stage IIIA while twenty-seven patients had Stage IIIB disease. Anemia was the most common hematological toxicity observed (seen in 81% of patients. Nausea and vomiting were the most common non -hematological toxicity seen. Sensory neuropathy was seen in 38%of patients. 88% patients developed alopecia. Seven patients developed febrile neutropenias. Conclusion: Neo-adjuvant chemotherapy using Cisplatin and Etoposide continues to be a basic regimen in the Indian set up despite availability of higher molecules, since it is cost effective, well tolerated and therapeutically effective. Blood transfusions, growth factors and supportive care can be used effectively to over come toxicity associated with this regimen.

  2. Intracellular localization of Xenopus small heat shock protein, hsp30, in A6 kidney epithelial cells.

    Science.gov (United States)

    Gellalchew, Mekonnen; Heikkila, John J

    2005-03-01

    Small heat shock proteins (shsps) are molecular chaperones that are inducible by environmental stress. In this study, immunocytochemical analysis and laser scanning confocal microscopy revealed that the shsp family, hsp30, was localized primarily in the cytoplasm of Xenopus A6 kidney epithelial cells after heat shock or sodium arsenite treatment. Heat shock-induced hsp30 was enriched in the perinuclear region with some immunostaining in the nucleus but not in the nucleolus. In sodium arsenite-treated cells hsp30 was enriched towards the cytoplasmic periphery as well as showing some immunostaining in the nucleus. At higher heat shock temperatures (35 degrees C) or after 10 microM sodium arsenite treatment, the actin cytoskeleton displayed some disorganization that co-localized with areas of hsp30 enrichment. Treatment of A6 cells with 50 microM sodium arsenite induced a collapse of the cytoskeleton around the nucleus. These results coupled with previous studies suggest that stress-inducible hsp30 acts as a molecular chaperone primarily in the cytoplasm and may interact with cytoskeletal proteins.

  3. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma

    DEFF Research Database (Denmark)

    Motzer, Robert J; Haas, Naomi B; Donskov, Frede

    2017-01-01

    Purpose This phase III trial evaluated the efficacy and safety of pazopanib versus placebo in patients with locally advanced renal cell carcinoma (RCC) at high risk for relapse after nephrectomy. Patients and Methods A total of 1,538 patients with resected pT2 (high grade) or ≥ pT3, including N1,...

  5. Tissue- and Cell-Specific Co-localization of Intracellular Gelatinolytic Activity and Matrix Metalloproteinase 2

    Science.gov (United States)

    Solli, Ann Iren; Fadnes, Bodil; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2013-01-01

    Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions. PMID:23482328

  6. Progesterone Receptor Subcellular Localization and Gene Expression Profile in Human Astrocytoma Cells Are Modified by Progesterone

    Directory of Open Access Journals (Sweden)

    Aliesha González-Arenas

    2014-11-01

    Full Text Available Intracellular progesterone receptor (PR has been identified in human astrocytomas, the most common and aggressive primary brain tumors in humans. It has been reported that PR cell distribution affects their transcriptional activity and turnover. In this work we studied by immunofluorescence the effects of estradiol and progesterone on the subcellular localization of PR in a grade III human astrocytoma derived cell line (U373. We observed that total PR was mainly distributed in the cytoplasm without hormonal treatment. Estradiol (10 nM increased PR presence in the cytoplasm of U373 cells, whereas progesterone (10 nM and RU486 (PR antagonist, 1 μM blocked this effect. To investigate the role of PR activity in the regulation of gene expression pattern of U373 cells, we evaluated by microarray analysis the profile of genes regulated by progesterone, RU486, or both steroids. We found different genes regulated by steroid treatments that encode for proteins involved in metabolism, transport, cell cycle, proliferation, metastasis, apoptosis, processing of nucleic acids and proteins, adhesion, pathogenesis, immune response, cytoskeleton, and membrane receptors. We determined that 30 genes were regulated by progesterone, 41 genes by RU486 alone, and 13 genes by the cotreatment of progesterone+RU486, suggesting that there are many genes regulated by intracellular PR or through other signaling pathways modulated by progesterone. All these data suggest that PR distribution and activity should modify astrocytomas growth.

  7. Identifying locally advanced basal cell carcinoma eligible for treatment with vismodegib: an expert panel consensus.

    Science.gov (United States)

    Peris, Ketty; Licitra, Lisa; Ascierto, Paolo A; Corvò, Renzo; Simonacci, Marco; Picciotto, Franco; Gualdi, Giulio; Pellacani, Giovanni; Santoro, Armando

    2015-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer worldwide. Most occur on the head and neck, where cosmetic and functional outcomes are critical. BCC can be locally destructive if not diagnosed early and treated appropriately. Surgery is the treatment of choice for the majority of high-risk lesions. Aggressive, recurrent or unresectable tumors can be difficult to manage. Until recently, no approved systemic therapy was available for locally advanced or metastatic BCC inappropriate for surgery or radiotherapy. Vismodegib provides a systemic treatment option. However, a consensus definition of advanced BCC is lacking. A multidisciplinary panel with expertise in oncology, dermatology, dermatologic surgery and radiation oncology proposes a consensus definition based on published evidence and clinical experience.

  8. Local recurrence in giant cell tumor of bone: Comparative study of two methods of surgical approach

    Directory of Open Access Journals (Sweden)

    Khodamorad Jamshidi

    2008-10-01

    Full Text Available

    • BACKGROUND: Most experts accept the use of curettage, phenol, and cement as the best treatment to prevent recurrence of giant-cell tumors. The purpose of this investigation was to analyze the effect of cement as a filling material and compare it with bone graft and the effect of high-speed burr in local recurrence of giant cell tumor after curettage.
    • METHODS: We retrospectively reviewed 168 consecutive patients diagnosed with giant cell tumor at the three most common sites (distal femur, proximal tibia, and distal radius to determine the pattern of local tumor recurrence. Only patients who had intralesional excision of primary tumor by curettage without a surgical adjuvant were included.
    • RESULTS: A total of 168 patients with primary giant cell tumor were treated with curettage. The female to male ratio was 1.4: 1 and the mean age was 34 years (range: 17-68 years. The minimum follow-up was 24 months and the median follow up was 75 months. The knee region was involved in 135 (80.4% patients. There were 10 (5.9%, 130 (77.4% and 28 (16.7% patients in Campanacci grade I, II and III, respectively. Tumor surgery was supplemented with high speed burring in 88 (52.4%, bone cement in 82 (48.8% and bone grafting, either autograft or allograft in 86 (51.2% patients. The recurrence rates were 18.2% and 37.5% for curettage with or without high speed burring, respectively. For 46 (27% recurrent lesions treated by curettage, the recurrence rate was 35%. The nature of the filling material used did not show any significant impact on the outcome of recurrence rate.
    • CONCLUSIONS: Despite the high rates of recurrence after treatment of giant-cell tumor with curettage, the results of the present study suggested that the high-speed burr is effective in reducing the rate of recurrence. The risk of local recurrence after curettage with a high-speed burr and

    • Abnormal intracellular localization of Bax with a normal membrane anchor domain in human lung cancer cell lines.

      Science.gov (United States)

      Salah-eldin, A; Inoue, S; Tsuda, M; Matsuura, A

      2000-12-01

      Proapoptotic Bax is a member of the Bcl-2 family proteins, which have a key role in regulating programmed cell death. The intracellular localization and redistribution of Bax are important in promoting apoptosis. Bax contains a BH3 domain heterodimerizing with Bcl-2 and a hydrophobic transmembrane segment to be inserted in specified organelle membranes. In this study, Bcl-2 showed cytoplasmic localization in all of ten human lung cancer cell lines tested. Interestingly, Bax was localized in the nucleus in 7 cell lines, although Bax lacks nuclear import signals. This may allow cancer cells to escape from apoptosis. Why Bax is able to exist in the nucleus is still unclear. We hypothesized that mutation in the BH3 domain and / or transmembrane segment of Bax possibly causes intracellular Bax distribution. We analyzed the sequence of the bax gene in these cell lines and found only a silent point mutation at codon 184 (TCG-->TCA) in the transmembrane segment in all cell lines. This finding indicates that changes in cellular localization of Bax in lung cancer cell lines do not depend on bax mutation and that Bax is possibly translocated into the nucleus without any mutation. This is the first report showing that Bax with the normal amino acid sequence can be localized in the nucleus in established lung cancer cell lines without any treatment of the cells.

    • Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins.

      Science.gov (United States)

      Islam, Kazi T; Shah, Dilip M; El-Mounadi, Kaoutar

      2017-12-24

      Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.

    • GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

      Energy Technology Data Exchange (ETDEWEB)

      Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

      2015-03-27

      Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

    • Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

      Science.gov (United States)

      Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

      2012-01-01

      The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

    • Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

      Directory of Open Access Journals (Sweden)

      Andrew J Muinonen-Martin

      2014-10-01

      Full Text Available The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.

    • Management of Locally Advanced Renal Cell Carcinoma with Invasion of the Duodenum

      Directory of Open Access Journals (Sweden)

      Andrew T. Schlussel

      2013-01-01

      Full Text Available Renal cell carcinoma (RCC is rare but aggressive, with greater than 20% of patients presenting with stage III or IV, disease. Surgical resection of the primary tumor regardless of stage is the treatment of choice, and en bloc resection of involved organs provides the only potential chance for cure. This case report describes a patient with metastatic right-sided RCC with invasion of the inferior vena cava and duodenum managed by en block resection and pancreaticoduodenectomy. This report will review the workup and treatment of locally advanced RCC, as well as the role of cytoreductive nephrectomy in the setting of metastatic disease.

    • The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

      Energy Technology Data Exchange (ETDEWEB)

      Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

      2006-07-01

      Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

    • The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

      International Nuclear Information System (INIS)

      Averbeck, D.; Boucher, D.

      2006-01-01

      Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137 Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

    • Early disease progression in patients with localized NK/T-cell lymphoma treated with concurrent chemoradiotherapy.

      Science.gov (United States)

      Yamaguchi, Motoko; Suzuki, Ritsuro; Kim, Seok Jin; Ko, Young Hyeh; Oguchi, Masahiko; Asano, Naoko; Miyazaki, Kana; Terui, Yasuhiko; Kubota, Nobuko; Maeda, Takeshi; Kobayashi, Yukio; Amaki, Jun; Soejima, Toshinori; Saito, Bungo; Shimoda, Emiko; Fukuhara, Noriko; Tsukamoto, Norifumi; Shimada, Kazuyuki; Choi, Ilseung; Utsumi, Takahiko; Ejima, Yasuo; Kim, Won Seog; Katayama, Naoyuki

      2018-03-30

      The prognosis of patients with localized nasal extranodal natural killer/T-cell lymphoma, nasal type (ENKL) has been improved by non-anthracycline-containing treatments such as concurrent chemoradiotherapy (CCRT). However, some patients experience early disease progression. To clarify the clinical features and outcomes of these patients, data from 165 patients with localized nasal ENKL who were diagnosed between 2000 and 2013 at 31 institutes in Japan and who received radiotherapy with dexamethasone, etoposide, ifosfamide, and carboplatin (RT-DeVIC) were retrospectively analyzed. Progression of disease within 2 years after diagnosis (POD24) was used as the definition of early progression. An independent dataset of 60 patients with localized nasal ENKL who received CCRT at Samsung Medical Center was used in the validation analysis. POD24 was documented in 23% of patients who received RT-DeVIC and 25% of patients in the validation cohort. The overall survival (OS) from risk-defining events of the POD24 group was inferior to that of the reference group in both cohorts (P < 0.00001). In the RT-DeVIC cohort, pretreatment elevated levels of serum soluble interleukin-2 receptor (sIL-2R), lactate dehydrogenase, C-reactive protein, and detectable Epstein-Barr virus DNA in peripheral blood were associated with POD24. In the validation cohort, no pretreatment clinical factor associated with POD24 was identified. Our study indicates that POD24 is a strong indicator of survival in localized ENKL, despite the different CCRT regimens adopted. In the treatment of localized nasal ENKL, POD24 is useful for identifying patients who have unmet medical needs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

    • Prognostic factors associated with local recurrence in squamous cell carcinoma of the vulva.

      Science.gov (United States)

      Iacoponi, Sara; Zapardiel, Ignacio; Diestro, Maria Dolores; Hernandez, Alicia; De Santiago, Javier

      2013-07-01

      To analyze the prognostic factors related to the recurrence rate of vulvar cancer. Retrospective study of 87 patients diagnosed of vulvar squamous cell carcinoma diagnosed at a tertiary hospital in Madrid between January 2000 and December 2010. The pathological mean tumor size was 35.1±22.8 mm, with stromal invasion of 7.7±6.6 mm. The mean free margin after surgery was 16.8±10.5 mm. Among all patients, 31 (35.6%) presented local recurrence (mean time 10 months; range, 1 to 114 months) and 7 (8%) had distant metastases (mean time, 5 months; range, 1 to 114 months). We found significant differences in the mean tumor size between patients who presented a relapse and those who did not (37.6±21.3 mm vs. 28.9±12.1 mm; p=0.05). Patients with free margins equal or less than 8 mm presented a relapse rate of 52.6% vs. 43.5% of those with free margin greater than 8 mm (p=0.50). However, with a cut-off of 15 mm, we observed a local recurrence rate of 55.6% vs. 34.5%, respectively (p=0.09). When the stromal invasion cut-off was >4 mm, local recurrence rate increased up to 52.9% compared to 37.5% when the stromal invasion was ≤4 mm (p=0.20). Tumor size, pathologic margin distance and stromal invasion seem to be the most important predictors of local vulvar recurrence. We consider the cut-off of 35 mm of tumor size, 15 mm tumor-free surgical margin and stromal invasion >4 mm, high risk predictors of local recurrence rate.

    • Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies.

      Science.gov (United States)

      Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis

      2014-06-01

      The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.

    • Recent Developments of the Local Effect Model (LEM) - Implications of clustered damage on cell transformation

      Science.gov (United States)

      Elsässer, Thilo

      Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better

  1. Construction of eukaryotic expression vector NONO expression product and its intracellular localization in cells

    Directory of Open Access Journals (Sweden)

    Cui-ling WU

    2011-04-01

    Full Text Available Objective To construct an eukaryotic expression vector NONO(containing nucleotide octamer-binding protein without POU domain of mouse,and detect its expression and intracellular localization in NIH3T3 cells,so as to obtain a tool to assist the study of intracellular biological functions of NONO.Methods The total RNA was extracted from the liver of BALB/c mice,the corresponding coding sequences of mouse NONO(GenBank accession No.53237024 were amplified by RT-PCR and then cloned into hemagglutinin(HA-tagged vector of pcDNA3-HA to form a new recombinant plasmid named pcDNA3-NONO-HA.The recombinant plasmid was verified by polymerase chain reaction(PCR and double digestion by restricted endonuclease,followed by sequencing.The recombinant plasmid was then transfected into NIH3T3 cells with the liposome transfection reagent Polyfect as a medium.Twenty-four hours later,immunofluorescence was performed.After detection of fusion protein NONO-HA by specific antibody of HA tag and the Alexa Fluor 488 coupled secondary antibody,the expression and localization of the fusion protein were observed by fluorescence microscopy.Results The results of identification by PCR,digestion with restriction endonuclease and sequencing indicated that the recombinant plasmid pcDNA3-NONO-HA was correctly constructed.After transfection of the recombinant plasmid,the fusion protein was found to highly express in NIH3T3 cells and distribute mainly in the cytoplasm.Conclusion The eukaryotic expression vector for HA-NONO fusion protein is successfully constructed and effectively expressed in mammalian cells.The constructed vector may serve as an assistant tool in the study of intracellular biological functions of NONO.

  2. High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells. A relation between localization and function?

    NARCIS (Netherlands)

    Kooij, A.; Bosch, K. S.; Frederiks, W. M.; van Noorden, C. J.

    1992-01-01

    The localization of xanthine oxidoreductase activity was investigated in unfixed cryostat sections of various rat tissues by an enzyme histochemical method which specifically demonstrates both the dehydrogenase and oxidase forms of xanthine oxidoreductase. High activity was found in epithelial cells

  3. Business Cycle Dependent Unemployment Insurance

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Svarer, Michael

    argument. Since benefits may be less distortionary in a recession than a boom, it follows that counter-cyclical benefits reduce average distortions compared to state independent benefits. We show that optimal (utilitarian) benefits are counter-cyclical and may reduce the structural (average) unemployment...

  4. Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin.

    Science.gov (United States)

    Murayama, Hideyuki; Masaki, Hideki; Sato, Hideyuki; Hayama, Tomonari; Yamaguchi, Tomoyuki; Nakauchi, Hiromitsu

    2015-01-13

    Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Regulatory T Cells Are Locally Induced during Intravaginal Infection of Mice with Neisseria gonorrhoeae▿

    Science.gov (United States)

    Imarai, Mónica; Candia, Enzo; Rodriguez-Tirado, Carolina; Tognarelli, Javier; Pardo, Mirka; Pérez, Tomas; Valdés, Daniel; Reyes-Cerpa, Sebastián; Nelson, Pablo; Acuna-Castillo, Claudio; Maisey, Kevin

    2008-01-01

    Neisseria gonorrhoeae is a gram-negative diplococcus that in human beings produces gonorrhea. Much clinical evidence has led to the conclusion that gonococcus has important mechanisms to evade host immune functions; however, these mechanisms are only now beginning to be elucidated. In this study, we determined that the BALB/c mouse is a good animal model to study gonococcus infection and examined the immune response against the bacteria. We determined that after intravaginal inoculation of mice with Neisseria gonorrhoeae, the bacteria reached and invaded the upper female reproductive tissues and elicited a T-cell-specific immune response associated with a very weak humoral response, altogether resembling gonococcus infection and disease in women. Remarkably, in the draining lymph nodes of the genital tracts of infected mice, we found an increase of regulatory T lymphocytes, namely, transforming growth factor β1-positive CD4+ T cells and CD4+ CD25+ Foxp3+ T cells. Altogether, results indicate that N. gonorrhoeae induces regulatory T cells, which might be related to the local survival of the pathogen and the establishment of a chronic asymptomatic infection. PMID:18824531

  6. Transfusion challenges in hematology oncology and hematopoietic stem cell transplant - Literature review and local experience.

    Science.gov (United States)

    Elemary, Mohamed; Seghatchian, Jerard; Stakiw, Julie; Bosch, Mark; Sabry, Waleed; Goubran, Hadi

    2017-06-01

    Transfusion medicine plays a vital role in the supportive care of patients receiving therapy for hematology, oncology and hematopoietic stem cell transplants (HSCT). With advances in therapy with more intensive chemotherapy or radiotherapy, patients usually develop cytopenias and need frequent transfusion support with packed red blood cells, granulocyte transfusion or platelets to support them until they recover from the effect of therapy. HSCT poses unique challenges for transfusion medicine, since transplant recipients may require substantial transfusion support due to cytopenias associated with toxic medications, decreased marrow reserve, infection or their malignancy. Transfusion support has many complications, mainly immune mediated and infectious complications. Jehovah's Witness patients deny transfusions of blood products as a therapeutic option and, consequently, management of their disease with chemotherapy and stem cell transplant after myeloablative therapy is quite challenging. This review describes the challenges of transfusion support in managing hemato-oncology and stem cell transplant patients and highlights a local experience in transplanting two Jehovah's Witness patients. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Binding of Autotaxin to Integrins Localizes Lysophosphatidic Acid Production to Platelets and Mammalian Cells*

    Science.gov (United States)

    Fulkerson, Zachary; Wu, Tao; Sunkara, Manjula; Kooi, Craig Vander; Morris, Andrew J.; Smyth, Susan S.

    2011-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D that generates the bioactive lipid mediator lysophosphatidic acid (LPA). We and others have reported that ATX binds to integrins, but the function of ATX-integrin interactions is unknown. The recently reported crystal structure of ATX suggests a role for the solvent-exposed surface of the N-terminal tandem somatomedin B-like domains in binding to platelet integrin αIIbβ3. The opposite face of the somatomedin B-like domain interacts with the catalytic phosphodiesterase (PDE) domain to form a hydrophobic channel through which lysophospholipid substrates enter and leave the active site. Based on this structure, we hypothesize that integrin-bound ATX can access cell surface substrates and deliver LPA to cell surface receptors. To test this hypothesis, we investigated the integrin selectivity and signaling pathways that promote ATX binding to platelets. We report that both platelet β1 and β3 integrins interact in an activation-dependent manner with ATX via the SMB2 domain. ATX increases thrombin-stimulated LPA production by washed platelets ∼10-fold. When incubated under conditions to promote integrin activation, ATX generates LPA from CHO cells primed with bee venom phospholipase A2, and ATX-mediated LPA production is enhanced more than 2-fold by CHO cell overexpression of integrin β3. The effects of ATX on platelet and cell-associated LPA production, but not hydrolysis of small molecule or detergent-solubilized substrates, are attenuated by point mutations in the SMB2 that impair integrin binding. Integrin binding therefore localizes ATX activity to the cell surface, providing a mechanism to generate LPA in the vicinity of its receptors. PMID:21832043

  8. Intracellular localization of adeno-associated viral proteins expressed in insect cells.

    Science.gov (United States)

    Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A

    2011-01-01

    Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  9. A strategy for cell-based multiplex diagnostics of Myasthenia gravis and autoimmune encephalitis by modifying the subcellular localization of cell membrane autoantigens.

    Science.gov (United States)

    George, S; Georgi, M; Roggenbuck, D; Conrad, K; Küpper, J-H

    2014-01-01

    Many autoimmune diseases are characterized by autoantibodies directed against cell membrane proteins. We were intrigued to develop a strategy for targeting individual cell membrane proteins to various subcellular compartments as a prerequisite for their simultaneous immunofluorescence detection. We first employed GFP and RFP reporters that were equipped with defined intracellular localization signals. Expressing these protein reporters in HEp-2 cells we found by using fluorescence microscopy that protein localization in cytoplasm or at mitochondria can be clearly discriminated from localization at Golgi, ER or lysosomes. We then tested for muscle-specific kinase, a relevant cell membrane autoantigen in Myasthenia gravis, and NMDA receptor which is relevant for autoimmune encephalitis, whether these autoantigens can be localized to the same intracellular compartments. To this end, we successfully targeted muscle-specific kinase to Golgi apparatus, mitochondria and cytoplasm. We found that its Golgi localization can be clearly distinguished from its natural cell membrane localization. The same we found for Golgi-localized NMDA receptor 1. Interestingly, cell membrane proteins kept at the Golgi system accumulated in higher amounts than their wild-type counterparts. The obtained results are the basis for the further development of multiplex assays for the immunofluorescence diagnostics of Myasthenia gravis and autoimmune encephalitis.

  10. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  12. Optimized FISH methods for visualizing RNA localization properties in Drosophila and human tissues and cultured cells.

    Science.gov (United States)

    Diot, Cédric; Chin, Ashley; Lécuyer, Eric

    2017-08-15

    Eukaryotic gene expression is orchestrated by a large number of regulatory steps to modulate the synthesis, maturation and fate of various families of protein-coding and non-coding RNA molecules. Defining the subcellular localization properties of an RNA molecule is thus of considerable importance for gleaning its function(s) and for elucidating post-transcriptional gene regulation pathways. For decades, fluorescent In Situ hybridization (FISH) has constituted the gold-standard technique for assessing RNA expression and distribution properties in cultured cells, tissue specimens, and whole mount organisms. Recently, several attempts aimed at advancing multiplex RNA-FISH experiments have been published. However, these procedures are both financially demanding and technically challenging, while their full potential remains unexploited. Here we describe an optimized RNA-FISH method employing the Tyramide Signal Amplification system that robustly enhances resolution and sensitivity needed for exploring RNA localization in Drosophila embryos, tissues and commonly cultured human and insect cell lines. Methodological details and key parameters are outlined for high-throughput analyses conducted in 96-well plate format. Copyright © 2017. Published by Elsevier Inc.

  13. Trinitrobenzenesulfonic acid and fluorodinitrobenzene: probes to study local anesthetic effects in cell membranes.

    Science.gov (United States)

    Bradford, P; Marinetti, G V

    1981-01-01

    The interaction of local anesthetics with intact erythrocytes was studied by monitoring the extent of reaction of phospholipids with trinitrobenzenesulfonic acid and fluorodinitrobenzene. Incubating erythrocytes with local anesthetics increases the amount of phosphatidylethanolamine and phosphatidylserine available for reaction with trinitrobenzenesulfonic acid and fluorodinitrobenzene. The order of potency of the local anesthetics corresponded to that reported for blocking nerve conduction: dibucaine greater than tetracaine greater than butacaine greater than lidocaine greater than procaine. Treatment of intact erythrocytes with 1 mM tetracaine at 37 degrees C allows 4-5% more of the phosphatidylethanolamine to react with trinitrobenzenesulfonic acid as compared to control cells. Treatment with tetracaine has no effect at 0 degrees C, a temperature at which there is only limited partitioning of the anesthetic into the bilayer. Kinetic analysis of the reaction with trinitrobenzene sulfonic acid showed that the increased number of reactive phosphatidylethanolamine molecules are located mainly on the outer half of the erythrocyte membrane. Tetracaine also increases the number of phosphatidylserine and phosphatidylethanolamine molecules in the erythrocyte membrane which are available to react with the penetrating probe fluorodinitrobenzene. The reaction with PE is increased from 67 to 77% and the reaction of PS is increased from 44 to 57%. Thus tetracaine affects both halves of the lipid bilayer.

  14. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  15. Accelerated superfractionated radiotherapy with concomitant boost for locally advanced head-and-neck squamous cell carcinomas

    International Nuclear Information System (INIS)

    Morris, Monica M.; Schmidt-Ullrich, Rupert K.; DiNardo, L.; Manning, Matthew A.; Silverman, L.; Clay, L.; Johnson, Christopher R.; Amir, Cyrus

    2002-01-01

    Purpose: A growing body of evidence supports the efficacy of accelerated superfractionated radiotherapy with concomitant boost for advanced head-and-neck carcinomas. This study represents a single-institution experience, performed to identify the factors influencing tumor control, survival, and toxicity. Methods and Materials: Between 1988 and 1999, 133 patients with primary squamous cell head-and-neck carcinoma underwent accelerated superfractionated radiotherapy using a concomitant boost. The concomitant boost in this regimen was delivered using reduced fields delivered 3 times weekly in a twice-daily schedule during the final phase. The total radiation dose ranged from 64.8 Gy to 76.5 Gy (mean 71.1). Patients were evaluated in follow-up for local control and late toxicity. Multivariate analysis of treatment and patient parameters was performed to evaluate their influence on toxicity, local control, and overall survival. Results: With a mean follow-up of 37 months, the actuarial overall survival rate for the entire group at 5 years was 24% and the local control rate was 57%. The tumor volume was the most significant predictor of local control, such that each 1-cm 3 increase in volume was associated with a 1% decrease in local control. For patients with tumor volumes ≤30 cm 3 vs. >30 cm 3 , the 5-year disease-specific survival rate was 52% and 27% (p = 0.004) and locoregional control rate was 76% and 26% (p<0.001), respectively. Seventy-six patients with a minimum of 12 months and median of 39 months toxicity follow-up were studied for late effects. None of these patients experienced Grade 4 or 5 toxicity. The actuarial rate of significant toxicity (Grade III or greater) was 32% at 5 years. Of the toxicities observed, xerostomia (19%) was the most common. Multivariate analysis revealed N stage and dose as independent predictors of Grade 3 effects. Conclusion: The locoregional control and survival for patients in this institutional experience compare favorably to

  16. Biologic Evaluation of Diabetes and Local Recurrence in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Yang, Xuebin; Liu, Yongjun; Mani, Haresh; Olson, Jeffrey; Clawson, Gary; Caruso, Carla; Bruggeman, Richard; Varlotto, John M; Zander, Dani S; Rassaei, Negar

    2017-01-01

    A recent multicenter study led by our institution demonstrated that local recurrence of non-small cell lung cancer (NSCLC) was significantly more frequent in patients with diabetes, raising the possibility of different tumor biology in diabetics. Epithelial-to-mesenchymal transition (EMT) plays a key role in local tumor recurrence and metastasis. In the present study, we investigated differences of tumor microenvironment between patients with and without diabetes by examining expression of EMT markers. Seventy-nine NSCLC patients were selected from the cohort of our early multicenter study. These patients were classified into 4 groups: 39 with adenocarcinoma with (n = 19) and without (n = 20) diabetes, and 40 with squamous cell carcinoma with (n = 20) and without (n = 20) diabetes. Immunohistochemical expression of eight EMT markers was analyzed, including transforming growth factor-beta (TGF-β), epidermal growth factor receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), vimentin, E-cadherin, N-cadherin, HtrA1, and beta-catenin. Five markers (E-cadherin, HtrA1, TGF-β, IGF-1R and vimentin) demonstrated significantly higher expression in diabetics than in non-diabetics in both histology types. N-cadherin had higher expression in diabetics, though the difference did not reach statistical significance. EGFR showed a higher expression in diabetics in squamous cell carcinoma only. Beta-catenin was the only marker with no difference in expression between diabetics versus non-diabetics. Our findings suggest that diabetes is associated with enhanced EMT in NSCLC, which may contribute to growth and invasiveness of NSCLC.

  17. Gastrointestinal Hormone Cholecystokinin Increases P-Glycoprotein Membrane Localization and Transport Activity in Caco-2 Cells.

    Science.gov (United States)

    Yano, Kentaro; Shimizu, Saori; Tomono, Takumi; Ogihara, Takuo

    2017-09-01

    It was reported that stimulation of taste receptor type 2 member 38 by a bitter substance, phenylthiocarbamide (PTC), increased P-glycoprotein (P-gp) mRNA level and transport activity via release of the gastrointestinal hormone cholecystokinin-8 (CCK-8) at 9 h. Therefore, we hypothesized that CCK-8 and PTC might also regulate P-gp activity more rapidly via a different mechanism. As a result, we found that the pretreatment of human colon adenocarcinoma (Caco-2) cells with 10-mM PTC significantly decreased the intracellular accumulation of P-gp substrate rhodamine 123 (Rho123) compared with the control after 90-min incubation. Moreover, CCK-8 treatments significantly reduced the accumulation of Rho123 within 30 min, compared with the control. On the other hand, when Caco-2 cells were pretreated with PTC, the efflux ratio of Rho123 was significantly increased compared with control. The efflux ratio of Rho123 in CCK-8 treatment cells was also significantly increased compared with control. Furthermore, CCK-8 increased the phosphorylation of the scaffold proteins ezrin, radixin, and moesin, which regulate translocation of P-gp to the plasma membrane. Therefore, our results indicate that PTC induced release of CCK-8, which in turn induced the phosphorylation of ezrin, radixin, and moesin proteins, leading to upregulation of P-gp transport activity via increased membrane localization of P-gp. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells.

    Science.gov (United States)

    Ambroise, Gorbatchev; Portier, Alain; Roders, Nathalie; Arnoult, Damien; Vazquez, Aimé

    2015-11-10

    The BH3-only protein PUMA (p53-upregulated modulator of apoptosis) is a major regulator of apoptosis. It belongs to the Bcl-2 family of proteins responsible for maintaining mitochondrial outer membrane integrity by controlling the intrinsic (mitochondrial) apoptotic pathway. We describe here a new pathway regulating PUMA activation through the control of its subcellular distribution. Surprisingly, neither PUMA upregulation in normal activated human B lymphocytes nor high levels of PUMA in Burkitt's lymphoma (BL) were associated with cell death. We show that PUMA is localized to the cytosol in these cells. By contrast, various apoptosis-triggering signals were found to promote the translocation of PUMA to the mitochondria in these cells, leading to their death by apoptosis. This apoptosis was associated with the binding of mitochondrial PUMA to anti-apoptotic members of the Bcl-2 family, such as Bcl-2 and Mcl-1. This translocation was caspase-independent but was prevented by inhibiting or knocking down the expression of the MAPK kinase p38. Our data suggest that the accumulation of PUMA in the cytosol may be important for the participation of this protein in apoptosis without the need for prior transcription. This regulatory pathway may be an important feature of differentiation and tumorigenic processes.

  19. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system

    Directory of Open Access Journals (Sweden)

    Susanne Zibek

    2010-11-01

    Full Text Available Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution travelled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively.Numerical modelling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 µm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 µM acetylcholine independent of pore size were determined.

  20. Local regulation of haemopoietic stem cell proliferation in mice following irradiation

    International Nuclear Information System (INIS)

    Ali, A.M.; Riches, A.C.; Wright, E.G.

    1989-01-01

    Changes in the kinetic state of pluripotent haemopoietic spleen colony forming cells (CFU-S) and of the CFU-S proliferation stimulator have been studied following whole-body X-irradiation. Rapid recruitment of CFU-S into cell cycle by 30 min after irradiation was observed following low doses (0.5 Gy) but a delay of 6 h occurred after higher doses (1.5 and 4.5 Gy). These changes in proliferative state correlated with the presence of the CFU-S proliferation stimulator. CFU-S irradiated in vitro in bone marrow plugs were also recruited into cycle illustrating directly the local nature of the feedback mechanism. CFU-S removed from 1.5 Gy irradiated recipients at a time when they were not in cycle were not responsive to the CFU-S proliferation stimulator. The CFU-S proliferation stimulator was produced by Ia positive cells in the irradiated bone marrow. The regulation changes occurring shortly after irradiation cannot simply be controlled by the size of the CFU-S compartment. (author)

  1. Localization of human immunodeficiency virus antigens in infected cells by scanning/transmission-immunogold techniques

    International Nuclear Information System (INIS)

    Herrera, M.I.; Santa Maria, I.; de Andres, R.; Najera, R.

    1988-01-01

    An application of high resolution scanning/transmission electron microscopy (STEM) and gold-labelling techniques for the rapid detection of human immunodeficiency virus (HIV) in infected cells has been developed. Experimental in vitro studies for detecting two HIV structural proteins, gp41 and p17, were performed following an indirect labeling procedure that uses monoclonal anti-p17 and anti-gp41 antibodies as primary antibodies and 40 nm gold-linked goat antimouse IgG as secondary antibodies. The cells were then studied by STEM in the scanning mode. Unambiguous localization of the viral antigens was possible by combining the three-dimensional image provided by the secondary electron image and the atomic number-dependent backscattered electron image for the identification of the gold marker. This technique combines both the morphological information and the rapid procedures of scanning electron microscopy with the precise and sensitive antigen detection provided by the use of STEM and immunological methods. The preliminary results of its application to the study of peripheral blood mononuclear cells from four anti-HIV-seropositive patients showing the presence of specific labeling in all of them suggest that it might prove useful for early detection of HIV infection before seroconversion, as well as for quantitative studies

  2. A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy

    Science.gov (United States)

    Bird, David A.; Franceschi, Vincent R.; Facchini, Peter J.

    2003-01-01

    Opium poppy produces a diverse array of pharmaceutical alkaloids, including the narcotic analgesics morphine and codeine. The benzylisoquinoline alkaloids of opium poppy accumulate in the cytoplasm, or latex, of specialized laticifers that accompany vascular tissues throughout the plant. However, immunofluorescence labeling using affinity-purified antibodies showed that three key enzymes, (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), and codeinone reductase (COR), involved in the biosynthesis of morphine and the related antimicrobial alkaloid sanguinarine, are restricted to the parietal region of sieve elements adjacent or proximal to laticifers. The localization of laticifers was demonstrated using antibodies specific to the major latex protein (MLP), which is characteristic of the cell type. In situ hybridization showed that CYP80B1, BBE, and COR gene transcripts were found in the companion cell paired with each sieve element, whereas MLP transcripts were restricted to laticifers. The biosynthesis and accumulation of alkaloids in opium poppy involves cell types not implicated previously in plant secondary metabolism and dramatically extends the function of sieve elements beyond the transport of solutes and information macromolecules in plants. PMID:14508000

  3. Cystatins in non-small cell lung cancer: tissue levels, localization and relation to prognosis.

    Science.gov (United States)

    Werle, Bernd; Schanzenbächer, Ulrike; Lah, Tamara Turensek; Ebert, Eileen; Jülke, Britta; Ebert, Werner; Fiehn, Werner; Kayser, Klaus; Spiess, Eberhard; Abrahamson, Magnus; Kos, Janko

    2006-10-01

    Cystatins regulate tumour-associated cysteine proteases, however, their role in tumour progression is not clear yet. To assess their relevance in the progression of non-small cell lung cancer (NSCLC) the protein level, cysteine protease activity (CPI) and localization of type I (stefins A and B) and type II (C, E/M and F) cystatins were defined in tumours and control lung counterparts from 165 patients. The medians of CPI activity, stefins A and B were significantly greater in tumour than in lung tissue (2.1-fold, 1.7-fold, 1.2-fold, respectively, all pcystatin C and cystatin E/M were lower in tumour tissue (0.9-fold, p=0.06; 0.6-fold, pcystatin F were below the detection limit. Immunohistochemical analysis revealed the presence of all cystatins in tumour cells and infiltrated inflammatory cells such as macrophages and neutrophils. In univariate survival analysis patients with high levels of stefin A, stefin B and CPI activity exhibited a better survival probability (p=0.05, p=0.05, pcystatins C and E/M provided no prognostic information. In multivariate analysis the most powerful predictor of survival was the pTNM stage (pcystatins, are up-regulated in lung tumours and thus able to counteract harmful tumour-associated proteolytic activity. As biological markers they may add independent prognostic information for better assessment of low- and high-risk patients with NSCLC.

  4. Machine vision-based localization of nucleic and cytoplasmic injection sites on low-contrast adherent cells.

    Science.gov (United States)

    Esmaeilsabzali, Hadi; Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2012-01-01

    Automated robotic bio-micromanipulation can improve the throughput and efficiency of single-cell experiments. Adherent cells, such as fibroblasts, include a wide range of mammalian cells and are usually very thin with highly irregular morphologies. Automated micromanipulation of these cells is a beneficial yet challenging task, where the machine vision sub-task is addressed in this article. The necessary but neglected problem of localizing injection sites on the nucleus and the cytoplasm is defined and a novel two-stage model-based algorithm is proposed. In Stage I, the gradient information associated with the nucleic regions is extracted and used in a mathematical morphology clustering framework to roughly localize the nucleus. Next, this preliminary segmentation information is used to estimate an ellipsoidal model for the nucleic region, which is then used as an attention window in a k-means clustering-based iterative search algorithm for fine localization of the nucleus and nucleic injection site (NIS). In Stage II, a geometrical model is built on each localized nucleus and employed in a new texture-based region-growing technique called Growing Circles Algorithm to localize the cytoplasmic injection site (CIS). The proposed algorithm has been tested on 405 images containing more than 1,000 NIH/3T3 fibroblast cells, and yielded the precision rates of 0.918, 0.943, and 0.866 for the NIS, CIS, and combined NIS-CIS localizations, respectively.

  5. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    Science.gov (United States)

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution.

    Science.gov (United States)

    Cabili, Moran N; Dunagin, Margaret C; McClanahan, Patrick D; Biaesch, Andrew; Padovan-Merhar, Olivia; Regev, Aviv; Rinn, John L; Raj, Arjun

    2015-01-29

    Long non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. In contrast to extensive genomic annotation of lncRNA transcripts, far fewer have been characterized for subcellular localization and cell-to-cell variability. Addressing this requires systematic, direct visualization of lncRNAs in single cells at single-molecule resolution. We use single-molecule RNA-FISH to systematically quantify and categorize the subcellular localization patterns of a representative set of 61 lncRNAs in three different cell types. Our survey yields high-resolution quantification and stringent validation of the number and spatial positions of these lncRNA, with an mRNA set for comparison. Using this highly quantitative image-based dataset, we observe a variety of subcellular localization patterns, ranging from bright sub-nuclear foci to almost exclusively cytoplasmic localization. We also find that the low abundance of lncRNAs observed from cell population measurements cannot be explained by high expression in a small subset of 'jackpot' cells. Additionally, nuclear lncRNA foci dissolve during mitosis and become widely dispersed, suggesting these lncRNAs are not mitotic bookmarking factors. Moreover, we see that divergently transcribed lncRNAs do not always correlate with their cognate mRNA, nor do they have a characteristic localization pattern. Our systematic, high-resolution survey of lncRNA localization reveals aspects of lncRNAs that are similar to mRNAs, such as cell-to-cell variability, but also several distinct properties. These characteristics may correspond to particular functional roles. Our study also provides a quantitative description of lncRNAs at the single-cell level and a universally applicable framework for future study and validation of lncRNAs.

  7. DGCR8 Localizes to the Nucleus as well as Cytoplasmic Structures in Mammalian Spermatogenic Cells and Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Akane Nakano

    2013-01-01

    Full Text Available The localization of DGCR8 in spermatogenic cells and sperm from rat and mouse was studied by immunofluorescence and immunoelectron microscopy. Spermatogenic cells from these species yielded similar DGCR8 localization pattern. Immunofluorescence microscopy results showed that DGCR8 localized to both the cytoplasm and nucleus. In the cytoplasm, diffuse cytosolic and discrete granular staining was observed. Dual staining showed that DGCR8 colocalized to the granules with MAEL (a nuage marker. In the nucleus of spermatocytes, both the nucleoli and nucleoplasm were stained, whereas in the nucleus of early spermatids small spots were stained. In late spermatids, DGCR8 localized to the tip of their head and to small granules (neck granules of the neck cytoplasm. The neck granules were also observed in the neck of epididymal sperm. Immunoelectron microscopy results showed that DGCR8 localized to nuage structures. Moreover, DGCR8 localized to nonnuage structures in late spermatids. DGCR8 also localized to the nucleolus and euchromatin in spermatocytes and round spermatids and to small granules in the nucleus of late spermatids. The results suggest that in spermatogenic cells DGCR8 localizes not only to the nuclei but also to the cytoplasmic structures such as nuage and nonnuage structures. Furthermore, DGCR8 seems to be imported into the egg with neck granules in sperm during fertilization.

  8. Localization and Molecular Characterization of human Breast Cancer Initiating Cells from heterogeneous population of Breast Cancer Mesenchymal Stem cells by mmunofluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Potdar P

    2012-01-01

    Full Text Available Breast Cancer (BC is a heterogeneous disease and arises from breast cancer initiating stem cell population in the tumor and these cells are resistant to cancer therapies. Thus identifying this cell type within the tumor clone is an important area of research to understand the mechanism of breast cancer development. Recently, our laboratory has isolated and characterized Human breast cancer mesenchymal stem cells (hBCMSCs from human breast cancer and showed the heterogeneity of these cells existing in the tumor. Therefore, our present objective is to use this model system to identify, localize and define specific breast cancer initiating cells (BCICs from the heterogeneous population of hBCMSCs cell line developed in our laboratory. Localization of specific cell types can be done by using specific cancer marker antibodies using Immunofluorescence microscopy. In this study we have used FITC labeled specific cancer antibodies i.e. p53, Rb1, Hras, Ki67, EGFR, GST, ETS1 and ATF2 to localize BCICs in this population of cells. Our results have demonstrated that few cells among many of the BC cells gave fluorescence with specific cancer antibody indicating that these cell types are BCICs that may be responsible for supporting the growth of other cell type to form tumors. The Phase Contrast Microscopy clearly showed giant cells with enlarged nucleus and scanty cytoplasm associated with many cytoplasmic granules. It also indicates that these cells are mainly responsible for supporting proliferation of surrounding cells that form a part of the BC tumor. We have further hypothesized that molecular profiling of these tumor cells will open a new avenue of molecular targeted therapies for Breast Cancer patients even at an advanced stage of disease.

  9. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  10. Menstrual Cycle Dependent Variability for Serum Tumor Markers CEA, AFP, CA 19-9, CA 125 and CA 15-3 in Healthy Women

    Directory of Open Access Journals (Sweden)

    Ayşe Binnur Erbağci

    1999-01-01

    Full Text Available Information on menstrual cycle dependent variation of tumor markers in healthy women is a subject of diagnostic efficiency and has an impact in elucidating the normal function of these markers. In this study midfollicular and midluteal concentrations of serum CEA, AFP, CA 19-9, CA 125, CA 15-3 and their relations with LH, FSH, prolactin, estradiol and progesterone were evaluated during ovulatory cycles in a group of 23 healthy female individuals. Samples were collected on the 7th and 21st day of the same menstrual cycle. Tumor marker and hormone concentrations were determined with chemiluminescence or electrochemiluminescence EIA methods. A significant phase-dependent difference was observed for CA 15-3, midluteal concentrations (mean ± SEM; 26.33 ± 1.56 U/ml higher than the midfollicular (mean ± SEM; 19.27 ± 1.49 U/ml concentrations (p < 0.001. But an obvious difference for other tumor markers investigated did not exist. Significant correlations of follicular and luteal CA 125 levels with body mass index of the subjects were observed (r:0.52, p < 0.05 and r:0.57, p < 0.005, respectively.

  11. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    Science.gov (United States)

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.

  12. RETOUR AU LOCAL : Celles qui attendent et l’engagement diasporique de Fatou Diome

    Directory of Open Access Journals (Sweden)

    Anna‐Leena Toivanen

    2011-11-01

    Full Text Available La littérature africaine du XXIe siècle est marquée par des affinités transnationales au lieu d’une approche nationale et locale. La théorie postcoloniale hégémonique a consolidé le paradigme postnational en mettant l’accent sur les métaphores délocalisées. Dans son roman Celles qui attendent (2010, Fatou Diome examine la face souvent tue par les discours littéraires diaspo‐riques : les réalités difficiles de ceux qui ne profitent pas directement de la logique du transnationalisme et continuent à subir les précarités de la condition postcoloniale nationale. Le présent article se propose de prospecter les dimensions complexes de l’engagement de Diome.

  13. Sentinel node status and immunosuppression: recurrence factors in localized Merkel cell carcinoma.

    Science.gov (United States)

    Jouary, Thomas; Kubica, Emeline; Dalle, Stéphane; Pages, Cecile; Duval-Modeste, Anne-Benedicte; Guillot, Bernard; Mansard, Sandrine; Saiag, Philippe; Aubin, François; Bedane, Christophe; Dalac, Sophie; Dompmartin, Anne; Granel-Brocard, Florence; Lok, Catherine; Stoebner, Pierre-Emmanuel; Lacour, Jean-Philippe; Leccia, Marie-Therese; Diallo, Abou; Ezzedine, Khaled; Mateus, Christina

    2015-09-01

    The prognostic value of the sentinel lymph node in Merkel cell carcinoma (MCC) has been examined previously in heterogeneous retrospective studies. The current retrospective study included a homogeneous population of patients with a localized MCC, all staged with sentinel lymph node biopsy. Factors associated with 3-year progression-free survival were analysed using logistic regression. The sentinel lymph node was positive in 32% of patients. The recurrence rate was 26.9%. In first analyses (n = 108), gender (p = 0.0115) and the presence of immunosuppression (p = 0.0494) were the only significant independent factors. In further analyses (n = 80), excluding patients treated with regional radiotherapy, sentinel lymph node status was the only significant prognostic factor (p = 0.0281). Immunosuppression and positive sentinel lymph node are associated with a worse prognosis in patients with MCC. Nodal irradiation impacts on the prognostic value of the sentinel lymph node status.

  14. Improved radiotherapy for locally advanced Non-Small Cell Lung Carcinoma (NSCLC) patients

    DEFF Research Database (Denmark)

    Ottosson, Wiviann

    be reduced by the DIBH method for the lung cancer patients. The overall aim of the clinical part of this thesis was to clarify the potential benefit of offering DIBH gating, compared to free-breathing (FB), for lung cancer patients. Particularly, the benefits for locally advanced non-small cell lung cancer......Lung cancer is worldwide one of the most common cancer diseases with a high mortality rate. There is thus an urgent need for improving radiotherapy for these patients. Radiotherapy for lung cancer patients is challenging because the tumor and organs at risk (OARs) move with the breathing motion....... Deep-Inspiration-Breath-Hold (DIBH) is a technique that potentially can improve the treatment for these patients. DIBH is frequently and routinely used for breast cancer treatments. However, it is still an experimental method for lung cancer patients e.g. due to preconceptions about their incapability...

  15. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  16. Estudo quantitativo das células de Langerhans em carcinomas basocelulares com maior e menor potencial de agressividade local Quantitative study of Langerhans cells in basal cell carcinoma with higher or lower potential of local aggressiveness

    Directory of Open Access Journals (Sweden)

    Itamar Santos

    2010-04-01

    Full Text Available FUNDAMENTOS - O carcinoma basocelular localiza-se principalmente em áreas expostas ao sol, apresentando formas clínicas e histológicas diferentes, algumas com grande e outras com pequena agressividade local. Células de Langerhans participam ativamente do sistema imune da pele. OBJETIVO - Avaliar quantitativamente as células de Langerhans sobrepostas aos carcinomas basocelulares de maior e menor potencial de agressividade local, assim como nas respectivas epidermes sãs adjacentes. MÉTODOS - Dois grupos com 14 preparações histológicas cada. No primeiro, carcinoma basocelular de menor potencial de agressividade local e, no segundo, carcinoma basocelular de maior potencial. Empregou-se a imunoistoquímica com proteína S100 para identificação das células de Langerhans. Utilizando microscópio óptico em aumento de 400 vezes e a grade morfométrica de Weibel, foram contadas as células de Langerhans presentes em sete campos, obtendo-se a média em cada lâmina. Foi utilizado teste estatístico de Wilcoxon para análise estatística. RESULTADOS - No grupo de menor potencial de agressividade local, na epiderme sã adjacente houve aumento significativo no número de células de Langerhans comparado ao da epiderme sobreposta ao carcinoma basocelular (p d 0,05. No grupo de maior potencial de agressividade local, não houve diferença com significado estatístico (p > 0,05. CONCLUSÃO - O maior número de células de Langerhans na epiderme sã vizinha à lesão tumoral de menor potencial de agressividade local poderia representar uma maior resistência imunológica da epiderme, limitando a agressividade da neoplasia.BACKGROUNDS - Basal cell carcinoma affects areas of the body that have been exposed to the sun, and this disorder has different clinical and histopathologic presentations. Some of these forms have a higher potential of local aggressiveness, while others have a lower potential. Langerhans cells actively participate in the skin

  17. CEP55 overexpression predicts poor prognosis in patients with locally advanced esophageal squamous cell carcinoma.

    Science.gov (United States)

    Jiang, Wenpeng; Wang, Zhou; Jia, Yang

    2017-01-01

    Development of esophageal squamous cell carcinoma (ESCC) involves alterations in multiple genes with corresponding proteins. Recent studies have demonstrated that centrosomal protein 55 (CEP55) shares certain features with oncogenes, and CEP55 overexpression is associated with the development and progression of malignant tumors. The present study aimed to analyze, for the first time, whether CEP55 expression is related to clinicopothalogic features in the esophageal squamous cell carcinoma (ESCC), as well as patient survival. A total of 110 patients with mid-thoracic ESCC who suffered from Ivor-Lewis were enrolled. The CEP55 expression profile of these patients in tumour tissues and corresponding healthy esophageal mucosa (CHEM) was detected by immunohistochemistry and semi-quantitative reverse transcription-polymerase chain reaction analyses. Correlations between CEP55 expression and clinicopathological factors were analyzed using χ 2 test. The log-rank test was employed to calculate survival rate. A Cox regression multivariate analysis was performed to determine independent prognostic factors. The results demonstrated that CEP55 expression in ESCC was significantly higher than that of CHEM (POverexpression of CEP55 was significantly associated with differentiation degree (P=0.022), T stage (P=0.019), lymph node metastasis (P=0.033), clinicopathological staging (P=0.002) and tumor recurrence (P=0.021) in locally advanced ESCC patients. In addition, CEP55 overexpression was significantly associated with reduced overall survival of patients after surgery (P=0.012). The 5-year survival rate of patients without CEP55 overexpression was significantly higher than that of patients with CEP55 overexpression (P=0.012). Therefore, these findings suggest that CEP55 overexpression correlates with poor prognosis in locally advanced ESCC patients.

  18. Laparoscopic resection of tumor recurrence after radical nephrectomy for localized renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lessandro Curcio

    2014-06-01

    Full Text Available Introduction Local recurrence of Renal Cell Carcinoma (RCC after radical nephrectomy is a rare event. Some known risk factors are: clinical/pathological stage, locorregional disease and lyimph node positivity. Since up to 30-40% of patients can achieve a disease-free status, we show a case (video in which we performed a laparoscopic excision of a local RCC, taking advantage of all the well-known benefits of laparoscopy.Case report A 56 years old female with a history of open radical nephrectomy two years before was diagnosed with a mass at the time of surveillance CT imaging during follow-up. The suspected local recurrence was 12cm, and vascularized predominantly by tributaries originating from the iliac vessels. There was no other site of disease (i.e. brain, lung, liver, bones and laboratory tests were normal. Laparoscopic approach was approached, by inserting 4 trocars (2 of 10 and 2 of 5mm with the patient in the lateral position.Result The procedure lasted 130 minutes, with 220mL of estimated bleeding; the larger vessels were ligated with polymer clips (Hem-o-lok and the smaller handled by ultrasonic clamp. The specimen was removed by a small incision below the umbilicus in an appropriate bag. The patient was feed in the first postoperative day and discharged on the third day. Histopathology revealed sarcoma, with a high degree of mitosis, and negative surgical margins. She was referred to medical oncology for adjuvant therapy consideration.Conclusion The laparoscopic resection of recurrent tumor should be encouraged in highly selected cases. The minimally invasive method, with its known advantages, especially for more debilitated patients, can be advantageous when applied to suitable cases.

  19. Laparoscopic resection of tumor recurrence after radical nephrectomy for localized renal cell carcinoma.

    Science.gov (United States)

    Curcio, Lessandro; Cunha, Antonio Claudio; Renteria, Juan; Presto, Daniel

    2014-01-01

    Local recurrence of Renal Cell Carcinoma (RCC) after radical nephrectomy is a rare event. Some known risk factors are: clinical/pathological stage, locorregional disease and lyimph node positivity. Since up to 30-40% of patients can achieve a disease-free status, we show a case (video) in which we performed a laparoscopic excision of a local RCC, taking advantage of all the well-known benefits of laparoscopy. A 56 years old female with a history of open radical nephrectomy two years before was diagnosed with a mass at the time of surveillance CT imaging during follow-up. The suspected local recurrence was 12 cm, and vascularized predominantly by tributaries originating from the iliac vessels. There was no other site of disease (i.e. brain, lung, liver, bones) and laboratory tests were normal. Laparoscopic approach was approached, by inserting 4 trocars (2 of 10 and 2 of 5mm) with the patient in the lateral position. The procedure lasted 130 minutes, with 220 mL of estimated bleeding; the larger vessels were ligated with polymer clips (Hem-o-lok) and the smaller handled by ultrasonic clamp. The specimen was removed by a small incision below the umbilicus in an appropriate bag. The patient was feed in the first postoperative day and discharged on the third day. Histopathology revealed sarcoma, with a high degree of mitosis, and negative surgical margins. She was referred to medical oncology for adjuvant therapy consideration. The laparoscopic resection of recurrent tumor should be encouraged in highly selected cases. The minimally invasive method, with its known advantages, especially for more debilitated patients, can be advantageous when applied to suitable cases.

  20. Preoperative Erythrocyte Sedimentation Rate Independently Predicts Overall Survival in Localized Renal Cell Carcinoma following Radical Nephrectomy

    Directory of Open Access Journals (Sweden)

    Brian W. Cross

    2012-01-01

    Full Text Available Objectives. To determine the relationship between preoperative erythrocyte sedimentation rate (ESR and overall survival in localized renal cell carcinoma (RCC following nephrectomy. Methods. 167 patients undergoing nephrectomy for localized RCC had ESR levels measured preoperatively. Receiver Operating Characteristics curves were used to determine Area Under the Curve and relative sensitivity and specificity of preoperative ESR in predicting overall survival. Cut-offs for low (0.0–20.0 mm/hr, intermediate (20.1–50.0 mm/hr, and high risk (>50.0 mm/hr groups were created. Kaplan-Meier analysis was conducted to assess the univariate impact of these ESR-based groups on overall survival. Univariate and multivariate Cox regression analysis was conducted to assess the potential of these groups to predict overall survival, adjusting for other patient and tumor characteristics. Results. Overall, 55.2% were low risk, while 27.0% and 17.8% were intermediate and high risk, respectively. Median (95% CI survival was 44.1 (42.6–45.5 months, 35.5 (32.3–38.8 months, and 32.1 (25.5–38.6 months, respectively. After controlling for other patient and tumor characteristics, intermediate and high risk groups experienced a 4.5-fold (HR: 4.509, 95% CI: 0.735–27.649 and 18.5-fold (HR: 18.531, 95% CI: 2.117–162.228 increased risk of overall mortality, respectively. Conclusion. Preoperative ESR values represent a robust predictor of overall survival following nephrectomy in localized RCC.

  1. Local photodynamic therapy delays recurrence of equine periocular squamous cell carcinoma compared to cryotherapy.

    Science.gov (United States)

    Giuliano, Elizabeth A; Johnson, Philip J; Delgado, Cherlene; Pearce, Jacqueline W; Moore, Cecil P

    2014-07-01

    (i) To report the successful treatment of 10 cases of equine periocular squamous cell carcinoma (PSCC) with surgical excision and photodynamic therapy (PDT) using verteporfin. (ii) To evaluate time to first tumor recurrence between PDT-treated horses and horses treated with surgical excision and cryotherapy. A total of 24 equine PSCC cases were included: group 1 (n = 14) had excision and cryotherapy (1993–2003), group 2 (n = 10), excision and local PDT (2006–2010). Evaluated data: signalment, treatment method, tumor location, size, and time to first recurrence. Groups were compared via chi-square test for categorical variables and Wilcoxon rank-sum test for numeric variables. Time to tumor recurrence was examined using Kaplan–Meier product-limit survival analysis. Of 24 cases, nine breeds were affected. Mean age at treatment in years: 14 (range 5–24) in group 1; 11 (range 8–18) in group 2. Median tumor size: 163 mm2 (range 20–625 mm2) in group 1; 195 mm2 (range 45–775 mm2) in group 2. Signalment, tumor laterality, and size were not significantly different between groups. Time to recurrence was significantly different between groups (Logrank test, P = 0.0006). In group 1, 11/14 horses had tumor regrowth with median time to recurrence in months: 10 (range 1–44). In group 2 (minimum follow-up of 25 months; range 25–50), no horse demonstrated tumor recurrence after one treatment with excision and PDT. This represents the first report of local PDT using verteporfin for treatment of equine PSCC. Following surgery, the likelihood of tumor recurrence was significantly reduced with local PDT compared with cryotherapy. © 2013 American College of Veterinary Ophthalmologists.

  2. Delayed postoperative radiation therapy in local control of squamous cell carcinoma of the tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Amar, Ali; Chedid, Helma Maria; Curioni, Otavio Alberto; Rapoport, Abrao, E-mail: arapoport@uol.com.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Dedivitis, Rogerio Aparecido; Cernea, Claudio Roberto; Brandao, Lenine Garcia [Hospital Heliopolis, Sao aulo, SP (Brazil)

    2014-10-15

    Objective: to evaluate the effect of time between surgery and postoperative radiation therapy on local recurrence of squamous cell carcinoma of the tongue and floor of the mouth. Methods: a total of 154 patients treated between 1996 and 2007 were selected considering local recurrence rate and time of the adjuvant radiotherapy. Results: local recurrence was diagnosed in 54 (35%) patients. Radiation therapy reduced the rate of local recurrences, although with no statistical significance. The time between surgery and initiation of postoperative radiotherapy did not significantly influence the risk of local recurrence in patients referred to adjuvant treatment (p=0.49). Conclusion: in the presence of risk factors for local recurrence, a short delay in starting the adjuvant radiation therapy does not contraindicate its performance. (author)

  3. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  4. Ultrastructural autoradiographic localization of exogenous arachidonic acid in cultured endothelial and smooth muscle cells

    International Nuclear Information System (INIS)

    Tasca, S.I.; Galis, Z.

    1988-01-01

    The uptake and intracellular localization of exogenous arachidonic acid (AA) were investigated in cultured endothelial (EC) and smooth muscle cells (SMC) isolated from bovine aorta. The [ 14 C]AA uptake was assessed biochemically and by light and electron microscopic autoradiography. The highest values of silver grain surface density were associated with the mitochondria, lysosomes, and the Golgi apparatus of the EC. The grain linear density was greater on the nuclear envelope than on plasmalemma. On SMC, the grain density was highest on lipid droplets whereas the linear densities of the nuclear envelope and plasmalemma were similar. The share of each subcellular compartment in the AA distribution was estimated as the percentage of the individual silver grain count out of the total cell-associated radioactivity. The results showed that cytoplasm (including endoplasmic reticulum, ribosomes, and small vesicles) made the main contribution followed by the nucleus and at lower values by other organelles. These subcompartments may represent the intracellular sites from which AA could be mobilized for prostanoid synthesis by EC and SMC. (author)

  5. The cellular localization of autotaxin impacts on its biological functions in human thyroid carcinoma cells.

    Science.gov (United States)

    Seifert, Anja; Klonisch, Thomas; Wulfaenger, Jens; Haag, Friedrich; Dralle, Henning; Langner, Jürgen; Hoang-Vu, Cuong; Kehlen, Astrid

    2008-06-01

    Autotaxin (ATX/NPP2) shows a nucleotide pyrophosphatase/phosphodiesterase and lysophospholipase D (lysoPLD) activity and is a member of a family of structurally-related mammalian ecto-nucleotide pyrophosphate/phosphodiesterases (E-NPP1-3). ATX is unique among E-NPP as it is secreted and not membrane-bound as are NPP1 and -3. The ATX gene activity is significantly higher in undifferentiated anaplastic (UTC) as compared to follicular (FTC) and papillary thyroid carcinomas (PTC) or goiter tissues. ATX also enhances the motility of thyroid tumor cells. We bio-engineered stable transfectants of the human thyroid carcinoma cell line FTC-238 expressing either bioactively-secreted (sATX) or membrane-anchored ATX (mATX) to identify the biological functions of ATX which critically depend on the E-NPP member being secreted and provide insight into the effects of high local ATX concentrations and cellular responses. An increased cell motility was exclusively observed with FTC-238 sATX transfectants, whereas membrane-anchored ATX appeared to impair motility. We identified IL-1beta as an upstream suppressor of ATX expression in FTC-238, ATX-mediated motility in FTC-238 and stable transfectants, with IL-1beta having the strongest motility-suppressive effect on FTC-238 sATX clones. sATX and mATX strongly increased the anchorage-independent colony formation of FTC-238 but the size and number of colonies formed in the soft agar were significantly smaller in FTC-238 mATX versus the FTC-238 sATX clones. The cancer-testis antigen BAGE was identified as a novel target gene of ATX in FTC-238. Transcript levels for BAGE were 6-fold higher in FTC-238 mATX versus sATX clones. Increased BAGE transcript levels were also detected in tissues of patients with UTC versus FTC, PTC or goiter tissues. In summary, enhanced tumor cell motility and tumorigenic capacity critically depended on sATX in thyroid carcinoma cells. Irrespective of its compartmentalization, the cancer-testis antigen BAGE was

  6. Experience with local lymph node assay performance standards using standard radioactivity and nonradioactive cell count measurements.

    Science.gov (United States)

    Basketter, David; Kolle, Susanne N; Schrage, Arnhild; Honarvar, Naveed; Gamer, Armin O; van Ravenzwaay, Bennard; Landsiedel, Robert

    2012-08-01

    The local lymph node assay (LLNA) is the preferred test for identification of skin-sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. To facilitate acceptance of nonradioactive variants, validation authorities have published harmonized minimum performance standards (PS) that the alternative endpoint assay must meet. In the present work, these standards were applied to a variant of the LLNA based on lymph node cell counts (LNCC) run in parallel as a control with the standard LLNA with radioactivity measurements, with threshold concentrations (EC3) being determined for the sensitizers. Of the 22 PS chemicals tested in this study, 21 yielded the same results from standard radioactivity and cell count measurements; only 2-mercaptobenzothiazole was positive by LLNA but negative by LNCC. Of the 16 PS positives, 15 were positive by LLNA and 14 by LNCC; methylmethacrylate was not identified as sensitizer by either of the measurements. Two of the six PS negatives tested negative in our study by both LLNA and LNCC. Of the four PS negatives which were positive in our study, chlorobenzene and methyl salicylate were tested at higher concentrations than the published PS, whereas the corresponding concentrations resulted in consistent negative results. Methylmethacrylate and nickel chloride tested positive within the concentration range used for the published PS. The results indicate cell counts and radioactive measurements are in good accordance within the same LLNA using the 22 PS test substances. Comparisons with the published PS results may, however, require balanced analysis rather than a simple checklist approach. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Target Cell-Specific Short-Term Plasticity in Local Circuits

    Directory of Open Access Journals (Sweden)

    Arne V Blackman

    2013-12-01

    Full Text Available Short-term plasticity (STP denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination of mechanisms, including vesicle depletion and calcium accumulation in synaptic terminals. Different forms of STP exist, depending on many factors, including synapse type. Recent evidence shows that synapse dependence holds true even for connections that originate from a single presynaptic cell, which implies that postsynaptic target cell type can determine synaptic short-term dynamics. This arrangement is surprising, since STP itself is chiefly due to presynaptic mechanisms. Target-specific synaptic dynamics in addition imply that STP is not a bug resulting from synapses fatiguing when driven too hard, but rather a feature that is selectively implemented in the brain for specific functional purposes. As an example, target-specific STP results in sequential somatic and dendritic inhibition in neocortical and hippocampal excitatory cells during high-frequency firing. Recent studies also show that the Elfn1 gene specifically controls STP at some synapse types. In addition, presynaptic NMDA receptors have been implicated in synapse-specific control of synaptic dynamics during high-frequency activity. We argue that synapse-specific STP deserves considerable further study, both experimentally and theoretically, since its function is not well known. We propose that synapse-specific STP has to be understood in the context of the local circuit, which requires combining different scientific disciplines ranging from molecular biology through electrophysiology to computer modeling.

  8. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast

    Directory of Open Access Journals (Sweden)

    Cory H.T. Boone

    2017-08-01

    glutathione to combat the oxidative cellular environment, glycolytic to PPP cycling of carbon generating NADPH, obstruction of carbon flow through the TCA cycle, decreased ATP generation, and metacaspase dependent apoptotic cell death. Keywords: Local anesthetic toxicity, Oxidative stress, Metabolomics profiling, Apoptotic cell death pathways, Flow cytometry, Mass spectrometry

  9. Plant Cell Population Tracking in a Honeycomb Structure Using an IMM Filter Based 3D Local Graph Matching Model.

    Science.gov (United States)

    Liu, Min; He, Yue; Qian, Weili; Wei, Yangliu; Liu, Xiaoyan

    2017-10-06

    Developing algorithms for plant cell population tracking is very critical for the modeling of plant cell growth pattern and gene expression dynamics. The tracking of plant cells in microscopic image stacks is very challenging for several reasons: (1) plant cells are densely packed in a specific honeycomb structure; (2) they are frequently dividing; (3) they are imaged in different layers within 3D image stacks. Based on an existing 2D local graph matching algorithm, this paper focuses on building a 3D plant cell matching model, by exploiting the cells' 3D spatiotemporal context. Furthermore, the Interacting Multi-Model filter (IMM) is combined with the 3D local graph matching model to track the plant cell population simultaneously. Because our tracking algorithm does not require the identification of "tracking seeds", the tracking stability and efficiency are greatly enhanced. Last, the plant cell lineages are achieved by associating the cell tracklets, using a maximum-a-posteriori (MAP) method. Compared with the 2D matching method, the experimental results on multiple datasets show that our proposed approach does not only greatly improve the tracking accuracy by 18%, but also successfully tracks the plant cells located at the high curvature primordial region, which is not addressed in previous work.

  10. [Observation of cells tolerant of tobacco mosaic virus in virus-induced local lesions in Datura stramonium L. leaves].

    Science.gov (United States)

    Reunov, A V; Lega, S N; Nagorskaia, V P; Lapshina, L A

    2011-01-01

    Ultrastructural examination of tobacco mosaic virus-induced local lesions developing in leaves of Datura stramonium plants demonstrated that, in the central area of the lesions, the cell response to viral invasion was not uniform. Most cells exhibited an acute hypersensitive reaction and underwent rapid and complete necrosis. However, some cells, despite considerable virus accumulation and immediate contact with completely collapsed cells, maintained a certain degree of structural integrity. Analysis performed showed that the proportion of collapsed and uncollapsed cells in the lesion centre 3 to 5 days after infection did not change essentially. These data suggest that the absence of hypersensitive response in some cells in the lesion centre is not due to an early stage of infection but is likely caused by cell tolerance of the virus.

  11. Identification and Localization of Genes Which Restore Senescence in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Reddy, Deepthi

    1997-01-01

    .... Cell X cell hybridizations between breast tumor cells and normal cell lines containing gpt tagged human chromosomes 2, 3, 6 and 9 resulted in senesced hybrid clones whereas hybrid clones containing...

  12. Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells.

    Science.gov (United States)

    Suita, Hiroaki; Shinomiya, Takahisa; Nagahara, Yukitoshi

    2017-04-01

    Mitochondria are central to apoptosis. However, apoptosis progression involving mitochondria is not fully understood. A factor involved in mitochondria-mediated apoptosis is 7A6 antigen. 7A6 localizes to mitochondria from the cytosol during apoptosis, which seems to involve 'effector' caspases. In this study, we investigated the precise role of effector caspases in 7A6 localization to mitochondria during apoptosis. Human T-cell lymphoma Jurkat cells were treated with an antibody against FAS. 7A6 localization was analyzed by confocal laser scanning microscopy and flow cytometry. Caspases activation was determined by western blot analysis. 7A6 localization to mitochondria during anti-FAS-induced apoptosis was significantly reduced by the caspase-6 inhibitor, N-acetyl-Val-Glu-Ile-Asp-aldehyde, but not by the caspase-3 inhibitor, N-acetyl-Asp-Asn-Leu-Asp-aldehyde, nor caspase-7/3 inhibitor, N-acetyl-Asp-Gln-Thr-Asp-aldehyde. Moreover, caspase-6 down-regulation suppressed 7A6 localization to mitochondria. Caspase-6 regulates 7A6 localization to mitochondria during anti-FAS-induced apoptosis of Jurkat cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  14. Marked differences in immunocytological localization of [3H]estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    International Nuclear Information System (INIS)

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A.

    1991-01-01

    [ 3 H]Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this [ 3 H]estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable [ 3 H]estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the [ 3 H]EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion

  15. Dynamic changes in the spatiotemporal localization of Rab21 in live RAW264 cells during macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Youhei Egami

    2009-08-01

    Full Text Available Rab21, a member of the Rab GTPase family, is known to be involved in membrane trafficking, but its implication in macropinocytosis is unclear. We analyzed the spatiotemporal localization of Rab21 in M-CSF-stimulated RAW264 macrophages by the live-cell imaging of fluorescent protein-fused Rab21. It was demonstrated that wild-type Rab21 was transiently associated with macropinosomes. Rab21 was recruited to the macropinosomes after a decrease in PI(4,5P(2 and PI(3,4,5P(3 levels. Although Rab21 was largely colocalized with Rab5, the recruitment of Rab21 to the macropinosomes lagged a minute behind that of Rab5, and preceded that of Rab7. Then, Rab21 was dissociated from the macropinosomes prior to the accumulation of Lamp1, a late endosomal/lysosomal marker. Our analysis of Rab21 mutants revealed that the GTP-bound mutant, Rab21-Q78L, was recruited to the macropinosomes, similarly to wild-type Rab21. However, the GDP-bound mutant, Rab21-T33N, did not localize on the formed macropinosomes, suggesting that the binding of GTP to Rab21 is required for the proper recruitment of Rab21 onto the macropinosomes. However, neither mutation of Rab21 significantly affected the rate of macropinosome formation. These data indicate that Rab21 is a transient component of early and intermediate stages of macropinocytosis, and probably functions in macropinosome maturation before fusing with lysosomal compartments.

  16. Intracellular localization of two betaine lipids by cell fractionation and immunomicroscopy.

    Science.gov (United States)

    Künzler, K; Eichenberger, W; Radunz, A

    1997-01-01

    The cellular localization of the betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-beta-alanine (DGTA) was investigated by a) chemical analysis of subcellular fractions and b) immunochemical methods using specific antisera and either fluorescence microscopy or electron microscopy for detection of the label. A homogenate of Lycopodium annotinum (Pteridophyta) was fractionated by differential and density gradient centrifugation. The particulate fractions obtained were analyzed for chlorophyll, cyt c oxidase, NADH-cyt c reductase and DGTS. Non-plastidial fractions were enriched in DGTS and only minor amounts of this lipid could be attributed to chloroplasts. Anti-DGTS and anti-DGTA sera were produced by immunization of rabbits. The monospecificity of the antisera was examined with cells of Chlamydomonas reinhardtii (Chlorophyceae) containing DGTS, Pavlova lutheri (Haptophyceae) containing DGTA and Ochromonas danica (Chrysophyceae) containing both DGTS and DGTA. Euglena gracilis which is free of betaine lipids, was used as a control. For the test, a FITC-coupled goat anti-rabbit antibody was used and detected by fluorescence microscopy. Thin sections of Ochromonas and Pavlova were incubated first with the anti-lipid sera and subsequently with a gold-coupled anti-rabbit serum and then examined in the electron microscope. With Ochromonas, anti-DGTS as well as anti-DGTA sera gave an accumulation of gold label in the cytoplasmic space but not in the chloroplasts. Similar results were obtained with Pavlova using anti-DGTA serum. These results describe for the first time the cytochemical localization of DGTS and DGTA strongly suggesting both these lipids to be associated mainly with non-plastidial structures.

  17. Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells.

    Directory of Open Access Journals (Sweden)

    Alexander V Maltsev

    Full Text Available Local Ca2+ Releases (LCRs are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame sensitivity algorithm applied to each pixel (cell location. An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves, sparks and

  18. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  19. Gemcitabine, cisplatin, and hyperfractionated accelerated radiotherapy for locally advanced non-small cell lung cancer.

    Science.gov (United States)

    Zwitter, Matjaz; Kovac, Viljem; Smrdel, Uros; Strojan, Primoz

    2006-09-01

    Due to potent radiosensitization and potential serious or fatal toxicity, concurrent gemcitabine and irradiation should only be applied within clinical trials. We here present experience from a phase I-II clinical trial for patients with locally advanced non-small cell lung cancer (NSCLC) treated with hyperfractionated accelerated radiotherapy and concurrent low-dose gemcitabine. Eligible patients had locally advanced inoperable NSCLC without pleural effusion, Eastern Cooperative Oncology Group performance status 0-1, were chemotherapy naïve and had no previous radiotherapy to the chest, and had adequate hematopoietic, liver, and kidney function. Routine brain computed tomography was not performed, and positron emission tomography/computed tomography was not available. Treatment consisted of three parts: induction chemotherapy with gemcitabine and cisplatin in standard doses, local treatment with concurrent chemotherapy and radiotherapy, and consolidation chemotherapy. Patients were irradiated with opposed AP-PA and oblique fields, using 2.5-D treatment planning. Although corrections for inhomogeneous tissue were made, volume of total lung receiving > or =20 Gy (V20) could not be determined. The trial started as phase I, aimed to determine the dose-limiting toxicity and maximal tolerated dose (MTD) for concurrent hyperfractionated radiotherapy (1.4 Gy twice daily) and gemcitabine 55 mg/m twice weekly as a radiosensitizer. Phase II of the trial then continued at the level of MTD. Twenty-eight patients with NSCLC, nine patients with stage IIIA, 16 patients with IIIB, and three patients with an inoperable recurrence after previous surgery, entered the trial. The first 12 patients entered Phase I of the trial at the initial level of 42 Gy in 30 fractions in 3 weeks. Dose-limiting toxicity was acute esophagitis; 47.6 Gy in 34 fractions in 3.5 weeks was the MTD for this regimen of concurrent chemotherapy and radiotherapy. In phase II of the trial, this dose was applied

  20. The neuronal protein Kidins220 localizes in a raft compartment at the leading edge of motile immature dendritic cells.

    Science.gov (United States)

    Riol-Blanco, Lorena; Iglesias, Teresa; Sánchez-Sánchez, Noelia; de la Rosa, Gonzalo; Sánchez-Ruiloba, Lucía; Cabrera-Poch, Noemi; Torres, Ana; Longo, Isabel; García-Bordas, Julio; Longo, Natividad; Tejedor, Alberto; Sánchez-Mateos, Paloma; Rodríguez-Fernández, José Luis

    2004-01-01

    Kidins220, a protein predominantly expressed in neural tissues, is the first physiological substrate for protein kinase D (PKD). We show that Kidins220 is expressed in monocyte-derived and in peripheral blood immature dendritic cells (im DC). Immature DC (im DC) migrate onto extracellular matrices changing cyclically from a highly polarized morphology (monopolar (MP) stage) to a morphologically symmetrical shape (bipolar (BP) stage). Kidins220 was localized on membrane protrusions at the leading edge or on both poles in MP and BP cells, respectively. CD43, CD44, ICAM-3 and DC-SIGN, and signaling molecules PKD, Arp2/3 were found at the leading edge in MP or on both edges in BP cells, showing an intriguing parallelism between morphology and localization of molecular components on the poles of the motile DC. F-actin co-localized and it was necessary for Kidins220 localization on the membrane in MP and BP cells. Kidins220 was also found in a raft compartment. Disruption of rafts with methyl-beta-cyclodextrin induced rounding of the cells, inhibition of motility and lost of Kidins220 polarization. Our results describe for the first time the molecular components of the poles of motile im DC and indicate that a novel neuronal protein may be an important component among these molecules.

  1. Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Manuel Modolell

    2009-07-01

    Full Text Available The balance between T helper (Th 1 and Th2 cell responses is a major determinant of the outcome of experimental leishmaniasis, but polarized Th1 or Th2 responses are not sufficient to account for healing or nonhealing. Here we show that high arginase activity, a hallmark of nonhealing disease, is primarily expressed locally at the site of pathology. The high arginase activity causes local depletion of L-arginine, which impairs the capacity of T cells in the lesion to proliferate and to produce interferon-gamma, while T cells in the local draining lymph nodes respond normally. Healing, induced by chemotherapy, resulted in control of arginase activity and reversal of local immunosuppression. Moreover, competitive inhibition of arginase as well as supplementation with L-arginine restored T cell effector functions and reduced pathology and parasite growth at the site of lesions. These results demonstrate that in nonhealing leishmaniasis, arginase-induced L-arginine depletion results in impaired T cell responses. Our results identify a novel mechanism in leishmaniasis that contributes to the failure to heal persistent lesions and suggest new approaches to therapy.

  2. Adjuvant therapy for locally advanced renal cell cancer: A systematic review with meta-analysis

    Directory of Open Access Journals (Sweden)

    Lima Carmen SP

    2011-03-01

    Full Text Available Abstract Background Many adjuvant trials have been undertaken in an attempt to reduce the risk of recurrence among patients who undergo surgical resection for locally advanced renal cancer. However, no clear benefit has been identified to date. This systematic review was conducted to examine the exact role of adjuvant therapy in renal cancer setting. Methods Randomized controlled trials were searched comparing adjuvant therapy (chemotherapy, vaccine, immunotherapy, biochemotherapy versus no active treatment after surgery among renal cell cancer patients. Outcomes were overall survival (OS, disease-free survival (DFS, and severe toxicities. Risk ratios (RR, hazard ratios (HR and 95% confidence intervals were calculated using a fixed-effects meta-analysis. Heterogeneity was measured by I2. Different strategies of adjuvant treatment were evaluated separately. Results Ten studies (2,609 patients were included. Adjuvant therapy provided no benefits in terms of OS (HR 1.07; 95%CI 0.89 to 1.28; P = 0.48 I2 = 0% or DFS (HR 1.03; 95%CI 0.87 to 1.21; P = 0.77 I2 = 15% when compared to no treatment. No subgroup analysis (immunotherapy, vaccines, biochemotherapy and hormone therapy had relevant results. Toxicity evaluation depicted a significantly higher frequency of serious adverse events in the adjuvant group. Conclusions This analysis provided no support for the hypothesis that the agents studied provide any clinical benefit for renal cancer patients although they increase the risk of toxic effects. Randomized trials are underway to test targeted therapies, which might open a new therapeutic frontier. Until these trials yield results, no adjuvant therapy can be recommended for patients who undergo surgical resection for renal cell cancer.

  3. Distinct functional domains of PNMA5 mediate protein-protein interaction, nuclear localization, and apoptosis signaling in human cancer cells.

    Science.gov (United States)

    Lee, Yong Hoi; Pang, Siew Wai; Poh, Chit Laa; Tan, Kuan Onn

    2016-09-01

    Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells. PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively. Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells. Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

  4. A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehraeen, Shareghe [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; McKeown, Joseph T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Deshmukh, Pushkarraj V. [E.A. Fischione Instruments, Inc., Export, PA (United States); Evans, James E. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Abellan, Patricia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Xu, Pinghong [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science; Reed, Bryan W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Taheri, Mitra L. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science & Engineering; Fischione, Paul E. [E.A. Fischione Instruments, Inc., Export, PA (United States); Browning, Nigel D. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    2013-03-04

    We report that the advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

  5. Localized degradation of foreign DNA strands in cells: Only excising the first nucleotide of 5' region.

    Science.gov (United States)

    Li, Hui; Shen, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2017-09-15

    Intracellular delivery of foreign DNA probes sharply increases the efficiency of various biodetection protocols. Spherical nucleic acid (SNA) conjugate is a new type of probe that consists of a dense oligonucleotide shell attached typically to a gold nanoparticle core. They are widely used as novel labels for in vitro biodetection and intracellular assay. However, the degradation of foreign DNA still remains a challenge that can cause significant signal leakage (false positive signal). Hence, the site and behavior of intracellular degradation need to be investigated. Herein, we discover a localized degradation behavior that only excises the first nucleotide of 5' terminal from a DNA strand, whereas the residual portion of this strand is unbroken in MCF-7 cell. This novel degradation action totally differs from previous opinion that foreign DNA strand would be digested into tiny fragments or even individual nucleotides in cellular environment. On the basis of these findings, we propose a simple and effective way to avoid degradation-caused false positive that one can bypass the degradable site and choose a secure region to label fluorophore along the DNA stand, when using DNA probes for intracellular biodetection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Palliative radiotherapy in asymptomatic patients with locally advanced, unresectable, non-small cell lung cancer

    International Nuclear Information System (INIS)

    Reinfuss, M.; Skolyszewski, J.; Kowalska, T.; Rzepecki, W.; Kociolek, D.

    1993-01-01

    Between 1983 and 1990, 332 patients with non-small cell lung cancer (NSCLC) were referred to short-time, split-course palliative thoracic radiotherapy. The group consisted of patients with locally advanced (III o ), unresectable cancer, not suitable for curative radiotherapy, asymptomatic or having only minimal symptoms related to intrathoracic tumor. The therapeutic plan involved two series of irradiation. Tumor dose delivered in each series was 20 Gy given in five daily fractions over five treatment days. There were four weeks interval between series. Of 332 patients initially qualified to thoracic radiotherapy only 170 patients received the treatment; the other 162 patients were not irradiated because of treatment refusal or logistic problems concerning therapy. They made the control group of the study, receiving the best possible symptomatic care. Twelve-month survivals in the radiotherapy and control groups were 32.4% and 9.3%, respectively; 24-month survivals 11.2% and 0%, respectively. Improvement of survival after palliative thoracic radiotherapy was observed only in patients with clinical stage IIIA and Karnofsky's performance status (KPS) ≥ 70. (orig.) [de

  7. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  8. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment

    Science.gov (United States)

    Schaink, Alexis; Li, Chunmei; Wells, David; Holubowich, Corinne

    2017-01-01

    Background Prostate cancer is very common and many localized tumours are non-aggressive. Determining which cancers are aggressive is important for choosing the most appropriate treatment (e.g., surgery, radiation, active surveillance). Current clinical risk stratification is reliable in forecasting the prognosis of groups of men with similar clinical and pathologic characteristics, but there is residual uncertainty at the individual level. The Prolaris cell cycle progression (CCP) test, a genomic test that estimates how fast tumour cells are proliferating, could potentially be used to improve the accuracy of individual risk assessment. This health technology assessment sought to determine the clinical utility, economic impact, and patients' perceptions of the value of the CCP test in low- and intermediate-risk localized prostate cancer. Methods We conducted a systematic review of the clinical and economic evidence of the CCP test in low-and intermediate-risk, localized prostate cancer. Medical and health economic databases were searched from 2010 to June or July 2016. The critical appraisal of the clinical evidence included risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We also analyzed the potential budget impact of adding the CCP test into current practice, from the perspective the Ontario Ministry of Health and Long-Term Care. Finally, we conducted qualitative interviews with men with prostate cancer, on the factors that influenced their treatment decision-making. Results For the review of clinical effectiveness, we screened 3,021 citations, and two before–after studies met our inclusion criteria. In one study, the results of the CCP test appeared to change the treatment plan (from initial to final plan) in 64.9% of cases overall (GRADE rating of the quality of evidence: Very low). In the other study, the CCP test changed the treatment received in nearly half of cases overall, compared

  9. [Effect of Nm23-H1 Nuclear Localization on Proliferation of 
Human Lung Adenocarcinoma Cell Line A549].

    Science.gov (United States)

    Sheng, Ya; Xiong, Yanli; Xu, Mingfang; Kuang, Xunjie; Wang, Dong; Yang, Xueqin

    2017-04-20

    Recent studies have indicated that Nm23-H1 is found in the nucleus, but previous studies have been based on the overexpression or suppression of Nm23-H1 in the cytoplasm. Due to the lacking nuclear localization signal of Nm23-H1, these results cannot reflect or repeat cells in which Nm23-H1 mainly positioned in nuclei and whether they cause clinical biological effects. Therefore, to explore the effects of transposing Nm23-H1 from the cytoplasm to the nucleus during lung cancer cell proliferation, a vector with a nuclear localization signal of Nm23-H1 was constructed and A549 cells were transfected. Gene recombination technology was used to construct pLentis-CMV-NME1-IRES2-PURO lentiviral vectors using a nuclear localization signal sequence, and the recombinant plasmid was verified using restriction enzyme analysis and sequencing. Nm23-H1 positioning and expression were performed after the stably transfected A549 cells were assessed by Western blot and confocal laser scanning microscope. The A549 cell proliferation was assessed using a cell counting kit-8. Flow cytometry was performed to assess the cell cycle distribution of A549 cells. The directional Nm23-H1 lentiviral vector was successfully constructed within the nucleus. Compared with that of the empty vector group, the proliferation rates of the transfection groups at 72 h, 96 h, and 120 h were remarkably increased (PA549 cells in the G0/G1 phase proportion was 35.69%, which was higher than the 28.28% of the transfection group (t=1.461, P=0.217); furthermore, the transfection group of A549 cells in the G2/M phase proportion was 58.7% and that of the empty vector group was 31.30% (t=4.560, P=0.010). Human lung adenocarcinoma cell line A549 cells of Nm23-H1 nuclear localized mainly in the G2/M phase and the nuclear Nm23-H1 promoted A549 cell proliferation in vitro.

  10. Claudin-4 Undergoes Age-Dependent Change in Cellular Localization on Pig Jejunal Villous Epithelial Cells, Independent of Bacterial Colonization

    Directory of Open Access Journals (Sweden)

    J. Alex Pasternak

    2015-01-01

    Full Text Available Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs. In the present study, FcRn gene (FCGRT was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases.

  11. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  12. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Costello, F.; Huhtanen, M.

    1996-01-01

    Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP...

  13. Concurrent versus Sequential Chemoradiotherapy with Cisplatin and Vinorelbine in Locally Advanced Non-Small Cell Lung Cancer: A Randomized Study

    Czech Academy of Sciences Publication Activity Database

    Zatloukal, P.; Petruželka, L.; Zemanová, M.; Havel, L.; Janků, F.; Judas, L.; Kubík, A.; Křepela, E.; Fiala, P.; Pecen, Ladislav

    2004-01-01

    Roč. 46, - (2004), s. 87-98 ISSN 0169-5002 Institutional research plan: CEZ:AV0Z1030915 Keywords : concurrent chemoradiotherapy * sequential chemoradiotherapy * locally advanced non-small cell lung cancer * cisplatin * vinorelbine Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.914, year: 2004

  14. A phase I study of gemcitabine with concurrent radiotherapy in stage III, locally advanced non-small cell lung cancer

    NARCIS (Netherlands)

    van Putten, JWG; Price, A; van der Leest, AHD; Gregor, A; Little, FA; Groen, HJM

    Purpose: Our goal was to find the maximum tolerated dose of gemcitabine administered concurrently with thoracic radiotherapy in locally advanced non-small cell lung cancer (NSCLC). Patients and Methods: Patients with stage III NSCLC and a radiation planning volume less than 2000 cm(3) were included.

  15. CNS cell-type localization and LPS response of TLR signaling pathways [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gizelle M. McCarthy

    2017-07-01

    Full Text Available Background: Innate immune signaling in the brain has emerged as a contributor to many central nervous system (CNS pathologies, including mood disorders, neurodegenerative disorders, neurodevelopmental disorders, and addiction. Toll-like receptors (TLRs, a key component of the innate immune response, are particularly implicated in neuroimmune dysfunction. However, most of our understanding about TLR signaling comes from the peripheral immune response, and it is becoming clear that the CNS immune response is unique. One controversial aspect of neuroimmune signaling is which CNS cell types are involved. While microglia are the CNS cell-type derived from a myeloid lineage, studies suggest that other glial cell types and even neurons express TLRs, although this idea is controversial. Furthermore, recent work suggests a discrepancy between RNA and protein expression within the CNS. Methods: To elucidate the CNS cell-type localization of TLRs and their downstream signaling molecules, we isolated microglia and astrocytes from the brain of adult mice treated with saline or the TLR4 ligand lipopolysaccharide (LPS. Glial mRNA and protein expression was compared to a cellular-admixture to determine cell-type enrichment. Results: Enrichment analysis revealed that most of the TLR pathway genes are localized in microglia and changed in microglia following immune challenge. However, expression of Tlr3 was enriched in astrocytes, where it increased in response to LPS. Furthermore, attempts to determine protein cell-type localization revealed that many antibodies are non-specific and that antibody differences are contributing to conflicting localization results. Conclusions: Together these results highlight the cell types that should be looked at when studying TLR signaling gene expression and suggest that non-antibody approaches need to be used to accurately evaluate protein expression.

  16. Identification and Localization of Genes Which Restore Senescence in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Reddy, Deepthi

    1999-01-01

    .... Continuous culture of the senescent cells in selection media gave rise to revertant cells which have parental cell growth phenotype and have lost the region of the introduced chromosome that harbors the senescence gene...

  17. WASP-Arp2/3-dependent actin polymerization influences fusogen localization during cell-cell fusion in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-09-01

    Full Text Available Cell-cell fusion is essential for development and physiology. Actin polymerization was implicated in the Caenorhabditis elegans fusogen EFF-1 engagement in a reconstituted Drosophila cell culture system, and the actin-binding protein spectraplakin links EFF-1 to the actin cytoskeleton and promotes cell-cell fusions in C. elegans larvae. However, it remains unclear whether and how fusogens and the actin cytoskeleton are coordinated in C. elegans embryos. Here, we used live imaging analysis of GFP knock-in and RNAi embryos to study the embryonic cell-cell fusions in C. elegans. Our results show that the inhibition of WASP-Arp2/3-dependent actin polymerization delays cell-cell fusions. EFF-1 is primarily distributed in intracellular vesicles in embryonic fusing cells, and we find that the perturbation of actin polymerization reduces the number of EFF-1-postive vesicles. Thus, the actin cytoskeleton differently promotes cell-cell fusion by regulating fusogen localization to the fusing plasma membrane in larvae or to intracellular vesicles in embryos.

  18. Studies on the intracellular localization of hHR23B

    International Nuclear Information System (INIS)

    Katiyar, Samiksha; Lennarz, William J.

    2005-01-01

    Yeast Rad23, originally identified as a DNA repair protein, has been proposed to participate in other cellular functions, i.e., the proteasome-degradation pathway, the process of spindle pole body duplication and as a component of the anaphase checkpoint. Two human homologs of yeast Rad23, hHR23A and hHR23B, exhibit high sequence homology with yRad23 and also have been shown to be involved in DNA repair and proteasome-dependent degradation. Previous studies on the intracellular localization of hHR23A and hHR23B revealed their predominant localization in the nucleus during interphase and in the cytoplasm during mitosis. We have analyzed the localization of hHR23B during all the phases of the cell cycle using immunofluorescence. Unlike previous studies, our results suggest localization of hHR23B in the nucleus as well as in the cytoplasm during G1 phase. The nuclear levels of hHR23B decrease during S-phase of the cell cycle. When the cell enters mitosis, hHR23B relocalizes in the cytoplasm without association with chromatin. These results indicate that the intracellular distribution hHR23B is cell cycle dependent

  19. Local electrochemical characteristics at various operating pressure and temperature values using a segmented polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sang; Kim, Dong Kyu; Kim, Min Soo [Dept. Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kong, Im Mo [Korea Automotive Technology Institute, Gwangju (Korea, Republic of); Kim, Min Sung [School of Energy Systems Engineering, Chung-Ang University, Seoul (Korea, Republic of)

    2016-09-15

    The pressurization of reactant gases is one of the solutions for generating considerable power in a polymer electrolyte membrane fuel cell with a restricted size. Electrochemical phenomena, such as current density distribution and ohmic resistance distribution, were observed to validate the effects of operating pressure and temperature on cell performance. The test was conducted in galvanostatic mode, and an inhomogeneous current distribution was observed under a high-pressure condition, except at a high temperature. High-frequency resistance measurement was also conducted to observe local ohmic resistance. Result showed that high pressure and temperature reduced ohmic loss and improved overall cell performance.

  20. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin.

    Science.gov (United States)

    Loja, Tomas; Chlapek, Petr; Kuglik, Petr; Pesakova, Martina; Oltova, Alexandra; Cejpek, Pavel; Veselska, Renata

    2009-01-01

    A newly established GM7 cell line was derived from the tumor tissue of a 65-year-old man surgically treated for a relapse of glioblastoma multiforme that occurred 10 months after first surgery following radiotherapy. GM7 cells exhibit spindle or glia-like morphology, and multinucleated giant cells are also present in the culture. The cells proliferate rapidly (PDT is about 18 h) and tend to grow in multilayer without contact inhibition. Using G-banding and SKY, the GM7 cell line was identified as near-triploid with a large number of structural and numerical abnormalities. Repeated karyotyping during long-term cultivation confirmed a chromosome number of 70+/-3 chromosomes per cell. Special attention was paid to the immunocytochemical analysis of protein markers in this cell line; GM7 cells showed strong positivity for CD133, vimentin, nestin, NF-160 and S-100 protein and weak positivity for GFAP and NSE, but were negative for synaptophysin. The most important features of the GM7 cell line are its stable phenotype CD133+/nestin+, which are accepted as stem cell markers in neural stem/progenitor cells, and especially unusual intracellular localization of the IF protein nestin, which was detected and repeatedly confirmed both in the cytoplasm and cell nucleus. For this reason, the new GM7 glioblastoma cell line represents an important model suitable not only for further studies on glioblastoma biology and cancer stem cells, but particularly for the detailed investigation of the role of nestin in transformed cells.

  1. Combined Chemoradiotherapy vs Radiotherapy Alone for Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    International Nuclear Information System (INIS)

    Jeong, Hyeon Ju; Suh, Hyun Suk; Kim, Chul Soo; Kim, Re Hwe; Kim, Sung Rok

    1996-01-01

    Purpose : The traditional approach with surgery and/or radiotherapy(RT) for advanced head and neck cancer provides anticipated cure rates of 10-65% depending on stages and sites. Recently, combined modality with chemotherapy have been extensively investigated in attempts to improve survival and local control. We retrospectively analysed our experience of 31 patients with advanced head and neck cancer. Methods and Materials : From November 1983 to October 1994, 31 patients with Stage II and IV squamous cell head and neck cancer were treated with RT. Sixteen patients were treated with RT alone. and 15 patients were treated with combined RT plus chemotherapy. All patients were treated with 4-MV LINAC and radiation dose ranged from 5000 cGy to 7760 cGy(median 7010 cGy). In combined group. 7 patients were treated with cis-platin plus 5-FU, 2 patients were treated with methotrexate plus leucovorin plus 5-FU plus cisplatin or carboplatin, and 6 patients were treated with cisplatin as a radiosensitizer. Results : Median follow up period was 16 months (range 4-134 months). The major responses (CR+PR) were noted in 10 patient (66.6%) of the RT alone group and 14 patient (93.3%) of the chemoradiation group. There was no statistical difference in CR rate between the two groups. The overall survival rates at 5 years were 23.4% in the radiation alone group. 23.5% in the chemoradiation group. Disease-free survival rates at 3 year were 44.5% in the radiation alone group. 40% in the chemoradiation group. There was no statistical differences in overall survival rates and disease free survival rates between the two groups. Local recurrences occurred in 71.5% of the radiation alone group. 72.7% of the chemoradiation group and distant metastasis occurred in 14.4% of radiation alone group. 9.1% of the chemoradiation group. The frequencies of complications were comparable in both groups except hematologic toxicity. Conclusion : Total response rates in the combined chemotherapy and

  2. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    Directory of Open Access Journals (Sweden)

    Hyoun-Sub Lim

    2013-03-01

    Full Text Available Barley stripe mosaic virus (BSMV induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW. BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

  3. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.

    Science.gov (United States)

    Spurny, Christian; Kailayangiri, Sareetha; Altvater, Bianca; Jamitzky, Silke; Hartmann, Wolfgang; Wardelmann, Eva; Ranft, Andreas; Dirksen, Uta; Amler, Susanne; Hardes, Jendrik; Fluegge, Maike; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Rossig, Claudia

    2018-01-19

    Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-G pos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-G neg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-G neg . IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.

  4. Cell-free DNA levels and correlation to stage and outcome following treatment of locally advanced rectal cancer.

    Science.gov (United States)

    Boysen, Anders Kindberg; Wettergren, Yvonne; Sorensen, Boe Sandahl; Taflin, Helena; Gustavson, Bengt; Spindler, Karen-Lise Garm

    2017-11-01

    Accurate staging of rectal cancer remains essential for optimal patient selection for combined modality treatment, including radiotherapy, chemotherapy and surgery. We aimed at examining the correlation of cell free DNA with the pathologic stage and subsequent risk of recurrence for patients with locally advanced rectal cancer undergoing preoperative chemoradiation. We examined 75 patients with locally advanced rectal cancer receiving preoperative chemoradiation. Blood samples for translational use were drawn prior to rectal surgery. The level of cell free DNA was quantified by digital droplet PCR and expressed as copy number of beta 2 microglobulin. We found a median level of cell free DNA in the AJCC stages I-III of 3100, 8300, and 10,700 copies/mL respectively. For patients with 12 sampled lymph nodes or above, the median level of cell free DNA were 2400 copies/mL and 4400 copies/mL (p = 0.04) for node negative and node positive disease respectively. The median follow-up was 39 months and 11 recurrences were detected (15%). The median level for patients with recurrent disease was 13,000 copies/mL compared to 5200 copies/mL for non-recurrent patients (p = 0.08). We have demonstrated a correlation between the level of total cell free DNA and the pathologic stage and nodal involvement. Furthermore, we have found a trend towards a correlation with the risk of recurrence following resection of localized rectal cancer.

  5. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Directory of Open Access Journals (Sweden)

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  6. Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells

    International Nuclear Information System (INIS)

    Wirsdörfer, Florian; Cappuccini, Federica; Niazman, Muska; Leve, Simone de; Westendorf, Astrid M; Lüdemann, Lutz; Stuschke, Martin; Jendrossek, Verena

    2014-01-01

    Lymphocyte infiltration is a common feature of radiation-induced pneumonitis and fibrosis, but their contribution to the pathogenic processes is still unclear. Here, we addressed the impact of thorax irradiation on the T cell compartment with a focus on immunosuppressive regulatory T cells (Treg). C57BL/6 wild type mice (WT) received anesthesia only (sham controls, 0 Gy) or were exposed to a single dose of whole thorax irradiation (15 Gy). Immune cells from lung tissue, spleen, and cervical lymph nodes were collected 10 to 84 days post-irradiation and phenotypically characterized by flow cytometry. Whole thorax irradiation provoked an increased influx of CD3+ T cells at 42 and 84 days post-irradiation. In contrast, local irradiation caused a sustained reduction in CD3+ T cells in peripheral lymphoid tissues. Interestingly, we observed a significant local and systemic increase in the fraction of CD4+ T cells expressing the transcription factor forkhead box P3 (FoxP3), the phenotypic marker for murine Treg, at day 21 post-irradiation. The accumulation of Treg was associated with increased levels of T cells expressing surface proteins characteristic for recruitment and immunosuppressive activity, e.g. CD103, CTLA-4 and CD73. Importantly, Treg isolated at this time point were able to suppress CD4+ effector T cells to a similar extent as Treg isolated from control mice. The response of the adaptive immune system to whole thorax irradiation is characterized by local immunoactivation and systemic immunosuppression. The transient accumulation of immunosuppressive CD4+ FoxP3+ Treg may be required to protect the lung against excessive inflammation-induced tissue damage. Further investigations shall define the mechanisms underlying the accumulation of Treg and their role for the pathogenesis of radiation-induced lung disease

  7. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Dyrda

    Full Text Available BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+ and Cl(- currents were strictly dependent on the presence of Ca(2+. The Ca(2+-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+ permeability (PCa. These results indicate that local membrane deformations can transiently activate a Ca(2+ permeability pathway leading to increased [Ca(2+](i, secondary activation of Ca(2+-sensitive K(+ channels (Gardos channel, IK1, KCa3.1, and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+-mediated effects observed during the normal aging process of red blood cells, and

  8. Intracellular ZnO Nanorods Conjugated with Protoporphyrin for Local Mediated Photochemistry and Efficient Treatment of Single Cancer Cell

    Science.gov (United States)

    Kishwar, S.; Asif, M. H.; Nur, O.; Willander, M.; Larsson, Per-Olof

    2010-10-01

    ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D) are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 μm diameter) by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME), which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes.

  9. Localization of Label-Retaining Cells in Murine Vocal Fold Epithelium

    Science.gov (United States)

    Leydon, Ciara; Bartlett, Rebecca S.; Roenneburg, Drew A.; Thibeault, Susan L.

    2011-01-01

    Purpose: Epithelial homeostasis is critical for vocal fold health, yet little is known about the cells that support epithelial self-renewal. As a known characteristic of stem cells is that they are slow-cycling in vivo, the purpose of this prospective controlled study was to identify and quantify slow-cycling cells or putative stem cells in murine…

  10. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures

    DEFF Research Database (Denmark)

    Tanner, V A; Ploug, Thorkil; Tao-Cheng, J H

    1996-01-01

    We demonstrated the subcellular localization of SV2, a transmembrane protein associated with neuroendocrine secretory vesicles, in NGF-treated PC12 cells by preembedding EM immunocytochemistry (ICC), using a small gold probe followed by silver enhancement. The use of a multiwell chamber slide...

  11. Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures

    DEFF Research Database (Denmark)

    Tanner, V A; Ploug, Thorkil; Tao-Cheng, J H

    1996-01-01

    We demonstrated the subcellular localization of SV2, a transmembrane protein associated with neuroendocrine secretory vesicles, in NGF-treated PC12 cells by preembedding EM immunocytochemistry (ICC), using a small gold probe followed by silver enhancement. The use of a multiwell chamber slide sub...

  12. Cytological Characteristics of Mucose Cell and Vaginal Temperature and pH During Estrous Cycle in Local Sheep

    Directory of Open Access Journals (Sweden)

    Siti Darodjah Rasad

    2017-09-01

    Full Text Available Aim of this study was to examine the characteristics cytology of mucous cell-,temperature- and pH vagina during estrous cycle in local sheep.  31local sheep were synchronized with vaginal sponge consist of 20  mg  progesterone hormone before carried out observations of cytology of cells from the vaginal mucose through vaginal swabs, temperature and pH of the vagina.  Vaginal swabs were collected daily at 7 am for a weeks.Vaginal temperature and pH measurement is carried out twice a day, at 07.00 am and 15.00 pm for a weeks after vaginal swabs. Smears of the swab were then prepared on glass slide and they were stained with Giemsa.  Vaginal epithelial cells; Parabasal, intermediate and superficial cells were counted and their percentages during pro-estrous, estrous and di-estrous were determined. Di-estrous was characterized by the absent of superficial cells in the epithelial vagina. Pro-estrous was characterized by the increasing progressively of intermediate/superficial cells in epithelial vagina, whereas estrous was characterized by the presence of superficial/cornification cells in most epithelial vagina. Based on the dominance of superficial cell, the number of sheep identified as estrous is highest on third day, with 52%.  Observation on vaginal temperature also resulting that the highest temperature values obtained on the third day of 39,08±0.28°C.  It could be effected of the vaginal pH during the observation. Underthe influence ofestrogen, the epithelial vaginalcellssynthesizeand accumulateglycogenin large quantitiesdepositedin the lumen ofvagina. Vaginal bacteriametabolizethe glycogenformlactic acid, which causesvaginal pHis low.The pH conditions prevent from pathogenic microorganisms and fungi. Increased estrogenal so cause cell proliferation through the thickening of the epithelium lining of the vagina so that the cells differentiate.Increasing of glycogenin the superficial cells, and  ceratin cells found in the cytoplasm of

  13. Phosphorylation and Subcellular Localization of p27Kip1 Regulated by Hydrogen Peroxide Modulation in Cancer Cells

    Science.gov (United States)

    Ibañez, Irene L.; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L.; Policastro, Lucía L.; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H2O2) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H2O2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H2O2 (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H2O2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1. PMID

  14. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    Directory of Open Access Journals (Sweden)

    Irene L Ibañez

    Full Text Available The Cyclin-dependent kinase inhibitor 1B (p27Kip1 is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2O(2 in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p at serine 10 (S10 and at threonine 198 (T198 because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2O(2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2O(2 (0.1 µM to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2O(2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization

  15. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7

    Science.gov (United States)

    Stegemann-Koniszewski, Sabine; Behrens, Sarah; Boehme, Julia D.; Hochnadel, Inga; Riese, Peggy; Guzmán, Carlos A.; Kröger, Andrea; Schreiber, Jens; Gunzer, Matthias; Bruder, Dunja

    2018-01-01

    The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways. PMID:29497422

  16. Correlation of Local FOXP3-Expressing T Cells and Th1-Th2 Balance in Perennial Allergic Nasal Mucosa

    Directory of Open Access Journals (Sweden)

    Hideaki Shirasaki

    2011-01-01

    Full Text Available Regulatory T cells (Treg play some important roles in allergic rhinitis. The most specific marker for Treg is FOXP3, a recently identified transcription factor that is essential for Treg development. In order to clarify the levels of Treg in allergic nasal mucosa, we studied the relationship between FOXP3-expressing cells and Th1-Th2 balance in nasal mucosa by means of immunohistochemistry. Human turbinates were obtained after turbinectomy from 26 patients (14 patients with perennial allergic rhinitis and 12 patients with nonallergic rhinitis. To identify the cells expressing the FOXP3 protein, double immunostaining was performed by using anti-FOXP3 antibody and anti-CD3 antibody. There was no significant difference in the percentage of FOXP3+CD3+ cells among CD3+ cells in the nasal mucosa of two groups. The proportion of FOXP3+CD3+ cells tend to be correlated positively with GATA3+CD3+ cells/T-bet+CD3+ cells ratio (=0.56, =0.04. A positive correlation with GATA3+CD3+/T-bet+CD3+ ratio and FOXP3+CD3+/CD3+ ratio suggests the role of local regulatory T cells as a minimal control of the chronic allergen exposure in nasal mucosa.

  17. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Masayuki Ozawa

    2015-11-01

    Full Text Available Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca2+-dependent cell–cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell–cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell–cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell–cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.

  18. Comparison of central and local serial CT assessments of metastatic renal cell carcinoma patients in a clinical phase IIB study.

    Science.gov (United States)

    Felsch, Moritz; Zaim, Souhil; Dicken, Volker; Lehmacher, Walter; Scheuring, Urban J

    2017-02-01

    Background Clinical oncological studies attempt to improve precision of data by central radiological assessments. However, it is unclear, to which extent local and central assessments diverge. Purpose To quantify inter-reader variability and the deviation of local from central radiological assessments of computed tomography (CT) scans. Material and Methods This was a sub-study of a randomized clinical phase IIb trial in metastatic renal cell carcinoma (RCC), comparing first-line sorafenib with interferon-alpha-2a (IFN-α-2a). It analyzed agreements of local with central RECIST CT assessments by Cohen's kappa (κ), symmetry tests, deviations in waterfall plots, Bland-Altman plots, and parametric survival analyses. Results The concordance between local and central radiologic review was quantified by κ = 0.53. While local assessment yielded progressive disease (PD) in 18.6%, central assessment classified 22.5% of patient time points as PD exhibiting only a partial overlap with the 18.6% The tumor shrinkage rates in waterfall plots were 68.1% in local and 55.8% in central review (57.8% and 59% by Reader 1 and Reader 2). Bland-Altman plots identified a systematic shift of tumor change rates by -7.5% in local compared to central assessments, that may reflect a systematic tendency of more favorable results in local assessments. The discordance between local and central review was reflected by a time to progression (TTP) hazard ratio (HR) of 1.73 ( P = 0.0003). Conclusion These data suggest that central radiologic review may reduce technical measurement variability in clinical trials, which should be scrutinized in future studies compared to a volumetric reference.

  19. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines

    Directory of Open Access Journals (Sweden)

    Duncan Alice

    2012-10-01

    Full Text Available Abstract Background Fas expression and Fas-induced apoptosis are mechanisms attributed to the selective destruction of cells of the corpus luteum (CL during luteal regression. In certain cell-types, sensitivity to these death-inducing mechanisms is due to the loss or cleavage of keratin-containing intermediate filaments. Specifically, keratin 8/18 (K8/K18 filaments are hypothesized to influence cell death in part by regulating Fas expression at the cell surface. Methods Here, Fas expression on bovine luteal cells was quantified by flow cytometry during the early (Day 5, postovulation and late stages (Days 16–18, postovulation of CL function, and the relationship between Fas expression, K8/K18 filament expression and cytokine-induced cell death in vitro was evaluated. Results Both total and cell surface expression of Fas on luteal cells was greater for early versus late stage bovine CL (89% vs. 44% of cells for total Fas; 65% vs.18% of cells for cell surface Fas; respectively, P0.05, n=4 CL/stage, despite evidence these conditions increased Fas expression on HepG2 cells (P0.05 or stage of CL (P>0.05, n= 4 CL/stage on this outcome. Conclusion In conclusion, we rejected our null hypothesis that the cell surface expression of Fas does not differ between luteal cells of early and late stage CL. The results also did not support the idea that K8/K18 filaments influence the expression of Fas on the surface of bovine luteal cells. Potential downstream effects of these filaments on death signaling, however, remain a possibility. Importantly, the elevated expression of Fas observed on cells of early stage bovine CL compared to late stage bovine CL raises a provocative question concerning the physiological role(s of Fas in the corpus luteum, particularly during early luteal development.

  20. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.

    Science.gov (United States)

    Cartagena, Alexander; Raman, Arvind

    2014-03-04

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    Science.gov (United States)

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state. PMID:24204687

  2. The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression

    DEFF Research Database (Denmark)

    Smidt, Kamille; Larsen, Agnete; Brønden, Andreas

    2016-01-01

    Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage...... in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic...... beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose...

  3. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo.

    Science.gov (United States)

    Taichman, Russell S; Wang, Zhuo; Shiozawa, Yusuke; Jung, Younghun; Song, Junhui; Balduino, Alex; Wang, Jincheng; Patel, Lalit R; Havens, Aaron M; Kucia, Magdalena; Ratajczak, Mariusz Z; Krebsbach, Paul H

    2010-10-01

    A prospective in vivo assay was used to identify cells with potential for multiple lineage differentiation. With this assay, it was first determined that the 5-fluorouracil resistant cells capable of osseous tissue formation in vivo also migrated toward stromal derived factor-1 (SDF-1) in vitro. In parallel, an isolation method based on fluorescence-activated cell sorting was employed to identify a very small cell embryonic-like Lin-/Sca-1+CD45- cell that with as few as 500 cells was capable of forming bone-like structures in vivo. Differential marrow fractionation studies determined that the majority of the Lin-Sca-1+CD45- cells reside in the subendosteal regions of marrow. To determine whether these cells were capable of differentiating into multiple lineages, stromal cells harvested from Col2.3 Delta TK mice were implanted with a gelatin sponge into SCID mice to generate thymidine kinase sensitive ossicles. At 1.5 months, 2,000 green fluorescent protein (GFP)+ Lin-Sca-1+CD45- cells were injected into the ossicles. At harvest, colocalization of GFP-expressing cells with antibodies to the osteoblast-specific marker Runx-2 and the adipocyte marker PPAP gamma were observed. Based on the ability of the noncultured cells to differentiate into multiple mesenchymal lineages in vivo and the ability to generate osseous tissues at low density, we propose that this population fulfills many of the characteristics of mesenchymal stem cells.

  4. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Science.gov (United States)

    Fleissner, Diana; Hansen, Wiebke; Geffers, Robert; Buer, Jan; Westendorf, Astrid M

    2010-10-20

    In contrast to intestinal CD4(+) regulatory T cells (T(regs)), the generation and function of immunomodulatory intestinal CD8(+) T cells is less well defined. To dissect the immunologic mechanisms of CD8(+) T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. HA-specific CD8(+) T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+) and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+)Foxp3(+) T cells. Antigen-experienced CD8(+) T cells in this transgenic mouse model suppressed the proliferation of CD8(+) and CD4(+) T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+) T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+) T(reg) subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+)Foxp3(+) T cells. We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+) T(regs)in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  5. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Diana Fleissner

    Full Text Available BACKGROUND: In contrast to intestinal CD4(+ regulatory T cells (T(regs, the generation and function of immunomodulatory intestinal CD8(+ T cells is less well defined. To dissect the immunologic mechanisms of CD8(+ T cell function in the mucosa, reactivity against hemagglutinin (HA expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. METHODOLOGY AND PRINCIPAL FINDINGS: HA-specific CD8(+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+Foxp3(+ T cells. Antigen-experienced CD8(+ T cells in this transgenic mouse model suppressed the proliferation of CD8(+ and CD4(+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+ T(reg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+Foxp3(+ T cells. CONCLUSION AND SIGNIFICANCE: We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+ T(regsin vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  6. Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida).

    Science.gov (United States)

    Yushin, Vladimir V; Claeys, Myriam; Bert, Wim

    2016-10-01

    The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of

  7. Local pulsatile PTH delivery regenerates bone defect via enhanced bone remodeling in a cell-free scaffold

    Science.gov (United States)

    Dang, Ming; Koh, Amy J.; Jin, Xiaobing; McCauley, Laurie K.; Ma, Peter X.

    2016-01-01

    Parathyroid hormone (PTH) is currently the only FDA-approved anabolic drug to treat osteoporosis, and is systemically administered through daily injections. A new local pulsatile PTH delivery device was developed from biodegradable polymers to expand PTH’s application from osteoporosis treatment to spatially controlled local bone defect regeneration in this work. This is the first time that local pulsatile PTH delivery has been demonstrated to promote bone regeneration via enhanced bone remodeling. The biodegradable delivery device was designed to locally deliver PTH in a preprogrammed pulsatile manner. The PTH delivery was utilized to facilitate the regeneration of a bone defect spatially defined with a cell-free biomimetic nanofibrous (NF) scaffold. The local pulsatile PTH delivery (daily pulse for 21 days) not only promoted the regeneration of a critical-sized bone defect with negligible systemic side effects in a mouse model, but also advantageously achieved higher quality regenerated bone than the standard systemic PTH injection. These results demonstrate a promising and novel pulsatile PTH delivery device for spatially defined local bone regeneration. PMID:27835763

  8. Local pulsatile PTH delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold.

    Science.gov (United States)

    Dang, Ming; Koh, Amy J; Jin, Xiaobing; McCauley, Laurie K; Ma, Peter X

    2017-01-01

    Parathyroid hormone (PTH) is currently the only FDA-approved anabolic drug to treat osteoporosis, and is systemically administered through daily injections. A new local pulsatile PTH delivery device was developed from biodegradable polymers to expand the application of PTH from systemic treatment to spatially controlled local bone defect regeneration in this work. This is the first time that local pulsatile PTH delivery has been demonstrated to promote bone regeneration via enhanced bone remodeling. The biodegradable delivery device was designed to locally deliver PTH in a preprogrammed pulsatile manner. The PTH delivery was utilized to facilitate the regeneration of a bone defect spatially defined with a cell-free biomimetic nanofibrous (NF) scaffold. The local pulsatile PTH delivery (daily pulse for 21 days) not only promoted the regeneration of a critical-sized bone defect with negligible systemic side effects in a mouse model, but also advantageously achieved higher quality regenerated bone than the standard systemic PTH injection. These results demonstrate a promising and novel pulsatile PTH delivery device for spatially defined local bone regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Development and experimental basis of local subretinal technique of xenogenic’s injection stem cells labelled by magnetic perticles

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2014-10-01

    Full Text Available Purpose: is to develop a technique for local subretinal injection of xenogeneic stem cells labeled with magnetic particles and to prove experimentally its effectiveness.Material and methods: We used a line of stem cells HEK-293 GFP,labeled with magnetic particles. The study was made on 84 eyes of 42 chinchilla rabbits 6 months of age, the weight were from 2.5 to 3.5 kg. All right eyes were experimental (42 eyes and all left eyes (42 eyes were the control group. In the experimental group we used original complex of polymer elastic magnetic implant (PEMI with laser probe and fixed it to the sclera, then we made a median vitrectomy and injected HEK-293 GFP under the retina using a specially designed dispenser. In the control group PEMI was not fixed. We examined animals using biomicroscopy, ophthalmoscopy, ultrasound scanning, optical coherence tomography  OCT, computer tomography (CT, morphological study (cryohistological sections in 1, 3, 5, 7, 14 day and 1 month after surgery.Results: According the results of biomicroscopy in observation periods up to 3 days the vascular injection was visualized in the area operation. According the results of ophthalmoscopy and ultrasound scanning in 1 day the local retinal detachment was visualized in the area of local injection of the stem cells, which was not visualized in terms of further observations. CT helped us to confirm the local place of PEMI fixation. The morphological study results showed that cells were located in the subretinal space up to 14 days in the experimental group, and only up 3 days in the control group.Conclusion: The suggested surgical technique enables to control the injection of cells into the subretinal space, reduces the risk of tissue damage and exit cells in the vitreous space. The suggested methodology allows the fixing of the cellular material in the local place of the injection and enables to predict cells`s movement.

  10. Development and experimental basis of local subretinal technique of xenogenic’s injection stem cells labelled by magnetic perticles

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2014-01-01

    Full Text Available Purpose: is to develop a technique for local subretinal injection of xenogeneic stem cells labeled with magnetic particles and to prove experimentally its effectiveness.Material and methods: We used a line of stem cells HEK-293 GFP,labeled with magnetic particles. The study was made on 84 eyes of 42 chinchilla rabbits 6 months of age, the weight were from 2.5 to 3.5 kg. All right eyes were experimental (42 eyes and all left eyes (42 eyes were the control group. In the experimental group we used original complex of polymer elastic magnetic implant (PEMI with laser probe and fixed it to the sclera, then we made a median vitrectomy and injected HEK-293 GFP under the retina using a specially designed dispenser. In the control group PEMI was not fixed. We examined animals using biomicroscopy, ophthalmoscopy, ultrasound scanning, optical coherence tomography  OCT, computer tomography (CT, morphological study (cryohistological sections in 1, 3, 5, 7, 14 day and 1 month after surgery.Results: According the results of biomicroscopy in observation periods up to 3 days the vascular injection was visualized in the area operation. According the results of ophthalmoscopy and ultrasound scanning in 1 day the local retinal detachment was visualized in the area of local injection of the stem cells, which was not visualized in terms of further observations. CT helped us to confirm the local place of PEMI fixation. The morphological study results showed that cells were located in the subretinal space up to 14 days in the experimental group, and only up 3 days in the control group.Conclusion: The suggested surgical technique enables to control the injection of cells into the subretinal space, reduces the risk of tissue damage and exit cells in the vitreous space. The suggested methodology allows the fixing of the cellular material in the local place of the injection and enables to predict cells`s movement.

  11. Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells.

    Science.gov (United States)

    Robert, Damien; Fayol, Delphine; Le Visage, Catherine; Frasca, Guillaume; Brulé, Séverine; Ménager, Christine; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2010-03-01

    The in vitro generation of engineered tissue constructs involves the seeding of cells into porous scaffolds. Ongoing challenges are to design scaffolds to meet biochemical and mechanical requirements and to optimize cell seeding in the constructs. In this context, we have developed a simple method based on a magnetic tweezer set-up to manipulate, probe, and position magnetic objects inside a porous scaffold. The magnetic force acting on magnetic objects of various sizes serves as a control parameter to retrieve the local viscosity of the scaffolds internal channels as well as the stiffness of the scaffolds pores. Labeling of human stem cells with iron oxide magnetic nanoparticles makes it possible to perform the same type of measurement with cells as probes and evaluate their own microenvironment. For 18 microm diameter magnetic beads or magnetically labeled stem cells of similar diameter, the viscosity was equivalently equal to 20 mPa s in average. This apparent viscosity was then found to increase with the magnetic probes sizes. The stiffness probed with 100 microm magnetic beads was found in the 50 Pa range, and was lowered by a factor 5 when probed with cells aggregates. The magnetic forces were also successfully applied to the stem cells to enhance the cell seeding process and impose a well defined spatial organization into the scaffold. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Locally-regionally advanced tonsillar squamous cell carcinoma treated with concurrent chemoradiotherapy

    International Nuclear Information System (INIS)

    Krstevska, Valentina; Stojkovski, Igor

    2013-01-01

    Purpose: To perform a retrospective review of stage III-IV squamous cell carcinoma of the tonsil managed by definitive concurrent chemoradiotherapy (CCRT) in order to analyze the patients’ outcome and to evaluate the acute and late toxic effects of this treatment modality. Material and methods: Between January 2005 and December 2010, 36 patients with locally and/or regionally advanced tonsillar cancer underwent three dimensional conformal radiotherapy (3DCRT) with concurrent platinum-based chemotherapy. The dose prescription of the planning target volume for gross tumor and low-risk subclinical disease was 70 Gy and 50 Gy, respectively. Conventional fractionation with a daily dose of 2.0 Gy, 5 times per week was used. Concurrent chemotherapy consisted of cisplatin 30 mg/m2 given on a weekly basis. Acute and late radiotherapy-related toxicities were recorded using European Organization for Research and Treatment of Cancer/Radiation Therapy Oncology Group (EORTC/RTOG) grading system. The 3-year locoregional relapse-free survival (LRRFS), disease-free survival (DFS), and overall survival (OS) rates were calculated using the Kaplan-Meier method. Results: The median follow-up of all patients was 20.5 months (range, 5 to 90 months). The median followup of living patients was 59 months (range, 30 to 90 months). Complete response rates of the primary tumor and of the nodal disease were 72.2% and 64.0%, respectively. A complete composite response was present in 25 patients (69.4%). Treatment failure occurred in 15 out of 25 patients who achieved complete composite response following CCRT. The 3-year LRRFS, DFS, and OS rate was 38.8%, 27.8%, and 27.3%, respectively. Grade 3 mucositis occurred in 58.3% of patients. Xerostomia grade 2 was revealed in 72.2% of patients. Conclusion: Taking into account the low 3-year survival rates observed in our study and the high percentage of grade 2 xerostomia, it can be concluded that in the future, instead of 3DCRT with concurrent

  13. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine.

    Science.gov (United States)

    Park, Eulsoon; Cho, Hong-Baek; Takimoto, Koichi

    2015-05-01

    Adipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. We used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. Transfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide-DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide-conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. The devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishnan, Gayathri; Sun, Yang; Tan, Si Kee [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lin, Valerie C.L., E-mail: cllin@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2009-05-01

    Tripartite motif-containing 22 (TRIM22) exhibits antiviral and growth inhibitory properties, but there has been no study on the localization and dynamics of the endogenous TRIM22 protein. We report here that TRIM22 is dramatically induced by progesterone in MDA-MB-231-derived ABC28 cells and T47D cells. This induction was associated with an increase in TRIM22 nuclear bodies (NB), and an even more prominent increase in nucleolar TRIM22 bodies. Distinct endogenous TRIM22 NB were also demonstrated in several other cell lines including MCF7 and HeLa cells. These TRIM22 NB resemble Cajal bodies, co-localized with these structures and co-immunoprecipitated with p80-coilin. However, IFN{gamma}-induced TRIM22 in HeLa and MCF7 cells did not form NB, implying the forms and distribution of TRIM22 are regulated by specific cellular signals. This notion is also supported by the observation that TRIM22 NB undergoes dynamic cell-cycle dependent changes in distribution such that TRIM22 NB started to form in early G0/G1 but became dispersed in the S-phase. In light of its potential antiviral and antitumor properties, the findings here provide an interesting gateway to study the relationship between the different forms and functions of TRIM22.

  15. Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2017-07-01

    Full Text Available AimWe have previously demonstrated the putative presence of two cancer stem cell (CSC subpopulations within moderately differentiated oral tongue squamous cell carcinoma (MDOTSCC, which express components of the renin–angiotensin system (RAS. In this study, we investigated the expression and localization of cathepsins B, D, and G in relation to these CSC subpopulations within MDOTSCC.Methods3,3-Diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining was performed on MDOTSCC samples to determine the expression and localization of cathepsins B, D, and G in relation to the CSC subpopulations. NanoString mRNA analysis and colorimetric in situ hybridization (CISH were used to study their transcripts expression. Enzyme activity assays were performed to determine the activity of these cathepsins in MDOTSCC.ResultsIHC staining demonstrated expression of cathepsins B, D, and G in MDOTSCC. Cathepsins B and D were localized to CSCs within the tumor nests, while cathepsin B was localized to the CSCs within the peri-tumoral stroma, and cathepsin G was localized to the tryptase+ phenotypic mast cells within the peri-tumoral stroma. NanoString and CISH mRNA analyses confirmed transcription activation of cathepsins B, D, and G. Enzyme activity assays confirmed active cathepsins B and D, but not cathepsin G.ConclusionThe presence of cathepsins B and D on the CSCs and cathspsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for MDOTSCC.

  16. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure-Activity Relationships.

    Science.gov (United States)

    Okubo, Shinya; Uto, Takuhiro; Goto, Aya; Tanaka, Hiroyuki; Nishioku, Tsuyoshi; Yamada, Katsushi; Shoyama, Yukihiro

    2017-01-01

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.

  17. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  18. Direct RNA sequencing mediated identification of mRNA localized in protrusions of human MDA-MB-231 metastatic breast cancer cells

    DEFF Research Database (Denmark)

    Jakobsen, Kristine Raaby; Sørensen, Emilie; Brøndum, Karin Kathrine

    2013-01-01

    To describe genome wide RNA localized in protrusions of the metastatic human breast cancer cell line MDA-MB-231 we used Boyden chamber based methodology followed by direct mRNA sequencing. Results In the hereby identified group of protrusion localized mRNA some previously were described to be localized...... localized transcripts represents novel candidates to mediate cancer cell subcellular region specific functions through mRNA direction to protrusions. We included a further characterization of p0071, an armadillo repeat protein of adherence junctions and desmosomes, in MDA-MB-231 and non-metastatic MCF7...... in protrusions of MDA-MB-231 metastatic cancer cells...

  19. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  20. Hydrogen sulfide detection based on reflection: from a poison test approach of ancient China to single-cell accurate localization.

    Science.gov (United States)

    Kong, Hao; Ma, Zhuoran; Wang, Song; Gong, Xiaoyun; Zhang, Sichun; Zhang, Xinrong

    2014-08-05

    With the inspiration of an ancient Chinese poison test approach, we report a rapid hydrogen sulfide detection strategy in specific areas of live cells using silver needles with good spatial resolution of 2 × 2 μm(2). Besides the accurate-localization ability, this reflection-based strategy also has attractive merits of convenience and robust response when free pretreatment and short detection time are concerned. The success of endogenous H2S level evaluation in cellular cytoplasm and nuclear of human A549 cells promises the application potential of our strategy in scientific research and medical diagnosis.

  1. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G

    OpenAIRE

    Spurny, Christian; Kailayangiri, Sareetha; Altvater, Bianca; Jamitzky, Silke; Hartmann, Wolfgang; Wardelmann, Eva; Ranft, Andreas; Dirksen, Uta; Amler, Susanne; Hardes, Jendrik; Fluegge, Maike; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Rossig, Claudia

    2017-01-01

    Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-Gpos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 ...

  2. A role for aberrantly expressed nuclear localized decorin in migration and invasion of dysplastic and malignant oral epithelial cells.

    Science.gov (United States)

    Dil, Nyla; Banerjee, Abhijit G

    2011-09-29

    Oral cancer is the sixth most common malignancy worldwide with a mortality rate that is higher than many other cancers. Death usually occurs as a result of local invasion and regional lymph node metastases. Decorin is a multifunctional proteoglycan of the extracellular matrix that affects the biology of various types of cancer. Previously; we have shown that decorin is aberrantly expressed in the nucleus in human dysplastic oral keratinocytes (DOK) and malignant squamous cells carcinoma (SCC-25) and human biopsy tissues. In this study, we examined the role of nuclear decorin in oral cancer progression. We have used a post-transcriptional gene silencing (RNA interference) approach to stably knockdown nuclear decorin gene expression in DOK and SCC-25 cells using a specific shRNA plasmid and a combination of immunological and molecular techniques to study nuclear decorin function in these oral epithelial cell lines. More than 80% decorin silencing/knockdown was achieved as confirmed by real time PCR and western blot analysis in both DOK and SCC-25 cells. This RNA interference-mediated knockdown of nuclear decorin expression resulted in significantly reduced invasion and migration in these cell lines as measured by Matrigel™ coated and uncoated Trans well chamber assays respectively. Decorin silencing also resulted in reduced IL-8 mRNA and proteins levels in these cell lines. Culturing decorin silenced DOK and SCC-25 cells, with recombinant human IL-8 or IL-8 containing conditioned medium from respective un-transfected cells for 24 h prior to migration and invasion experiments, resulted in the salvation of reduced migration and invasion phenotype. Furthermore, we found that nuclear localized decorin interacts with EGFR in the nuclear fractions of both DOK and SCC-25 cells. Interestingly, EGFR (trans) activation has previously been shown to be involved in IL-8 production in various epithelia. Taken together, our results indicate that nuclear localized decorin plays an

  3. Changes in T cell populations due to local irradiation of a portion of the maxilla in mice

    International Nuclear Information System (INIS)

    Satoh, Daigo

    1997-01-01

    The aim of this study was to investigate the changes in the immune organs after head and neck irradiation. The numbers of lymphocytes in peripheral blood, the spleen and the thymus following local irradiation of a portion of the maxilla in mice were studied using three-color fluorometry and were compared with a non-irradiation group. In the peripheral blood, the absolute numbers of T cells, CD4 + SP cells and CD8 + SP cells decreased after irradiation, and the period of the decrease was longer than the decreases in number of leukocytes and lymphocytes. The ratio of CD4 + SP cells showed a significant decrease, and the ratio of CD8+ S P cells showed a significant increase 1 day after irradiation. In the spleen, the absolute number of T cells, the radio of CD4 + SP and CD8 + SP cell subsets showed a decrease, and the period of the decrease was longer than the decrease of the wet-weight of the spleen, and also longer than the decrease of the number of leukocytes. The number of CD4 + SP cells showed a signigicant increase, and CD8 + SP cells showed a significant decrease 21 days after irradiation. In the thymus, the absolute number of TCR αβ-thymocytes did not show a significant decrease. However, the number of DN thymocytes showed a marked decrease. These results indicate that the numbers of T cells in peripheral blood, the spleen and the thymus change immediately after irradiation, and the numbers of lymphocytes and the T cells in the spleen recover more slowly than that in the peripheral blood. As lymphoid tissues showed the suppression of immunological response for a long period, it was suggested that lymphoid tissues have to be observed carefully after irradiation to prevent cancer metastasis. (K.H.)

  4. Cellular localization of debromohymenialdisine and hymenialdisine in the marine sponge Axinella sp. using a newly developed cell purification protocol.

    Science.gov (United States)

    Song, Yue-Fan; Qu, Yi; Cao, Xu-Peng; Zhang, Wei

    2011-10-01

    Sponges (Porifera), as the best known source of bioactive marine natural products in metazoans, play a significant role in marine drug discovery and development. As sessile filter-feeding animals, a considerable portion of the sponge biomass can be made of endosymbiotic and associated microorganisms. Understanding the cellular origin of targeted bioactive compounds from sponges is therefore important not only for providing chemotaxonomic information but also for defining the bioactive production strategy in terms of sponge aquaculture, cell culture, or fermentation of associated bacteria. The two alkaloids debromohymenialdisine (DBH) and hymenialdisine (HD), which are cyclin-dependent kinase inhibitors with pharmacological activities for treating osteoarthritis and Alzheimer's disease, have been isolated from the sponge Axinella sp. In this study, the cellular localization of these two alkaloids was determined through the quantification of these alkaloids in different cell fractions by high-performance liquid chromatography (HPLC). First, using a differential centrifugation method, the dissociated cells were separated into different groups according to their sizes. The two bioactive alkaloids were mainly found in sponge cells obtained from low-speed centrifugation. Further cell purifications were accomplished by a newly developed multi-step protocol. Four enriched cell fractions (C1, C2, C3, and C4) were obtained and subjected to light and transmission electron microscopy, cytochemical staining, and HPLC quantification. Compared to the low concentrations in other cell fractions, DBH and HD accounted for 10.9% and 6.1%, respectively, of dry weight in the C1 fraction. Using the morphological characteristics and cytochemical staining results, cells in the C1 fraction were speculated to be spherulous cells. This result shows that DBH and HD in Axinella sp. are located in sponge cells and mostly stored in spherulous cells.

  5. Local recurrences after curettage and cementing in long bone giant cell tumor

    Directory of Open Access Journals (Sweden)

    Kabul C Saikia

    2011-01-01

    Conclusion: We observed higher rate of local recurrence with Campanacci′s Grade III GCTs. We recommend selective use of this procedure in Grade III lesions, particularly with extensive soft tissue involvement.

  6. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus

    OpenAIRE

    Zanta, Maria Antonietta; Belguise-Valladier, Pascale; Behr, Jean-Paul

    1999-01-01

    Translocation of exogenous DNA through the nuclear membrane is a major concern of gene delivery technologies. To take advantage of the cellular import machinery, we have synthesized a capped 3.3-kbp CMVLuciferase-NLS gene containing a single nuclear localization signal peptide (PKKKRKVEDPYC). Transfection of cells with the tagged gene remained effective down to nanogram amounts of DNA. Transfection enhancement (10- to 1,000-fold) as a result of the signal peptide was observed irrespective of ...

  7. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  8. Target organ localization of memory CD4(+) T cells in patients with chronic beryllium disease.

    Science.gov (United States)

    Fontenot, Andrew P; Canavera, Scott J; Gharavi, Laia; Newman, Lee S; Kotzin, Brian L

    2002-11-01

    Chronic beryllium disease (CBD) is caused by exposure to beryllium in the workplace, and it remains an important public health concern. Evidence suggests that CD4(+) T cells play a critical role in the development of this disease. Using intracellular cytokine staining, we found that the frequency of beryllium-specific CD4(+) T cells in the lungs (bronchoalveolar lavage) of 12 CBD patients ranged from 1.4% to 29% (mean 17.8%), and these T cells expressed a Th1-type phenotype in response to beryllium sulfate (BeSO(4)). Few, if any, beryllium-specific CD8(+) T cells were identified. In contrast, the frequency of beryllium-responsive CD4(+) T cells in the blood of these subjects ranged from undetectable to 1 in 500. No correlation was observed between the frequency of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells as detected by intracellular staining and lymphocyte proliferation in culture after BeSO(4) exposure. Staining for surface marker expression showed that nearly all BAL T cells exhibit an effector memory cell phenotype. These results demonstrate a dramatically high frequency and compartmentalization of antigen-specific effector memory CD4(+) cells in the lungs of CBD patients. These studies provide insight into the phenotypic and functional characteristics of antigen-specific T cells invading other inaccessible target organs in human disease.

  9. Intracellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Absence of Nucleolar Accumulation during Infection and after Expression as a Recombinant Protein in Vero Cells

    OpenAIRE

    Rowland, Raymond R. R.; Chauhan, Vinita; Fang, Ying; Pekosz, Andrew; Kerrigan, Maureen; Burton, Miriam D.

    2005-01-01

    The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS)...

  10. Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy.

    Science.gov (United States)

    Schliehe, Christopher; Schliehe, Constanze; Thiry, Marc; Tromsdorf, Ulrich I; Hentschel, Joachim; Weller, Horst; Groettrup, Marcus

    2011-05-10

    Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Receptors for corticotropin-releasing hormone in human pituitary: Binding characteristics and autoradiographic localization to immunocytochemically defined proopiomelanocortin cells

    Energy Technology Data Exchange (ETDEWEB)

    Smets, G.; Vauquelin, G.; Moons, L.; Smitz, J.; Kloeppel, G. (Department of Experimental Pathology, Vrije Universiteit Brussel (Belgium))

    1991-08-01

    Using autoradiography combined with immunocytochemistry, the authors demonstrated that the target cells of CRH in the human pituitary were proopiomelanocortin cells. Scatchard analysis of (125I)Tyr0-oCRH saturation binding revealed the presence of one class of saturable, high affinity sites on pituitary tissue homogenate. The equilibrium dissociation constant (Kd) for (125I)Tyr0-oCRH ranged from 1.1-1.6 nM, and the receptor density was between 200-350 fmol/mg protein. Fixation of cryostat sections with 4% paraformaldehyde before tracer incubation improved both tissue preservation and localization of the CRH receptor at the cellular level. Additional postfixation with 1% glutaraldehyde inhibited tracer diffusion during subsequent immunocytochemistry and autoradiography. (125I)Tyr0-oCRH was found in cytoplasmic inclusions or at the cell periphery of ACTH/beta-endorphin cells in the anterior pituitary. Single cells of the posterior pituitary were also CRH receptor positive. Cells staining for PRL or GH were CRH receptor negative. They conclude that CRH binds only to high affinity receptors on ACTH/{beta}-endorphin cells in the human pituitary.

  12. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. NKT cell activation by local α-galactosylceramide administration decreases susceptibility to HSV-2 infection

    DEFF Research Database (Denmark)

    Iversen, Marie Beck; Jensen, Simon Kok; Hansen, Anne Louise

    2015-01-01

    NKT cells are a subgroup of T cells, which express a restricted TCR repertoire and are critical for the innate immune responses to viral infections. Activation of NKT cells depends on the major histocompatibility complex-related molecule CD1d, which presents bioactive lipids to NKT cells....... The marine sponge derived lipid αGalCer has recently been demonstrated as a specific agonist for activation of human and murine NKT cells. In the present study we investigated the applicability of αGalCer pre-treatment for immune protection against intra-vaginal HSV-2 infection. We found that C57BL/6 WT mice...... in vaginal tissue and elevated levels of IFN-γ in the vaginal tissue and in vaginal fluids 24h after αGalCer pre-treatment. Collectively our data demonstrate a protective effect of αGalCer induced activation of NKT cells in the innate immune protection against viral infection....

  14. Local Application of Isogenic Adipose-Derived Stem Cells Restores Bone Healing Capacity in a Type 2 Diabetes Model.

    Science.gov (United States)

    Wallner, Christoph; Abraham, Stephanie; Wagner, Johannes Maximilian; Harati, Kamran; Ismer, Britta; Kessler, Lukas; Zöllner, Hannah; Lehnhardt, Marcus; Behr, Björn

    2016-06-01

    Bone regeneration is typically a reliable process without scar formation. The endocrine disease type 2 diabetes prolongs and impairs this healing process. In a previous work, we showed that angiogenesis and osteogenesis-essential steps of bone regeneration-are deteriorated, accompanied by reduced proliferation in type 2 diabetic bone regeneration. The aim of the study was to improve these mechanisms by local application of adipose-derived stem cells (ASCs) and facilitate bone regeneration in impaired diabetic bone regeneration. The availability of ASCs in great numbers and the relative ease of harvest offers unique advantages over other mesenchymal stem cell entities. A previously described unicortical tibial defect model was utilized in diabetic mice (Lepr(db-/-)). Isogenic mouse adipose-derived stem cells (mASCs)(db-/db-) were harvested, transfected with a green fluorescent protein vector, and isografted into tibial defects (150,000 living cells per defect). Alternatively, control groups were treated with Dulbecco's modified Eagle's medium or mASCs(WT). In addition, wild-type mice were identically treated. By means of immunohistochemistry, proteins specific for angiogenesis, cell proliferation, cell differentiation, and bone formation were analyzed at early (3 days) and late (7 days) stages of bone regeneration. Additionally, histomorphometry was performed to examine bone formation rate and remodeling. Histomorphometry revealed significantly increased bone formation in mASC(db-/db-)-treated diabetic mice as compared with the respective control groups. Furthermore, locally applied mASCs(db-/db-) significantly enhanced neovascularization and osteogenic differentiation. Moreover, bone remodeling was upregulated in stem cell treatment groups. Local application of mACSs can restore impaired diabetic bone regeneration and may represent a therapeutic option for the future. This study showed that stem cells obtained from fat pads of type 2 diabetic mice are capable of

  15. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.

    Science.gov (United States)

    Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten

    2011-07-01

    Engineered amorphous silica nanoparticles (SiO(2)-NPs) are widely used in dyes, varnishes, plastics and glue, as well as in pharmaceuticals, cosmetics and food. Novel composite SiO(2)-NPs are promising multifunctional devices and combine labels for subsequent tracking and are functionalized e.g. to specifically target cells to deliver their cargo. However, biological and potential toxic effects of SiO(2)-NPs are insufficiently understood. The aim of this study was to determine the uptake and fate of SiO(2)-NPs in mammalian cells. Also, silica submicron particles (SiO(2)-SMPs) were included in the studies in order to identify effects, which are only observed for nano-sized SiO(2) particles. Fluorescently labelled SiO(2)-NPs (nominal size 70 nm) and SiO(2)-SMPs (nominal size 200 and 500 nm) were used to examine cytotoxicity, cellular uptake and localization in human cervical carcinoma cells (HeLa). Particle uptake and intracellular localization in mitochondria, endosomes, lysosomes and nuclei were studied by wide field and confocal laser scanning fluorescence microscopy. Physicochemical characterization of SiO(2)-NPs by transmission electron microscopy and dynamic light scattering revealed a spherical morphology and a monodisperse size distribution. In the presence of serum, all SiO(2) particles are non-toxic. However, in the absence of serum SiO(2)-NPs but not SiO(2)-SMPs are highly toxic. SiO(2) particles, irrespective of size, were detected in the cytosol and accumulated in endosomal compartments of HeLa cells. No accumulation of SiO(2) particles in nuclei or mitochondria of HeLa cells could be observed. In contrast to SiO(2)-SMPs, SiO(2)-NPs are preferentially localized in lysosomes.

  16. Low-power, Confocal Imaging of Protein Localization in Living Cells (7214-150), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed technology genetically labels intracellular structures and visualizes protein interactions in living cells using a compact, confocal microscope with...

  17. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  18. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    Directory of Open Access Journals (Sweden)

    Rutger K. Balvers

    2014-08-01

    Full Text Available Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs, which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007. Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.

  19. DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Takeshi Yamaguchi

    2012-11-01

    DEADSouth mRNA is a component of germ plasm in Xenopus laevis and encodes a DDX25 DEAD-box RNA helicase. To determine the intracellular localization of DEADSouth protein, we injected mRNA encoding DEADSouth tagged with mCherry fluorescent protein into fertilized eggs from transgenic Xenopus expressing EGFP fused with a mitochondrial targeting signal. The DEADSouth-mCherry fusion protein was localized to the germ plasm, a mitochondria-rich region in primordial germ cells (PGCs. DEADSouth overexpression resulted in a reduction of PGC numbers after stage 20. Conversely, DEADSouth knockdown using an antisense locked nucleic acid gapmer inhibited movement of the germ plasm from the cortex to the perinuclear region, resulting in inhibition of PGC division at stage 12 and a decrease in PGC numbers at later stages. The knockdown phenotype was rescued by intact DEADSouth mRNA, but not mutant mRNA encoding inactive DEADSouth helicase. Surprisingly, it was also rescued by mouse vasa homolog and Xenopus vasa-like gene 1 mRNAs that encode DDX4 RNA helicases. The rescue was dependent on the 3′ untranslated region (3′UTR of DEADSouth mRNA, which was used for PGC-specific expression. The 3′UTR contributed to localization of the injected mRNA to the germ plasm, resulting in effective localization of DEADSouth protein. These results demonstrate that localization of DEADSouth helicase to the germ plasm is required for proper PGC development in Xenopus laevis.

  20. In situ localization of transketolase activity in epithelial cells of different rat tissues and subcellularly in liver parenchymal cells

    NARCIS (Netherlands)

    Boren, Joan; Ramos-Montoya, Antonio; Bosch, Klazien S.; Vreeling, Heleen; Jonker, Ard; Centelles, Josep J.; Cascante, Marta; Frederiks, Wilma M.

    2006-01-01

    Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in

  1. Effect of local UV irradiation of generative nuclei of Paramecium caudatum on sexual functions of the cells

    International Nuclear Information System (INIS)

    Skoblo, I.I.; Borkhsenius, O.N.

    1979-01-01

    The functions of micronucleus (MI) were studied in the period of the sexual process in Paramecium caudatum-infusoria the descendants of the cells, whose micronucleus was locally irradiated with UV rays at the dose of 3060 erg/mm 2 . It has been found that the descendants of the irradiated cells (the cells of UV clones) can be involved into the sexual process irrespoctive of the morphological type of their MI. Four out of forteen UV clones have changed the initial mating type for the opposite one. It is suggested that the change of the mating type is related to the changes of MI genome resulted from UV irradiation. The pathway of nuclear transformations in the course of sexual process was traced in cells of three UV clones. It has been found, that local UV irradiation of MI causes a number of deviations in the behaviour of MI derivatives in the metagamic part of the sexual process in the clones, whose MI have undergone substantial morphological changes. The exconjugants produced by crossing of UV clones with such changed MI and the normal test-clone were characterized by low viability

  2. Osteopontin Affects Insulin Vesicle Localization and Ca2+ Homeostasis in Pancreatic Beta Cells from Female Mice.

    Directory of Open Access Journals (Sweden)

    Anna Wendt

    Full Text Available Type 2 diabetic patients suffer from insulin resistance and reduced insulin secretion. Osteopontin (OPN, a versatile protein expressed in several tissues throughout the body including the islets of Langerhans, has previously been implicated in the development of insulin resistance. Here we have investigated the role of OPN in insulin secretion using an OPN knock out mouse model (OPN-/-. Ultra-structural analyzes of islets from OPN-/- and WT mice indicated weaker cell-cell connections between the islet cells in the OPN-/- mouse compared to WT. Analysis of the insulin granule distribution in the beta cells showed that although OPN-/- and WT beta cells have the same number of insulin granules OPN-/- beta cells have significantly fewer docked granules. Both OPN-/- and WT islets displayed synchronized Ca2+ oscillations indicative of an intact beta cell communication. OPN-/- islets displayed higher intracellular Ca2+ concentrations when stimulated with 16.7 mM glucose than WT islets and the initial dip upon elevated glucose concentrations (which is associated with Ca2+ uptake into ER was significantly lower in these islets. Glucose-induced insulin secretion was similar in OPN-/- and WT islets. Likewise, non-fasted blood glucose levels were the same in both groups. In summary, deletion of OPN results in several minor beta-cell defects that can be compensated for in a healthy system.

  3. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  4. Localized Carbon Deposition in Solid Oxide Electrolysis Cells Studied By Multiphysics Modeling

    DEFF Research Database (Denmark)

    Navasa, Maria; Graves, Christopher R.; Frandsen, Henrik Lund

    2016-01-01

    Modeling for optimizing performance has attracted substantial research efforts in the last twenty years with special focus on solid oxide fuel cells (SOFCs). However, limited amount of the modeling work has been focused on the solid oxide electrolysis cell (SOEC) operation mode and even less...

  5. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...

  6. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    PRAKASH

    There are many examples of directed cell movement by chemotaxis during the development of Dictyostelium discoideum, beginning with the aggregation process that initiates the multicellular stage of the life cycle, and ending with the elaborate coordinated cell movements that create the fruiting body stalk and basal disc, ...

  7. Localization of vanabins, vanadium-binding proteins, in the blood cells of the vanadium-rich ascidian, Ascidia sydneiensis samea.

    Science.gov (United States)

    Yamaguchi, Nobuo; Amakawa, Yuko; Yamada, Hiroshi; Ueki, Tatsuya; Michibata, Hitoshi

    2006-10-01

    Some species of the family Ascidiidae accumulate vanadium in concentrations in excess of 350 mM, which is about 10 (7)-fold higher than the concentration of vanadium in seawater. In these species, signet ring cells with a single large vacuole in which vanadium ions are contained function as vanadium-accumulating cells. These have been termed vanadocytes. We recently isolated five vanadium-binding proteins, which we named Vanabin1, Vanabin2, Vanabin3, Vanabin4, and VanabinP, from vanadocytes of the vanadium-rich ascidian Ascidia sydneiensis samea. In this study, we analyzed localization of the Vanabins in the blood cells of A. sydneiensis samea using monoclonal antibodies and confocal microscopy. The Vanabin1 and Vanabin2 proteins were found in the cytoplasm and/or in some organelles of vanadocytes. Vanabin3 was also detected in the cytoplasm, while Vanabin4 was found exclusively in the cytoplasmic membrane.

  8. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  9. Expression and localization of prohormone convertase PC1 in the calcitonin-producing cells of the bullfrog ultimobranchial gland.

    Science.gov (United States)

    Yaoi, Yuichi; Suzuki, Masakazu; Tomura, Hideaki; Kurabuchi, Shingo; Sasayama, Yuichi; Tanaka, Shigeyasu

    2003-11-01

    We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the ultimobranchial gland of the adult bullfrog using immunohistochemical (IHC) and in situ hybridization (ISH) techniques. In the ultimobranchial gland, PC1-immunoreactive cells were columnar, and were present in the follicular epithelium. When serial sections were immunostained with anti-calcitonin, anti-CGRP, anti-PC1, and anti-PC2 sera, PC1 was found only in the calcitonin/CGRP-producing cells. No PC2-immunopositive cells were detected. In the ISH, PC1 mRNA-positive cells were detected in the follicle cells in the ultimobranchial gland. No PC2 mRNA-positive cells were detected. RT-PCR revealed expression of the mRNAs of PC1 and the PC2 in the ultimobranchial gland. However, very little of the PC2 mRNA is probably translated because no PC2 protein was detected either by IHC staining or by Western blotting analysis. We conclude that the main prohormone convertase that is involved in the proteolytic cleavage of procalcitonin in the bullfrog is PC1.

  10. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig -like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro , cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  11. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells

    KAUST Repository

    Ferraro, Daniela

    2017-01-09

    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANES (μXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles.

  12. Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.

    Science.gov (United States)

    Zhu, Ting; Liang, Xing; Wang, Xiang-Ming; Shen, Kang

    2017-12-01

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  13. Localization of tritiated vitamin A in lymph nodes of the mouse: an autoradiographic study of vitamin A-storing cells

    International Nuclear Information System (INIS)

    Hirosawa, K.; Yamada, E.

    1981-01-01

    Localization of tritiated vitamin A in lymph nodes of the mouse was investigated by the use of light- and electron-microscopic autoradiography. Young male mice were fed a diet containing 3H-vitamin A acetate for a week. Lymph nodes were removed and prepared for autoradiography. Lipid droplets in fibroblast-like cells showed high concentrations of radioactivity. These cells were distributed around lymphatic sinuses and blood vessels. The cells can, therefore, be classified as ''vitamin A-storing cells'' according to criteria proposed earlier by Yamada and Hirosawa (1976). Control animals from the same litter were maintained on ordinary laboratory food for the same period and examined by electron microscopy. Lipid-droplet-containing cells were found in the same areas as in the experimental animals but in fewer numbers. This suggests that the increased number of vitamin A-containing lipid droplets is due to hypervitaminosis A in the experimental animals. The presence of some cells containing these droplets in the control animals would imply that even under normal feeding conditions the animals ingested excess amounts of vitamin A, which was retained in lipid droplets. The stored vitamin A probably participates in metabolic processes such as the formation of glycoproteins in ground substance

  14. Decorin in Human Colon Cancer: Localization In Vivo and Effect on Cancer Cell Behavior In Vitro.

    Science.gov (United States)

    Nyman, Marie C; Sainio, Annele O; Pennanen, Mirka M; Lund, Riikka J; Vuorikoski, Sanna; Sundström, Jari T T; Järveläinen, Hannu T

    2015-09-01

    Decorin is generally recognized as a tumor suppressing molecule. Nevertheless, although decorin has been shown to be differentially expressed in malignant tissues, it has often remained unclear whether, in addition to non-malignant stromal cells, cancer cells also express it. Here, we first used two publicly available databases to analyze the current information about decorin expression and immunoreactivity in normal and malignant human colorectal tissue samples. The analyses demonstrated that decorin expression and immunoreactivity may vary in cancer cells of human colorectal tissues. Therefore, we next examined decorin expression in normal, premalignant and malignant human colorectal tissues in more detail using both in situ hybridization and immunohistochemistry for decorin. Our results invariably demonstrate that malignant cells within human colorectal cancer tissues are devoid of both decorin mRNA and immunoreactivity. Identical results were obtained for cells of neuroendocrine tumors of human colon. Using RT-qPCR, we showed that human colon cancer cell lines are also decorin negative, in accordance with the above in vivo results. Finally, we demonstrate that decorin transduction of human colon cancer cell lines causes a significant reduction in their colony forming capability. Thus, strategies to develop decorin-based adjuvant therapies for human colorectal malignancies are highly rational. © The Author(s) 2015.

  15. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma.

    Science.gov (United States)

    Motzer, Robert J; Haas, Naomi B; Donskov, Frede; Gross-Goupil, Marine; Varlamov, Sergei; Kopyltsov, Evgeny; Lee, Jae Lyun; Melichar, Bohuslav; Rini, Brian I; Choueiri, Toni K; Zemanova, Milada; Wood, Lori A; Reaume, M Neil; Stenzl, Arnulf; Chowdhury, Simon; Lim, Ho Yeong; McDermott, Ray; Michael, Agnieszka; Bao, Weichao; Carrasco-Alfonso, Marlene J; Aimone, Paola; Voi, Maurizio; Doehn, Christian; Russo, Paul; Sternberg, Cora N

    2017-12-10

    Purpose This phase III trial evaluated the efficacy and safety of pazopanib versus placebo in patients with locally advanced renal cell carcinoma (RCC) at high risk for relapse after nephrectomy. Patients and Methods A total of 1,538 patients with resected pT2 (high grade) or ≥ pT3, including N1, clear cell RCC were randomly assigned to pazopanib or placebo for 1 year; 403 patients received a starting dose of 800 mg or placebo. To address toxicity attrition, the 800-mg starting dose was lowered to 600 mg, and the primary end point analysis was changed to disease-free survival (DFS) for pazopanib 600 mg versus placebo (n = 1,135). Primary analysis was performed after 350 DFS events in the intent-to-treat (ITT) pazopanib 600 mg group (ITT 600mg ), and DFS follow-up analysis was performed 12 months later. Secondary end point analyses included DFS with ITT pazopanib 800 mg (ITT 800mg ) and safety. Results The primary analysis results of DFS ITT 600mg favored pazopanib but did not show a significant improvement over placebo (hazard ratio [HR], 0.86; 95% CI, 0.70 to 1.06; P = .165). The secondary analysis of DFS in ITT 800mg (n = 403) yielded an HR of 0.69 (95% CI, 0.51 to 0.94). Follow-up analysis in ITT 600mg yielded an HR of 0.94 (95% CI, 0.77 to 1.14). Increased ALT and AST were common adverse events leading to treatment discontinuation in the pazopanib 600 mg (ALT, 16%; AST, 5%) and 800 mg (ALT, 18%; AST, 7%) groups. Conclusion The results of the primary DFS analysis of pazopanib 600 mg showed no benefit over placebo in the adjuvant setting.

  16. Localization of splenic cells with antigen-transporting capability in the chicken.

    Science.gov (United States)

    del Cacho, E; Gallego, M; Arnal, C; Bascuas, J A

    1995-01-01

    The objective of the present study is to investigate the migration pattern of the splenic dendritic cell of the chicken named the ellipsoid-associated cell (EAC) from the site of initial location at the periphery of the ellipsoid to the splenic T- and B-dependent areas. Bovine serum albumin bound to biotin and conjugated to gold particles was used as a histochemically identifiable antigen detected as a peroxidase reaction. The antigen was intravenously injected, and subsequently its pattern of distribution in a time sequence and within the tissue was examined at the light and electron microscopy levels. In addition, an hour prior to sacrifice, the chickens received a single injection of the thymidine analogue 5-bromo-2'-deoxyuridine, in order to quantify the number of DNA synthesizing cells and to establish a relationship between the migrating EAC and the rate of mitosis in the white pulp. The observations showed that between 12 hours and 3 days after the second antigen administration the labeled EAC, which was first located around the ellipsoid, progressively reached further areas with time towards the periarteriolar lymphoid sheaths, where newly formed germinal centers appeared. Furthermore, the rate of cell proliferation within the white pulp was associated with the arrival of the antigen-transporting EAC. The results suggest that migrating EAC have a role as both antigen-transporting cell and antigen-presenting cell in the T- and B-dependent areas, as a result of which migrating EAC is transiently found in periellipsoidal white pulp, then periarteriolar lymphoid sheaths, and finally germinal centers, where it may function as an interdigitating cell or as a follicular dendritic cell, depending on its location. Thus, we conclude that the EACs are precursors of both interdigitating and follicular dendritic cells.

  17. Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid-cell interface.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available During mesenchymal condensation, the initial step of skeletogenesis, transduction of minute mechanical forces to the nucleus is associated with up or down-regulation of genes, ultimately resulting in formation of the skeletal template and appropriate cell lineage commitment. The summation of these biophysical cues affects the cell's shape and fate. Here, we predict and measure surface strain, in live stem cells, in response to controlled delivery of stresses, providing a platform to direct short-term structure--function relationships and long-term fate decisions. We measure local strains on stem cell surfaces using fluorescent microbeads coated with Concanavalin A. During delivery of controlled mechanical stresses, 4-Dimensional (x,y,z,t displacements of the bound beads are measured as surface strains using confocal microscopy and image reconstruction. Similarly, micro-particle image velocimetry (μ-piv is used to track flow fields with fluorescent microspheres. The measured flow velocity gradient is used to calculate stress imparted by fluid drag at the surface of the cell. We compare strain measured on cell surfaces with those predicted computationally using parametric estimates of the cell's elastic and shear modulus. Finally, cross-correlating stress--strain data to measures of gene transcription marking lineage commitment enables us to create stress--strain--fate maps, for live stem cells in situ. The studies show significant correlations between live stem cell stress--strain relationships and lineage commitment. The method presented here provides a novel means to probe the live stem cell's mechanome, enabling mechanistic studies of the role of mechanics in lineage commitment as it unfolds.

  18. Liquid fiducial marker performance during radiotherapy of locally advanced non small cell lung cancer

    DEFF Research Database (Denmark)

    Rydhög, Jonas Scherman; Mortensen, Steen Riisgaard; Larsen, Klaus Richter

    2016-01-01

    We analysed the positional and structural stability of a long-term biodegradable liquid fiducial marker (BioXmark) for radiotherapy in patients with locally advanced lung cancer. Markers were injected via endoscopic- or endobronchial ultrasound in lymph nodes and reachable primary tumours. Marker...

  19. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity.

    Science.gov (United States)

    Bezaire, Marianne J; Soltesz, Ivan

    2013-09-01

    In this work, through a detailed literature review, data-mining, and extensive calculations, we provide a current, quantitative estimate of the cellular and synaptic constituents of the CA1 region of the rat hippocampus. Beyond estimating the cell numbers of GABAergic interneuron types, we calculate their convergence onto CA1 pyramidal cells and compare it with the known input synapses on CA1 pyramidal cells. The convergence calculation and comparison are also made for excitatory inputs to CA1 pyramidal cells. In addition, we provide a summary of the excitatory and inhibitory convergence onto interneurons. The quantitative knowledge base assembled and synthesized here forms the basis for data-driven, large-scale computational modeling efforts. Additionally, this work highlights specific instances where the available data are incomplete, which should inspire targeted experimental projects toward a more complete quantification of the CA1 neurons and their connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  20. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.

    Science.gov (United States)

    Monterisi, Stefania; Lobo, Miguel J; Livie, Craig; Castle, John C; Weinberger, Michael; Baillie, George; Surdo, Nicoletta C; Musheshe, Nshunge; Stangherlin, Alessandra; Gottlieb, Eyal; Maizels, Rory; Bortolozzi, Mario; Micaroni, Massimo; Zaccolo, Manuela

    2017-05-02

    cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.

  1. Dynamic changes in the genomic localization of DNA replication-related element binding factor during the cell cycle.

    Science.gov (United States)

    Gurudatta, B V; Yang, Jingping; Van Bortle, Kevin; Donlin-Asp, Paul G; Corces, Victor G

    2013-05-15

    DREF was first characterized for its role in the regulation of transcription of genes encoding proteins involved in DNA replication and found to interact with sequences similar to the DNA recognition motif of the BEAF-32 insulator protein. Insulators are DNA-protein complexes that mediate intra- and inter-chromosome interactions. Several DNA-binding insulator proteins have been described in Drosophila, including BEAF-32, dCTCF and Su(Hw). Here we find that DREF and BEAF-32 co-localize at the same genomic sites, but their enrichment shows an inverse correlation. Furthermore, DREF co-localizes in the genome with other insulator proteins, suggesting that the function of this protein may require components of Drosophila insulators. This is supported by the finding that mutations in insulator proteins modulate DREF-induced cell proliferation. DREF persists bound to chromatin during mitosis at a subset of sites where it also co-localizes with dCTCF, BEAF-32 and CP190. These sites are highly enriched for sites where Orc2 and Mcm2 are present during interphase and at the borders of topological domains of chromosomes defined by Hi-C. The results suggest that DREF and insulator proteins may help maintain chromosome organization during the cell cycle and mark a subset of genomic sites for the assembly of pre-replication complexes and gene bookmarking during the M/G1 transition.

  2. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G.; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  3. Positive frozen section margins predict local recurrence in R0-resected squamous cell carcinoma of the head and neck.

    Science.gov (United States)

    Ettl, Tobias; El-Gindi, Alain; Hautmann, Matthias; Gosau, Martin; Weber, Florian; Rohrmeier, Christian; Gerken, Michael; Müller, Steffen; Reichert, Torsten; Klingelhöffer, Christoph

    2016-04-01

    The purpose of this study was to analyse the impact of surgical margins on tumour recurrence and survival of patients with carcinomas of the head and neck. A cohort of 156 patients with primary squamous cell carcinoma of the head and neck treated by local resection with negative margins and neck dissection between 2004 and 2012 was investigated. Margin status in frozen sections and permanent paraffin tissues were analysed and compared to clinical and histopathological parameters as well as to tumour recurrence (local, regional and distant) and disease-specific survival (DSS). Close margins (<5mm) on permanent sections were correlated to high-grade differentiation (p=0.070), lymphangiosis (p=0.009) and positive neck nodes (p=0.025) implicating regional and distant recurrence (p=0.001) as well as unfavorable DSS (p=0.002). Positive margins on initial frozen section analysis revised into negative margins during further surgery were the strongest predictor for local recurrence in uni- and multivariate analysis (p<0.001, hazard ratio 3.34). However, positive frozen section margins were not significantly predictive for DSS (p=0.150). Significant predictors for DSS in univariate analysis were local recurrence (p=0.026), T-stage (p=0.02), N-stage (p<0.001), grading (p=0.02) and lymphangiosis (p=0.001). Multivariate DSS analysis revealed lymph node metastasis (p=0.005) and local recurrence (p=0.017) as significant negative predictors. Close margins on permanent sections are associated with aggressive tumour characteristics, regional and distant metastasis implicating worse DSS. The accuracy of frozen section analysis seems limited as positive frozen section margins revised into negative margins bear a high risk of local recurrence. Copyright © 2016. Published by Elsevier Ltd.

  4. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available To investigate macular ganglion cell-inner plexiform layer (mGCIPL thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL defects on stereophotographs.112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS and the African Descent and Glaucoma Evaluation Study (ADAGES subjects had standard automated perimetry (SAP, optical coherence tomography (OCT imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001 and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000. The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior mGCIPL was thinnest in the same hemiretina in 26 eyes (90%. Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001 and inferior mGCIPL (P = 0.030 compared to glaucomatous eyes without a visible RNFL defect.The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

  5. Methods of Cell Propulsion through the Local Stroma in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available In the normal breast, cellular structures change cyclically in response to ovarian hormones. Cell proliferation, apoptosis, invasion, and differentiation are integral processes that are precisely regulated. Normal epithelial cells depend on the formation of intercellular adhesion contacts to form a continuous sheet of stratifying cell layers that are attached to one and other horizontally and vertically. Cells migrate by extending membrane protrusions to explore the extracellular space locating their targets in a chemotactic manner. The formation of cell protrusions is driven by the assembly of actin filaments at the leading edge. Reorganisation is regulated by a highly integrated signalling cascade that transduces extracellular stimuli to the actin filaments. This signalling cascade is governed by GTPases which act as molecular switches leading to actin polymerisation and the formation of filopodia and lamellipodia. This process is linked to downstream molecules known collectively as WASP proteins, which, in the presence of cortactin, form a complex leading to nucleation and formation of branched filaments. In breast cancer, the cortactin is over expressed leading to increased cellular motility and invasiveness. This hugely complex and integrated signalling cascade transduces extracellular stimuli. There are multiple genes related to cell motility which are dysregulated in human breast cancers.

  6. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree.

    Directory of Open Access Journals (Sweden)

    Tomoki Yagai

    Full Text Available Cholangiocarcinoma (CC is a type of relatively rare neoplasm in adenocarcinoma. The characteristics of CCs as well as biliary epithelial cells are heterogeneous at the different portion of the biliary tree. There are two candidate stem/progenitor cells of the biliary tree, i.e., biliary tree stem/progenitor cell (BTSC at the peribiliary gland (PBG of large bile ducts and liver stem/progenitor cell (LPC at the canals of Hering of peripheral small bile duct. Although previous reports suggest that intrahepatic CC (ICC can arise from such stem/progenitor cells, the characteristic difference between BTSC and LPC in pathological process needs further investigation, and the etiology of CC remains poorly understood. Here we show that Sterile alpha motif domain containing 5 (SAMD5 is exclusively expressed in PBGs of large bile ducts in normal mice. Using a mouse model of cholestatic liver disease, we demonstrated that SAMD5 expression was upregulated in the large bile duct at the hepatic hilum, the extrahepatic bile duct and PBGs, but not in proliferating intrahepatic ductules, suggesting that SAMD5 is expressed in BTSC but not LPC. Intriguingly, human ICCs and extrahepatic CCs exhibited striking nuclear localization of SAMD5 while the normal hilar large bile duct displayed slight-to-moderate expression in cytoplasm. In vitro experiments using siRNA for SAMD5 revealed that SAMD5 expression was associated with the cell cycle regulation of CC cell lines.SAMD5 is a novel marker for PBG but not LPC in mice. In humans, the expression and location of SAMD5 could become a promising diagnostic marker for the cell type as well as malignancy of bile ducts and CCs.

  7. Apoptotic Cell Localization in Preantral and Antral Follicles in Relation to Non-cyclic and Cyclic Gilts.

    Science.gov (United States)

    Phoophitphong, D; Srisuwatanasagul, S; Koonjaenak, S; Tummaruk, P

    2016-06-01

    The objective of this study was to determine apoptotic cell localization in preantral and antral follicles of porcine ovaries. Additionally, the proportion of cells undergoing apoptosis was also compared between delayed puberty gilts and normal cyclic gilts. Ovarian tissues were obtained from 34 culled gilts with age and weight of 270.1 ± 3.9 days and 143.8 ± 2.4 kg, respectively. The gilts were classified according to their ovarian appearance as 'non-cyclic' (n = 7) and 'cyclic' (n = 27) gilts. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay was used to determine apoptotic cell expression in different compartments of the ovarian tissue sections. All apparent preantral (n = 110) and antral (n = 262) follicles were evaluated using image analysis software. It was found that apoptotic cells were expressed in both granulosa (22.2%) and theca cell layers (21.3%) of the follicles in the porcine ovaries. The proportion of apoptotic cells in the granulosa layer in the follicles was positively correlated with that in the theca layer (r = 0.90, p  0.05) or theca cell layers (28.6% and 26.5%, p > 0.05). The proportion of apoptotic cells in non-cyclic gilts was higher than cyclic gilts in both granulosa (31.7% and 22.6%, p gilts than cyclic gilts. This implied that apoptosis could be used as a biologic marker for follicular development/function and also that apoptosis was significantly associated with anoestrus or delayed puberty in gilts, commonly observed in tropical climates. © 2016 Blackwell Verlag GmbH.

  8. PBX1 intracellular localization is independent of MEIS1 in epithelial cells of the developing female genital tract.

    Science.gov (United States)

    Dintilhac, Agnès; Bihan, Réjane; Guerrier, Daniel; Deschamps, Stéphane; Bougerie, Héloise; Watrin, Tanguy; Bonnec, Georgette; Pellerin, Isabelle

    2005-01-01

    While studies have highlighted the role of HOXA9-13 and PBX1 homeobox genes during the development of the female genital tract, the molecular mechanisms triggered by these genes are incompletely elucidated. In several developmental pathways, PBX1 binds to MEINOX family members in the cytoplasm to be imported into the nucleus where they associate with HOX proteins to form a higher complex that modulates gene expression. This concept has been challenged by a recent report showing that in some cell cultures, PBX1 nuclear localization might be regulated independently of MEINOX proteins (Kilstrup-Nielsen et al., 2003). Our work gives the first illustration of this alternative mechanism in an organogenesis process. Indeed, we show that PBX1 is mostly cytoplasmic in epithelial endometrial cells of the developing female genital tract despite the nuclear localization of MEIS1. We thus provide evidence for a control of PBX1 intracellular distribution which is independent of MEINOX proteins, but is cell cycle correlated.

  9. Modelling the effect of inhomogeneous compression of GDL on local transport phenomena in a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, S.; Mikkola, M. [Laboratory of Advanced Energy Systems, Helsinki University of Technology (Finland); Himanen, O. [VTT Technical Research Center of Finland, Fuel Cells, VTT (Finland); Nitta, I.

    2008-12-15

    The effects of inhomogeneous compression of gas diffusion layers (GDLs) on local transport phenomena within a polymer electrolyte membrane (PEM) fuel cell were studied theoretically. The inhomogeneous compression induced by the rib/channel structure of the flow field plate causes partial deformation of the GDLs and significantly affects component parameters. The results suggest that inhomogeneous compression does not significantly affect the polarisation behaviour or gas-phase mass transport. However, the effect of inhomogeneous compression on the current density distribution is evident. Local current density under the channel was substantially smaller than that under the rib when inhomogeneous compression was taken into account, while the current density distribution was fairly uniform for the model which excluded the effect of inhomogeneous compression. This is caused by the changes in the selective current path, which is determined by the combination of conductivities of components and contact resistance between them. Despite the highly uneven current distribution and variation in material parametres as a function of GDL thickness, the temperature profile was relatively even over the active area for both the modelled cases, contrary to predictions in previous studies. However, an abnormally high current density significantly accelerates deterioration of the membrane and is critical in terms of cell durability. Therefore, fuel cells should be carefully designed to minimise the harmful effects of inhomogeneous compression. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  11. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Aneesh Panoli

    Full Text Available The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2 are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.

  12. Acute pain induces an instant increase in natural killer cell cytotoxicity in humans and this response is abolished by local anaesthesia

    DEFF Research Database (Denmark)

    Greisen, J.; Hokland, Marianne; Grøfte, Thorbjørn

    1999-01-01

    to abdominal skin for 30 min to an intensity of 8 on a visual analogue scale (0-10). Next, the electric intensity profile was reproduced during local anaesthesia (mepivacaine 10 mg ml-1 s.c. to a total dose of 2.5 mg kg-1). NK cell cytotoxicity was measured using a 4-h 51Cr-release assay against K562 target...... not change either NK cell activity or number. Parallel and significant increases in concentrations of plasma epinephrine and serum cortisol were observed. These changes were abolished by local anaesthesia. We conclude that acute severe pain without tissue injury markedly increased NK cell cytotoxicity. Local...

  13. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  14. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  15. Characterization of patterns of Localized Doping Using Stamping technique for Selective n-Emitter Solar Cell Structure

    Science.gov (United States)

    Mangkornkaew, A.; Fangsuwannarak, T.

    2017-10-01

    In the present, a novel cost-effective process scheme for single step selective emitter diffusion was implemented. It is based on the fabrication of acid-resist pattern using a stamping technique with collaboration of a spin on dopant (SOD) and chemical etched-back emitter methods. The SOD diffusion process provided heavily doping n-emitter. Acid-resist pattern without exploitation of a complex method as a photolithography, was stamped as a metal contact pattern for prevention of a localized heavy-dope region from etching back. Phosphorus doping profiles were controlled by etching back time to provide the formation of n-type selective emitter. Sheet resistance is tunable from 10 to 180 Ohm/Sq on localized n-layer. After removal of the patterned acid-resist, the selective n-emitter solar cell structure was obtained under one-step diffusion to achieve a better blue-light response and low contact resistance.

  16. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  17. Local effect of bisphenol A on the estradiol synthesis of ovarian granulosa cells from PCOS.

    Science.gov (United States)

    Wang, Yuan; Zhu, Qinling; Dang, Xuan; He, Yaqiong; Li, Xiaoxue; Sun, Yun

    2017-01-01

    Close relationship between polycystic ovary syndrome (PCOS) and bisphenol A (BPA) has drawn much attention in recent years, while the underlying mechanisms are poorly understood. In our study, we aim to detect BPA concentration in the follicular fluid and investigate its effect on estradiol synthesis in human granulosa cells from PCOS and non-PCOS patients. Follicular fluid and granulosa cells were collected from women who underwent controlled ovarian stimulation for in vitro fertilization or intracytoplasmic sperm injection. BPA concentration in the follicular fluid from PCOS patients (440.50 ± 63.70 pg/ml) was significantly higher than that from non-PCOS patients (338.00 ± 57.88 pg/ml). Expression of aromatase and estradiol synthesis in cultured granulosa cells was examined after treatment with BPA from 0.01 to 1 μM for 24 h. Expression of aromatase and estradiol synthesis was downregulated by BPA in a dose-dependent manner in PCOS, but no effect was observed in granulosa cells from non-PCOS patients. These findings provide evidence that increased BPA concentration in the follicular fluid of PCOS patients may play an important role in its pathogenesis by attenuating the expression of aromatase in granulosa cells.

  18. Estrous cycle-dependent neural plasticity in the caudal brainstem in the female golden hamster : Ultrastructural and immunocytochemical studies of axo-dendritic relationships and dynamic remodeling

    NARCIS (Netherlands)

    Gerrits, P. O.; Kortekaas, R.; Veening, J. G.; de Weerd, H.; Algra, A.; Mouton, L. J.; van der Want, J. J. L.

    2008-01-01

    During the short four-day estrous cycle of the female hamster various behavioral (lordosis, vocalization and aggression) and autonomic adaptations occur. Presumably, these changes are under ovarian control. Recently, we described a distinct estrogen receptor-alpha immunoreactive (ER-alpha-IR) cell

  19. Estrous cycle-dependent neural plasticity in the caudal brainstem in the female golden hamster: ultrastructural and immunocytochemical studies of axo-dendritic relationships and dynamic remodeling.

    NARCIS (Netherlands)

    Gerrits, P.O.; Kortekaas, R.; Veening, J.G.; Weerd, H. de; Algra, A.; Mouton, L.J.; Want, J.J. van der

    2008-01-01

    During the short four-day estrous cycle of the female hamster various behavioral (lordosis, vocalization and aggression) and autonomic adaptations occur. Presumably, these changes are under ovarian control. Recently, we described a distinct estrogen receptor-alpha immunoreactive (ER-alpha-IR) cell

  20. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2018-01-04

    Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.

  1. Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation

    International Nuclear Information System (INIS)

    Hubbard, B.M.; Hopewell, J.W.

    1979-01-01

    A 16 mm length of cervical spinal cord of young adult female rats was irradiated with 4000 rad of 250 kV X-rays. Counts of astrocyte and oligodendrocyte nuclei were made in the dorsal columns of both irradiated and control cervical cords during the latent period before the onset of radionecrosis. The numbers of both astrocyte and oligodendrocyte nuclei were reduced one month after exposure to radiation. Both cell populations showed an apparent recovery but this was subsequently followed by a rapid loss of cells prior to the development of white-matter necrosis. The oligodendrocyte population in unirradiated spinal cords increased with age, and mitotic figures were observed among the neuroglia of both irradiated and control cervical spinal cords. A slow, natural turnover of neuroglial cells in the cervical spinal cord is proposed and the relevance of this to the manifestation of delayed white matter necrosis is discussed. (author)

  2. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  3. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection.

    Science.gov (United States)

    Chen, Rong-Fu; Lee, Chun-Yi

    2014-01-01

    Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.

  4. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Directory of Open Access Journals (Sweden)

    Kathie Béland

    Full Text Available The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C in presence or absence of activated liver-specific autoreactive CD8(+ T cells. Regardless of autoreactive CD8(+ T cells, mice injected with CpG and Poly(I:C showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C and autoreactive CD8(+T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+ T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+ T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  5. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Science.gov (United States)

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  6. Evolving locally appropriate models of care for Indian sickle cell disease

    Science.gov (United States)

    Serjeant, Graham R.

    2016-01-01

    The sickle cell gene in India represents a separate occurrence of the HbS mutations from those in Africa. Sickle cell disease in India occurs against different genetic and environmental backgrounds from those seen in African patients and there is evidence of clinical differences between the populations. Knowledge of the clinical features of African disease was drawn from the Jamaican Cohort Study, based on prospective follow up of all cases of sickle cell disease detected by the screening of 100,000 consecutive newborns in Kingston, Jamaica, and supplemented by observations from the Cooperative Study of Sickle Cell Disease in the US. Defining the principal causes of early morbidity in African sickle cell disease led to successful interventions including pneumococcal prophylaxis, parental education in the early diagnosis of acute splenic sequestration, and the early detection by trans-cranial Doppler of cerebral vessel stenosis predictive of stroke but their success depended on early diagnosis, ideally at birth. Although reducing mortality among patients with African forms of SS disease, the question remains whether these interventions are appropriate or justified in Indian patients. This dilemma is approached by comparing the available data in African and Indian forms of SS disease seeking to highlight the similarities and differences and to identify the deficiencies in knowledge of Indian disease. These deficiencies could be most readily addressed by cohort studies based on newborn screening and since much of the morbidity of African disease occurs in the first five years of life, these need not be a daunting prospect for Indian health care personnel. Newborn screening programmes for sickle cell disease are already underway in India and appropriate protocols and therapeutic trials could quickly answer many of these questions. Without this knowledge, Indian physicians may continue to use possibly unnecessary and expensive models of care. PMID:27377495

  7. Corneal Fibroblasts as Sentinel Cells and Local Immune Modulators in Infectious Keratitis

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2017-08-01

    Full Text Available The cornea serves as a barrier to protect the eye against external insults including microbial pathogens and antigens. Bacterial infection of the cornea often results in corneal melting and scarring that can lead to severe visual impairment. Not only live bacteria but also their components such as lipopolysaccharide (LPS of Gram-negative bacteria contribute to the development of inflammation and subsequent corneal damage in infectious keratitis. We describe the important role played by corneal stromal fibroblasts (activated keratocytes as sentinel cells, immune modulators, and effector cells in infectious keratitis. Corneal fibroblasts sense bacterial infection through Toll-like receptor (TLR–mediated detection of a complex of LPS with soluble cluster of differentiation 14 (CD14 and LPS binding protein present in tear fluid. The cells then initiate innate immune responses including the expression of chemokines and adhesion molecules that promote the recruitment of inflammatory cells necessary for elimination of the infecting bacteria. Infiltrated neutrophils are activated by corneal stromal collagen and release mediators that stimulate the production of pro–matrix metalloproteinases by corneal fibroblasts. Elastase produced by Pseudomonas aeruginosa (P. aeruginosa activates these released metalloproteinases, resulting in the degradation of stromal collagen. The modulation of corneal fibroblast activation and of the interaction of these cells with inflammatory cells and bacteria is thus important to minimize corneal scarring during treatment of infectious keratitis. Pharmacological agents that are able to restrain such activities of corneal fibroblasts without allowing bacterial growth represent a potential novel treatment option for prevention of excessive scarring and tissue destruction in the cornea.

  8. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  9. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shengnan Li

    Full Text Available MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a 'piggyback' mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA. Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+ and VC5 (ERα-. Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5. These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.

  10. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  11. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    Science.gov (United States)

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  12. Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines.

    Science.gov (United States)

    Varlamova, E G; Goltyaev, M V; Novoselov, V I; Fesenko, E E

    2017-09-01

    The intracellular localization of human selenoprotein SelI and the degree of expression of its gene in different human tumor cell lines were determined. It was found that the SelI protein is present in the nucleus, cytoplasm, and endoplasmic reticulum and is absent in the nucleolus. Since the oxidative stress caused by a sharp increase in the content of free radicals in the body is one of the causes of malignant transformation, the study of the role of the trace element selenium and selenocysteine-containing proteins as antioxidants in carcinogenesis is of great scientific interest.

  13. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  14. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    DEFF Research Database (Denmark)

    Tormin, Ariane; Li, Ou; Brune, Jan Claas

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of prim...

  15. Undertreatment of patients with localized extranodal compared with nodal diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Kuper-Hommel, M.J.; Schans, S.A. van de; Vreugdenhil, G.; Krieken, J.H.J.M. van; Coebergh, J.W.W.

    2013-01-01

    Abstract Population-based studies analyzing clinical implications of nodal versus extranodal (EN) presentation of diffuse large B-cell lymphoma (DLBCL) are scarce. We studied clinical differences and trends in incidence, treatment and survival of nodal and EN DLBCL in a population-based cohort. All

  16. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells.

    Science.gov (United States)

    Safaei, Roohangiz; Katano, Kuniyuki; Larson, Barrett J; Samimi, Goli; Holzer, Alison K; Naerdemann, Wiltrud; Tomioka, Mika; Goodman, Murray; Howell, Stephen B

    2005-01-15

    We sought to identify the subcellular compartments in which cisplatin [cis-diamminedichloroplatinum (DDP)] accumulates in human ovarian carcinoma cells and define its export pathways. Deconvoluting digital microscopy was used to identify the subcellular location of fluorescein-labeled DDP (F-DDP) in 2008 ovarian carcinoma cells stained with organelle-specific markers. Drugs that block vesicle movement were used to map the traffic pattern. F-DDP accumulated in vesicles and were not detectable in the cytoplasm. F-DDP accumulated in the Golgi, in vesicles belonging to the secretory export pathway, and in lysosomes but not in early endosomes. F-DDP extensively colocalized with vesicles expressing the copper efflux protein, ATP7A, whose expression modulates the cellular pharmacology of DDP. Inhibition of vesicle trafficking with brefeldin A, wortmannin, or H89 increased the F-DDP content of vesicles associated with the pre-Golgi compartments and blocked the loading of F-DDP into vesicles of the secretory pathway. The importance of the secretory pathway was confirmed by showing that wortmannin and H89 increased whole cell accumulation of native DDP. F-DDP is extensively sequestered into vesicular structures of the lysosomal, Golgi, and secretory compartments. Much of the distribution to other compartments occurs via vesicle trafficking. F-DDP detection in the vesicles of the secretory pathway is consistent with a major role for this pathway in the efflux of F-DDP and DDP from the cell.

  17. Subcellular localization of cadmium in the root cells of Allium cepa ...

    Indian Academy of Sciences (India)

    Unknown

    originates from plant food (Wagner 1993). Studies on Cd toxicity in plants are well documented. ... out using EELS connected to the TEM 902 (Zeiss, type. Castaing-Ottensemyer, serial energy-loss spectrum). The ..... growth and cell division of Allium cepa; Acta Sci. Circum- stantiae 12 439–446. Liu D, Jiang W, Wang W and ...

  18. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    Abstract. The three basic cell types in the migrating slug of Dictyostelium discoideum show differential chemotactic response to cyclic AMP (cAMP) and differential sensitivity to suppression of the chemotaxis by ammonia. The values of these parameters indicate a progressive maturation of chemotactic properties during the ...

  19. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    The ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cd (100 M, 1 mM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes – high vacuolization in cytoplasm, deposition of electron-dense material in ...

  20. A case report of a huge congenital granular cell epulis operated under local anesthesia

    Science.gov (United States)

    Khattala, Khalid; Rami, Mohamed; Elmadi, Aziz; Chbani, Leila; Bouabdallah, Youssef

    2012-01-01

    Congenital granular cell epulis (CGCE) is a very rare benign soft tissue lesion of the neonate, it most frequently located on the anterior maxillary alveolar ridge. It has a female predilection. It is a tumor with no tendency to recur after excision. The exact histogenesis of this tumor remains unresolved and it may be hamartomata. PMID:23133705

  1. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions

    KAUST Repository

    Katsaounis, Theodoros

    2017-09-18

    A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial