WorldWideScience

Sample records for cell cycle inhibition

  1. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  2. Cell Cycle Inhibition without Disruption of Neurogenesis Is a Strategy for Treatment of Aberrant Cell Cycle Diseases: An Update

    OpenAIRE

    Da-Zhi Liu; Ander, Bradley P.

    2012-01-01

    Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of “aberrant cell cycle diseases” to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberr...

  3. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  4. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  5. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  6. Inhibition of cell cycle progression by penta-acetyl geniposide in rat C6 glioma cells

    International Nuclear Information System (INIS)

    Penta-acetyl geniposide, (Ac)5-GP, the acetylated compound of geniposide, is able to inhibit the growth of rat C6 glioma cells in culture and in the bearing rats. Our recent data indicated that the induction of cell apoptosis and cell cycle arrest at G0/gap phase 1 (G1) by (Ac)5-GP might be associated with the induction of p53 and c-Myc, and mediated via the apoptosis-related bcl-2 family proteins. In this report, we further investigated the mechanism involved in the cell cycle arrest induced by (Ac)5-GP in C6 glioma cells. The inhibitory effect of (Ac)5-GP on the cell cycle progression of C6 glioma cells which arrested cells at the G0/G1 phase was associated with a marked decrease in the protein expression of cyclin D1, and an induction in the content of cyclin-dependent kinase (cdk) inhibitor p21 protein. This effect was correlated with the elevation in p53 levels. Further immunoprecipitation studies found that, in response to the treatment, the formation of cyclin D1/cdk 4 complex declined, preventing the phosphorylation of retinoblastoma (Rb) and the subsequent dissociation of Rb/E2F complex. These results illustrated that the apoptotic effect of (Ac)5-GP, arresting cells at the G0/G1 phase, was exerted by inducing the expression of p21 that, in turn, repressed the activity of cyclin D1/cdk 4 and the phosphorylation of Rb

  7. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  8. Onychin inhibits proliferation of vascular smooth muscle cells by regulating cell cycle

    Institute of Scientific and Technical Information of China (English)

    Ming YANG; Hong-lin HUANG; Bing-yang ZHU; Qin-hui TUO; Duan-fang LIAO

    2005-01-01

    Aim: To investigate the effects of onychin on the proliferation of cultured rat artery vascular smooth muscle cells (VSMCs) in the presence of 10% new-borncalf serum (NCS). Methods: Rat VSMCs were incubated with onychin 1-50 μmol/L or genistein 10 μmol/L in the presence of 10% NCS for 24 h. The proliferation of VSMCs was measured by cell counting and MTS/PMS colorimetric assays. Cell cycle progression was evaluated by flow cytometry. Retinoblastoma (Rb) phosphorylation, and expression of cyclin D1 and cyclin E were measured by Western blot assays. The tyrosine phosphorylation of ERK1/2 was examined by immunoprecipitation techniques using anti-phospho-tyrosine antibodies. Results: The proliferation of VSMCs was accelerated significantly in the presence of 10% NCS. Onychin reduced the metabolic rate of MTS and the cell number of VSMCs in the presence of 10% NCS in a dose-dependent manner. Flow cytometry analy sis revealed that the G1-phase fraction ratio in the onychin group was higher than that in the 10% NCS group (85.2% vs 70.0%, P<0.01), while the S-phase fraction ratio in the onychin group was lower than that in 10% NCS group (4.3% vs 16.4%, P<0.01). Western blot analysis showed that onychin inhibited Rb phos phorylation and reduced the expression of cyclin D1 and cyclin E. The effects of onychin on proliferation, the cell cycle and the expression of cyclins in VSMCs were similar to those of genistein, an inhibitor of tyrosine kinase. Furthermore immunoprecipitation studies showed that both onychin and genistein markedly inhibited the tyrosine phosphorylation of ERK1/2 induced by 10% NCS.Conclusion: Onychin inhibits the proliferation of VSMCs through G1 phase cell cycle arrest by decreasing the tyrosine phosphorylation of ERK1/2, and the expression of cyclin D1 and cyclin E, and sequentially inhibiting Rb phosphorylation.

  9. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  10. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  11. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest.

    Science.gov (United States)

    Lin, Minghe; Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Cai, Qiaoyan; Peng, Jun; Zhu, Dezeng

    2012-08-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferation of HT-29 human colon carcinoma cells. We found that EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. We also observed that EEHDW treatment blocked the cell cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21. Our findings suggest that Hedyotis diffusa Willd may be an effective treatment for CRC via the suppression of cancer cell proliferation. PMID:23139718

  12. Methoxychlor inhibits growth of antral follicles by altering cell cycle regulators

    International Nuclear Information System (INIS)

    Methoxychlor (MXC) reduces fertility in female rodents, decreases antral follicle numbers, and increases atresia through oxidative stress pathways. MXC also inhibits antral follicle growth in vitro. The mechanism by which MXC inhibits growth of follicles is unknown. The growth of follicles is controlled, in part, by cell cycle regulators. Thus, we tested the hypothesis that MXC inhibits follicle growth by reducing the levels of selected cell cycle regulators. Further, we tested whether co-treatment with an antioxidant, N-acetyl cysteine (NAC), prevents the MXC-induced reduction in cell cycle regulators. For in vivo studies, adult cycling CD-1 mice were dosed with MXC or vehicle for 20 days. Treated ovaries were subjected to immunohistochemistry for proliferating cell nuclear antigen (PCNA) staining. For in vitro studies, antral follicles isolated from adult cycling CD-1 mouse ovaries were cultured with vehicle, MXC, and/or NAC for 48, 72 and 96 h. Levels of cyclin D2 (Ccnd2) and cyclin dependent kinase 4 (Cdk4) were measured using in vivo and in vitro samples. The results indicate that MXC decreased PCNA staining, and Ccnd2 and Cdk4 levels compared to controls. NAC co-treatment restored follicle growth and expression of Ccnd2 and Cdk4. Collectively, these data indicate that MXC exposure reduces the levels of Ccnd2 and Cdk4 in follicles, and that protection from oxidative stress restores Ccnd2 and Cdk4 levels. Therefore, MXC-induced oxidative stress may decrease the levels of cell cycle regulators, which in turn, results in inhibition of the growth of antral follicles.

  13. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

    Institute of Scientific and Technical Information of China (English)

    Yan-min ZHAO; Qian ZHOU; Yun XU; Xiao-yu LAI; He HUANG

    2008-01-01

    Aim:To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat. Methods:Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progres-sion and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR. Results:Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the pro-tein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression. Conclusion:Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

  14. Direct inhibition of Retinoblastoma phosphorylation by Nimbolide causes cell cycle arrest and suppresses glioblastoma growth

    Science.gov (United States)

    Anderson, Jane; Liu, Xiaona; Henry, Heather; Gasilina, Anjelika; Nassar, Nicholas; Ghosh, Jayeeta; Clark, Jason P; Kumar, Ashish; Pauletti, Giovanni M.; Ghosh, Pradip K; Dasgupta, Biplab

    2013-01-01

    Purpose Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica controls glioblastoma (GBM) growth. Experimental Design Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. Results We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against GBM in vitro and in vivo. Azt caused cell cycle arrest, most prominently at the G1-S stage in GBM cells expressing EGFRvIII, an oncogene present in about 20-25% of GBMs. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma (RB) protein, cell cycle arrest at G1-S and cell death. Independent of RB hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of GBM cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor induced phosphorylation of Akt, Erk1/2 and STAT3. These effects were specific since Azt did not affect mTOR or other cell cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of GBM growth. Conclusions Our preclinical findings demonstrate Nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo. PMID:24170547

  15. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  16. Polydatin-induced cell apoptosis and cell cycle arrest are potentiated by Janus kinase 2 inhibition in leukemia cells.

    Science.gov (United States)

    Cao, Wei-Jie; Wu, Ke; Wang, Chong; Wan, Ding-Ming

    2016-04-01

    Polydatin (PD), a natural precursor of resveratrol, has a variety of biological activities, including anti‑tumor effects. However, the underlying molecular mechanisms of the anti-cancer activity of PD has not been fully elucidated. The present study demonstrated that PD significantly inhibited the proliferation of the MOLT-4 leukemia cell line in a dose‑ and time-dependent manner by using Cell Counting Kit‑8 assay. PD also dose-dependently increased the apoptotic rate and caused cell cycle arrest in S phase in MOLT‑4 cells, as revealed by flow cytometry. In addition, PD dose-dependently decreased the mitochondrial membrane potential and led to the generation of reactive oxygen species in MOLT-4 cells. Western blot analysis revealed that the expression of anti‑apoptotic protein B-cell lymphoma 2 (Bcl-2) was decreased, whereas that of pro‑apoptotic protein Bcl‑2‑associated X was increased by PD. Furthermore, the expression of two cell cycle regulatory proteins, cyclin D1 and cyclin B1, was suppressed by PD. Of note, the pro‑apoptotic and cell cycle‑inhibitory effects of PD were potentiated by Janus kinase 2 (JAK2) inhibition. In conclusion, the results of the present study strongly suggested that PD is a promising therapeutic compound for the treatment of leukemia, particularly in combination with JAK inhibitors. PMID:26934953

  17. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  18. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  19. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  20. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  1. Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells.

    Science.gov (United States)

    Putri, Herwandhani; Jenie, Riris Istighfari; Handayani, Sri; Kastian, Ria Fajarwati; Meiyanto, Edy

    2016-01-01

    A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV- 0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with IC50 values of 94.9 μM and 49.0±0.2 μM, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent. PMID:27268651

  2. Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early G₁ phase in CHO cells.

    Science.gov (United States)

    van Opstal, Angélique; Bijvelt, José; van Donselaar, Elly; Humbel, Bruno M; Boonstra, Johannes

    2012-04-01

    Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase. PMID:22251027

  3. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  4. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  5. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest

    OpenAIRE

    Lin, Minghe; LIN, JIUMAO; Wei, Lihui; Xu, Wei; HONG, ZHENFENG; Cai, Qiaoyan; Peng, Jun; ZHU, DEZENG

    2012-01-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferat...

  6. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the...... hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on...

  7. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia.

    Science.gov (United States)

    Stefanić, Sasa; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B; Sonda, Sabrina

    2010-09-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  8. MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma

    Science.gov (United States)

    Wang, Qifeng; Song, Mingxu; Yin, Yuan; Zhang, Binbin; Ni, Shujuan; Guo, Weijie; Bian, Zehua; Quan, Chao; Liu, Zhihui; Wang, Yugang; Yu, Jian; Du, Xiang; Hua, Dong; Huang, Zhaohui

    2014-01-01

    The expression of miR-638 was found downregulated in colorectal carcinoma (CRC) in our previous study. However, the role of miR-638 in CRC remains unknown. The aim of this study was to determine the function and mechanism of miR-638 in CRC. Here, we verified that miR-638 was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues (NCTs) in an expanded CRC cohort, and survival analysis showed that the downregulation of miR-638 in CRC was associated with poor prognoses. The ectopic expression of miR-638 inhibited CRC cell proliferation, invasion and arrest the cell cycle in G1 phase, whereas the repression of miR-638 significantly promoted CRC cell growth, invasion and cell cycle G1/S transition. Subsequent mechanism analyses revealed that miR-638 inhibited CRC cell growth, invasion and cell cycle progression by targeting TSPAN1. TSPAN1 protein levels were upregulated in CRC samples and were inversely correlated with miR-638 levels. More importantly, high TSPAN1 expression levels in CRC tissues predicted poor overall survival, and appears to be an independent prognostic factor for CRC survival. Furthermore, CpG island methylation analyses revealed that the miR-638 promoter was hypermethylated in CRC and that attenuating promoter methylation was sufficient to restore miR-638 expression in CRC cells. Taken together, our current data demonstrate that miR-638 functions as a tumor suppressor in human CRC by inhibiting TSPAN1, and that TSPAN1 is a potential prognostic factor for CRC. PMID:25301729

  9. Prevention of Simvastatin-Induced Inhibition of Tendon Cell Proliferation and Cell Cycle Progression by Geranylgeranyl Pyrophosphate.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Cheng, Mei-Ling; Chen, Cheng-Lun; Pang, Jong-Hwei S

    2016-02-01

    Statins have been reported to induce tendinopathy and even tendon rupture. The present study was designed to investigate the potential molecular mechanism underlying the adverse effect of simvastatin on tendon cells. An in vitro tendon healing model was performed using tendon cells isolated from rat Achilles tendons. The viability of tendon cells and cell cycle progression were examined by the MTT assay and flow cytometric analysis, respectively. Immunofluorescent staining for Ki-67 was used to assess the proliferation activity of tendon cells. Western blot analysis and coimmunoprecipitation was used to determine the protein expression of cell cycle-related proteins. To investigate the potential mechanism underlying the effect of statins on tendon cells, mevalonate, farnesyl pyrophosphate (FPP), or geranylgeranyl pyrophosphate (GGPP) was added to simvastatin-treated tendon cells. Simvastatin inhibited the in vitro tendon healing model and tendon cell proliferation in a dose-dependent manner. Immunofluorescent staining demonstrated reduced ki-67 expression in simvastatin-treated tendon cells. Furthermore, simvastatin induced cell cycle arrest at the G1 phase. The expression levels of cdk1, cdk2, cyclin A, and cyclin E were downregulated by simvastatin in a dose-dependent manner. The inhibitory effect of simvastatin was proved to mediate the reduction of mevalonate, and the addition of exogenous GGPP completely prevented the inhibitory effect of simvastatin on tendon cells. The present study demonstrated, for the first time, the molecular mechanism underlying simvastatin-induced tendinopathy or tendon rupture. GGPP was shown to prevent the adverse effect of simvastatin in tendon cells without interfering with its cholesterol-reducing efficacy. PMID:26577051

  10. Indole-3-carbinol inhibits nasopharyngeal carcinoma growth through cell cycle arrest in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    Full Text Available Nasopharyngeal carcinoma is a common malignant tumor in the head and neck. Because of frequent recurrence and distant metastasis which are the main causes of death, better treatment is needed. Indole-3-carbinol (I3C, a natural phytochemical found in the vegetables of the cruciferous family, shows anticancer effect through various signal pathways. I3C induces G1 arrest in NPC cell line with downregulation of cell cycle-related proteins, such as CDK4, CDK6, cyclin D1 and pRb. In vivo, nude mice receiving I3C protectively or therapeutically exhibited smaller tumors than control group after they were inoculated with nasopharyngeal carcinoma cells. The expression of CDK4, CDK6, cyclin D1 and pRb in preventive treatment group and drug treatment group both decreased compared with the control group. We conclude that I3C can inhibit the growth of NPC in vitro and in vivo by suppressing the expression of CDK and cyclin families. The drug was safe and had no toxic effects on normal tissues and organs.

  11. Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells. SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions. Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05). SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC

  12. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    Science.gov (United States)

    Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-01-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  13. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning.

    Science.gov (United States)

    Hunter, Ginger L; Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-07-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  14. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  15. Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death

    OpenAIRE

    SONG, HYUNKEUN; Hur, Indo; Park, Hyun-jin; Nam, Joohyung; PARK, GA BIN; Kong, Kyoung Hye; Hwang, Young Mi; KIM, YEONG SEOK; Cho, Dae Ho; Lee, Wang Jae; Hur, Dae Young

    2009-01-01

    Background Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was ...

  16. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  17. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  18. Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt.

    Science.gov (United States)

    Deng, Li-Juan; Hu, Li-Ping; Peng, Qun-Long; Yang, Xiao-Lin; Bai, Liang-Liang; Yiu, Anita; Li, Yong; Tian, Hai-Yan; Ye, Wen-Cai; Zhang, Dong-Mei

    2014-08-01

    Hellebrigenin, one of bufadienolides belonging to cardioactive steroids, was found in skin secretions of toads and plants of Helleborus and Kalanchoe genera. In searching for natural constituents with anti-hepatoma activities, we found that hellebrigenin, isolated from traditional Chinese medicine Venenum Bufonis, potently reduced the viability and colony formation of human hepatocellular carcinoma cells HepG2, and went on to explore the underlying molecular mechanisms. Our results demonstrated that hellebrigenin triggered DNA damage through DNA double-stranded breaks and subsequently induced cell cycle G2/M arrest associated with up-regulation of p-ATM (Ser(1981)), p-Chk2 (Tyr(68)), p-CDK1 (Tyr(15)) and Cyclin B1, and down-regulation of p-CDC25C (Ser(216)). It was also found that hellebrigenin induced mitochondrial apoptosis, characterized by Bax translocation to mitochondria, disruption of mitochondrial membrane potential, release of cytochrome c into cytosol and sequential activation of caspases and PARP. In addition, Akt expression and phosphorylation were inhibited by hellebrigenin, whereas Akt silencing with siRNA significantly blocked cell cycle arrest but enhanced apoptosis induced by hellebrigenin. Activation of Akt by human insulin-like growth factor I (hIGF-I) could obviously attenuate hellebrigenin-induced cell death. In summary, our study is the first to report the efficacy of hellebrigenin against HepG2 and elucidated its molecular mechanisms including DNA damage, mitochondria collapse, cell cycle arrest and apoptosis, which will contribute to the development of hellebrigenin into a chemotherapeutic agent in the treatment of liver cancer. PMID:24954031

  19. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest.

    Science.gov (United States)

    González-Sarrías, Antonio; Gromek, Samantha; Niesen, Daniel; Seeram, Navindra P; Henry, Geneive E

    2011-08-24

    Research has shown that members of the Carex genus produce biologically active stilbenoids including resveratrol oligomers. This is of great interest to the nutraceutical industry given that resveratrol, a constituent of grape and red wine, has attracted immense research attention due to its potential human health benefits. In the current study, five resveratrol oligomers (isolated from Carex folliculata and Carex gynandra ), along with resveratrol, were evaluated for antiproliferative effects against human colon cancer (HCT-116, HT-29, Caco-2) and normal human colon (CCD-18Co) cells. The resveratrol oligomers included one dimer, two trimers, and two tetramers: pallidol (1); α-viniferin (2) and trans-miyabenol C (3); and kobophenols A (4) and B (5), respectively. Although not cytotoxic, the resveratrol oligomers (1-5), as well as resveratrol, inhibited growth of the human colon cancer cells. Among the six stilbenoids, α-viniferin (2) was most active against the colon cancer cells with IC(50) values of 6-32 μM (>2-fold compared to normal colon cells). Moreover, α-viniferin (at 20 μM) did not induce apoptosis but arrested cell cycle (in the S-phase) for the colon cancer but not the normal colon cells. This study adds to the growing body of knowledge supporting the anticancer effects of resveratrol and its oligomers. Furthermore, Carex species should be investigated for their nutraceutical potential given that they produce biologically active stilbenoids such as α-viniferin. PMID:21761862

  20. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    International Nuclear Information System (INIS)

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus

  1. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Mi [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Yun, Ji Ho [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Lee, Dong Hwa [Department of Food Science and Nutrition, Andong National University, Andong 760-749 (Korea, Republic of); Park, Young Gyun [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Son, Kun Ho [Department of Food Science and Nutrition, Andong National University, Andong 760-749 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Kim, Yeong Shik, E-mail: kims@snu.ac.kr [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of)

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  2. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells

    Science.gov (United States)

    HU, XUANYU; GUO, WEI; CHEN, SHANSHAN; XU, YIZHUO; LI, PING; WANG, HUAQI; CHU, HEYING; LI, JUAN; DU, YUWEN; CHEN, XIAONAN; ZHANG, GUOJUN; ZHAO, GUOQIANG

    2016-01-01

    Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer.

  3. Chamaejasmine Arrests Cell Cycle, Induces Apoptosis and Inhibits Nuclear NF-κB Translocation in the Human Breast Cancer Cell Line MDA-MB-231

    OpenAIRE

    Yuxian Bai; Guanglu Dong; Li Cai; Hongyang Yu; Tingting Zhang

    2013-01-01

    In this study, the anticancer activity of chamaejasmine was characterized in the human breast cancer cell line, MDA-MB-231. Cell viability and cell cycle distribution were determined by MTT assay and flow cytometry, respectively. Western blotting was performed to determine changes in levels of various proteins. Results showed that treatment with chamaejasmine (4–16 μM) inhibited cell proliferation, which correlated with G2/M phase arrest and apoptosis in MDA-MB-231 cells. C...

  4. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  5. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.

    Science.gov (United States)

    Mir, Hina; Kapur, Neeraj; Singh, Rajesh; Sonpavde, Guru; Lillard, James W; Singh, Shailesh

    2016-01-01

    Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa. PMID:27029529

  6. Downregulation of ROS-FIG inhibits cell proliferation, colony-formation, cell cycle progression, migration and invasion, while inducing apoptosis in intrahepatic cholangiocarcinoma cells

    Science.gov (United States)

    DENG, GANG; HU, CHENGHUAN; ZHU, LEI; HUANG, FEIZHOU; HUANG, WEI; XU, HONGBO; NIE, WANPIN

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer with poor responsiveness to existing drug therapies. Therefore, novel treatment strategies against ICC are required to improve survival. The aim of this study was to demonstrate the role of fused-in-glioblastoma-c-ros-oncogene1 (FIG-ROS) fusion gene in ICC. ROS was positively expressed in ICC tissues and HUCCT1 cells. Plasmids expressing ROS- and FIG-specific shRNAs were constructed and transfected into HUCCT1 cells. The results showed that single transfection of ROS- or FIG-specific shRNA inhibited HUCCT1 cell proliferation, colony formation, cell cycle progression, migration and invasion, while inducing apoptosis. Moreover, the co-inhibition of ROS- and FIG-specific shRNA exhibited stronger effects on HUCCT1 cell proliferation, apoptosis, colony formation, cell cycle progression, migration and invasion, when compared to single inhibition of ROS and FIG. Furthermore, findings of this study suggested that the AKT signaling pathway was involved in the ROS-FIG-mediated biological processes of HUCCT1 cells. In summary, the results suggest that FIG-ROS plays an oncogenic role in ICC. Additionally, ROS1-6290 and FIG-363 segments may become effective therapeutic targets for ICC harboring ROS-FIG fusion protein. PMID:24968753

  7. Synthesis of hybrid 4-deoxypodophyllotoxin-5-fluorouracil compounds that inhibit cellular migration and induce cell cycle arrest.

    Science.gov (United States)

    Guan, Xiao-Wen; Xu, Xiao-Hui; Feng, Shi-Liang; Tang, Zhen-Bo; Chen, Shi-Wu; Hui, Ling

    2016-03-15

    A series of deoxypodophyllotoxin-5-fluorouracil hybrid compounds were synthesized, and their cytotoxic activity was evaluated using four human cancer cell lines (HeLa, A549, HCT-8, and HepG2) and the human normal cell line WI-38. The synthesized compounds exhibited greater cytotoxic activity in tumor cells and reduced toxicity in the normal cell line compared with the anticancer drug VP-16 and 5-FU. Additionally, the most potent of these compounds-4'-O-demethyl-4-deoxypodophyllotoxin-4'-yl 4-((6-(2-(5-fluorouracil-yl) acetamido) hexyl) amino)-4-oxobutanoate (compound 22)-induced cell-cycle arrest in the G2/M phase by regulating levels of cdc2, cyclinB1, and p-cdc2 in A549 cells. Furthermore, compound 22 may inhibited the migration of A549 cells via down-regulation of MMP-9 and up-regulation of TIMP-1. PMID:26873416

  8. Activation of the Retinoblastoma Tumor Suppressor Mediates Cell Cycle Inhibition and Cell Death in Specific Cervical Cancer Cell Lines

    OpenAIRE

    Bourgo, Ryan J.; Braden, Wesley A.; Wells, Susanne I.; Knudsen, Erik S.

    2009-01-01

    High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, th...

  9. LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation

    Institute of Scientific and Technical Information of China (English)

    Yu-bo ZHOU; Xu FENG; Li-na WANG; Jun-qing DU; Yue-yang ZHOU; Hai-ping YU; Yi ZANG; Jing-ya LI; Jia LI

    2009-01-01

    Aim: To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. Methods: Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression and phosphorylation was examined by Western blot analysis. Results: LGH00031 inhibited CDC25B irreversibly in vitro in a dose-dependent manner, and impaired the proliferation of tumor cell lines. In synchronized HeLa cells, LGH00031 delayed the cell cycle progression at the G2/M phase. LGH00031 increased cyclin-dependent kinase 1 (CDK1) tyrosine 15 phosphorylation and cyclin B1 protein level. The activity of LGH00031 against CDC25B in vitro relied on the existence of 1, 4-dithiothreitol (DTT) or dihydrolipoic acid and oxygen. The oxygen free radical scavenger catalase and superoxide dismutase reduced the inactivation of CDC25 by LGH00031, confirming that reactive oxygen species (ROS) mediate the inactivation process in vitro. LGH00031 accelerated cellular ROS production in a dose-dependent manner, and N-acetyl cysteine (NAC) markedly decreased the ROS production induced by LGH00031.Correspondingly, the LGH00031-induced decrease in cell viability and cell cycle arrest, cyclin B1 protein level, and phosphorylation of CDK1 tyrosine 15 were also rescued by NAC that decreased ROS pro-duction. Conclusion: The activity of LGH00031 at the molecular and cellular level is mediated by ROS.

  10. Isolation of austroinulin possessing cell cycle inhibition activity from Blumea glomerata and revision of its absolute configuration.

    Science.gov (United States)

    Ohtsuki, Takashi; Koyano, Takashi; Kowithayakorn, Thaworn; Yamaguchi, Naoto; Ishibashi, Masami

    2004-12-01

    A labdane-diterpene, austroinulin (1), together with several known flavonoids and sesquiterpenes were isolated from leaves of Blumea glomerata (Compositae). Austroinulin (1) and most of the flavonoids showed cytotoxicity against HeLa cells, while austroinulin (1) exhibited a cell cycle inhibition effect at the G1 stage at the concentration of 15.2 microg/mL (47.2 microM). The absolute configuration of 1 was revised as 5S,6R,7S,8S,9R,10R on the basis of the modified Mosher's method. PMID:15643553

  11. An Aqueous Extract of Tuberaria lignosa Inhibits Cell Growth, Alters the Cell Cycle Profile, and Induces Apoptosis of NCI-H460 Tumor Cells.

    Science.gov (United States)

    Pereira, Joana M; Lopes-Rodrigues, Vanessa; Xavier, Cristina P R; Lima, M João; Lima, Raquel T; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2016-01-01

    Tuberaria lignosa (Sweet) Samp. is found in European regions, and has antioxidant properties due to its composition in ascorbic acid and phenolic compounds. Given its traditional use and antioxidant properties, the tumor cell growth inhibitory potential of aqueous extracts from T. lignosa (prepared by infusion and decoction) was investigated in three human tumor cell lines: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and HCT-15 (human colorectal adenocarcinoma). Both extracts inhibited the growth of these cell lines; the most potent one being the T. lignosa extract obtained by infusion in the NCI-H460 cells (GI50 of approximately 50 μg/mL). Further assays were carried out with this extract in NCI-H460 cells. At 100 μg/mL or 150 μg/mL it caused an increase in the percentage of cells in the G0/G1 phase and a decrease of cells in S phase of the cell cycle. Additionally, these concentrations caused an increase in the percentage of apoptotic cells. In agreement, a decrease in total poly (ADP-ribose) polymerase (PARP) and pro-caspase 3 levels was found. In conclusion, the T. lignosa extract obtained by infusion was more potent in NCI-H460 cells, altering the cell cycle progression and inducing apoptosis. This work highlights the importance of T. lignosa as a source of bioactive compounds with tumor cell growth inhibitory potential. PMID:27164073

  12. AB109. Downregulation of tNASP inhibits proliferation through regulating cell cycle-related proteins and inactive ERK/MAPK signal pathway in renal cell carcinoma cells

    Science.gov (United States)

    Fang, Jianzheng; Wang, Hainan; Cheng, Gong; Wang, Shangqian; Deng, Yunfei; Song, Zhen; Xu, Aiming; Liu, Bianjiang; Wang, Zengjun

    2016-01-01

    Objective Nuclear auto-antigenic sperm protein (NASP), initially described as a highly auto-immunogenic testis and sperm-specific protein, is a histone chaperone that is proved to present in all dividing cells. NASP has two splice variants: testicular NASP (tNASP) and somatic form of NASP (sNASP). Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP. Up to now, little has been known about tNASP in renal cell carcinoma (RCC). In the present study, the molecular mechanism of tNASP in RCC was explored. Methods The expression level of tNASP in 16 paired human RCC specimens was determined. Downregulation of tNASP by small interfering RNA (siRNA) was transfected in RCC cell lines. The effect of downregulation of tNASP by siRNA on cell colony formation and proliferation was examined by colony formation assay and CCK-8 assay, cell cycle was analyzed by flow cytometry, and the expression of cyclin D1 and P21 were detected by Western blotting. ERK/MAPK signaling was also analyzed. Results tNASP has a relative high expression level in human RCC tissues. Via upregulation of P21 and downregulation of cyclinD1, silence of tNASP can inhibit cell proliferation, which induces cell cycle arrest. Furthermore, ERK signaling pathway is confirmed to mediate the regulation of cell cycle-related proteins caused by silence of tNASP. Conclusions Our research demonstrates that knockdown of tNASP effectively inhibits the proliferation and causes G1 phase arrest through ERK/MAPK signal pathway.

  13. Cell Cycle Inhibition from Ethylacetate Extracts of Plectranthus amboinicus, (Lour.) Spreng.) Leaves on HeLa Cells Lines

    OpenAIRE

    Rosidah; Hasibuan, Poppy Anjelisa Z.; Satria, Denny

    2016-01-01

    Objective: To evaluate the effects of ethylacetate extract (EAE) of Plectranthus amboinicus (Lour.) Spreng.) leaves on cell cyle on HeLa cell lines. Methods: Analysis of cell cycle distribution was performed using flowcytometer and the data was analyzed using ModFit LT 3.0 program. Results: The EAE changes the accumulation of cell cycle phase from G0 -G1 phase (54.61%) to sub-G1 phase (69.73%). Conclusions: Based on the results, EAE is potential to be developed as co-chemoth...

  14. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H., E-mail: grahamc@queensu.ca

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  15. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1; and knockdown of p27kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  16. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells

    Directory of Open Access Journals (Sweden)

    Elgjo Kjell

    2009-07-01

    Full Text Available Abstract Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.

  17. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Directory of Open Access Journals (Sweden)

    Nan Hua

    Full Text Available Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs. In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC.

  18. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Science.gov (United States)

    Hua, Nan; Wei, Xiaoli; Liu, Xiaoyan; Ma, Xiaoyun; He, Xinhua; Zhuo, Rengong; Zhao, Zhe; Wang, Liyun; Yan, Haitao; Zhong, Bohua; Zheng, Jianquan

    2012-01-01

    Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs). In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC) cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC. PMID:23285263

  19. Dexamethasone suppresses DU145 cell proliferation and cell cycle through inhibition of the extracellular signal-regulated kinase 1/2 pathway and cyclin D1 expression

    Institute of Scientific and Technical Information of China (English)

    Qing-Zhen Gao; Jia-Ju Lu; Zi-Dong Liu; Hui Zhang; Shao-Mei Wang; He Xu

    2008-01-01

    Aim: To determine the mechanisms of glucocorticoids in inhibiting advanced prostate cancer growth. Methods: The cell proliferation and cell cycle of prostate cancer DU145 cells following dexamethasone treatment were determined by proliferation assay and fluorescence-activated cell sorter. Western blot analysis was carried out to evaluate the effects of dexamethasone on phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and expression of cyclin D1 in DU145 cells with or without glucocorticoid receptor (GR) antagonist RU486. Reverse transcription- polymerase chain reaction verified the expression of GR mRNA in DU145 cells. Results: Dexamethasone signifi- cantly inhibited DU145 cell proliferation at the G0/G1 phase. Western blot analysis showed a dramatic reduction of ERK1/2 activity and cyclin D1 expression in dexamethasone-treated cells. The decreased phosphorylation of ERK1/2 in dexamethasone-treated cells was attenuated by GR blockade. Additionally, the effects of dexamethasone in inhibiting cyclin D1 expression were altered by GR blockade. Conclusion: Dexamethasone suppresses DU 145 cell prolifera- tion and cell cycle, and the underlying mechanisms are through the inhibition of phosphorylation of ERK1/2 and cyclin D1 expression. The inhibition of ERK1/2 phosphorylation and cyclin D1 expression is attenuated by GR blockade, suggesting that GR regulates ERK1/2 and cyclin D 1 pathways. These observations suggest that dexamethasone has a potential clinical application in prostate cancer therapy. (Asian JAndrol 2008 Jul; 10: 635-641)

  20. Time course of morphine's effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons.

    Science.gov (United States)

    Arguello, A A; Harburg, G C; Schonborn, J R; Mandyam, C D; Yamaguchi, M; Eisch, A J

    2008-11-11

    Opiates, such as morphine, decrease neurogenesis in the adult hippocampal subgranular zone (SGZ), raising the possibility that decreased neurogenesis contributes to opiate-induced cognitive deficits. However, there is an incomplete understanding of how alterations in cell cycle progression and progenitor maturation contribute to this decrease. The present study examined how morphine regulates progenitor cell cycle, cell death and immature SGZ neurons (experiment 1) as well as the progression of SGZ progenitors through key stages of maturation (experiment 2). In experiment 1, mice received sham or morphine pellets (s.c., 0 and 48 h) and bromodeoxyuridine (BrdU) 2 h prior to sacrifice (24, 72 or 96 h). Morphine decreased both the number of S phase and total cycling cells, as there were fewer cells immunoreactive (IR) for the S phase marker BrdU and the cell cycle marker Ki67. The percentage of Ki67-IR cells that were BrdU-IR was decreased after 24 but not 96 h of morphine, suggesting a disproportionate effect on S phase cells relative to all cycling cells at this time point. Cell death (activated caspase-3 counts) was increased after 24 but not 96 h. In experiment 2, nestin-green fluorescent protein (GFP) mice given BrdU 1 day prior to morphine or sham surgery (0 and 48 h, sacrifice 96 h) had fewer Ki67-IR cells, but no change in BrdU-IR cell number, suggesting that this population of BrdU-IR cells was less sensitive to morphine. Interestingly, examination of key stages of progenitor cell maturation revealed that morphine increased the percent of BrdU-IR cells that were type 2b and decreased the percent that were immature neurons. These data suggest that chronic morphine decreases SGZ neurogenesis by inhibiting dividing cells, particularly those in S phase, and progenitor cell progression to a more mature neuronal stage. PMID:18832014

  1. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia[S

    Science.gov (United States)

    Štefanić, Saša; Spycher, Cornelia; Morf, Laura; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B.; Sonda, Sabrina

    2010-01-01

    Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes. PMID:20335568

  2. Inhibition effect of proteasome inhibitor MG132 combined with X-ray irradiation on cell growth, metastasis and cycle distribution of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Objective: To study the effects of proteasome inhibitor MG132 on the growth, metastasis, and cell cycle distribution of human lung adenocarcinoma cells A549 irradiated by X-rays. Methods: After treatment of MG132 and irradiation,cell proliferation was detected by MTT assay. Survival was measured by clonogenic assay. Cell migration ability was detected by the Scratch migration assay. Cell invasion ability was detected by transwell migration assay. Cell cycle distribution were analyzed by flow cytometry assay. Protein expression was detected by Western blot assay. Results: MG132 alone inhibited cell growth in a dose-and time-dependent manner. MG132 in combination with radiation significantly suppressed the growth, migration and invasion of A549 cells compared to the control (F =554.78, 954.64, P<0.01). MG132 enhanced radiation-induced G1-arrest (t =4.44, 12.41, 3.52, 6.72, P<0.05). The G1 cell cycle distribution rate of MG132 plus RT group was increased to (71.05 ± 4.17)%. The expressions of MMP-2, MMP-9 and Cyclin D1 were significantly suppressed by MG132 in combination with radiation, while the expression of P53 was up-regulated. Conclusions: MG132 inhibits cell growth, migration and invasion ability, and induces G1 cell cycle arrest of A549 cells treated with MG132 in combination with radiation, in which the down-regulation of MMPs and Cyclin D1 and up-regulation of P53 may be involved. (authors)

  3. DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival.

    Science.gov (United States)

    Wingert, Susanne; Thalheimer, Frederic B; Haetscher, Nadine; Rehage, Maike; Schroeder, Timm; Rieger, Michael A

    2016-03-01

    Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system. Stem Cells 2016;34:699-710. PMID:26731607

  4. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    International Nuclear Information System (INIS)

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr288 and subsequently impaired p53 phosphorylation at Ser315 which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss

  5. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiling; Li, Ridong [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Li, Li [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Ge, Zemei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Zhou, Rouli, E-mail: rlzhou@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Runtao, E-mail: lirt@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  6. Dihydroaustrasulfone Alcohol Inhibits PDGF-Induced Proliferation and Migration of Human Aortic Smooth Muscle Cells through Inhibition of the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Yao-Chang Chen

    2015-04-01

    Full Text Available Dihydroaustrasulfone alcohol is the synthetic precursor of austrasulfone, which is a marine natural product, isolated from the Taiwanese soft coral Cladiella australis. Dihydroaustrasulfone alcohol has anti-inflammatory, neuroprotective, antitumor and anti-atherogenic properties. Although dihydroaustrasulfone alcohol has been shown to inhibit neointima formation, its effect on human vascular smooth muscle cells (VSMCs has not been elucidated. We examined the effects and the mechanisms of action of dihydroaustrasulfone alcohol on proliferation, migration and phenotypic modulation of human aortic smooth muscle cells (HASMCs. Dihydroaustrasulfone alcohol significantly inhibited proliferation, DNA synthesis and migration of HASMCs, without inducing cell death. Dihydroaustrasulfone alcohol also inhibited platelet-derived growth factor (PDGF-induced expression of cyclin-dependent kinases (CDK 2, CDK4, cyclin D1 and cyclin E. In addition, dihydroaustrasulfone alcohol inhibited PDGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2, whereas it had no effect on the phosphorylation of phosphatidylinositol 3-kinase (PI3K/(Akt. Moreover, treatment with PD98059, a highly selective ERK inhibitor, blocked PDGF-induced upregulation of cyclin D1 and cyclin E and downregulation of p27kip1. Furthermore, dihydroaustrasulfone alcohol also inhibits VSMC synthetic phenotype formation induced by PDGF. For in vivo studies, dihydroaustrasulfone alcohol decreased smooth muscle cell proliferation in a rat model of restenosis induced by balloon injury. Immunohistochemical staining showed that dihydroaustrasulfone alcohol noticeably decreased the expression of proliferating cell nuclear antigen (PCNA and altered VSMC phenotype from a synthetic to contractile state. Our findings provide important insights into the mechanisms underlying the vasoprotective actions of dihydroaustrasulfone alcohol and suggest that it may be a useful therapeutic agent

  7. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  8. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    Science.gov (United States)

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth. PMID:26718258

  9. Ethanol Extract of Abnormal Savda Munziq, a Herbal Preparation of Traditional Uighur Medicine, Inhibits Caco-2 Cells Proliferation via Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Abdiryim Yusup

    2012-01-01

    Full Text Available Aims. Study the effect of Abnormal Savda Munziq (ASMq ethanol extract on the proliferation, apoptosis, and correlative gene, expression in colon cancer cells (Caco-2 to elucidate the molecular mechanisms responsible for the anticancer property of Abnormal Savda Munziq. Materials and Methods. ASMq ethanol extract was prepared by a professional pharmacist. Caco-2 cells were treated with different concentration of ASMq ethanol extract (0.5–7.5 mg/mL for different time intervals (48 and 72 h. Antiproliferative effect of ASMq ethanol extract was determined by MTT assay; DNA fragmentation was determined by gel electrophoresis assay; cell cycle analysis was detected by flow cytometer; apoptosis-related gene expression was detected by RT-PCR assay. Results. ASMq ethanol extract possesses an inhibition effect on Caco-2 cells proliferation, induction of cell apoptosis, cell cycle arrest in sub-G1 phase, and downregulation of bcl-2 and upregulation of Bax gene expression. Conclusion. The anticancer mechanism of ASMq ethanol extract may be involved in antiproliferation, induction of apoptosis, cell cycle arrest, and regulation of apoptosis-related gene expression such as bcl-2 and Bax activity pathway.

  10. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Yohko Fujimoto

    2014-06-01

    Full Text Available The aim of this study was to assess the possible roles of the phytochemical compounds, curcumin, quercetin and resveratrol in the proliferation of human colorectal cancer cell line Caco-2. All three phytochemical compounds inhibited Caco-2 cell proliferation, with curcumin being more effective than quercetin and resveratrol. Investigations concerning DNA fragmentation in the nucleus, Bax and Bcl-2 mRNA expression levels, and caspase-3/7 activity indicated that curcumin induced apoptosis in Caco-2 cells through an increase in the Bax/Bcl-2 ratio and activation of caspase-3/7. Furthermore, the analysis of flow-cytometry showed that curcumin caused an arrest of G2/M phase in Caco-2 cells. These results suggest that curcumin suppresses Caco-2 proliferation partially via activation of the mitochondrial apoptotic pathway and cell cycle retardation.

  11. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  12. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    International Nuclear Information System (INIS)

    Highlights: ► The cytotoxicity of juglone is markedly increased by ascorbate. ► T24 cell death by oxidative stress is necrosis-like. ► Redox cycling by juglone/ascorbate inhibits cell proliferation. ► Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC50 value for juglone at 24 h decreased from 28.5 μM to 6.3 μM in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1–5 μM), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.

  13. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Felipe, K.B., E-mail: kakabettega@yahoo.com.br [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Farias, M.S., E-mail: mirellesfarias@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Glorieux, C., E-mail: christophe.glorieux@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Valenzuela, M., E-mail: mavalenzuela@med.uchile.cl [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Sid, B., E-mail: brice.sid@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); and others

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.

  14. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways

    Directory of Open Access Journals (Sweden)

    Wu Weilin

    2008-06-01

    Full Text Available Abstract Human T-cell leukemia virus type-1 (HTLV-1 induces adult T-cell leukemia/lymphoma (ATL/L, a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-κB and the cell cycle pathways. The observation that NF-κB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-κB and CDK inhibitors (total of 35 compounds to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKβ kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A

  15. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways.

    Science.gov (United States)

    Agbottah, Emmanuel; Yeh, Wen-I; Berro, Reem; Klase, Zachary; Pedati, Caitlin; Kehn-Hall, Kyleen; Wu, Weilin; Kashanchi, Fatah

    2008-01-01

    Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-kappaB and the cell cycle pathways. The observation that NF-kappaB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-kappaB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKbeta kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target

  16. AZD2014 Radiosensitizes Oral Squamous Cell Carcinoma by Inhibiting AKT/mTOR Axis and Inducing G1/G2/M Cell Cycle Arrest.

    Directory of Open Access Journals (Sweden)

    Chih-Chia Yu

    Full Text Available Oral squamous cell carcinoma (OSCC is one of the most common malignant neoplasms in Taiwan. Activation of the mTOR signaling pathway has been linked to decreased radiation responsiveness in human oral cancer, thus it limits efficacy of radiotherapy. To address this question, we investigated the effect of AZD2014, a novel small molecular ATP-competitive inhibitor of mTORC1 and mTORC2 kinase, as a radiosensitizer in primary OSCC and OSCC-derived cell line models.We isolated primary tumor cells from OSCC tissues and cell lines. AZD2014 was administered with and without ionizing radiation. The radiosensitizing effect of AZD2014 were then assessed using cell viability assays, clonogenic survival assays, and cell cycle analyses. Western blotting was used to detect protein expression.Combination treatment with AZD2014 and irradiation resulted in significant reduction in OSCC cell line and primary OSCC cell colony formation due to the enhanced inhibition of AKT and both mTORC1 and mTORC2 activity. Pre-treatment with AZD2014 in irradiated oral cancer cells induced tumor cell cycle arrest at the G1 and G2/M phases, which led to disruption of cyclin D1-CDK4 and cyclin B1-CDC2 complexes. Moreover, AZD2014 synergized with radiation to promote both apoptosis and autophagy by increasing caspase-3 and LC3 in primary OSCC cells.These findings suggest that in irradiated OSCC cells, co-treatment with AZD2014, which targets mTORC1 and mTORC2 blockade, is an effective radiosensitizing strategy for oral squamous cell carcinoma.

  17. Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest

    International Nuclear Information System (INIS)

    New cancer therapeutic strategies must be investigated that enhance prostate cancer treatment while minimizing associated toxicities. We have previously shown that genistein, the major isoflavone found in soy, enhanced prostate cancer radiotherapy in vitro and in vivo. In this study, we investigated the cellular and molecular interaction between genistein and radiation using PC-3 human prostate cancer cells. Tumor cell survival and progression was determined by clonogenic analysis, flow cytometry, EMSA analysis of NF-κB, and western blot analysis of cyclin B1, p21WAF1/Cip1, and cleaved PARP protein. Genistein combined with radiation caused greater inhibition in PC-3 colony formation compared to genistein or radiation alone. Treatment sequence of genistein followed by radiation and continuous exposure to genistein showed optimal effect. Cell cycle analysis demonstrated a significant dose- and time-dependent G2/M arrest induced by genistein and radiation that correlated with increased p21WAF1/Cip1 and decreased cyclin B1 expression. NF-κB activity was significantly decreased by genistein, yet increased by radiation. Radiation-induced activation of NF-κB activity was strongly inhibited by genistein pre-treatment. A significant and striking increase in cleaved PARP protein was measured following combined genistein and radiation treatment, indicating increased apoptosis. A mechanism of increased cell death by genistein and radiation is proposed to occur via inhibition of NF-κB, leading to altered expression of regulatory cell cycle proteins such as cyclin B and/or p21WAF1/Cip1, thus promoting G2/M arrest and increased radiosensitivity. These findings support the important and novel strategy of combining genistein with radiation for the treatment of prostate cancer

  18. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    International Nuclear Information System (INIS)

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC50 = 0.71 μM) and SKOV-3 (IC50 = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  19. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kulcenty, Katarzyna [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Wierzchowski, Marcin [Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan (Poland); Kaczmarek, Mariusz [Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan (Poland); Murias, Marek [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kwiatkowska-Borowczyk, Eliza [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan (Poland); Jodynis-Liebert, Jadwiga, E-mail: liebert@ump.edu.pl [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland)

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  20. Inhibition of mTORC2 Induces Cell-Cycle Arrest and Enhances the Cytotoxicity of Doxorubicin by Suppressing MDR1 Expression in HCC Cells.

    Science.gov (United States)

    Chen, Bryan Wei; Chen, Wei; Liang, Hui; Liu, Hao; Liang, Chao; Zhi, Xiao; Hu, Li-Qiang; Yu, Xia-Zhen; Wei, Tao; Ma, Tao; Xue, Fei; Zheng, Lei; Zhao, Bin; Feng, Xin-Hua; Bai, Xue-Li; Liang, Ting-Bo

    2015-08-01

    mTOR is aberrantly activated in hepatocellular carcinoma (HCC) and plays pivotal roles in tumorigenesis and chemoresistance. Rapamycin has been reported to exert antitumor activity in HCC and sensitizes HCC cells to cytotoxic agents. However, due to feedback activation of AKT after mTOR complex 1 (mTORC1) inhibition, simultaneous targeting of mTORC1/2 may be more effective. In this study, we examined the interaction between the dual mTORC1/2 inhibitor OSI-027 and doxorubicin in vitro and in vivo. OSI-027 was found to reduce phosphorylation of both mTORC1 and mTORC2 substrates, including 4E-BP1, p70S6K, and AKT (Ser473), and inhibit HCC cell proliferation. Similar to OSI-027 treatment, knockdown of mTORC2 induced G0-G1 phase cell-cycle arrest. In contrast, rapamycin or knockdown of mTORC1 increased phosphorylation of AKT (Ser473), yet had little antiproliferative effect. Notably, OSI-027 synergized with doxorubicin for the antiproliferative efficacy in a manner dependent of MDR1 expression in HCC cells. The synergistic antitumor effect of OSI-027 and doxorubicin was also observed in a HCC xenograft mouse model. Moreover, AKT was required for OSI-027-induced cell-cycle arrest and downregulation of MDR1. Our findings provide a rationale for dual mTORC1/mTORC2 inhibitors, such as OSI-027, as monotherapy or in combination with cytotoxic agents to treat HCC. Mol Cancer Ther; 14(8); 1805-15. ©2015 AACR. PMID:26026051

  1. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect. PMID:26475489

  2. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α1-adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α1-adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G0/G1 arrest, and G2/M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α1-adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through caspases and

  3. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers

    Directory of Open Access Journals (Sweden)

    Sun J

    2015-12-01

    <0.05. The general apoptosis biomarker, Bcl-2, was significantly decreased and the Bax was significantly increased compared to the control group (P<0.05. In contrast to that in MCF-7, D. candidum does not affect cell proliferation at any concentration and any time points in normal breast epithelial cells, MCF10A cells. Conclusion: D. candidum could decrease the cell viability of MCF-7 cells by inducing cell cycle arrest at the G2/M phase and regulating the key biomarkers in breast cancer cells. Keywords: breast cancer, D. candidum, proliferation, biomarker, inhibition

  4. G1 cell cycle arrest due to the inhibition of erbB family receptor tyrosine kinases does not require the retinoblastoma protein

    International Nuclear Information System (INIS)

    The erbB receptor family (EGFr, erbB-2, erbB-3, and erbB-4) consists of transmembrane glycoproteins that transduce extracellular signals to the nucleus when activated. erbB family members are widely expressed in epithelial, mesenchymal, and neuronal cells and contribute to the proliferation, differentiation, migration, and survival of these cell types. The present study evaluates the effects of erbB family signaling on cell cycle progression and the role that pRB plays in regulating this process. ErbB family RTK activity was inhibited by PD 158780 in the breast epithelial cell line MCF10A. PD 158780 (0.5 μM) inhibited EGF-stimulated and heregulin-stimulated autophosphorylation and caused a G1 cell cycle arrest within 24 h, which correlated with hypophosporylation of pRB. MCF10A cells lacking functional pRB retained the ability to arrest in G1 when treated with PD 158780. Both cell lines showed induction of p27KIP1 protein when treated with PD 158780 and increased association of p27KIP1 with cyclin E-CDK2. Furthermore, CDK2 kinase activity was dramatically inhibited with drug treatment. Changes in other pRB family members were noted with drug treatment, namely a decrease in p107 and an increase in p130. These findings show that the G1 arrest induced through inhibition of erbB family RTK activity does not require functional pRB

  5. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds

    Directory of Open Access Journals (Sweden)

    Di Renzo Livia

    2009-03-01

    Full Text Available Abstract Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ, sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1 and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells.

  6. Muscarinic acetylcholine receptor down-regulation limits the extent of inhibition of cell cycle progression in Chinese hamster ovary cells.

    OpenAIRE

    Detjen, K.; Yang, J; Logsdon, C D

    1995-01-01

    Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in t...

  7. Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation.

    Science.gov (United States)

    Vaid, Mudit; Sharma, Som D; Katiyar, Santosh K

    2010-11-01

    To develop newer and more effective chemopreventive agents for skin cancer, we assessed the effect of honokiol, a phytochemical from the Magnolia plant, on ultraviolet (UV) radiation-induced skin tumorigenesis using the SKH-1 hairless mouse model. Topical treatment of mice with honokiol in a hydrophilic cream-based topical formulation before or after UVB (180 mJ/cm(2)) irradiation resulted in a significant protection against photocarcinogenesis in terms of tumor multiplicity (28-60%, P skin samples from the tumor-bearing mice were analyzed for inflammatory mediators, cell cycle regulators and survival signals using immunostaining, western blotting and enzyme-linked immunosorbent assay. Treatment with honokiol significantly inhibited UVB-induced expression of cyclooxygenase-2, prostaglandin E(2) (P skin as well as in skin tumors. Western blot analysis revealed that honokiol: (i) inhibited the levels of cyclins D1, D2 and E and associated cyclin-dependent kinases (CDKs)2, CDK4 and CDK6, (ii) upregulated Cip/p21 and Kip/p27 and (iii) inhibited the levels of phosphatidylinositol 3-kinase and the phosphorylation of Akt at Ser(473) in UVB-induced skin tumors. Together, our results indicate that honokiol holds promise for the prevention of UVB-induced skin cancer by targeting inflammatory mediators, cell cycle regulators and cell survival signals in UVB-exposed skin. PMID:20823108

  8. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration

    Science.gov (United States)

    HONG, JING-FANG; SONG, YING-FANG; LIU, ZHENG; ZHENG, ZHAO-CONG; CHEN, HONG-JIE; WANG, SHOU-SEN

    2016-01-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0

  9. Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1

    Directory of Open Access Journals (Sweden)

    Hyang Jee

    2013-01-01

    Full Text Available Gap junctions and their structural proteins, connexins (Cxs, havebeen implicated in carcinogenesis. To explore the involvement ofCx32 in gastric carcinogenesis, immunochemical analysis of Cx32and proliferation marker Ki67 using tissue-microarrayed humangastric cancer and normal tissues was performed. In addition, afterCx32 overexpression in the human gastric cancer cell line AGS,cell proliferation, cell cycle analyses, and p21Cip1 and p27Kip1expression levels were examined by bromodeoxyuridine assay,flow cytometry, real-time RT-PCR, and western blotting.Immunohistochemical study noted a strong inverse correlationbetween Cx32 and Ki67 expression pattern as well as theirlocation. In vitro, overexpression of Cx32 in AGS cells inhibitedcell proliferation significantly. G1 arrest, up-regulation of cellcycle-regulatory proteins p21Cip1 and p27Kip1 was also found atboth mRNA and protein levels. Taken together, Cx32 plays someroles in gastric cancer development by inhibiting gastric cancercell proliferation through cell cycle arrest and cell cycle regulatoryproteins. [BMB Reports 2013; 46(1: 25-30

  10. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    Science.gov (United States)

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  11. Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction.

    Science.gov (United States)

    Fan, Yanhua; Lu, Hongyuan; An, Li; Wang, Changli; Zhou, Zhipeng; Feng, Fan; Ma, Hongda; Xu, Yongnan; Zhao, Qingchun

    2016-04-01

    Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.), a genus of Eriocaulon in the Eriocaulaceae family, is an edible and medicinal plant used in traditional Chinese medicine. It was processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood fat. Also, it has been used with other herbs as Traditional Chinese herbal compound to treat cancer as adjuvants in tumor therapy in China. However, the active fractions and precise cellular mechanisms of E. sieboldianum extract remain to be illustrated. The goal of this study was to investigate the effects of the active fraction of E. sieboldianum on the growth of K562 cells and understand the possible mechanisms of its action. Our findings suggested that the fraction E3 of E. sieboldianum could effectively inhibit the activity of Aurora kinase and induce apoptosis via blocking cell cycle, up-regulating the expression of proapoptotic proteins including p53 and Bax and reducing the expression of Bcl-2. The levels of Cytochrome C, cleaved caspase-9, cleaved caspase-3 and cleaved PARP were also found to be increased after treatment with fraction E3 of E. sieboldianum. This study could improve the development of E. sieboldianum and raise its application value in cancer adjuvant therapy. Considering it is both a dietary supplement and a traditional Chinese herbal medicine which exhibits anticancer activities, it can be developed into functional food. PMID:26923230

  12. N-Octanoyl dopamine transiently inhibits T cell proliferation via G1 cell-cycle arrest and inhibition of redox-dependent transcription factors

    NARCIS (Netherlands)

    Wedel, Johannes; Hottenrott, Maximillia C.; Stamellou, Eleni; Breedijk, Annette; Tsagogiorgas, Charalambos; Hillebrands, Jan-Luuk; Yard, Benito A.

    2014-01-01

    Recently, we developed a nonhemodynamic dopamine derivative, NOD, which has profound anti-inflammatory effects in vitro. As NOD also protects rats from ischemic AKI, the present study tested whether NOD is able to modulate cellular immunity for potential use as a T cell-suppressive agent. To this en

  13. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.

    Science.gov (United States)

    Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42

  14. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.

    Science.gov (United States)

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  15. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest

    Directory of Open Access Journals (Sweden)

    Han Jin Cho

    2016-02-01

    Full Text Available Benzyl isothiocyanate (BITC is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker, cyclin A, cyclin D1, and cyclin-dependent kinase (CDK2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.

  16. Combined paclitaxel, cisplatin and fluorouracil therapy enhances ionizing radiation effects, inhibits migration and induces G0/G1 cell cycle arrest and apoptosis in oral carcinoma cell lines

    OpenAIRE

    Elias, Silvia Taveira; BORGES, GABRIEL ALVARES; RÊGO, DANIELA FORTUNATO; E SILVA, LUIS FELIPE OLIVEIRA; AVELINO, SAMUEL; DE MATOS NETO, JOÃO NUNES; Simeoni, Luiz Alberto; GUERRA, ELIETE NEVES SILVA

    2015-01-01

    Although taxels (in particular paclitaxel), cisplatin and fluorouracil (TPF) chemotherapy has been approved for use in the treatment of head and neck squamous cell carcinoma (HNSCC), little is known with regard to the cellular mechanisms of this novel drug association. In order to investigate the reaction of cells to this novel treatment, the present study aimed to examine the cytotoxic effect of TPF in HNSCC cell lines in combination with irradiation, to analyze its effect on cell cycle prog...

  17. Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Yang, E-mail: muyang@nwsuaf.edu.cn [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A& F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People' s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Li, Liangliang, E-mail: lifeiyang2007@126.com [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A& F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People' s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Zhang, Beibei, E-mail: diana851218@163.com [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A& F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People' s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Huang, Baicheng, E-mail: hbch228@163.com [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A& F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People' s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Gao, Jiming, E-mail: jimingao2006@163.com [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A& F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People' s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100 (China); and others

    2015-10-15

    Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.

  18. Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

    International Nuclear Information System (INIS)

    Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5Δ84-96 (aa 84-96 deletion), and GP5Δ97-119 (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5Δ97-119, but not full-length or GP5Δ84-96, induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5Δ84-96 inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5Δ97-119 expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5Δ84-96 was significantly inhibited

  19. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study

    Directory of Open Access Journals (Sweden)

    Visveswaraiah Paranjyothi Magadi

    2015-01-01

    Full Text Available Introduction: Malignancies constitute a wide variety of disorders having high mortality and morbidity rates. Current protocols for management include surgical intervention, chemotherapy, and radiation which possess numerous adverse effects. Many phytochemicals are available with anticancer properties similar to anticancer drugs. Major benefit of these compounds is apparent lack of toxicity to normal tissues. Graviola (botanical name: Annona Muricata contain bioactive compound “annonaceous acetogenins” known for anticancer activity on cancer cell lines. Aims: To determine cytotoxicity of Graviola and percentage cell inhibition at G2M phase of cell cycle. Settings and Design: The cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma (SCC-25 cell lines at various concentrations evaluated using 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Methods: Graviola Leaves, American Type Culture Collection SCC-25 cell lines were procured from Skanda Laboratories, Bengaluru. The cytotoxicity of aqueous extract of Graviola on SCC-25 cells at various concentrations evaluated using MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Statistical Analysis: Statistical analysis was done using one-way ANOVA. Results: MTT assay showed statistically significant (P < 0.001 dose-dependent inhibition of SCC-25 cell lines by Graviola with IC50 value of 12.42 μg/ml. Flow cytometry revealed that Graviola at 25 and 50 g/ml arrested 53.39% and 52.09% cells in G2M phase of cell cycle respectively, which was statistically significant. Conclusion: Graviola showed significant cytotoxic activity and percentage of cell inhibition at G2M phase cell cycle against SCC-25 cell lines.

  20. Inhibition of Anchorage-Independent Proliferation and G0/G1 Cell-Cycle Regulation in Human Colorectal Carcinoma Cells by 4,7-Dimethoxy-5-Methyl-l,3-Benzodioxole Isolated from the Fruiting Body of Antrodia camphorate

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2011-01-01

    Full Text Available In this study, 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1 was isolated from three different sources of dried fruiting bodies of Antrodia camphorate (AC. AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae, an endemic species that is used in Chinese medicine for its anti-tumor and immunomodulatory properties. In this study, we demonstrated that SY-1 profoundly decreased the proliferation of human colon cancer cells (COLO 205 through G0/G1 cell-cycle arrest (50–150 μM and induction of apoptosis (>150 μM. Cell-cycle arrest induced by SY-1 was associated with a significant increase in levels of p53, p21/Cip1 and p27/Kip1, and a decrease in cyclins D1, D3 and A. In contrast, SY-1 treatment did not induce significant changes in G0/G1 phase cell-cycle regulatory proteins in normal human colonic epithelial cells (FHC. The cells were cultured in soft agar to evaluate anchorage-independent colony formation, and we found that the number of transformed colonies was significantly reduced in the SY-1-treated COLO 205 cells. These findings demonstrate for the first time that SY-1 inhibits human colon cancer cell proliferation through inhibition of cell growth and anchorage-independent colony formation in soft agar. However, the detailed mechanisms of these processes remain unclear and will require further investigation.

  1. MicroRNA-219-5p Inhibits Morphine-Induced Apoptosis by Targeting Key Cell Cycle Regulator WEE1.

    Science.gov (United States)

    Lou, Wei; Zhang, Xingwang; Hu, Xiao-Ying; Hu, Ai-Rong

    2016-01-01

    BACKGROUND To identify the effects of microRNA (miR)-219-5p on morphine-induced apoptosis by targeting WEE1. MATERIAL AND METHODS Forty Balb/C mice (Toll-like receptor 9, TLR9 knockout) were randomly allocated to the experimental and control groups (20 in each group). The baseline miR-219-5p expression was detected using quantitative real-time PCR (qRT-PCR). After morphine was injected at 6 h on the 2nd and 6th days, experimental and control groups received miR-219-5p mimics or miRNA-negative control (NC), respectively, compound injection. Tissues and cells were later obtained from subjects in each group separately after mice were killed. TUNEL assay was used to investigate apoptosis in both groups. RAW264.7 cells were treated with miR-219-5p mimics and controls, respectively. After 24 h, 10 μM of morphine was added at 24 h. Cell apoptosis was assessed by flow cytometer. The WEE1 and Phospho-cdc2 (Tyr15) expressions were examined by Western blotting. RESULTS MiR-219-5p expression in the experimental group was significantly lower than that in the control group (P<0.05). Mice injected with miR-219-5p mimic experienced an evident increase in apoptosis rate compared with the control group (P<0.05). The miR-219-5p NC group and the morphine group both presented an elevated apoptosis rate compared with the blank control group (both, P<0.05). The apoptosis rate in the miR-219-5p mimic group was 10.06%, remarkably lower than in the miR-219-5p NC group and blank control group (both P<0.05). WEE1 and Tyr15 protein expressions in the miR-219-5p NC group and morphine group were obviously stronger than those in the blank control group (all P<0.05). In the miR-219-5p mimic group, WEE1 and Tyr15 protein expressions were significantly lower compared with those in the miR-219-5p NC group and morphine group (all P<0.05). CONCLUSIONS Morphine significantly downregulated the expression of miRNA-219-5p, which targets WEE1 to suppress Tyr15 expressions and activate Cdc2, thus inhibiting

  2. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Sergey V Prykhozhij

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the zebrafish shh(-/- mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh(-/- mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh(-/- mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh(-/- mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53(-/-shh(-/- mutant retina suggesting the effect of p53 on retinal differentiation. CONCLUSIONS: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.

  3. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    Directory of Open Access Journals (Sweden)

    Roberto Vicinanza

    2013-01-01

    Full Text Available Ellagitannins (ETs from pomegranate juice (PJ are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa. ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA. Colonic microflora can convert EA to urolithin A (UA, and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.

  4. CARI III Inhibits Tumor Growth in a Melanoma-Bearing Mouse Model through Induction of G0/G1 Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Hye-Jin Park

    2014-09-01

    Full Text Available Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown rice, Inonotus obliquus grown on germinated brown rice, Antrodia camphorata grown on germinated brown rice and Ganoderma lucidum. Here, we showed that CARI III exerted anti-cancer activity, which is comparable to Dox against melanoma in vivo. B16F10 cells were intraperitoneally injected into C57BL6 mice to develop solid intra-abdominal tumors. Three hundred milligrams of the CARI III/kg/day p.o. regimen reduced tumor weight, comparable to the doxorubicin (Dox-treated group. An increase in life span (ILS% = 50.88% was observed in the CARI III-administered group, compared to the tumor control group. CARI III demonstrates anti-proliferative activity against B16F10 melanoma cells through inducing G0/G1 cell cycle arrest. CARI III inhibits the expression of cyclin D1, CDK4 and CDK2 and induces p21. Therefore, CARI III could be a potential chemopreventive supplement to melanoma patients.

  5. CARI III inhibits tumor growth in a melanoma-bearing mouse model through induction of G0/G1 cell cycle arrest.

    Science.gov (United States)

    Park, Hye-Jin

    2014-01-01

    Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute) III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown rice, Inonotus obliquus grown on germinated brown rice, Antrodia camphorata grown on germinated brown rice and Ganoderma lucidum. Here, we showed that CARI III exerted anti-cancer activity, which is comparable to Dox against melanoma in vivo. B16F10 cells were intraperitoneally injected into C57BL6 mice to develop solid intra-abdominal tumors. Three hundred milligrams of the CARI III/kg/day p.o. regimen reduced tumor weight, comparable to the doxorubicin (Dox)-treated group. An increase in life span (ILS% = 50.88%) was observed in the CARI III-administered group, compared to the tumor control group. CARI III demonstrates anti-proliferative activity against B16F10 melanoma cells through inducing G0/G1 cell cycle arrest. CARI III inhibits the expression of cyclin D1, CDK4 and CDK2 and induces p21. Therefore, CARI III could be a potential chemopreventive supplement to melanoma patients. PMID:25221864

  6. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21.

    Science.gov (United States)

    Blaber, Elizabeth A; Dvorochkin, Natalya; Lee, Chialing; Alwood, Joshua S; Yousuf, Rukhsana; Pianetta, Piero; Globus, Ruth K; Burns, Brendan P; Almeida, Eduardo A C

    2013-01-01

    Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8) to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by µCT shows decreases in bone volume fraction (BV/TV) of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004), indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022), perimeter (+14%, p = 0.008), and canalicular diameter (+6%, p = 0.037). Expression of matrix metalloproteinases (MMP) 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01), with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01), and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by -1.54 fold (p<0.01), possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of rapid bone

  7. Arrest of cell cycle by inhibition of ribonucleotide reductase induces accumulation of NAD+ by Mn2+-supplemented growth of Corynebacterium ammoniagenes.

    Science.gov (United States)

    Abbouni, Bouziane; Elhariry, Hesham M; Auling, Georg

    2003-01-01

    Cell division of the wild type strain Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 which requires 1 microM Mn2+ for balanced growth was inhibited by addition of 20 mM hydroxyurea (HU) or 10 mM p-methoxyphenol (MP) to a Mn2+-supplemented fermentation medium at an appropriate time. Scanning electron microscopy (SEM) showed a restricted elongation characteristic of arrest of the cell cycle in coryneform bacteria. The cultures treated with HU or MP had, respectively, a fourfold or sixfold enhanced accumulation of NAD+ by a salvage biosynthetic pathway. An assay of nucleotide-permeable cells for ribonucleotide reductase activity using [3H-CDP] as substrate revealed a pre-early and complete decline of DNA precursor biosynthesis not found in the untreated control. Overproduction of NAD+ is an alternative to the conventional fermentation process using Mn2+ deficiency. A simple model is presented to discuss the metabolic regulation of the new process based on the presence of a manganese ribonucleotide reductase (Mn-RNR) in the producing strain. PMID:12882290

  8. Knockdown of Bmi1 inhibits bladder cancer cell growth both in vitro and in vivo by blocking cell cycle at G1 phase and inducing apoptosis.

    Science.gov (United States)

    Luo, Hong-bo; Li, Bin; Yuan, Wei-gang; Xu, Chuan-rui

    2015-10-01

    Bmi1 is a member of the polycomb group family of proteins, and it drives the carcinogenesis of various cancers and governs the self-renewal of multiple types of stem cells. However, its role in the initiation and progression of bladder cancer is not clearly known. The present study aimed to investigate the function of Bmi1 in the development of bladder cancer. Bmi1 expression was detected in human bladder cancer tissues and their adjacent normal tissues (n=10) by immunohistochemistry, qRT-PCR and Western blotting, respectively. Bmi1 small interference RNA (siRNA) was synthesized and transfected into human bladder carcinoma cells (EJ) by lipofectamine 2000. The Bmil expression at mRNA and protein levels was measured in EJ cells transfected with Bmil siRNA (0, 80, 160 nmol/L) by qRT-PCR and Western blotting, respectively. Cell viability and Ki67 expression (a marker of cell proliferation) were determined in Bmi1 siRNA-transfected cells by CCK-8 assay and qRT-PCR, respectively. Cell cycle of transfected cells was flow-cytometrically determined. Immunofluorescence and Western blotting were used to detect the expression levels of cell cycle-associated proteins cyclin D1 and cyclin E in the cells. Pro-apoptotic proteins Bax and caspase 3 and anti-apoptotic protein Bcl-2 were detected by Western blotting as well. Additionally, xenograft tumor models were established by inoculation of EJ cells (infected with Bmil shRNA/pLKO.1 lentivirus or not) into nude mice. The tumor volumes were measured every other day for 14 days. The results showed that the Bmil expression was significantly increased in bladder tumor tissues when compared with that in normal tissues (Pcells (Pcells were accumulated in G1 phase and the expression levels of cyclin D1 and cyclin E were down-regulated. Bax and caspase-3 expression levels were significantly increased and Bcl-2 levels decreased after Bmi1 knockdown. Tumor volume was conspicuously reduced in mice injected with EJ cells with Bmi1 knockdown

  9. New Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Mediated Photodynamic Therapy Inhibits the Proliferation of Human Hepatocellular Carcinoma Bel-7402 Cells by Triggering Apoptosis and Arresting Cell Cycle

    Directory of Open Access Journals (Sweden)

    Tao Li

    2011-02-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Phthalocyanine-mediated PDT has shown antitumor activity in some tumor cells, but the effect of new hydrophilic/lipophilic tetra-α-(4-carboxyphenoxyphthalocyanine zinc (TαPcZn-mediated PDT (TαPcZn-PDT on human hepatocellular carcinoma Bel-7402 cells and underlying mechanisms have not been clarified. In the present study, therefore, the ultraviolet-visible (UV-vis absorption spectrum and cellular localization of TαPcZn, and effect of TαPcZn-PDT on the proliferation, apoptosis, cell cycle, Bcl-2 and Fas in Bel-7402 cells were investigated by spectrophotometry, inverted microscope, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, electron microscopy, annexinV-FITC/propidium iodide double staining, DNA content and immunoblot assay, respectively. We found that an intense absorption in UV-vis absorption spectrum of TαPcZn was in the red visible region at 650–680 nm, where light penetration in tissue is efficient, that green TαPcZn localized to both plasma membrane and nuclear membrane of Bel-7402 cells, signifying that there was a selective uptake of TαPcZn in Bel-7402 cells and TαPcZn-PDT would be expected to directly damage DNA, and that TαPcZn-PDT significantly resulted in the proliferation inhibition, apoptosis induction, S cell cycle arrest, and down-regulation of Bcl-2 and Fas. Taken together, we conclude that TαPcZn-PDT inhibits the proliferation of Bel-7402 cells by triggering apoptosis and arresting the cell cycle.

  10. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Chung-Weng Phang

    Full Text Available Flavokawain C (FKC is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki, with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak and death receptors (DR5, while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin, resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose polymerase (PARP. FKC was also found to cause endoplasmic reticulum (ER stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4, consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1, and hypophosphorylation of Rb.

  11. Nexrutine inhibits survival and induces G1 cell cycle arrest, which is associated with apoptosis or autophagy depending on the breast cancer cell line.

    Science.gov (United States)

    Yan, Guang; Lanza-Jacoby, Susan; Wang, Chenguang

    2014-01-01

    Breast cancers that are estrogen receptor (ER) negative or are ER negative with ErbB2/HER-2 overexpression have a poor prognosis, which emphasizes the importance of developing compounds for preventing breast cancer. Nexrutine, an herbal extract from the plant Phellodendron amurense, has been used for centuries in Asian medicine to treat inflammation, gastroenteritis, abdominal pain, and diarrhea. In this study we investigated the anticancer effects of Nexrutine on ER negative breast cancer cell lines that are positive or negative for HER-2. Nexrutine decreased the activities of 2 potential targets of breast cancer, cyclooxygenase (COX)-2, and peroxisome proliferators activated receptor gamma (PPARγ). The antiinflammatory effects of Nexrutine were evident with decreased prostaglandin (PG)E2 production, protein expression of microsomal PGE2 synthase (mPGES), and PPARγ. Nexrutine decreased cell survival and induced a G1 cell cycle arrest in SkBr3 and MDA-MB 231 cells, which were associated with reduced protein expression of Cyclin D1 and cdk2 along with increased protein expression of p21 and p27. The growth-inhibitory effect of Nexrutine was associated with apoptosis in SkBr3 cells and autophagy in MDA-MB231 cells. Based on these findings, we propose that Nexrutine may provide a novel approach for protection against breast cancer. PMID:24206214

  12. An Aqueous Extract of Tuberaria lignosa Inhibits Cell Growth, Alters the Cell Cycle Profile, and Induces Apoptosis of NCI-H460 Tumor Cells

    OpenAIRE

    Joana M. Pereira; Vanessa Lopes-Rodrigues; Xavier, Cristina P. R.; M. João Lima; Lima, Raquel T.; Ferreira, Isabel C. F. R.; M Helena Vasconcelos

    2016-01-01

    Tuberaria lignosa (Sweet) Samp. is found in European regions, and has antioxidant properties due to its composition in ascorbic acid and phenolic compounds. Given its traditional use and antioxidant properties, the tumor cell growth inhibitory potential of aqueous extracts from T. lignosa (prepared by infusion and decoction) was investigated in three human tumor cell lines: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and HCT-15 (human colorectal adenocarcinoma). Both...

  13. A Novel Muscarinic Antagonist R2HBJJ Inhibits Non-Small Cell Lung Cancer Cell Growth and Arrests the Cell Cycle in G0/G1

    OpenAIRE

    Hua, Nan; Wei, Xiaoli; Liu, Xiaoyan; Ma, Xiaoyun; He, Xinhua; Zhuo, Rengong; Zhao, Zhe; Wang, Liyun; Yan, Haitao; Zhong, Bohua; Zheng, Jianquan

    2012-01-01

    Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs). In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC) cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ pre...

  14. FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression.

    OpenAIRE

    Guthridge, M A; Bellosta, P; Tavoloni, N; Basilico, C.

    1997-01-01

    We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase ac...

  15. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. PMID:25498792

  16. Recombinant Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin Proteins Are Required To Interact To Inhibit Human Cell Cycle Progression and To Stimulate Human Leukocyte Cytokine Synthesis

    OpenAIRE

    Akifusa, Sumio; Poole, Stephen; Lewthwaite, Jo; Henderson, Brian; Nair, Sean P

    2001-01-01

    It has recently been discovered that Actinobacillus actinomycetemcomitans, an oral bacterium causing periodontitis, produces cytolethal distending toxin (CDT), a cell cycle-modulating toxin that has three protein subunits: CdtA, CdtB, and CdtC. In this study, we have cloned and expressed each toxin gene from A. actinomycetemcomitans in Escherichia coli and purified the recombinant Cdt proteins to homogeneity. Individual Cdt proteins failed to induce cell cycle arrest of the human epithelial c...

  17. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression

    NARCIS (Netherlands)

    R. Pop (Ramona); J.R. Shearstone (Jeffrey); Q. Shen (Qichang); Y. Liu (Ying); K. Hallstrom (Kelly); M. Koulnis (Miroslav); J.H. Gribnau (Joost); M. Socolovsky (Merav)

    2010-01-01

    textabstractHematopoietic progenitors undergo differentiation while navigating several cell division cycles, but it is unknown whether these two processes are coupled. We addressed this question by studying erythropoiesis in mouse fetal liver in vivo. We found that the initial upregulation of cell s

  18. Therapeutic Targeting the Cell Division Cycle 25 (CDC25 Phosphatases in Human Acute Myeloid Leukemia — The Possibility to Target Several Kinases through Inhibition of the Various CDC25 Isoforms

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-11-01

    Full Text Available The cell division cycle 25 (CDC25 phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs. CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML; and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.

  19. Disruption of G1-phase phospholipid turnover by inhibition of Ca2+-independent phospholipase A2 induces a p53-dependent cell-cycle arrest in G1 phase.

    Science.gov (United States)

    Zhang, Xu Hannah; Zhao, Chunying; Seleznev, Konstantin; Song, Keying; Manfredi, James J; Ma, Zhongmin Alex

    2006-03-15

    The G1 phase of the cell cycle is characterized by a high rate of membrane phospholipid turnover. Cells regulate this turnover by coordinating the opposing actions of CTP:phosphocholine cytidylyltransferase and the group VI Ca2+-independent phospholipase A2 (iPLA2). However, little is known about how such turnover affects cell-cycle progression. Here, we show that G1-phase phospholipid turnover is essential for cell proliferation. Specific inhibition of iPLA2 arrested cells in the G1 phase of the cell cycle. This G1-phase arrest was associated with marked upregulation of the tumour suppressor p53 and the expression of cyclin-dependent kinase inhibitor p21cip1. Inactivation of iPLA2 failed to arrest p53-deficient HCT cells in the G1 phase and caused massive apoptosis of p21-deficient HCT cells, suggesting that this G1-phase arrest requires activation of p53 and expression of p21cip1. Furthermore, downregulation of p53 by siRNA in p21-deficient HCT cells reduced the cell death, indicating that inhibition of iPLA2 induced p53-dependent apoptosis in the absence of p21cip1. Thus, our study reveals hitherto unrecognized cooperation between p53 and iPLA2 to monitor membrane-phospholipid turnover in G1 phase. Disrupting the G1-phase phospholipid turnover by inhibition of iPLA2 activates the p53-p21cip1 checkpoint mechanism, thereby blocking the entry of G1-phase cells into S phase. PMID:16492706

  20. 去甲斑蝥素对Burkitt淋巴瘤Raji细胞株生物学特性的影响%Norcantharidin inhibits proliferation of Burkitt lymphoma Raji cells and induces cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    余莉华; 曾雅莉; 贺艳杰; 胡亮杉; 宋朝阳; 郭坤元

    2012-01-01

    目的:探讨去甲斑蝥素(nor-cantharidin,NCTD)对Raji细胞的增殖抑制及周期阻滞作用.方法:通过台盼蓝拒染法观察NCTD对Raji细胞及外周血单个核细胞(peripheral blood mononuclear cells,PBMC)的增殖抑制情况;甲基纤维素集落形成法观察NCTD对Raji细胞自我更新能力的影响;流式细胞仪检测Raji 细胞周期变化.结果:NCTD抑制Raji细胞增殖,具有剂量时间依赖性(P < 0.05),但是对单个核细胞增殖无影响(P > 0.05);NCTD显著抑制Raji细胞的集落形成能力(P < 0.05),NCTD使 Raji细胞G2/M期细胞增多,G0/G1期细胞和S期细胞减少.结论:去甲斑蝥素能抑制Raji细胞增殖并产生G2/M期阻滞,且对Raji原始干祖细胞有抑制作用,有可能成为一种新的抗瘤制剂作用于人Burkitt淋巴瘤.%Objective To investigate the effects of Norcantharidin (NCTD) on human Burkitt lymphoma cell line Raji proliferation and cell cycle arrest in vitro. Methods Trypan blue assay was used to detect the inhibiting rate of NCTD on Raji cells and peripheral blood mononuclear cells (PBMC), in which concentration of NCTD were different. The self-renewal and proliferating ability were examined by methylcellblose conlony-forming units(CFU) assay. The cell cycle were detected by flow cytometry. Results By using Trypan blue assay, we found that NCTD can inhibit the proliferation of Raji cells significantly in dose- and time-dependant manners (P 0.05). The CFU assay shows that the amount of colony-forming number decreased more in Raji cells administated with NCTD than in Raji cells which were pre-treated with NCTD for 48 h. The proportion of cells at the G2/M stage increased while ones at the Ginhibits the proliferation of Raji cells and induces cell cycle arrest at G2/M stage, and can strongly inhibit the growth of original Raji cells. NCTD may be useful for developing new therapeutic regimens for the treatment of human Burkitt lymphoma

  1. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro.

    Science.gov (United States)

    Boichuk, Sergei; Galembikova, Aigul; Zykova, Svetlana; Ramazanov, Bulat; Khusnutdinov, Ramil; Dunaev, Pavel; Khaibullina, Svetlana; Lombardi, Vincent

    2016-08-01

    Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing's sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy. PMID:27129079

  2. Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Li; George G Chen; Ying-nian Lu; Yi Liu; Ke-feng Wu; Xian-ling Gong; Zhan-ping Gou; Ming-yue Li; Nian-ci Liang

    2012-01-01

    Objective:To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F),a compound isolated from Pteris semipinnata L(PsL),in human lung cancer A549 cells.Methods:A549 cells were treated with 5F (0-80 μg/ml) for different time periods.Cytotoxicity was examined using a MTT method.Cell cycle was examined using propidium iodide staining.Apoptosis was examined using Hoechst 33258 staining,enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis.Expression of representative apoptosis-related proteins was evaluated by Western blot analysis.Reactive oxygen species (ROS) level was measured using standard protocols.Potential interaction of 5F with cisplatin was also examined.Results:5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner.5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase.Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis.The expression of p21 was increased.5F exposure also increased Bax expression,release of cytochrome c and apoptosis inducing factor (AIF),and activation of caspase-3.5F significantly sensitized the cells to cisplatin toxicity Interestingly,treatment with 5F did not increase ROS,but reduced ROS production induced by cisplatin.Conclusion:SF could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

  3. Inhibition of subcutaneous growth of Ehrlich Ascites Carcinoma (EAC) tumor by post-immunization with EAC-cell gangliosides and its anti-idiotype antibody in relation to tumor angiogenesis, apoptosis, cell cycle and infiltration of CD4+, CD8+ lymphocytes, NK cells, suppressor cells and APC-cells in tumor

    International Nuclear Information System (INIS)

    Both EAC-tumor associated gangliosides and its anti-idiotype antibody inhibited growth of this tumor significantly. Immuno-histological studies with von Willebrand Factor (vWF) antibody indicated that tumor angiogenesis as determined by expression of vWF decreased in tumors of mice, post-immunized with EAC-cell gangliosides as well as its anti-idiotype antibody. Infiltration of various immune cells of the host in the tumor correlated to some extent with tumor-growth inhibition. Apoptosis study using AnnexinV-FITC and propidium iodide indicated that tumor growth inhibition in mice post-immunized with EAC-gangliosides and its anti-idiotype antibody were due to enhanced apoptosis and cell death. Cell cycle analysis by FACS indicated that EAC-cell associated gangliosides and its anti-idiotype antibody were acting both at the M2 i.e. S and M3 i.e. G2/M phases of the cell cycle to arrest tumor growth. (author)

  4. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits Cyclin Dependent Kinase-4 promoter activity and expression by disrupting NF-kB transcriptional signaling

    Science.gov (United States)

    Tran, Kalvin Q.; Tin, Antony S.; Firestone, Gary L.

    2014-01-01

    Relatively little is known about the anti-proliferative effects of Artemisinin, a naturally occurring anti-malarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and down regulated CDK2 and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation via increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin treated and untreated cells, reversed the artemisinin down-regulation of CDK4 protein expression and promoter activity and prevented the artemisinin induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin anti-proliferative effects in endometrial cancer cells is the transcriptional down-regulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  5. Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21

    OpenAIRE

    Blaber, Elizabeth A.; Dvorochkin, Natalya; Lee, Chialing; Alwood, Joshua S.; Yousuf, Rukhsana; Pianetta, Piero; Globus, Ruth K.; Burns, Brendan P.; Almeida, Eduardo A.C.

    2013-01-01

    Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arres...

  6. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  7. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    OpenAIRE

    Chefetz, Ilana; Holmberg, Jennie C.; Alvero, Ayesha B.; Visintin, Irene; Mor, Gil

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determi...

  8. Sox17 Promotes Cell Cycle Progression and Inhibits TGF-β/Smad3 Signaling to Initiate Progenitor Cell Behavior in the Respiratory Epithelium

    OpenAIRE

    Lange, Alexander W.; Keiser, Angela R.; Wells, James M.; Zorn, Aaron M; Whitsett, Jeffrey A.

    2009-01-01

    The Sry-related high mobility group box transcription factor Sox17 is required for diverse developmental processes including endoderm formation, vascular development, and fetal hematopoietic stem cell maintenance. Expression of Sox17 in mature respiratory epithelial cells causes proliferation and lineage respecification, suggesting that Sox17 can alter adult lung progenitor cell fate. In this paper, we identify mechanisms by which Sox17 influences lung epithelial progenitor cell behavior and ...

  9. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  10. AKT Inhibition Promotes Nonautonomous Cancer Cell Survival.

    Science.gov (United States)

    Salony; Solé, Xavier; Alves, Cleidson P; Dey-Guha, Ipsita; Ritsma, Laila; Boukhali, Myriam; Lee, Ju H; Chowdhury, Joeeta; Ross, Kenneth N; Haas, Wilhelm; Vasudevan, Shobha; Ramaswamy, Sridhar

    2016-01-01

    Small molecule inhibitors of AKT (v-akt murine thymoma viral oncogene homolog) signaling are being evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with subtherapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multiscale, molecular snapshot of this "AKT(low)" cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously upregulate a host of other proteins and metabolites posttranscriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication. PMID:26637368

  11. Cell cycle control in Alphaproteobacteria.

    Science.gov (United States)

    Collier, Justine

    2016-04-01

    Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions. PMID:26871482

  12. Cell Cycle Reprogramming for PI3K Inhibition Overrides Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma

    OpenAIRE

    Chiron, David; Di Liberto, Maurizio; Martin, Peter; Huang, Xiangao; Sharman, Jeff; Blecua, Pedro; Mathew, Susan; Vijay, Priyanka; Eng, Ken; Ali, Siraj; Johnson, Amy; Chang, Betty; Ely, Scott; Elemento, Olivier; Mason, Christopher E.

    2014-01-01

    Despite the unprecedented clinical activity of the Bruton’s tyrosine kinase inhibitor ibrutinib in MCL, acquired-resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib-binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven b...

  13. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    OpenAIRE

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xeno...

  14. Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Kevin J Dudley

    Full Text Available The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2 and 27 (P27 from male offspring of control and MHF mothers (n = 8 per group. Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.

  15. Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells.

    Science.gov (United States)

    Patlolla, Jagan M R; Raju, Jayadev; Swamy, Malisetty V; Rao, Chinthalapally V

    2006-06-01

    Extracts of Aesculus hippocastanum (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema, and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component beta-escin or aescin. Recent studies suggest that beta-escin may possess anti-inflammatory, anti-hyaluronidase, and anti-histamine properties. We have evaluated the chemopreventive efficacy of dietary beta-escin on azoxymethane-induced colonic aberrant crypt foci (ACF). In addition, we analyzed the cell growth inhibitory effects and the induction of apoptosis in HT-29 human colon cancer cell line. To evaluate the inhibitory properties of beta-escin on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.025%, or 0.05% beta-escin. After 1 week, the rats received s.c. injections of azoxymethane (15 mg/kg body weight, once weekly for 2 weeks) or an equal volume of normal saline (vehicle). Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.025% and 0.05% beta-escin significantly suppressed total colonic ACF formation up to approximately 40% (P < 0.001) and approximately 50% (P < 0.0001), respectively, when compared with control diet group. Importantly, rats fed beta-escin showed dose-dependent inhibition (approximately 49% to 65%, P < 0.0001) of foci containing four or more aberrant crypts. To understand the growth inhibitory effects, HT-29 human colon carcinoma cell lines were treated with various concentrations of beta-escin and analyzed by flow cytometry for apoptosis and cell cycle progression. Beta-escin treatment in HT-29 cells induced growth arrest at the G1-S phase, which was associated with the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and this correlated with reduced phosphorylation of retinoblastoma protein. Results also indicate that

  16. Berberine and a Berberis lycium extract inactivate Cdc25A and induce {alpha}-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Musa [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Giessrigl, Benedikt; Vonach, Caroline; Madlener, Sibylle [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prinz, Sonja [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Herbaceck, Irene; Hoelzl, Christine [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Bauer, Sabine; Viola, Katharina [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mikulits, Wolfgang [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Quereshi, Rizwana Aleem [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Knasmueller, Siegfried; Grusch, Michael [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Kopp, Brigitte [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Krupitza, Georg, E-mail: georg.krupitza@meduniwien.ac.at [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2010-01-05

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H{sub 2}O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 {mu}g BuOH extract (that was gained from 1 mg dried root) contained 2.0 {mu}g berberine and 0.3 {mu}g/ml palmatine. 1.2 {mu}g/ml berberine inhibited cell proliferation significantly, while 0.5 {mu}g/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of {alpha}-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  17. Berberine and a Berberis lycium extract inactivate Cdc25A and induce α-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    International Nuclear Information System (INIS)

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H2O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 μg BuOH extract (that was gained from 1 mg dried root) contained 2.0 μg berberine and 0.3 μg/ml palmatine. 1.2 μg/ml berberine inhibited cell proliferation significantly, while 0.5 μg/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of α-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  18. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells

    OpenAIRE

    Premkumar, Daniel R.; Jane, Esther P.; Pollack, Ian F.

    2014-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited c...

  19. Time course of morphine’s effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons

    OpenAIRE

    Arguello, Amy A.; Harburg, Gwyndolen C.; Schonborn, Joshua R.; Mandyam, Chitra D.; Yamaguchi, Masahiro; Eisch, Amelia J.

    2008-01-01

    Opiates, such as morphine, decrease neurogenesis in the adult hippocampal subgranular zone (SGZ), raising the possibility that decreased neurogenesis contributes to opiate-induced cognitive deficits. However, there is an incomplete understanding of how alterations in cell cycle progression and progenitor maturation contribute to this decrease. The present study examined how morphine regulates progenitor cell cycle, cell death and immature SGZ neurons (Experiment 1) as well as the progression ...

  20. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    Science.gov (United States)

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  1. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  2. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  3. Positional Isomers of Aspirin Are Equally Potent in Inhibiting Colon Cancer Cell Growth: Differences in Mode of Cyclooxygenase Inhibition

    OpenAIRE

    Kodela, Ravinder; Chattopadhyay, Mitali; Goswami, Satindra; Gan, Zong Yuan; Rao, Praveen P.N.; Nia, Kamran V.; Velázquez-Martínez, Carlos A.; Kashfi, Khosrow

    2013-01-01

    We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but ...

  4. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    Science.gov (United States)

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  5. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2016-04-01

    Full Text Available Oral squamous cell carcinoma (OSCC, an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL, a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  6. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  7. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  8. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Science.gov (United States)

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  9. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  10. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  11. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    Institute of Scientific and Technical Information of China (English)

    Shanshan Song; Guichun Xing; Lin Yuan; Jian Wang; Shan Wang; Yuxin Yin; Chunyan Tian; Fuchu He; Lingqiang Zhang

    2012-01-01

    Alkylating agents induce genome-wide base damage,which is repaired mainly by N-methylpurine DNA glycosylase (MPG).An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks.However,the determinant of drug sensitivity or insensitivity still remains unclear.Here,we report that the p53 status coordinates with MPG to play a pivotal role in such process.MPG expression is positive in breast,lung and colon cancers (38.7%,43.4% and 25.3%,respectively) but negative in all adjacent normal tissues.MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells.The overexpression of MPG reduced,whereas depletion of MPG increased,the expression levels of pro-arrest gene downstream of p53 including p21,14-3-3σ and Gadd45 but not pro-apoptotic ones.The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53.Upon DNA alkylation stress,in p53 wild-type tumor cells,p53 dissociated from MPG and induced cell growth arrest.Then,AP sites were repaired efficiently,which led to insensitivity to alkylating agents.By contrast,in p53-mutated cells,the AP sites were repaired with low efficacy.To our knowledge,this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53,and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  12. Systems Level Modeling of the Cell Cycle Using Budding Yeast

    Directory of Open Access Journals (Sweden)

    D.R. Kim

    2007-01-01

    Full Text Available Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and precisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems level. With the appropriate mathematical framework and suffi cient and accurate data on cell cycle components, it should be possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.

  13. CARI III Inhibits Tumor Growth in a Melanoma-Bearing Mouse Model through Induction of G0/G1 Cell Cycle Arrest

    OpenAIRE

    Hye-Jin Park

    2014-01-01

    Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute) III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown rice, Inonotus obliquus grown on germinated brown rice, Antrodia camphorata grown on germinated brown rice and Ganoderma lucidum. Here, we showed that CARI III exerted anti-cancer activity, which is comparable ...

  14. Assaying Cell Cycle Status Using Flow Cytometry.

    Science.gov (United States)

    Kim, Kang Ho; Sederstrom, Joel M

    2015-01-01

    In this unit, two protocols are described for analyzing cell cycle status using flow cytometry. The first is based on the simultaneous analysis of proliferation-specific marker (Ki-67) and cellular DNA content, which discriminate resting/quiescent cell populations (G0 cell) and quantify cell cycle distribution (G1, S, or G2/M), respectively. The second is based on differential staining of DNA and RNA through co-staining of Hoechst 33342 and Pyronin Y, which is also useful to identify G0 cells from G1 cells. Along with these methods for analyzing cell cycle status, two additional methods for cell proliferation assays with recent updates of newly developed fluorophores, which allow multiplex analysis of cell cycle status, cell proliferation, and a gene of interest using flow cytometry, are outlined. PMID:26131851

  15. Anti-cancer activity of Tonglian decoction against esophageal cancer cell proliferation through regulation of the cell cycle and PI3K/Akt signaling pathway

    Directory of Open Access Journals (Sweden)

    Yongsen Jia

    2015-04-01

    Conclusion: TD could inhibit EC9706 carcinoma cell proliferation by blocking the cell cycle progression in S phase. The possible mechanism was inhibition of multiple targets in the PI3K/Akt signaling pathway by TD.

  16. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase.

    Science.gov (United States)

    Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan; Trnka, Jan

    2016-01-01

    Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70-4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes. PMID:27537184

  17. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  18. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    OpenAIRE

    San-Yuan Chen; Geng-Hung Liu; Wen-Ying Chao; Chung-Sheng Shi; Ching-Yen Lin; Yun-Ping Lim; Chieh-Hsiang Lu; Peng-Yeh Lai; Hau-Ren Chen; Ying-Ray Lee

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited ...

  19. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  20. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  1. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    OpenAIRE

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-01-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic st...

  2. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  3. Anticancer effect of arsenite on cell migration, cell cycle and apoptosis in human pancreatic cancer cells

    Science.gov (United States)

    HORIBE, YOHEI; ADACHI, SEIJI; YASUDA, ICHIRO; YAMAUCHI, TAKAHIRO; KAWAGUCHI, JUNJI; KOZAWA, OSAMU; SHIMIZU, MASAHITO; MORIWAKI, HISATAKA

    2016-01-01

    The standard treatment for advanced pancreatic cancer is chemotherapy, but its clinical outcome remains unsatisfactory. Therefore, the development of novel treatments for this malignancy is urgently required. In the present study, the anticancer effect of arsenite on platelet-derived growth factor (PDGF)-BB-induced migration, cell cycle and apoptosis was investigated in pancreatic cancer cells (AsPC-1 and BxPC-3), and compared with the effect on normal pancreatic epithelial (PE) cells. In the cell migration assay, arsenite clearly inhibited PDGF-BB-induced cell migration in AsPC-1 cells, but not in BxPC-3 or PE cells. Arsenite also caused cell apoptosis in AsPC-1 cells, but not in BxPC-3 or PE cells. In AsPC-1 cells, the levels of cyclin D1 and phosphorylated retinoblastoma protein decreased following treatment with arsenite, but this was not observed in BxPC-3 cells. To further examine the differences between these two cell lines, the effect of arsenite on upstream p44/p42 mitogen-activated protein kinase (MAPK) and Akt was investigated. PDGF-BB caused phosphorylation of p44/p42 MAPK and Akt in both cell lines. Pretreatment with arsenite significantly suppressed PDGF-BB-induced phosphorylation of Akt, but not of p44/p42 MAPK in AsPC-1 cells. By contrast, arsenite did not affect these molecules in BxPC-3 cells. Since the inhibition of the Akt signaling pathway markedly reduced PDGF-BB-induced migration in AsPC-1 cells, the present results strongly suggest that arsenite inhibits PDGF-BB-induced migration by suppressing the Akt signaling pathway in AsPC-1 cells. Therefore, arsenite may be a useful tool for the treatment of patients with certain types of pancreatic cancer, without causing adverse effects on normal pancreatic cells.

  4. Blocking p55PIK signaling inhibits proliferation and induces differentiation of leukemia cells

    OpenAIRE

    Wang, G; DENG, Y.; Cao, X. (Xuetao); Lai, S.; Tong, Y; Luo, X.; Feng, Y; Xia, X; Gong, J; Hu, J.

    2012-01-01

    p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)–N24) that contains the protein transduction domain and N24, and examined its eff...

  5. Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

    OpenAIRE

    Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.

    2012-01-01

    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We fur...

  6. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells

    OpenAIRE

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2015-01-01

    BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were...

  7. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  8. The cell cycle and acute kidney injury

    OpenAIRE

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute ki...

  9. Loss of CABLES1, a cyclin-dependent kinase-interacting protein that inhibits cell cycle progression, results in germline expansion at the expense of oocyte quality in adult female mice.

    Science.gov (United States)

    Lee, Ho-Joon; Sakamoto, Hideo; Luo, Hongwei; Skaznik-Wikiel, Malgorzata E; Friel, Anne M; Niikura, Teruko; Tilly, Jacqueline C; Niikura, Yuichi; Klein, Rachael; Styer, Aaron K; Zukerberg, Lawrence R; Tilly, Jonathan L; Rueda, Bo R

    2007-11-01

    Recent studies have shown that cell cycle inhibitors encoded by the Ink4a gene locus constrain the self-renewing activity of adult stem cells of the hematopoietic and nervous systems. Here we report that knockout (KO) of the Cables1 [cyclin-dependent kinase (CDK)-5 and ABL enzyme substrate 1] cell cycle-regulatory gene in mice has minimal to no effect on hematopoietic stem cell (HSC) dynamics. However, female Cables1-null mice exhibit a significant expansion of germ cell (oocyte) numbers throughout adulthood. This is accompanied by a dramatic elevation in the number of atretic immature oocytes within the ovaries and an increase in the incidence of degenerating oocytes retrieved following superovulation of CABLES1-deficient females. These outcomes are not observed in mice lacking p16INK4a alone or both p16INK4a and p19ARF. These data support recent reports that adult female mice can generate new oocytes and follicles but the enhancement of postnatal oogenesis by Cables1 KO appears offset by a reduction in oocyte quality, as reflected by increased elimination of these additional germ cells via apoptosis. This work also reveals cell lineage specificity with respect to the role that specific CDK-interacting proteins play in restraining the activity of adult germline versus somatic stem cells. PMID:17912041

  10. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  11. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  12. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  13. Viral infections and cell cycle G2/M regulation

    Institute of Scientific and Technical Information of China (English)

    Richard Y.ZHAO; Robert T.ELDER

    2005-01-01

    Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15(Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well-characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.

  14. Flavonoids: from cell cycle regulation to biotechnology.

    Science.gov (United States)

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  15. Prolonged cyclic strain inhibits human endothelial cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  16. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  17. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G0/G1-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D3 and p21Waf1, which stabilizes cyclin D/cdk4 complex for G1-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  18. Potential effects of CRM1 inhibition in mantle cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Ke-Jie Zhang; Michael Wang

    2012-01-01

    Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma.The disease has no known cure,which prompts the urgent need for novel therapeutic agents.Chromosomal region maintenance 1 (CRM1) may play a role in human neoplasia and serve as a novel target of cancer treatment.This study summarizes MCL pathogenesis and determines the involvement of CRM1 in the regulation of several vital signaling pathways contributing to MCL pathogenesis,including the pathways of cell cycle progression,DNA damage response,phosphoinositide kinase-3,nuclear factor-κB activation,and chromosomal stability.A preclinical study is also presented to compare the CRM1 status in MCL cell lines and primary MCL cells with normal B cells,as well as the therapeutic efficiency of CRM1 inhibition in MCL in vitro and in vivo,which make these agents potential targets of novel MCL treatments.

  19. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  20. Low power ultrasound inhibits cell proliferation and invasion of human cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Etienne Mfoumou

    2012-01-01

    Full Text Available Background: Applications of ultrasound in medicine for therapeutic purposes have been accepted, and they have several beneficial uses for many years. However, the outcome of low power ultrasound waves on cell proliferation, especially cell cycle progression and invasion as well as their associated genes on human breast and cervical cancer cells has not been investigated yet. Therefore, we examined the effect of low power ultrasound on BT20, BT20-E6/E7 and HeLa cell lines. Materials and Methods: BT20, BT20-E6/E7 and HeLa cell lines were used in this study. On the other hand, cell proliferation, cell cycle, and invasion assays were applied to study the effect of low ultrasound irradiation on these cell lines. Meanwhile, western blot was performed to study the expression patterns of some selected genes associated with this effect. Results: We found that low power ultrasound inhibits cell proliferation and provokes G0-G1 cell cycle arrest and reduction of S as well as an increase in the G2-M phase of HeLa cells in comparison with the untreated cells. This is accompanied by a down-regulation of Cdk-6 (cyclin dependent kinase which is a major control switch for the cell cycle. Moreover, low power ultrasound inhibits cell invasion and consequently down-regulates the expression of Id-1, caveolin, and EGF-R which are widely considered as main regulators of cell invasion and metastasis of human cancer. Conclusion: These results suggest that application of low power ultrasound on human breast and cervical cancer could be an effective method to reduce cell proliferation and invasion of these cancers.

  1. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  2. Control points within the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  3. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    Directory of Open Access Journals (Sweden)

    Ela Alcántara-Flores

    2015-11-01

    Full Text Available Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senescence-related proteins (PCNA, p21, and p27 were analyzed by Western blotting. Potential toxicity of argentatin B was evaluated in CD-1 mice. Its effect on tumor growth was tested in a HCT-15 and PC-3 xenograft model. Argentatin B induced an increment of cells in sub G1, but did not produce apoptosis. Proliferation of both cell lines was inhibited by argentatin B. Forty-three percent HCT-15, and 66% PC-3 cells showed positive SA-β-galactosidase staining. The expression of PCNA was decreased, p21 expression was increased in both cell lines, but p27 expression increased only in PC-3 cells after treatment. Administration of argentatin B to healthy mice did not produce treatment-associated pathologies. However, it restricted the growth of HCT-15 and PC-3 tumors. These results indicate that treatment with argentatin B induces cell senescence.

  4. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  5. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells

  6. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  7. Mitochondrial dynamics and the cell cycle

    Science.gov (United States)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  8. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  9. TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells.

    Science.gov (United States)

    Palladino, Giuseppe; Notarangelo, Tiziana; Pannone, Giuseppe; Piscazzi, Annamaria; Lamacchia, Olga; Sisinni, Lorenza; Spagnoletti, Girolamo; Toti, Paolo; Santoro, Angela; Storto, Giovanni; Bufo, Pantaleo; Cignarelli, Mauro; Esposito, Franca; Landriscina, Matteo

    2016-09-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis. PMID:27422900

  10. Celecoxib in combination with retinoid CD437 inhibits melanoma A375 cell in vitro

    Institute of Scientific and Technical Information of China (English)

    Jianwen REN; Zhenhui PENG; Birong GUO; Min PAN

    2009-01-01

    This study aimed to investigate the effects of celecoxib, synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylicacid (CD437)and the combination of the two on cell proliferation, apoptosis, and cycle arrest of human malignant mela-noma A375 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazoliumbromide assay (MTT assay) was applied to determine the anti-proliferative effects of the drugs on human malignant melanoma A375 cells. Flow cytometry was performed to investigate the influence of the drugs on cell cycle and cell apoptosis. Both celecoxib and CD437 could inhibit the growth of human malignant melanoma A375 cells in a dose-dependent manner. Celecoxib at 80 μmol/L inhibited proliferation, induced apoptosis and G2/M cell cycle arrest of human malignant melanoma A375 cells after treatment for 24 h [proliferation inhibiting rate: (50.2±2.51)%, apoptosis rate: (35.91±1.80)%]. CD437 at 10μmol/L inhibited proliferation, induced apoptosis and G0/G1 cell cycle arrest of human malignant melanoma A375 cells after treatment for 24 h [proliferation inhibiting rate: (58.6±2.38)%, apoptosis rate: (28.03± 0.77)%]. Celecoxib in combination with CD437 could significantly enhance the effects of inhibiting proliferation and inducing apoptosis of human malignant melanoma A375 cells 24 h after treatment compared with the drugalone [proliferation inhibiting rate: (68.92±1.72)%, apop-tosis rate: (42.09±1.05)%, both P <0.05] and decrease the proportion of the S phase in the cell cycle. Celecoxib could inhibit the growth of human malignant melanoma A375 cells by inducing apoptosis and G2/M cycle arrest. CD437 could inhibit the growth of human malignant melanoma A375 cells by inducing apoptosis and G0/G1 cycle arrest. Celecoxib exhibited additive effects with CD437 on retarding the growth and inducing apoptosis of human malignant melanoma A375 cells. Celecoxib in combination with CD437 may become an effective method for prevention and treatment of

  11. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  12. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  13. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: ► Inhibition of Cdks slows down mESCs proliferation. ► mESCs display remarkable recovery capacity from short-term cell cycle interruption. ► Short-term cell cycle interruption does not compromise mESC self-renewal. ► Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.

  14. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  15. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  16. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  17. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  18. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  19. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

    NARCIS (Netherlands)

    Berns, K.; Hijmans, E.M.; Bernards, R.A.

    1997-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To searc

  20. Caffeine as a repair inhibitor and its action on the normal cell cycle in protozoa

    International Nuclear Information System (INIS)

    Caffeine has been demonstrated to inhibit repair of ionizing radiation damage, UV, and chemical DNA damage. The mechanism of caffeine action is not completely established at the present time but it has been clearly demonstrated that excision repair is inhibited in prokaryotes. The levels of caffeine which inhibit DNA repair are well tolerated by unirradiated organisms but radiation might impose an extra stress which would cause the irradiated organism to die from the normal caffeine sensitive function. The authors have tested synchronized protozoans at various times in the growth cycle for caffeine sensitivity. They infer sensitivity by the measured disruption of the normal growth cycle induced by a pulse treatment with lethal levels of caffeine. Some parts (G1) of the cell cycle show little sensitivity while late cycle (late S) may be quite sensitive. The relationship of cyclic caffeine sensitivity to repair inhibition is not obvious

  1. Effect of Juglone in qinglongyi on cell cycle status and apoptosis in A-549 cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiang; KONG Ling-sheng; JI Yu-bin

    2008-01-01

    Objective To explore the inhibition of juglone in Qinglongyi on A-549 cells in vitro. Methods MTT assay was used. Laser confocal scanning microscope was used to observe apoptotic morphology.Changes of cell cycle are studied by flow cytometry analysis. Results MTT assay showed that juglone had a marked growth inhibition in A-549 cells and the IC50 is respectively 3.4×10-5 mol·L-1, 1.8×10-5 mol·L-1 and 2.6×10-6 mol·L-1 after treatment for 24, 48 and 72 h by juglone. Through Laser confocal scanning microscope, we can see that juglone can induce the apoptosis. Cell cycle changes are analyzed by flow cytometry with cells at G1 phase significantly less than those of control and ceils at G2 phase significantly more than those of control. Conclusions It suggests that juglone could apoptosis of A-549 cells with the cell cycle arrest on G2 phase in distinct dose-dependent manner.

  2. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  3. Study on the Separation, Extraction of Lycopene and Its Effects on Cell Cycle

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; ZHAO Wen-en; QIAO Xu-guang; HAN Ya-shan

    2003-01-01

    The separation, extraction of lycopene and its effects on the proliferation and cells cycle of the chemical-induced cells were investigated in order to research on its extraction method and the mechanism in inhibiting neoplastic transformation. The best extraction condition of lycopene with super-critical carbon dioxide was under the pressure of 25MPa, the temperature of 50℃ and duration of 3. 0h. Lycopene could inhibit cell growth rate and cells proliferation significantly, while increase the cell numbers of G1-phase and decrease that of S-phase and G2 +-M-phase. The potency of the effects of lycopene on cells cycle might be one of the important reasons for inhibiting neoplastic transformation.

  4. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  5. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  6. System-level design of bacterial cell cycle control

    OpenAIRE

    McAdams, Harley H.; Shapiro, Lucy

    2009-01-01

    Understanding of the cell cycle control logic in Caulobacter has progressed to the point where we now have an integrated view of the operation of an entire bacterial cell cycle system functioning as a state machine. Oscillating levels of a few temporally-controlled master regulator proteins in a cyclical circuit drive cell cycle progression. To a striking degree, the cell cycle regulation is a whole cell phenomenon. Phospho-signaling proteins and proteases dynamically deployed to specific loc...

  7. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  8. Exogenous lactate interferes with cell-cycle control in BALB/3T3 mouse fibroblasts

    International Nuclear Information System (INIS)

    Purpose: Previous studies have shown that exogenous lactate may influence proliferation rates, radiation sensitivity, and postirradiation repair capacity of mammalian cells. In the present study, we addressed the question of potential underlying mechanisms and, therefore, examined effects of exogenous lactate on proliferation rates and cell-cycle distribution in immortal but nontumorigenic mammalian cells. Methods and Materials: Cells were grown at 37 deg. C in an incubator with 5% CO2 and 95% air, in a culture medium supplemented or not with lactate at a 10 mM concentration. Daily, we changed the culture medium and counted cells per dish. On selected days, cell-cycle distribution was determined by flow cytometry. Balb/3T3 mouse fibroblasts were used. Results: During the exponential phase of cell proliferation, mean population doubling time was significantly increased from 17.7 to 19.9 h, due to selective prolongation of G2/M. However, in density-inhibited cultures, exogenous lactate stimulated entry into S and proliferation to a significantly higher saturation density. Conclusions: These findings indicate that exogenous lactate interferes with mechanisms of cell-cycle control at two different points in the cell-cycle, depending on cell density and the resulting absence or presence of inhibition of cell proliferation. Interference with cell-cycle control may underlay the modification by exogenous lactate of radiosensitivity and postirradiation repair capacity in mammalian cells

  9. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    Science.gov (United States)

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  10. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  11. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  12. Stat3 inhibition in neural lineage cells.

    Science.gov (United States)

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  13. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    Directory of Open Access Journals (Sweden)

    Yuan CX

    2015-03-01

    autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of N-cadherin in both cell lines. Taken together, danusertib has potent inducing effects on cell cycle arrest, apoptosis, and autophagy, but has an inhibitory effect on epithelial to mesenchymal transition, with involvement of signaling pathways mediated by PI3K/Akt/mTOR, p38 mitogen-activated protein kinase, and 5' AMP-activated protein kinase in AGS and NCI-N78 cells. Keywords: danusertib, gastric cancer, Aurora kinase, apoptosis, autophagy, epithelial to mesenchymal transition

  14. Centrioles in the cell cycle. I. Epithelial cells

    OpenAIRE

    1982-01-01

    A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated p...

  15. Acanthamoeba induces cell-cycle arrest in host cells

    OpenAIRE

    Sissons, J.; Alsam, S.; Jayasekera, S.; Kim, K S; Stins, M; Khan, Naveed Ahmed

    2004-01-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed seve...

  16. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  17. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    Science.gov (United States)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  18. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  19. Aqueous Extracts of the Edible Gracilaria tenuistipitata are Protective Against H2O2-Induced DNA Damage, Growth Inhibition, and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Chi-Chen Yeh

    2012-06-01

    Full Text Available Potential antioxidant properties of an aqueous extract of the edible red seaweed Gracilaria tenuistipitata (AEGT against oxidative DNA damage were evaluated. The AEGT revealed several antioxidant molecules, including phenolics, flavonoids and ascorbic acid. In a cell-free assay, the extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging activity that significantly reduced H2O2-induced plasmid DNA breaks in a dose-response manner (P < 0.001. The AEGT also suppressed H2O2-induced oxidative DNA damage in H1299 cells by reducing the percentage of damaged DNA in a dose-response manner (P < 0.001 as measured by a modified alkaline comet-nuclear extract (comet-NE assay. The MTT assay results showed that AEGT confers significant protection against H2O2-induced cytotoxicity and that AEGT itself is not cytotoxic (P < 0.001. Moreover, H2O2-induced cell cycle G2/M arrest was significantly released when cells were co-treated with different concentrations of AEGT (P < 0.001. Taken together, these findings suggest that edible red algae Gracilaria water extract can prevent H2O2-induced oxidative DNA damage and its related cellular responses.

  20. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    OpenAIRE

    Mario Augusto Bolaños-Carrillo; Jose Luis Ventura-Gallegos; Arturo David Saldivar-Jiménez; Alejandro Zentella-Dehesa; Mariano Martínez-Vázquez

    2015-01-01

    Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM) during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry a...

  1. Nuclear Reorganization of Mammalian DNA Synthesis Prior to Cell Cycle Exit

    OpenAIRE

    Barbie, David A; Kudlow, Brian A.; Frock, Richard; Zhao, Jiyong; Johnson, Brett R.; Dyson, Nicholas; Harlow, Ed; Kennedy, Brian K.

    2004-01-01

    In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA sy...

  2. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects. PMID:26703663

  3. Interferon-Gamma-Induced Nitric Oxide Inhibits the Proliferation of Murine Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    David J. Tate Jr., John R. Patterson, Cruz Velasco-Gonzalez, Emily N. Carroll, Janie Trinh, Daniel Edwards, Ashok Aiyar, Beatriz Finkel-Jimenez, Arnold H. Zea

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs has not improved significantly. It is likely that the lack of responses can be due to the tumor's ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ, indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS protein, resulting in a sustained elevation of nitric oxide (NO and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.

  4. Blocking p55PIK signaling inhibits proliferation and induces differentiation of leukemia cells.

    Science.gov (United States)

    Wang, G; Deng, Y; Cao, X; Lai, S; Tong, Y; Luo, X; Feng, Y; Xia, X; Gong, J; Hu, J

    2012-11-01

    p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)-N24) that contains the protein transduction domain and N24, and examined its effects on the proliferation and differentiation of leukemia cells. TAT-N24 not only blocks cell proliferation but remarkably induces differentiation of leukemia cells in vitro and in vivo. Systemically administered TAT-N24 also significantly decreases growth of leukemia cell tumors in animal models. Furthermore, overexpression of p55PIK in leukemia cells leads to increased proliferation; however, TAT-N24 blocks this effect and concomitantly induces differentiation. There is significant upregulation of p55PIK mRNA and protein expression in leukemia cells from patients. TAT-N24 inhibits cell cycle progression and induces differentiation of bone marrow cells derived from patients with several different types of leukemia. These results show that cell-permeable N24 peptide induces leukemia cell differentiation and suggest that p55PIK may be a novel drug target for the treatment of hematopoetic malignancies. PMID:22722333

  5. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  6. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  7. Feedback and Modularity in Cell Cycle Control

    Science.gov (United States)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  8. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Cook John A

    2010-02-01

    Full Text Available Abstract Background The histamine receptor-1 (H1-antagonist, loratadine has been shown to inhibit growth of human colon cancer xenografts in part due to cell cycle arrest in G2/M. Since this is a radiation sensitive phase of the cell cycle, we sought to determine if loratadine modifies radiosensitivity in several human tumor cell lines with emphasis on human colon carcinoma (HT29. Methods Cells were treated with several doses of loratadine at several time points before and after exposure to radiation. Radiation dose modifying factors (DMF were determined using full radiation dose response survival curves. Cell cycle phase was determined by flow cytometry and the expression of the cell cycle-associated proteins Chk1, pChk1ser345, and Cyclin B was analyzed by western blot. Results Loratadine pre-treatment of exponentially growing cells (75 μM, 24 hours increased radiation-induced cytotoxicity yielding a radiation DMF of 1.95. However, treatment of plateau phase cells also yielded a DMF of 1.3 suggesting that mechanisms other than cell cycle arrest also contribute to loratadine-mediated radiation modification. Like irradiation, loratadine initially induced G2/M arrest and activation of the cell-cycle associated protein Chk1 to pChk1ser345, however a subsequent decrease in expression of total Chk1 and Cyclin B correlated with abrogation of the G2/M checkpoint. Analysis of DNA repair enzyme expression and DNA fragmentation revealed a distinct pattern of DNA damage in loratadine-treated cells in addition to enhanced radiation-induced damage. Taken together, these data suggest that the observed effects of loratadine are multifactorial in that loratadine 1 directly damages DNA, 2 activates Chk1 thereby promoting G2/M arrest making cells more susceptible to radiation-induced DNA damage and, 3 downregulates total Chk1 and Cyclin B abrogating the radiation-induced G2/M checkpoint and allowing cells to re-enter the cell cycle despite the persistence of

  9. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  10. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  11. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei; Lee, Chung Wa [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Cho, Chi Hin [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Francis Ka Leung [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, Jun, E-mail: junyu@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  12. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    Science.gov (United States)

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-01-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy. PMID:26634540

  13. Risedronate inhibits human osteosarcoma cell invasion

    Directory of Open Access Journals (Sweden)

    Jung Sung

    2009-07-01

    Full Text Available Abstract Background Osteosarcoma is a highly malignant bone tumor and is the most commonly encountered malignant bone tumor in children and adolescents. Furthermore, significant numbers of patients eventually develop pulmonary metastases and succumb to the disease even after conventional multi-agent chemotherapy and surgical excision. Several solid tumors display enhanced expression of matrix metalloproteinases (MMPs, and recently clinical trials have been initiated on MMP-inhibitors. On the other hand, bisphosphonates (BPs, which have a profound effect on bone resorption, are widely used to treat osteoclast-mediated bone diseases. BPs are also known to inhibit tumor growths and metastases in some tumors such as breast cancer, renal cell carcinoma, and prostate cancer. Methods Two osteosarcoma cell lines (SaOS-2 and U2OS were treated with risedronate (0, 0.1, 1, 10 μM for 48 hours. Cell viabilities were determined using MTT assay, the mRNA levels of MMP-2 and MMP-9 were analyzed by reverse-transcription polymerase chain reaction, the amount of MMP-2 and MMP-9 protein were analyzed by Westernblot, the activities of MMP-2 and MMP-9 were observed by Gelatin zymography, and Matrigel invasion assays were used to investigate the invasive potential of osteosarcoma cell lines before and after risedronate treatment. Results The invasiveness of osteosarcoma cell lines (SaOS-2, U2OS were reduced in a dose dependent manner follow 48 hour treatment of up to 10 μM of the risedronate at which concentration no cytotoxicity occurred. Furthermore, the gelatinolytic activities and protein and mRNA levels of MMP-2 and MMP-9 were also suppressed by increasing risedronate concentrations. Conclusion Given that MMP-2 and MMP-9 are instrumental in tumor cell invasion, our results suggest the risedronate could reduce osteosarcoma cell invasion.

  14. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    International Nuclear Information System (INIS)

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells

  15. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  16. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  17. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mario Augusto Bolaños-Carrillo

    2015-01-01

    Full Text Available Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage. Results. Peniocerol and macdougallin induced growth inhibition and apoptosis in vitro in a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1 phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours. Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated from Myrtillocactus geometrizans develop their biological activities against cancer cells.

  18. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    International Nuclear Information System (INIS)

    Highlights: → Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. → ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. → ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. → ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  19. MET Inhibition in Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Xie, Zuoquan; Lee, Young H.; Boeke, Marta; Jilaveanu, Lucia B.; Liu, Zongzhi; Bottaro, Donald P.; Kluger, Harriet M.; Shuch, Brian

    2016-01-01

    Background: Clear cell renal cell carcinoma (ccRCC) is the most lethal form of kidney cancer. Small molecule VEGFR inhibitors are widely used but are not curative and various resistance mechanisms such as activation of the MET pathway have been described. Dual MET/VEGFR2 inhibitors have recently shown clinical benefit but limited preclinical data evaluates their effects in ccRCC. Methods: An interrogation of the Cancer Genome Atlas (TCGA) dataset was performed to evaluate oncogenic alterations in the MET/VEGFR2 pathway. We evaluated the in vitro effects of Cabozantinib, a dual MET/VEGFR2 inhibitor, using a panel of ccRCC cell lines. Drug effects of cell viability and proliferation, migration, cell scatter, anchorage independent growth, and downstream MET/VEGFR2 signaling pathways were assessed. Results: Twelve percent of TCGA cases had possible MET/HGF oncogenic alterations with co-occurrence noted (p<0.001). MET/HGF altered cases had worse overall survival (p=0.044). Cabozantinib was a potent inhibitor of MET and VEGFR2 in vitro in our cell line panel. PI3K, MAPK and mTOR pathways were also suppressed by cabozantinib, however the effects on cell viability in vitro were modest. At nanomolar concentrations of cabozantinib, HGF-stimulated migration, invasion, cellular scattering and soft agar colony formation were inhibited. Conclusions: We provide further preclinical rationale for dual MET/VEGFR2 inhibition in ccRCC. While the MET pathway is implicated in VEGFR resistance, dual inhibitors may have direct anti-tumor effects in a patient subset with evidence of MET pathway involvement. Cabozantinib is a potent dual MET/VEGFR2 inhibitor, significantly inhibits cell migration and invasion in vitro and likely has anti-angiogenic effects similar to other VEGFR tyrosine kinase inhibitors. Future work involving in vivo models will be useful to better define mechanisms of potential anti-tumor activity. PMID:27390595

  20. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation.

    Science.gov (United States)

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  1. The one-cell mouse embryo: cell cycle-dependent radiosensitivity and development of chromosomal anomalies in postradiation cell cycles

    International Nuclear Information System (INIS)

    One-cell mouse embryos were irradiated with X-rays at different cell cycle stages. Examination of structural chromosomal anomalies and micronucleus formation in postradiation mitoses and interphases demonstrated cell cycle-dependent radiosensitivities in the order: late G2 phase > G1 phase > S phase > early G2 phase > stage of decondensing nuclei. Comparison of the quality and quantity of chromosomal aberrations from the first to third mitosis led to the conclusion that new chromosomal anomalies were formed in the course of postirradiation cell cycles. This hypothesis was supported by an increasing number of micronuclei from 24 to 48 h post-conception. In addition to structural chromosomal aberrations, radiation-induced chromosome loss was observed with a frequency that was obviously independent of the exposed cell cycle phase. Loss of acentric chromosome fragments and of single chromosomes contributed to the micronucleus formation. (author)

  2. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  3. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    Science.gov (United States)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  4. The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma

    Directory of Open Access Journals (Sweden)

    Lu ShihHsin

    2010-10-01

    Full Text Available Abstract Background The esophageal cancer related gene 4 (ECRG4 was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503. ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC. Methods Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting. Results The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P P > 0.05. Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P Conclusion ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.

  5. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  6. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling

    OpenAIRE

    Kim, Young-Min; KIM, IN-HYE; NAM, TAEK-JEONG

    2013-01-01

    Previously, we examined various apoptosis pathways in the AGS gastric cancer cell line using Capsosiphon fulvescens glycoprotein (Cf-GP). In this study, we focused on the downregulation of the Wnt-1 signaling pathway and cell cycle arrest. Upregulation of the Wnt signaling pathway has been observed in various cancer cells. The Wnt signal ligand acts in both canonical and non-canonical pathways. Among them, Wnt-1 was dependent on the canonical pathway. Here, we show inhibition of Wnt-1 signali...

  7. Study on the characteristics of cell-cycle perturbation in hela cell exposed to continuous β irradiation of 32P

    International Nuclear Information System (INIS)

    In an attempt to understand radiobiological basis for targeted radiotherapy in oncology, the cell cycle perturbations have studied in Hela cell lines after exposed to different doses and dose-rate of 32P radiation. Asynchronous Hela cells, cultured in vitro, were exposed to β radiation from radioactive filter papers (absorbed 32P) which were put close under culture plate of growing monolayer of Hela cells. The characteristic radiation response to different dose, dose-rate and radiation time was evaluated through cell cycle perturbation studied by flow cytometry. Cell cycle status showed G2 phase blockage in a way of dose dependence, a plateau of G2 block can be recognized at about 24h. Interestingly, the G2 phase declined even though the accumulated doses increased as the time of radiation prolonged. This result suggested that the cell cycle progress could not be inhibited completely when exposed to continuous radiation, rather it seems to be controlled somehow by the nature of cell cycle itself for a certain cell line. G2 blockage, one of the major changes caused by β radiation, is dose-dependent, but the time reaching the plateau of G2 phase blockage is most likely related with the intrinsic nature of cell cycle

  8. Lentivirus-Mediated Knockdown of Myosin VI Inhibits Cell Proliferation of Breast Cancer Cell.

    Science.gov (United States)

    Wang, Hong; Wang, Biyun; Zhu, Wei; Yang, Ziang

    2015-10-01

    Myosin VI (MYO6) is a unique member of the myosin superfamily, and almost no experimental studies link MYO6 to tumorigenesis of breast cancer. However, previous microarray data demonstrated that MYO6 was frequently overexpressed in breast cancer tissues. In this study, to further develop its role in breast cancer, endogenous expression of MYO6 was significantly inhibited in breast cancer ZR-75-30 and MDA-MB-231 cells using lentivirus-mediated RNA interference. Quantitative polymerase chain reaction and western blot were applied to detect the expression level of MYO6. Cell viability of both cell lines was measured by methylthiazol tetrazolium and colony formation assays. Besides, cell cycle assay was utilized to acquire the distribution information of cell phase. The results demonstrated that knockdown of MYO6 markedly reduced cell viability and colony formation, as well as suppressed cell cycle progression in breast cancer cells. The results suggested that MYO6 played a vital role in breast cancer cells and might provide useful information for diagnosis and therapy of human breast cancer in future. PMID:26407123

  9. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    OpenAIRE

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M.

    2012-01-01

    Rubin and colleagues describe the first structures of full-length and phosphorylated Retinoblastoma (Rb) protein. These structures reveal the mechanism of Rb inactivation and provide valuable insight into this critical tumor suppressor protein's allosteric inhibition via multisite Cdk phosphorylation and its E2F and cell cycle regulation.

  10. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  11. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    International Nuclear Information System (INIS)

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway

  12. Cyclin-dependent kinases and cell-cycle transitions: does one fit all?

    Science.gov (United States)

    Hochegger, Helfrid; Takeda, Shunichi; Hunt, Tim

    2008-11-01

    Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins. PMID:18813291

  13. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway

    International Nuclear Information System (INIS)

    Gallbladder cancer is the most frequent malignancy of the bile duct with high aggressive and extremely poor prognosis. The main objective of the paper was to investigate the inhibitory effects of oridonin, a diterpenoid isolated from Rabdosia rubescens, on gallbladder cancer both in vitro and in vivo and to explore the mechanisms underlying oridonin-induced apoptosis and cell cycle arrest. The anti-tumor activity of oridonin on SGC996 and NOZ cells was assessed by the MTT and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/PI double-staining and Hoechst 33342 staining assays. Loss of mitochondrial membrane potential was observed by Rhodamine 123 staining. The in vivo efficacy of oridonin was evaluated using a NOZ xenograft model in athymic nude mice. The expression of cell cycle- and apoptosis-related proteins in vitro and in vivo was analyzed by western blot analysis. Activation of caspases (caspase-3, -8 and -9) was measured by caspases activity assay. Oridonin induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in SGC996 and NOZ cells in a dose-dependent manner. Intraperitoneal injection of oridonin (5, 10, or 15 mg/kg) for 3 weeks significantly inhibited the growth of NOZ xenografts in athymic nude mice. We demonstrated that oridonin regulated cell cycle-related proteins in response to S-phase arrest by western blot analysis. In contrast, we observed inhibition of NF-κB nuclear translocation and an increase Bax/Bcl-2 ratio accompanied by activated caspase-3, caspase-9 and PARP-1 cleavage after treatment with oridonin, which indicate that the mitochondrial pathway is involved in oridonin-mediated apoptosis. Oridonin possesses potent anti-gallbladder cancer activities that correlate with regulation of the mitochondrial pathway, which is critical for apoptosis and S-phase arrest. Therefore, oridonin has potential as a novel anti-tumor therapy for the

  14. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  15. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  16. Mitochondrial regulation of cell cycle progression through SLC25A43.

    Science.gov (United States)

    Gabrielson, Marike; Reizer, Edwin; Stål, Olle; Tina, Elisabet

    2016-01-22

    An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclear Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G1-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G1-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. PMID:26721434

  17. 2-Methoxyestradiol induces cell cycle arrest and apoptosis of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ning-ning ZHOU; Xiao-feng ZHU; Jun-ming ZHOU; Man-zhi LI; Xiao-shi ZHANG; Peng HUANG; Wen-qi JIANG

    2004-01-01

    AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μrnol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.

  18. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells

    International Nuclear Information System (INIS)

    Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin. -- Highlights: ► Digitoxin and synthetic analog D6-MA induced apoptotic morphologic changes in NCI-H460 cells in a dose-dependent manner. ► Apoptotic cell death induced by analog was 5-fold more potent when compared to digitoxin. ► NCI-H460 cells arrested in G(2)/M phase following digitoxin (≥ 5 nM) and analog (≥ 1 nM) treatment. ► Digitoxin inhibited the expression of cyclin

  19. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Elbaz, Hosam A. [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Stueckle, Todd A. [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); National Institute for Occupational Safety and Health, Morgantown, WV26506 (United States); Wang, Hua-Yu Leo; O' Doherty, George A. [Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 (United States); Lowry, David T.; Sargent, Linda M.; Wang, Liying [National Institute for Occupational Safety and Health, Morgantown, WV26506 (United States); Dinu, Cerasela Zoica, E-mail: cerasela-zoica.dinu@mail.wvu.edu [Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-01-01

    Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin. -- Highlights: ► Digitoxin and synthetic analog D6-MA induced apoptotic morphologic changes in NCI-H460 cells in a dose-dependent manner. ► Apoptotic cell death induced by analog was 5-fold more potent when compared to digitoxin. ► NCI-H460 cells arrested in G(2)/M phase following digitoxin (≥ 5 nM) and analog (≥ 1 nM) treatment. ► Digitoxin inhibited the expression of cyclin

  20. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster.

    Science.gov (United States)

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-07-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390

  1. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells.

    Science.gov (United States)

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene. PMID:25419360

  2. Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation

    Science.gov (United States)

    Wang, Xinhong; Liu, Junxu; Jiang, Li; Wei, Xiangxiang; Niu, Cong; Wang, Rui; Zhang, Jianyi; Yao, Kang

    2016-01-01

    The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases. PMID:27057283

  3. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling.

    Science.gov (United States)

    Kim, Young-Min; Kim, In-Hye; Nam, Taek-Jeong

    2013-11-01

    Previously, we examined various apoptosis pathways in the AGS gastric cancer cell line using Capsosiphon fulvescens glycoprotein (Cf-GP). In this study, we focused on the downregulation of the Wnt-1 signaling pathway and cell cycle arrest. Upregulation of the Wnt signaling pathway has been observed in various cancer cells. The Wnt signal ligand acts in both canonical and non-canonical pathways. Among them, Wnt-1 was dependent on the canonical pathway. Here, we show inhibition of Wnt-1 signaling, β-catenin and transcription factors in AGS cells via Cf-GP. First, we examined the Frizzled receptor and Wnt-1 signal-related proteins including Axin, LRP, β-catenin, APC and GSK-3β. In addition, the expression levels of transcription factors Tcf/LEF were determined by western blot analysis and RT-PCR. Based on the data, we confirmed downregulation of the Wnt-1 signaling pathway by Cf-GP. Also, we determined the expression levels of cell cycle-related proteins cyclin D and c-myc, and looked for cell cycle arrest by cell cycle test analysis. We found that AGS cells arrested in the G0/G1 phase by Cf-GP. These results provide a mechanism of AGS cell inhibition through the downregulation of Wnt-1 signaling by Cf-GP. PMID:23982808

  4. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  5. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff

    2014-05-01

    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. PMID:24265231

  6. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  7. Trichostatin A Regulates hGCN5 Expression and Cell Cycle on Daudi Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Hongli; CHEN Yan; CUI Guohui; WU Gang; WANG Tao; HU Jianli

    2006-01-01

    The expression of human general control of amino acid synthesis protein 5 (hGCN5) in human Burkitt's lymphoma Daudi cells in vitro, effects of Trichostatin A (TSA) on cell proliferation and apoptosis and the molecular mechanism of TSA inhibiting proliferation of Daudi cells were investigated. The effects of TSA on the growth of Daudi cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effect of TSA on the cell cycle of Daudi cells was assayed by a propidium iodide method. Immunochemistry and Western blot were used to detect the expression of hGCN5. The proliferation of Daudi cells was decreased in TSA-treated group with a 24 h IC50 value of 415.3979 μg/L. TSA induced apoptosis of Daudi cells in a time- and dose-dependent manner. Treatment with TSA (200 and 400 μg/L) for 24 h, the apoptosis rates of Daudi cells were (14.74±2.04) % and (17.63±1.25) %, respectively. The cell cycle was arrested in G0/G1 phase (50, 100 μtg/L) and in G2/M phase (200 μg/L) by treatment with TSA for 24 h.The expression of hGCN5 protein in Daudi cells was increased in 24 h TSA-treated group by immunochemistry and Western blot (P<0.05). It was suggested that TSA as HDACIs could increase the expression of hGCN5 in Daudi cells, and might play an important role in regulating the proliferation and apoptosis of B-NHL cell line Daudi cells.

  8. Calcitriol Inhibits Cervical Cancer Cell Proliferation Through Downregulation of HCCR1 Expression.

    Science.gov (United States)

    Wang, Guoqing; Lei, Lei; Zhao, Xixia; Zhang, Jun; Zhou, Min; Nan, Kejun

    2014-01-01

    Calcitriol (1α,25-dihydroxyvitamin D3) has demonstrated anticancer activity against several tumors. However, the underlying mechanism for this activity is not yet fully understood. Our experiment was designed and performed to address one aspect of this issue in cervical cancer. HeLa S3 cells were cultured in media with various concentrations of calcitriol. Cell proliferation and cell cycle were assessed by spectrophotometry and flow cytometry, respectively. The mRNA and protein expression levels of human cervical cancer oncogene (HCCR-1) and p21 were determined by RT-PCR and Western blot, respectively. Results indicated that calcitriol inhibited HeLa S3 cell proliferation and induced cell cycle arrest at the G1 phase. Calcitriol decreased HCCR-1 protein expression in a dose- and time-dependent manner. Furthermore, promoter activity analyses revealed that transcriptional regulation was involved in the inhibition of HCCR-1 expression. Overexpression of HCCR-1 in HeLa S3 cells reversed the inhibition of cell proliferation and G1 phase arrest that resulted from calcitriol treatment. In addition, calcitriol increased p21 expression and promoter activity. HCCR-1 overexpression decreased p21 expression and promoter activity. Thus, our results suggested that calcitriol inhibited HeLa S3 cell proliferation by decreasing HCCR-1 expression and increasing p21 expression. PMID:26629942

  9. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Science.gov (United States)

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  10. Down-Regulated MAC30 Expression Inhibits Proliferation and Mobility of Human Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Xu

    2014-05-01

    Full Text Available Background: Gastric cancer is one of the most common cancers in the world. MAC30/Transmembrane protein 97 (TMEM97 is aberrantly up-regulated in many human carcinoma cells. However, the function of MAC30 in gastric carcinoma cells is not studied. Material and Methods: To investigate the function of MAC30 in gastric carcinoma, we used RNA silencing technology to knock down the expression of MAC30 in gastric cancer cells BGC-823 and AGS. Real-time quantitative PCR and Western blot were used to analyze the mRNA level and the related protein expression. The localization of MAC30 and lamellipodia was observed by immunofluorescence. The biological phenotypes of gastric cells were examined by cell proliferation assay, cell cycle analysis, apoptosis assay, cell migration and invasion assay. Results: We found that down-regulation of MAC30 expression efficiently inhibited the proliferation of gastric cancer cells. Furthermore, the mobility of gastric cancer cells was also inhibited by down-regulation of MAC30. Moreover, we found that MAC30 knockdown inhibited AKT phosphorylation and reduced the expression of cyclinB1 and WAVE2. Conclusion: To our knowledge, this is the first report investigating the effect of MAC30 on growth, cell cycle, migration, and invasion in gastric carcinoma cells via suppressing AKT signaling pathway. MAC30 may be a potential therapeutic target for treatment of gastric carcinoma.

  11. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-04-01

    Full Text Available Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h increased clonogenic cell killing in both human prostate (PC-3 and DU145 and human breast (MDA-MB231 cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH synthesis (l-buthionine sulfoximine; BSO, 1 mM that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR activity (Auranofin; Au, 1 µM, was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM. Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1 oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231. Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.

  12. Drug targets for cell cycle dysregulators in leukemogenesis: in silico docking studies.

    Directory of Open Access Journals (Sweden)

    Archana Jayaraman

    Full Text Available Alterations in cell cycle regulating proteins are a key characteristic in neoplastic proliferation of lymphoblast cells in patients with Acute Lymphoblastic Leukemia (ALL. The aim of our study was to investigate whether the routinely administered ALL chemotherapeutic agents would be able to bind and inhibit the key deregulated cell cycle proteins such as--Cyclins E1, D1, D3, A1 and Cyclin Dependent Kinases (CDK 2 and 6. We used Schrödinger Glide docking protocol to dock the chemotherapeutic drugs such as Doxorubicin and Daunorubicin and others which are not very common including Clofarabine, Nelarabine and Flavopiridol, to the crystal structures of these proteins. We observed that the drugs were able to bind and interact with cyclins E1 and A1 and CDKs 2 and 6 while their docking to cyclins D1 and D3 were not successful. This binding proved favorable to interact with the G1/S cell cycle phase proteins that were examined in this study and may lead to the interruption of the growth of leukemic cells. Our observations therefore suggest that these drugs could be explored for use as inhibitors for these cell cycle proteins. Further, we have also highlighted residues which could be important in the designing of pharmacophores against these cell cycle proteins. This is the first report in understanding the mechanism of action of the drugs targeting these cell cycle proteins in leukemia through the visualization of drug-target binding and molecular docking using computational methods.

  13. The effects of over-expressing Tip60 on cellular DNA damage repair and cell cycle progression

    International Nuclear Information System (INIS)

    To investigate the effects of Tip60 on DNA damage repair, cell cycle and the related mechanism as well, the proliferative activity, DNA double strand break (DSB) repair competency and cell cycle arrest were analyzed in stable Tip60-overexpression U2OS cells established by transfecting with exogenous Tip60 gene. It was found that the overexpression of Tip60 inhibited the proliferative activity but increased the DNA damage repair competency. The radiation-induced G2/M arrest was prolonged in Tip60 over-expressed U2OS cells, which was associated with a decreasing level of cell cycle checkpoint protein Cyclin B/CDC2 complex. (authors)

  14. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  15. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  16. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    OpenAIRE

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    BACKGROUND: Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activati...

  17. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  18. Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells.

    Science.gov (United States)

    Paul-Samojedny, Monika; Łasut, Barbara; Pudełko, Adam; Fila-Daniłow, Anna; Kowalczyk, Małgorzata; Suchanek-Raif, Renata; Zieliński, Michał; Borkowska, Paulina; Kowalski, Jan

    2016-05-01

    Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor and it is characterized by a poor prognosis and short survival time. Current treatment strategies for GBM using surgery, chemotherapy and/or radiotherapy are ineffective. Thus new therapeutic strategies to target GBM are urgently needed. The effect of methylglyoxal (MGO) on the cell cycle, cell death and proliferation of human GBM cells was investigated. The T98G and U87MG cell lines were cultured in modified EMEM supplemented with 10% fetal bovine serum and maintained at 37°C in a humidified atmosphere of 5% CO2 in air. Cells were exposed to methylglyoxal (0.025mM) per 72h. The influence of MGO on T98G and U87MG cell cycle, proliferation and apoptosis was evaluated as well. Cell cycle phase distribution, proliferation, apoptosis were analyzed by flow cytometry. MGO causes changes in cell cycle and induces accumulation of G1/G0-phase cells and reduced fraction of cells in S and G2/M phases. We have also observed inhibition of cell proliferation and induction of apoptosis in cancer cells. We have also revealed that MGO induces senescence of U87MG but not T98G cells, but further studies are necessary in order to clarify and check mechanism of action of methylglyoxal and it Is a positive phenomenon for the treatment of GBM. PMID:27133062

  19. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Clement G. Yedjou

    2015-12-01

    Full Text Available In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO32] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60 cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO32 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05 increase of necrotic cell death in Pb(NO32-treated cells, indicative of membrane rupture by Pb(NO32 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05 in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO32 exposure significantly (p < 0.05 increased the proportion of caspase-3 positive cells (apoptotic cells compared to the control. The flow cytometry assessment also indicated Pb(NO32 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO32 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO32 exposure and its associated adverse

  20. Cycle inhibiting factors (CIFs are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Grégory Jubelin

    Full Text Available The cycle inhibiting factor (Cif produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1 and G(2 cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs p21(waf1/cip1 and p27(kip1 and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.

  1. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  2. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the

  3. Matrine Activates PTEN to Induce Growth Inhibition and Apoptosis in V600EBRAF Harboring Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Shuiying Wang

    2013-07-01

    Full Text Available Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN, leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.

  4. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells

    Science.gov (United States)

    SONG, XIANGFENG; ZHANG, GUOJUN; SUN, AIPING; GUO, JIQIANG; TIAN, ZHONGWEI; WANG, HUI; LIU, YUFENG

    2012-01-01

    Scorpion venom contains various groups of compounds that exhibit anticancer activity against a variety of malignancies through a poorly understood mechanism. While the aberrant activation of nuclear factor κB (NF-κB) has been linked with hematopoietic malignancies, we hypothesized that scorpion venom mediates its effects by modulating the NF-κB signaling pathway. In the present study, we examined the effects of scorpion venom component III (SVCIII) on the human leukemia cell lines THP-1 and Jurkat and focused on the NF-κB signaling pathway. Our results showed that SVCIII inhibited cell proliferation, caused cell cycle arrest at G1 phase and inhibited the expression of cell cycle regulatory protein cyclin D1 in a dose-dependent manner in THP-1 and Jurkat cells. SVCIII also suppressed the constitutive NF-κB activation through inhibition of the phosphorylation and degradation of IκBα. NF-κB luciferase reporter activity was also inhibited by SVCIII. Our data suggest that SVCIII, a natural compound, may exert its antiproliferative effects by inhibiting the activation of NF-κB and, thus, has potential use in the treatment of hematopoietic malignancies, alone or in combination with other agents. PMID:23060939

  5. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  6. Cell cycle arrest biomarkers in human lung cancer cells after treatment with selenium in culture.

    Science.gov (United States)

    Swede, Helen; Dong, Yan; Reid, Mary; Marshall, James; Ip, Clement

    2003-11-01

    In the planning of future intervention trials using chemopreventive agents against lung cancer, it is critical to evaluate the effect on biomarkers implicated specifically in lung carcinogenesis. With the use of the H520 and H522 human lung cancer cell lines, the present study showed that treatment with selenium (in the form of methylseleninic acid) inhibited cell growth, arrested cell cycle progression at G(1), and induced apoptosis as a late event. Because H520 cells were more sensitive to selenium than H522 cells (IC(50) of MSA was 2.5 or 10 micro M for H520 or H522 cells, respectively, at 24 h), a panel of nine cell cycle regulatory proteins known to be involved in G(1)-->S transition was assessed by Western analysis using whole cell lysate from H520 cells. These nine proteins (DP1, cdc25A, cyclin A, cyclin B(1), cyclin D(1), cdk1, cdk5, p21(WAF1), and GADD153) have been reported previously by our laboratory to be modulated by MSA in human breast and prostate cancer cells. Our data showed that only four (DP1, cdc25A, p21(WAF1), and GADD153) of nine biomarkers produced the expected changes after treatment of lung cancer cells with MSA. This finding raises the possibility that the molecular targets sensitive to selenium modulation may be tissue specific. Thus, the selection of selenium biomarkers for evaluation in an intervention trial must be based on empirical data derived from the cancer cell type of interest. PMID:14652289

  7. Inhibition of respiratory syncytial virus-host cell interactions by mono- and diamidines.

    OpenAIRE

    Dubovi, E. J.; Geratz, J. D.; Shaver, S R; Tidwell, R. R.

    1981-01-01

    Several aromatic mono- and diamidines were found to block cell fusion induced by respiratory syncytial virus. The best inhibitors were able to achieve complete suppression of syncytium formation at a concentration of 1.0 microM. Inhibition occurred in respiratory syncytial virus-infected HEp-2 and CV-1 cells, but the same inhibitors were ineffective in preventing fusion induced by parainfluenza virus type 3. The fusion inhibitors did not reduce single-cycle virus yields, but did reduce multip...

  8. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression.

    Science.gov (United States)

    Xia, Xi; Yu, Yang; Zhang, Li; Ma, Yang; Wang, Hong

    2016-09-01

    Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless‑type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β‑catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs. PMID:27432753

  9. Limit Cycle Oscillations in Pacemaker Cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Skarland, Nils

    1999-01-01

    In recent decades, several mathematical models describing the pacemaker activity of the rabbit sinoatrial node have been developed. We demonstrate that it is not possible to establish the existence, uniqueness, and stability of a limit cycle oscillation in those models. Instead we observe an infinite number of limit cycles. We then display numerical results from a new model, with a limit cycle that can be reached from many different initial conditions.

  10. Genistein inhibits the replication of avian leucosis virus subgroup J in DF-1 cells.

    Science.gov (United States)

    Qian, Kun; Gao, Ai-jun; Zhu, Ming-yue; Shao, Hong-xia; Jin, Wen-jie; Ye, Jian-qiang; Qin, Ai-jian

    2014-11-01

    To investigate the antiviral effects of genistein on the replication of avian leukosis virus subgroup J (ALV-J) in DF-1 cells, the cells were treated with genistein at different time points and the antiviral effects were examined by using a variety of assays. We determined that genistein strongly inhibited viral gene expression and decreased the viral protein level in the cell supernatant and the cytoplasm without alerting virus receptor expression and viral attachment. We also observed that genistein was not found to interfere with virus entry, but significantly inhibited both viral gene transcriptions at 24h post infection and virus release, which indicate that genistein exerts its inhibitory effects on the late phase of ALV-J replicative cycle. These results demonstrate that genistein effectively block ALV-J replication by inhibiting virus transcription and release in DF-1 cells, which may be useful for therapeutic drug design. PMID:25197039

  11. Study on the Inhibition of Fermented Soybean to Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LU Yan; WANG Wei; SHAN Yi; E Zhiqiang; WANG Liqun

    2009-01-01

    In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied,and the inhibition rate of each unit for cancer cells was also studied. The results showed that the inhibition rate of tempe isoflavones to SP2/0 was 96.9% and to Hela cells was 69.5% when the concentration was 20 μg·mL-1. In the same condition, the inhibition rate of soybean isoflavones was 83.16% and 60.5%. With the decline of concentration, the inhibition rate decreased. The inhibition of isoflavones to SP2/0 did not exist when the concentration was 5-1.25 μg·mL-1.

  12. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    International Nuclear Information System (INIS)

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated β-galactosidase (SA-β-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that inhibits NHEJ

  13. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Oike, Takahiro [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Ogiwara, Hideaki [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Torikai, Kohta [Gunma University Heavy Ion Medical Center, Maebashi, Gunma (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Yokota, Jun [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Kohno, Takashi, E-mail: tkkohno@ncc.go.jp [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan)

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  14. Targeting Cell Cycle Proteins in Breast Cancer Cells with siRNA by Using Lipid-Substituted Polyethylenimines.

    Science.gov (United States)

    Parmar, Manoj B; Aliabadi, Hamidreza Montazeri; Mahdipoor, Parvin; Kucharski, Cezary; Maranchuk, Robert; Hugh, Judith C; Uludağ, Hasan

    2015-01-01

    The cell cycle proteins are key regulators of cell cycle progression whose deregulation is one of the causes of breast cancer. RNA interference (RNAi) is an endogenous mechanism to regulate gene expression and it could serve as the basis of regulating aberrant proteins including cell cycle proteins. Since the delivery of small interfering RNA (siRNA) is a main barrier for implementation of RNAi therapy, we explored the potential of a non-viral delivery system, 2.0 kDa polyethylenimines substituted with linoleic acid and caprylic acid, for this purpose. Using a library of siRNAs against cell cycle proteins, we identified cell division cycle protein 20 (CDC20), a recombinase RAD51, and serine-threonine protein kinase CHEK1 as effective targets for breast cancer therapy, and demonstrated their therapeutic potential in breast cancer MDA-MB-435, MDA-MB-231, and MCF7 cells with respect to another well-studied cell cycle protein, kinesin spindle protein. We also explored the efficacy of dicer-substrate siRNA (DsiRNA) against CDC20, RAD51, and CHEK1, where a particular DsiRNA against CDC20 showed an exceptionally high inhibition of cell growth in vitro. There was no apparent effect of silencing selected cell cycle proteins on the potency of the chemotherapy drug doxorubicin. The efficacy of DsiRNA against CDC20 was subsequently assessed in a xenograft model, which indicated a reduced tumor growth as a result of CDC20 DsiRNA therapy. The presented study highlighted specific cell cycle protein targets critical for breast cancer therapy, and provided a polymeric delivery system for their effective down-regulation. PMID:25763370

  15. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  16. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  17. 柴胡皂苷D通过诱导C2-M期阻滞抑制结直肠癌 SW480细胞的增殖%Saikosaponin -D inhibits the proliferation of colorectal cancer SW480 cell by inducing G2 -Mcell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    杨坤荣; 王健生

    2016-01-01

    Objective:To observe the anti -proliferation capacity of saikosaponin -D(SSD)on colorectal cancer cell and normal colorectal cell and further explore the underlying mechanisms.Methods:Using MTT,cell counting and clone formation assay to assess the anti -growth effects of SSD.Flow -cytometer was used to check apoptosis and cell cycle.RT -PCR and Western -blot were used to check the pivotal elements in the regulation of G2 -Mcell cycle arrest.Results:SSD significantly inhibited the proliferation of SW480 rather than FHC(P 0.05),but significantly induced G2 -Mcell cycle arrest as determined by Flow -cytomete(P<0.05).SSD down -regulated the expression of CCNA1,CCNA2,CCNB1 and CCNB2 in mRNA level by RT -PCR (P <0.05).In protein level,CCNA2,CCNB1 and p34 /cdc2 were down -regulated,p -H3S10 was up -regulated, while another pivotal G2 -Mregulation element p21 WAF1 /CIP1 was up -regulated.Conclusion:SSD inhibits the prolifer-ation of colorectal cancer SW480 cell by up -regulating p21 WAF1 /CIP1 to induce G2 -Mcell cycle arrest.%目的:观察柴胡皂苷 D(SSD)对于结直肠癌肿瘤细胞增殖的影响并初步探索其潜在的分子机制。方法:运用 MTT、细胞计数试验及克隆形成试验观察 SSD 对细胞增殖的影响。流式细胞仪检测 SSD 对细胞凋亡及周期分布情况的影响。RT -PCR 和 Western -blot 技术检测 G2-M周期阻滞关键调控因子在 SW480细胞中的表达。结果:MTT 试验发现 SSD 能够显著抑制结直肠癌肿瘤细胞 SW480的增殖,而对正常结直肠细胞FHC 的增殖无明显影响。细胞计数试验和克隆形成试验进一步验证了 SSD 对于 SW480细胞增殖的影响(P<0.05)。流式细胞术检测发现 SSD 不影响细胞的凋亡(P >0.05),但却显著诱导 G2-M 周期阻滞(P <0.05)。SSD 在 mRNA 水平下调了 G2-M周期调控因子 CCNA 1、CCNA2、CCNB 1和 CCNB2的表达(P <0.05);在蛋白水平,CCNA2、CCNB1和 p34/cdc2

  18. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  19. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  20. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; WANG Tong-shan; LI Xiao-yu; LI Nan; HUANG Ding-zhi; CHEN Qi; BA Yi

    2007-01-01

    Background Uncontrolled cell division is one of the hallmarks of tumor growth. Researches have been focused on numerous molecules involved in this process. Cyclins are critical regulatory proteins of cell cycle progression and/or transcription. The present study aimed to investigate the anti-proliferative effect of cyclin L2, and to define its growth regulatory mechanisms using human lung adenocarcinoma cell line A549.Methods Human cyclin L2 was transfected into human lung adenocarcinoma cells (A549 cell), and was expressed in a mammalian expression vector pcDNA3.1. The effects and mechanisms of the cyclin L2 in cell growth, cell cycle analysis and apoptosis were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry or Western blot, respectively.Results Overexpression of cyclin L2 inhibited the growth of A549 cells. Cell cycle analysis in cells transfected with pCCNL2 revealed an increment in proportion in G0/G1 phase ((68.07 ± 4.2)%) in contrast to (60.39 ± 2.82)% of the cells transfected with mock vector. Apoptosis occurred in (7.25 ± 0.98)% cells transfected with pCCNL2, as compared with (1.25 ± 0.21)% of the mock vector control group. Cyclin L2-induced-G0/G1 arrest and apoptosis involved upregulation of caspase-3 and downregulation of Bcl-2 and survivin.Conclusion The results indicate that overexpression of cyclin L2 protein may promote efficient growth inhibition of human lung adenocarcinoma cells by inducing G0/G1 cell cycle arrest and apoptosis.

  1. RhoB Acts as a Tumor Suppressor That Inhibits Malignancy of Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Ma, Xin; Zhang, Peng; Gao, Yu; Fan, Yang; Pang, Haigang; Gong, Huijie; Shen, Donglai; Gu, Liangyou; Zhang, Yu

    2016-01-01

    This study aims to investigate the biological role of RhoB in clear cell renal cell carcinoma (ccRCC). The expression of RhoB was examined in specimens of patients and cell lines by Western blot and Immunohistochemistry. The correlation between RhoB expression and clinicopathologic variables was also analyzed. The effects of RhoB on cell proliferation, cell cycle, cell apoptosis, and invasion/migration were detected by over-expression and knockdown of RhoB level in ccRCC cells via plasmids and RNAi. The results showed that RhoB was low-expressed in ccRCC surgical specimens and cell lines compared with adjacent normal renal tissues and normal human renal proximal tubular epithelial cell lines (HKC), and its protein expression level was significantly associated with the tumor pathologic parameter embracing tumor size(P = 0.0157), pT stage(P = 0.0035), TNM stage(P = 0.0024) and Fuhrman tumor grade(P = 0.0008). Further, over-expression of RhoB remarkably inhibited the cancer cell proliferation, colony formation and promoted cancer cell apoptosis, and aslo reduced the invasion and migration ability of ccRCC cells. Interestingly, up-regulation of RhoB could induce cell cycle arrest in G2/M phase and led to cell cycle regulators(CyclineB1,CDK1) and pro-apoptotic protein(casp3,casp9) aberrant expression. Moreover, knockdown of RhoB in HKC cells promoted cell proliferation and migration. Taken together, our study indicates that RhoB expression is decreased in ccRCC carcinogenesis and progression. Up-regulation of RhoB significantly inhibits ccRCC cell malignant phenotype. These findings show that RhoB may play a tumor suppressive role in ccRCC cells, raising its potential value in futural therapeutic target for the patients of ccRCC. PMID:27384222

  2. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    Science.gov (United States)

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  3. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    Science.gov (United States)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  4. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    International Nuclear Information System (INIS)

    Highlights: ► UT7 erythroleukemia cells are known to be refractory to differentiate. ► Brief JQ1 treatment initiates the first steps of erythroid differentiation program. ► Engaged UT7 cells then maturate in the presence of erythropoietin. ► Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  5. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Lefevre, Carine; Granger, Marine; Kadri, Zahra [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Fucharoen, Suthat [Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Maouche-Chretien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Genetics Division, Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chretien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  6. Glucose- and Triglyceride-lowering Dietary Penta-O-galloyl-α-D-Glucose Reduces Expression of PPARγ and C/EBPα, Induces p21-Mediated G1 Phase Cell Cycle Arrest, and Inhibits Adipogenesis in 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Liu, X; Malki, A; Cao, Y; Li, Y; Qian, Y; Wang, X; Chen, X

    2015-05-01

    Plant polyphenols, such as hydrolysable tannins, are present in the human diet and known to exhibit anti-diabetic and anti-obesity activity. We previously reported that the representative hydrolysable tannin compound α-penta-galloyl-glucose (α-PGG) is a small molecule insulin mimetic that, like insulin, binds to insulin receptor (IR) and activates the IR-Akt-GLUT4 signaling pathway to trigger glucose transport and reduce blood glucose levels in db/db and ob/ob diabetic mice. However, its effects on adipogenesis and lipid metabolism were not known. In this study, high fat diet (HFD)-induced diabetic and obese mice were treated with α-PGG to determine its effects on blood glucose and triglycerides. 3T3-L1 preadipocytes were used as a cell model for identifying the anti-adipogenic activity of α-PGG at molecular and cellular levels as a first step in elucidating the mechanism of action of the compound. In vivo, oral administration of α-PGG significantly reduced levels of blood glucose, triglyceride, and insulin in HFD-induced diabetic/obese mice (Pobese and diabetic mice. It selectively inhibited some but not all major adipogenic pathways as well as the mTOR-p21-mediated cell cycle regulatory pathway. It is very likely that these apparently diverse but coordinated activities together inhibited adipogenesis. These results expand our knowledge on how PGG works in adipocytes and further confirm that α-PGG functions as an orally-deliverable natural insulin mimetic with adipogenetic modulatory functions. PMID:25988880

  7. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  8. Radiosensitization in esophageal squamous cell carcinoma. Effect of polo-like kinase 1 inhibition

    International Nuclear Information System (INIS)

    This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone. (orig.)

  9. Ursolic Acid Inhibits the Proliferation of Gastric Cancer Cells by Targeting miR-133a.

    Science.gov (United States)

    Xiang, Fenfen; Pan, Chunying; Kong, Qianqian; Wu, Rong; Jiang, Jiemin; Zhan, Yueping; Xu, Jian; Gu, Xingang; Kang, Xiangdong

    2014-01-01

    Ursolic acid (UA), a potential chemotherapeutic agent, has the properties of inhibition of the growth of many human cancer cell lines. Whether UA can inhibit the growth and metastasis of human gastric cancer cells remains unknown. In this study, it was found that UA inhibited the growth and metastasis of human gastric cancer cells in vitro. Our results showed the increase of the percent of apoptotic cells and G1 phase, the inhibition of cell migrations well as the decrease of the expression of Bax, caspase 3 and Bcl-2 in BGC-823 cells after the treatment with UA. Real-time quantitative PCR analysis showed that UA treatment upregulated the level of miR-133a in BGC-823 cells. Overexpression of miR-133a increased the G1 phase of cell cycle and decreased Akt1 expression in BGC-823 cells. These outcomes might be secondary to the increased expression of miR-133a after the treatment with UA. PMID:26629938

  10. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  11. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  12. Growth inhibiting effects of antisense eukaryotic expression vector of proliferating cell nuclear antigen gene on human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    童强松; 曾甫清; 林晨; 赵军; 鲁功成

    2003-01-01

    Objective To explore the growth inhibiting effects on human bladder cancer by antisense RNA targeting the proliferating cell nuclear antigen (PCNA) gene. Methods The eukaryotic expression vector for antisense PCNA cDNA was constructed and transferred into a bladder cancer EJ cell line. The PCNA expression in the cancer cells was detected by RT-PCR and Western blotting assays. The in vitro proliferation activities of the transferred cells were observed by growth curve, tetrazolium bromide (MTT) colorimetry, tritiated thymidine (3H-TdR)incorporation, flow cytometry and clone formation testing, while its in vivo anti-tumor effects were detected on nude mice allograft models.Results After the antisense vector, pLAPSN, was transferred, cellular PCNA expression was inhibited at both protein and mRNA levels. The growth rates of EJ cells were reduced from 27.91% to 62.07% (P<0.01), with an inhibition of DNA synthesis rate by 52.31% (P<0.01). Transferred cells were blocked at G0/G1 phases in cell-cycle assay, with the clone formation ability decreased by 50.81% (P<0.01). The in vivo carcinogenic abilities of the transferred cancer cells were decreased by 54.23% (P<0.05). Conclusions Antisense PCNA gene transfer could inhibit the growth of bladder cancer cells in vitro and in vivo, which provided an ideal strategy for gene therapy of human cancers.

  13. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    OpenAIRE

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ...

  14. Radical intermediate generation and cell cycle arrest by an aqueous extract of Thunbergia Laurifolia Linn. In human breast cancer cells.

    Science.gov (United States)

    Jetawattana, Suwimol; Boonsirichai, Kanokporn; Charoen, Savapong; Martin, Sean M

    2015-01-01

    Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an IC50 value of 843 μg/ml. Treatments with extract for 24 h at 250 μg/ml or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals. PMID:26028099

  15. Downregulation of survivin by RNAi inhibits growth of human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Guo-Ying Miao; Qi-Ming Lu; Xiu-Lan Zhang

    2007-01-01

    AIM: To investigate the inhibitory effect of a specific small survivin interfering RNA (siRNA) on cell proliferation and the expression of survivin in human gastric carcinoma cell line SGC-7901.METHODS: To knockdown survivin expression, a small interfering RNA targeting against survivin was synthesized and transfected into SGC-7901 cells with lipofectamineTM2000. The downregulation of survivin expression at both mRNA and protein levels were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Cell proliferation inhibition rates were determined by methyl thiazolyl tetrazolium (MTT) assay. The effect of survivin siRNA on cell cycle distribution and cell apoptosis was determined by flow cytometry (FCM).RESULTS: RNA interference could efficiently suppress the survivin expression in SGC-7901 cells. At 48 h after transfection, the expression inhibition rate was 44.52% at mRNA level detected by RT-PCR and 40.17% at protein level by Western blot analysis. Downregulation of survivin resulted in significant inhibition of tumor cell growth in vitro. The cell proliferation inhibition rates at 24, 48 and 72 h after survivin siRNA and non-siliencing siRNA transfection, were 34.06%, 47.61% and 40.36%,respectively. The apoptosis rate was 3.56% and the number of cells was increased in G0/G1 phase from 38.2% to 88.6%, and decreased in S and G2/M phase at 48 h after transfection.CONCLUSION: Downregulation of survivin results in significant inhibition of tumor growth in vitro. The inhibition of survivin expression can induce apoptosis of SGC-7901 cells. The use of survivin siRNA deserves further investigation as a novel approach to cancer therapy.

  16. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis1

    OpenAIRE

    Shafer, Aaron; Zhou, Chunxiao; Gehrig, Paola A.; Boggess, John F; Bae-Jump, Victoria L.

    2010-01-01

    mTOR inhibitors modulate signaling pathways involved in cell cycle progression, and recent phase II trials demonstrate activity in endometrial cancer patients. Our objective was to examine the effects of combination therapy with rapamycin and paclitaxel in endometrial cancer cell lines. Paclitaxel inhibited proliferation in a dose-dependent manner in both cell lines with IC50 values of 0.1–0.5 nM and 1–5 nM for Ishikawa and ECC-1 cells, respectively. To assess synergy of paclitaxel and rapamy...

  17. CDK inhibitors, p21Cip1 and p27Kip1, participate in cell cycle exit of mammalian cardiomyocytes

    International Nuclear Information System (INIS)

    Highlights: •Expression of p21 and p27 in the hearts showed a peak during postnatal stages. •p21 and p27 bound to cyclin E, cyclin A and CDK2 in the hearts at postnatal stages. •Cardiomyocytes in both KO mice showed failure in the cell cycle exit at G1-phase. •These data show the first apparent phenotypes in the hearts of Cip/Kip KO mice. -- Abstract: Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes

  18. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Koramit Suppipat

    Full Text Available Acute lymphoblastic leukemia (ALL is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9, inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.

  19. Apaf1 inhibition promotes cell recovery from apoptosis.

    Science.gov (United States)

    Gortat, Anna; Sancho, Mónica; Mondragón, Laura; Messeguer, Àngel; Pérez-Payá, Enrique; Orzáez, Mar

    2015-11-01

    The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery. PMID:26361785

  20. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Dominik Klumpp

    2016-01-01

    Full Text Available Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR. To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation.

  1. In situ cell cycle phase determination using Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Takenaka, Tatsuji; Sato, Hidetoshi; Furihata, Chie

    2010-02-01

    Raman spectroscopy is a powerful tool for analysis of the chemical composition in living tissue and cells without destructive processes such as fixation, immunostaining, and fluorescence labeling. Raman microspectroscopic technique enables us to obtain a high quality spectrum from a single living cell. We demonstrated in situ cell cycle analysis with Raman microspectroscopy with the excitation wavelength of 532 nm. Cell cycle phases, G0/G1 and G2/M were able to be identified in the present study. The result of in situ Raman analysis was evaluated with flow cytometry analysis. Although the Raman spectra of living cells showed complex patterns during cell cycle, several Raman bands could be useful as markers for the cell cycle identification. A single cell analysis using Raman microspectroscopy predicted a possibility to observe directly molecular dynamics intracellular molecules of proteins, lipids and nucleic acids. Our current study focused on cytoplasm region and resonant Raman signals of cytochrome c in mitochondrion, and discussed how the Raman signals from cellular components contribute to the Raman spectral changes in cell cycle change in the human living cell (lung cancer cell).

  2. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    OpenAIRE

    WANG, CHUNHUAI; Xiang, Ru; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were...

  3. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    OpenAIRE

    Duguid, Ian; BRANCO, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Understanding how synaptic inhibition regulates sensory responses is a fundamental question in neuroscience. In cerebellar granule cells, sensory stimulation is thought to evoke an excitation–inhibition sequence driven by direct input from mossy fibers and followed by classical disynaptic feed-forward inhibition from nearby Golgi cells. We made, to our knowledge, the first voltage-clamp recordings of sensory-evoked inhibition in granule cells in vivo and show that, surprisingly, sensory-evoke...

  4. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells

    Science.gov (United States)

    LIU, LIN; WANG, DIAN; LI, LONGLONG; DING, XIAO; MA, HAITIAN

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  5. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  6. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual......A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...

  7. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Morris Robert

    2010-03-01

    Full Text Available Abstract Background Sulforaphane (SFN, an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC. The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC. Results SFN at concentrations of 5 - 20 μM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 μM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 μM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose-polymerase (PARP. Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex. Conclusions SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.

  8. Impact of the cell division cycle on gene circuits

    Science.gov (United States)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  9. Differentiation of immortal cells inhibits telomerase activity.

    OpenAIRE

    Sharma, H W; Sokoloski, J A; Perez, J.R.; Maltese, J Y; Sartorelli, A C; Stein, C A; Nichols, G; Khaled, Z.; Telang, N T; Narayanan, R.

    1995-01-01

    Telomerase, a ribonucleic acid-protein complex, adds hexameric repeats of 5'-TTAGGG-3' to the ends of mammalian chromosomal DNA (telomeres) to compensate for the progressive loss that occurs with successive rounds of DNA replication. Although somatic cells do not express telomerase, germ cells and immortalized cells, including neoplastic cells, express this activity. To determine whether the phenotypic differentiation of immortalized cells is linked to the regulation of telomerase activity, t...

  10. A revision of the Dictyostelium discoideum cell cycle.

    Science.gov (United States)

    Weijer, C J; Duschl, G; David, C N

    1984-08-01

    We have investigated the Dictyostelium discoideum cell cycle using fluorometric determinations of cellular and nuclear DNA contents in exponentially growing cultures and in synchronized cultures. Almost all cells are in G2 during both growth and development. There is no G1 period, S phase is less than 0.5 h, and G2 has an average length of 6.5 h in axenically grown cells. Mitochondrial DNA, which constitutes about half of the total DNA, is replicated throughout the cell cycle. There is no difference in the nuclear DNA contents of axenically grown and bacterially grown cells. Thus the long cell cycle in axenically grown cells is due to a lengthening of the G2 phase. PMID:6389576

  11. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  12. INHIBITION OF TELOMERASE ACTIVITY DURING INDUCTION OF HL-60 CELLS BY RETINOID Ro13-7410

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-shan; LOU Ling-sheng; JIANG Ji-kai; LIU Bei-zhong; ZHOU Jian-fang; TANG Zong-shan; LI Xue-xian; KANG Ge-fei

    1999-01-01

    Objective: To investigate the effects of Ro13-7410on telomerase activity and cell cycle distribution.Methods: Telomerase activity of HL-60 cells induced by retinoid Ro13-7410 was detected by telomerase PCRELISA-kit. The cell cycle was analyzed by flow cytometry. Results: Telomerase activity declined gradually after 10-6 mol/L Ro13-7410 treatment, and the inhibition of telomerase activity at day 5 of treatment with Ro13-7410 was less effective than with Retinoid Acid (RA).DNA flow cytofluorimetric analysis revealed that Ro13-7410 caused partial cells arrest in the G2/M phase after 4-days treatment. Conclusion: Telomerase activity declined gradually and partial cells were arrested in the G2/M phase after Ro13-7410 treatment.

  13. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Qiu, Weimin; Kassem, Moustapha

    2014-01-01

    Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling...... in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase...... activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3'UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast...

  14. Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Italo Mario Cesari

    2014-01-01

    Full Text Available Methyl jasmonate (MJ, an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1 arrests cell cycle, inhibiting cell growth and proliferation, (2 causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis pathways, (3 detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4 induces reactive oxygen species mediated responses, (5 stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6 inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7 inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.

  15. Changes of Constituents and Activity to Apoptosis and Cell Cycle During Fermentation of Tea

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2011-03-01

    Full Text Available Tea is believed to be beneficial for health, and the effects of the fermentation process on its contributions to apoptosis and cell cycle arrest of gastric cancer cells have not been completely investigated. In this study, the chemical components in green tea, black tea and pu-erh tea aqueous extracts were analyzed and compared. The polysaccharide and caffeine levels were substantially higher in the fermented black tea and pu-erh tea, while the polyphenol level was higher in the unfermented green tea. Hence, a treatment of tea aqueous extract and the components, which are emerging as promising anticancer agents, were pursued to determine whether this treatment could lead to enhance apoptosis and cell cycle arrest. In the human gastric cancer cell line SGC-7901, the cell viability and flow cytometry analysis for apoptotic cells indicated effects in a dose-dependent inhibition manner for the three tea treatment groups. The apoptosis rates were found to be elevated after 48 h of treatment with 31.2, 125, and 500 μg/mL of green tea extract, the higher catechins content may be involved in the mechanism. Cell cycle was arrested in S phase in the fermented black tea and pu-erh tea, and the populations were significantly decreased in G2/M phases, possibly due to the oxidation of tea polyphenols, which causes an increase of theabrownins. CCC-HEL-1 normal cells were not sensitive to tea extract. These findings suggest that the fermentation process causes changes of the compounds which might be involved in the changes of cell proliferation inhibition, apoptosis induction and cell cycle arrest.

  16. The Architectural Organization of Human Stem Cell Cycle Regulatory Machinery

    OpenAIRE

    Stein, Gary S.; Stein, Janet L.; van Wijnen, Andre J.; Lian, Jane B.; Montecino, Martin; Medina, Ricardo(Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil); Kapinas, Kristie; Ghule, Prachi; Grandy, Rodrigo; Zaidi, Sayyed K.; Becker, Klaus A.

    2012-01-01

    Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular...

  17. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth

    Science.gov (United States)

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grégoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-01

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  18. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  19. Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown

    International Nuclear Information System (INIS)

    Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis. Here we show that in vitro targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1. Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition

  20. Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown

    Directory of Open Access Journals (Sweden)

    Meyer Bernhard

    2009-12-01

    Full Text Available Abstract Background Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis. Results Here we show that in vitro targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1. Conclusion Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition.

  1. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer.

    Science.gov (United States)

    Rolle, Cleo E; Kanteti, Rajani; Surati, Mosmi; Nandi, Suvobroto; Dhanasingh, Immanuel; Yala, Soheil; Tretiakova, Maria; Arif, Qudsia; Hembrough, Todd; Brand, Toni M; Wheeler, Deric L; Husain, Aliya N; Vokes, Everett E; Bharti, Ajit; Salgia, Ravi

    2014-03-01

    Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC. PMID:24327519

  2. Ion implantation inhibits cell attachment to glassy polymeric carbon

    International Nuclear Information System (INIS)

    Implantation of MeV gold, oxygen, carbon ions into GPC alters the surface topography of GPC and enhances the already strong tendency for cells to attach to GPC. We have shown that implantation of silver ions near the surface strongly inhibits cell growth on GPC. Both enhanced adhesion of and inhibition of cell growth are desirable improvements on cardiac implants that have long been successfully fabricated from biocompatible glassy polymeric carbon (GPC). In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that ion beam assisted deposition (IBAD) of silver, as well as silver ion bombardment, can favorably influence the surface of GPC for biomedical applications

  3. Proteoglycans secreted by packaging cell lines inhibit retrovirus infection.

    OpenAIRE

    Le Doux, J M; Morgan, J.R.; Snow, R G; Yarmush, M. L.

    1996-01-01

    Using a model recombinant retrovirus encoding the Escherichia coli lacZ gene, we have found that medium conditioned with NIH 3T3 cells and packaging cell lines derived from NIH 3T3 cells inhibits infection. Most of the inhibitory activity was greater than 100 kDa and was sensitive to chondroitinase ABC digestion, which is consistent with the inhibitor being a chondroitin sulfate proteoglycan. Proteoglycans secreted by NIH 3T3 cells and purified by anion-exchange chromatography inhibited ampho...

  4. Inhibitory Effects of Berberine on the Activation and Cell Cycle Progression of Human Peripheral Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Lihui Xu; Yi Liu; Xianhui He

    2005-01-01

    The immunosuppressive property of berberine, an isoquinoline alkaloid, has been well documented, but the mechanism of its action on lymphocytes has not been completely elucidated. The present study is to investigate the effect of berberine on the activation and proliferation of lymphocytes, in particular T lymphocytes. Whole peripheral blood from healthy donors was stimulated with phytohemagglutinin (PHA) alone or phorbol dibutyrate (PDB) plus ionomycin, and the expression of CD69 and CD25 on T lymphocytes was evaluated with flow cytometry.The distribution of cell cycles and cell viability were analyzed by staining with propidium iodide (PI) and 7-aminoactinomycin D (7-AAD), respectively. The results showed that 100 μmol/L and 50 μmol/L of berberine significantly inhibited CD69 expression on T cells stimulated with PDB plus ionomycin or PHA, whereas the effect of 25 μmol/L berberine was not significant. As the incubation time increased, the extent of inhibition decreased.Similarly, the expression of CD25 was also reduced by berberine in a dose-dependent manner over the concentration range of 25-100 μmol/L. Besides, this alkaloid could block lymphocyte cell cycle progression from G0/G1 phase to S and G2/M phase without phase specificity. Moreover, analysis following 7-AAD staining revealed that berberine had no significant cytotoxicity on lymphocytes. Taken together, berberine significantly inhibits the expression of activation antigens on T lymphocytes and also blocks the progression of cell cycles of lymphocytes,suggesting that berberine may exert immunosuppressive effect through inhibiting the activation and proliferation of T cells.

  5. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.;

    2014-01-01

    priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc......(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  6. Phthalocyanine-mediated photodynamic therapy induces cell death and a G /G1 cell cycle arrest in cervical cancer cells

    International Nuclear Information System (INIS)

    We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC5 concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665 nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G /G1 cell cycle arrest during the phthalocyanine PDT-mediated response

  7. Large scale spontaneous synchronization of cell cycles in amoebae

    Science.gov (United States)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  8. Molecular interplay between cdk4 and p21 dictates G0/G1 cell cycle arrest in prostate cancer cells

    OpenAIRE

    Gulappa, Thippeswamy; Reddy, Ramadevi Subramani; Suman, Suman; Nyakeriga, Alice M; Damodaran, Chendil

    2013-01-01

    This study examined the effect of 3, 9-dihydroxy-2-prenylcoumestan (pso), a furanocoumarin, on PC-3 and C4-2B castration-resistant prostate cancer (CRPC) cell lines. Pso caused significant G0/G1 cell cycle arrest and inhibition of cell growth. Molecular analysis of cyclin (D1, D2, D3, and E), cyclin-dependent kinase (cdk) (cdks 2, 4, and 6), and cdk inhibitor (p21 and p27) expression suggested transcriptional regulation of the cdk inhibitors and more significant downregulation of cdk4 than of...

  9. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    Science.gov (United States)

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  10. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  11. Inhibition of highly productive HIV-1 infection in T cells, primary human macrophages, microglia, and astrocytes by Sargassum fusiforme

    Directory of Open Access Journals (Sweden)

    Veille Jean-Claude

    2006-05-01

    Full Text Available Abstract Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS, in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3 infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC. S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV, which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3 was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition

  12. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...... distinct NHL entities however, shortened survival seems to correlate with high expression of p27. For definitive assessment of the role played by p27 in lymphomagenesis, and the prognostic value of p27 in these tumors, further studies of distinct NHL entities are needed. This review addresses the function...

  13. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  14. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  15. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  16. Cell proliferation inhibition in reduced gravity

    Science.gov (United States)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  17. The Effect of Irradiation and Epidermal Growth Factor on Cell Cycle and Apoptosis Induction in Human Epithelial Tumor Cell Lines

    International Nuclear Information System (INIS)

    This study was aimed to evaluate the cell cycle arrest and apoptosis induction after irradiation and epidermal growth factor (EGF) treatment in three human epithelial tumor cell lines (A431, Siha, KB). Single irradiation of 2, 5 and 10 Gy was done on three cell lines with 5.38 Gy/min dose rate using Cs-137 irradiator at room temperature. Also, EGF of 10 ng/ml was added immediately after 10 Gy irradiation. Cell growth was evaluated by counting the living cell number using a hemocytometer at 1 day, 2 days, 3 days, 4 days and 5 days after irradiation. Cell cycle arrest and apoptosis induction were assayed with the flow cytometry at 8 hours, 12 hours, 1 day, 2 days, 3 days, 4 days and 5 days after irradiation. Growth of irradiated three cell lines were inhibited in proportion to radiation dose. EGF treatment after irradiation showed various results according to cell lines. On all cell lines, G2 arrest was detected after 8 hours and maximized after 12 hours or 1 day. Amount of G2 arrest was positively dose dependent. But, EGF showed no significant change on G2 arrest. G2 arrest was recovered with time at 2 Gy and 5 Gy irradiation. But, at 10 Gy irradiation, G2 arrest was continued. Apoptosis was detected at 10 Gy irradiation. On EGF treated group after irradiation, A431 and Siha cell lines showed slightly increased apoptosis but there was no statistically significant difference. KB cell line showed no marked change of apoptosis induction. Irradiation effects cell cycle arrest and apoptosis induction in three human epithelial tumor cell lines but epidermal growth factor doesn't effect change of cell cycle arrest and apoptosis induction.

  18. Paris chinensis dioscin induces G2/M cell cycle arrest and apoptosis in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Lin-Lin Gao; Fu-Rong Li; Peng Jiao; Ming-Feng Yang; Xiao-Jun Zhou; Yan-Hong Si; Wen-Jian Jiang; Ting-Ting Zheng

    2011-01-01

    AIM: To investigate the anti-tumor effects of Paris chinensis dioscin (PCD) and mechanisms regarding cell cycle regulation and apoptosis in human gastric cancer SGC-7901 cells.METHODS: Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Cell apoptosis was evaluated by flow cytometry and laser scanning confocal microscope (LSCM) using Annexin-V/propidium iodide (PI) staining, and the cell cycle was evaluated using PI staining with flow cytometry. Intracellular calcium ions were detected under fluorescence microscope. The expression of cell cycle and apoptosis-related proteins cyclin B1, CDK1, cytochrome C and caspase-3 was measured by immunohistochemical staining. RESULTS: PCD had an anti-proliferation effect on human gastric cancer SGC-7901 cells in a dose- and time-dependent manner. After treatment of SGC-7901 cells with PCD, apoptosis appeared in SGC-7901 cells. Morphological changes typical of apoptosis were also observed with LSCM by Annexin V/PI staining, and the cell number of the G0/G1 phase was decreased, while the number of cells in the G2/M phase was increased. Cell cycle-related proteins, such as cyclin B1 and CDK1, were all down-regulated, but caspase-3 and cytochrome C were up-regulated. Moreover, intracellular calcium accumulation occurred in PCD-treated cells. CONCLUSION: G2/M phase arrest and apoptosis induced by PCD are associated with the inhibition of CDK-activating kinase activity and the activation of Ca2+-related mitochondrion pathway in SGC-7901 cells.

  19. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest

    OpenAIRE

    Claassen, Gisela F.; Hann, Stephen R.

    2000-01-01

    c-Myc plays a vital role in cell-cycle progression. Deregulated expression of c-Myc can overcome cell-cycle arrest in order to promote cellular proliferation. Transforming growth factor β (TGFβ) treatment of immortalized human keratinocyte cells inhibits cell-cycle progression and is characterized by down-regulation of c-Myc followed by up-regulation of p21CIP1. A direct role of c-Myc in this pathway was demonstrated by the observation that ectopic expression of c-Myc overcame the cell-cycle ...

  20. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  1. Targeting the cancer cell cycle by cold atmospheric plasma

    Science.gov (United States)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  2. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    Science.gov (United States)

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  3. Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells

    Directory of Open Access Journals (Sweden)

    Wang XM

    2012-02-01

    Full Text Available Lei Wang1,2,*, Haijun Zhang1,2,*, Baoan Chen1,2, Guohua Xia1,2, Shuai Wang1,2, Jian Cheng1,2, Zeye Shao1,2, Chong Gao1,2, Wen Bao1,2, Liang Tian1,2, Yanyan Ren1,2, Peipei Xu1,2, Xiaohui Cai1,2, Ran Liu1,2, Xuemei Wang3 1Department of Hematology and Oncology, Zhongda Hospital, Medical School, 2Faculty of Oncology, Medical School, 3State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, China*These authors contributed equally to this workAbstract: Traditional Chinese medicine is gradually becoming a new source of anticancer drugs. One such example is wogonin, which is cytotoxic to various cancer cell lines in vitro. However, due to its low water solubility, wogonin is restricted to clinical administration. Recently, the application of drug-coated magnetic nanoparticles (MNPs to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. In this study, wogonin was conjugated with the drug delivery system of MNPs by mechanical absorption polymerization to fabricate wogonin-loaded MNPs. It was demonstrated that MNPs could strengthen wogonin-induced cell inhibition, apoptosis, and cell cycle arrest in Raji cells by methylthiazol tetrazolium assay, flow cytometer assay, and nuclear 4',6-diamidino-2-phenylindole staining. Furthermore, the molecular mechanisms of these phenomena were explored by western blot, in which the protein levels of caspase 8 and caspase 3 were increased significantly while those of survivin and cyclin E were decreased significantly in wogonin-MNPs group. These findings suggest that the combination of wogonin and MNPs provides a promising strategy for lymphoma therapy.Keywords: wogonin, magnetic nanoparticles, Raji cell, apoptosis, cell cycle, caspase 8, caspase 3, survivin, cyclin E

  4. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  5. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    International Nuclear Information System (INIS)

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry

  6. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  7. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  8. Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    REG (Regenerating gene) Iα protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPARγ-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG Iα protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG Iα gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPARγ, in PPARγ-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPARγ-antagonist GW9662. Although TZDs did not inhibit the REG Iα gene promoter activity in PPARγ-non-expressing cells, PPARγ overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG Iα gene transcription through a PPARγ-dependent pathway. The TZD-induced REG Iα mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG Iα and PPARγ.

  9. Cell cycle effects for radiosensitivity after heavy ion exposure

    International Nuclear Information System (INIS)

    In order to study the relative contribution of the two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombinational repair (HRR), to the repair of DSBs and non-DSB clustered DNA damage induced by high linear energy transfer (LET) ionizing radiation through the cell cycle, we exposed wild type (WT), NHEJ-deficient, and HRR-deficient Chinese hamster ovary (CHO) cells synchronized by mitotic shake-off to accelerated heavy ions and X-rays. The cell cycle-dependent variation in survival observed in WT cells after X-irradiation was not observed after exposure to 500 MeV/amu iron ions. Non-homologous end joining (NHEJ) and homologous recombinational repair (HRR)-defective cells showed different patterns of cell cycle-dependent radiosensitivity after X-irradiation compared to WT cells, that were likewise significantly attenuated after iron ion exposures. Higher relative biological effectiveness for several other accelerated heavy ions (C, Ne, Si, Ar) of differing LETs was observed for cells exposed in S phase compared to cells exposed in G1. We also observed that HRR deficiency, unlike NHEJ deficiency, did not affect the progression of irradiated G2 cells into mitosis, thus contributing to increased cell killing observed in G2-phase HRR-deficient cells. The HRR-deficient cells showed significantly increased levels of chromatid-type aberrations that correlated with their cell cycle pattern of survival after both X- and iron ion irradiation. Our results suggest that high LET radiation produces not only complex DSBs but also complex non-DSB clustered lesions that specifically require the HRR-mediated repair of these lesions if encountered during DNA replication. In this year, we focused on Fanconi Anemia DNA repair pathway. Only FancA mutant cells showed hypersensitivity to high LET ionizing radiation among other FancC, FancD1, FancD2, and FancG mutant cells. (author)

  10. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    International Nuclear Information System (INIS)

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  11. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  12. Sodium orthovanadate induces the apoptosis of SH-SY5Y cells by inhibiting PIWIL2.

    Science.gov (United States)

    Tian, Xiaohong; Fan, Jun; Hou, Weijian; Bai, Shuling; Ao, Qiang; Tong, Hao

    2016-01-01

    PIWIs have been shown to be abnormally expressed in a variety of cancers and may be important in the maintenance and invasion of cancer cells. The high expression of PIWIL2 contributed to the resistance effect of cisplatin in colon cancer cells, and the knockout of the PIWIL2 gene reduced the aggressive nature and malignant degree of colon cancer cells. Sodium orthovanadate (SOV) is a vanadium compound, and exhibited antineoplastic activity in certain types of human cancer cells, including lung, kidney and prostate cancer cells. However, its effects in human neuroblastoma (NB) cells have not yet been reported. The objective of this study was to investigate the effect of SOV on the apoptosis of NB cells and to explore how PIWIL2 is involved in the mechanism underlying this effect. In the present study, SH‑SY5Y cells were treated with SOV and the optimal concentration was determined for further assays. Cell apoptosis, cell count, viability, the cell cycle, and the expression of PIWIL2 mRNA and protein were then determined. The results showed that SOV could induce cell apoptosis, reduce the percentage of viable cells, induce accumulation of SH‑SY5Y cells at the G2/M and S phase of the cell cycle, and inhibit the expression of PIWIL2 and Bcl‑2 mRNA and protein. The results suggested that the underlying mechanisms may be, at least in part, due to SOV inhibiting the expression of PIWIL2. These findings demonstrated the effect of SOV and supported its further evaluation as a treatment for human NB. PMID:26647781

  13. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.

    Science.gov (United States)

    Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul

    2015-01-01

    Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies. PMID:25854386

  14. EFFECT OF CIS-9, TRANS-11-CONJUGATED LINOLEIC ACID ON CELL CYCLE OF MAMMARY ADENOCARCINOMA CELLS(MCF-7)

    Institute of Scientific and Technical Information of China (English)

    刘家仁; 陈炳卿; 韩晓辉; 杨艳梅; 郑玉梅; 刘瑞海

    2002-01-01

    Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA , cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/wafl).

  15. Creatine kinase in cell cycle regulation and cancer.

    Science.gov (United States)

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  16. Effects of nicotine on cellular proliferation, macromolecular synthesis and cell cycle phase distribution in human and murine cells

    International Nuclear Information System (INIS)

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in established human and murine cells. In the human promyelocytic HL-60 leukemic cells, 3 mM nicotine results in a 50% inhibition of cellular proliferation after 80 h. Nicotine was also found to affect the cell cycle distribution of HL-60 cells. Treatment with 4 mM nicotine for 20 h causes an increase in proportion of Gl-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes cell arrest in the Gl-phase which may in part account for its effects on cell growth. To determine whether nicotine has a primary effect on the uptake/transport of macromolecular precursors into cells, HL-60 cells were treated with 2-6 mM nicotine for 30 h3 at the end of which time cells were labeled with [3H]thymidine, [3H]uridine, [14C]lysine and [35S]methionine, the trichloroacetic acid (TCA) soluble and insoluble radioactivities from each of the labeling conditions were determined. These studies show that nicotine primarily affect the synthesis of proteins

  17. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    Science.gov (United States)

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  18. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues.

    Science.gov (United States)

    Mann, Thomas H; Seth Childers, W; Blair, Jimmy A; Eckart, Michael R; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  19. Nanosecond pulsed electric fields and the cell cycle

    Science.gov (United States)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  20. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  1. Mitochondrial Regulation of Cell Cycle and Proliferation

    OpenAIRE

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José; Carreras, María Cecilia

    2012-01-01

    Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly...

  2. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    Science.gov (United States)

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. PMID:23515613

  3. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Bao-Jun Ren

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS is a selective Aurora kinase A (AURKA inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR, but activation of 5′ AMP-activated protein kinase (AMPK signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells.

  4. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  5. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  6. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  7. Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell functions.

    Directory of Open Access Journals (Sweden)

    Fatemeh Talebian

    Full Text Available CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1⁻/⁻C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1⁻/⁻C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1⁺ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1⁺ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy.

  8. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest

    International Nuclear Information System (INIS)

    Purpose: How EGF receptor (EGFR) inhibition induces cellular radiosensitization and with that increase in tumor control is still a matter of discussion. Since EGFR predominantly regulates cell cycle and proliferation, we studied whether a G1-arrest caused by EGFR inhibition may contribute to these effects. Materials and methods: We analyzed human non-small cell lung cancer (NSCLC) cell lines either wild type (wt) or mutated in p53 (A549, H460, vs. H1299, H3122) and HCT116 cells (p21 wt and negative). EGFR was inhibited by BIBX1382BS, erlotinib or cetuximab; p21 was knocked down by siRNA. Functional endpoints analyzed were cell signaling, proliferation, G1-arrest, cell survival as well as tumor control using an A549 tumor model. Results: When combined with IR, EGFR inhibition enhances the radiation-induced permanent G1 arrest, though solely in cells with intact p53/p21 signaling. This increase in G1-arrest was always associated with enhanced cellular radiosensitivity. Strikingly, this effect was abrogated when cells were re-stimulated, suggesting the initiation of dormancy. In line with this, only a small non-significant increase in tumor control was observed for A549 tumors treated with fractionated RT and EGFR inhibition. Conclusion: For NSCLC cells increase in radiosensitivity by EGFR inhibition results from enhanced G1-arrest. However, this effect does not lead to improved tumor control because cells can be released from this arrest by re-stimulation

  9. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus;

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.......org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are...

  10. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition

    International Nuclear Information System (INIS)

    Background and purpose: Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Material and methods: Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Results: Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. Conclusion: The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization

  11. Cell cycle effects for radiosensitivity after heavy ion exposure

    International Nuclear Information System (INIS)

    In order to study the relative contribution of the two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombinational repair (HRR), to the repair of DSBs and non-DSB clustered DNA damage induced by high linear energy transfer (LET) ionizing radiation through the cell cycle, we exposed wild type (WT), NHEJ-deficient, and HRR-deficient Chinese hamster ovary (CHO) cells synchronized by mitotic shake-off to accelerated heavy ions and X-rays. The cell cycle-dependent variation in survival observed in WT cells after X-irradiation was not observed after exposure to 500 MeV/amu iron ions. Non-homologous end joining (NHEJ) and homologous recombinational repair (HRR)-defective cells showed different patterns of cell cycle-dependent radiosensitivity after X-irradiation compared to WT cells, that were likewise significantly attenuated after iron ion exposures. Higher relative biological effectiveness for several other accelerated heavy ions (C, Ne, Si, Ar) of differing LETs was observed for cells exposed in S phase compared to cells exposed in G1. We also observed that HRR deficiency, unlike NHEJ deficiency, did not affect the progression of irradiated G2 cells into mitosis, thus contributing to increased cell killing observed in G2-phase HRR-deficient cells. The HRR-deficient cells showed significantly increased levels of chromatid-type aberrations that correlated with their cell cycle pattern of survival after both X- and iron ion irradiation. Our results suggest that high LET radiation produces not only complex DSBs but also complex non-DSB clustered lesions that specifically require the HRR-mediated repair of these lesions if encountered during DNA replication. (author)

  12. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants.

    OpenAIRE

    Fobert, P R; Coen, E S; Murphy, G. J.; Doonan, J H

    1994-01-01

    Transcripts from five cell cycle related genes accumulate in isolated cells dispersed throughout the actively dividing regions of plant meristems. We propose that this pattern reflects gene expression during particular phases of the cell division cycle. The high proportion of isolated cells suggests that synchrony between daughter cells is rapidly lost following mitosis. This is the first time that such a cell specific expression pattern has been described in a higher organism. Counterstainin...

  13. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    Science.gov (United States)

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings. PMID:16258277

  14. Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lv-Cui Zhao

    2015-11-01

    Full Text Available Evodiamine (EVO exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8. Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53, Bcl-2 Associated X protein (Bax, B cell CLL/lymphoma-2 (Bcl-2, phosphoglucose isomerase (PGI, phosphorylated signal transducers and activators of transcription 3 (p-STAT3 and matrix metalloproteinase 3 (MMP3 were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.

  15. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  16. Bioenergetic coupling between membrane transport systems and biosynthetic pathways essential for cell cycle progression

    International Nuclear Information System (INIS)

    Recently, it has been shown that there exists a point in the cell cycle (approximately 2 h prior to S phase entry) when (Na+/K+)ATPase pump activity is no longer needed for progression through the cycle. These data suggests that pump activity is critical in the biosynthetic processes which enables the cell to proceed through the G1 phase. A scheme is proposed which is currently being tested that (Na+/K+)ATPase pump activity serves as the driving force in the regulation of other membrane transport processes critical for cell proliferation. For example, in post-confluent quiescent C3H-10T1/2 fibroblasts, when [K+]/sub o/ is lowered just below the K/sub m/ of the pump for K+ there is a 10-fold increase in 3H-uridine uptake into both acid soluble and insoluble cell fractions. By modulation of the pump in this manner, glucose utilization is enhanced whereas inhibition of the pump by ouabain suppresses glucose utilization. In both methods of affecting the pump, 3H-leucine incorporation is inhibited. Electron acceptors that influence the redox state of the cell have been shown to both stimulate or inhibit cell cycle progression. Under conditions where [K+]/sub o/ is lowered, the nucleoside uptake responses observed were modified by electron acceptors depending on the ability to oxidize NAD(P)H directly or to interact with a cytochrome-like component, (e.g. phenazine methosulfate) reversed the enhanced uridine uptake and p-phenylene diamine further enhanced the uridine uptake response. These findings suggest that a plasma membrane redox system (presumably cyt-c like) is linked to nucleoside transport which is subject to (Na+/K+)ATPase activity

  17. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide

    DEFF Research Database (Denmark)

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry;

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of...... particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the...... mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has...

  18. Parafibromin inhibits cancer cell growth and causes G1 phase arrest

    International Nuclear Information System (INIS)

    The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role

  19. Downregulation of cell division cycle 25 homolog C reduces the radiosensitivity and proliferation activity of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yin, Yachao; Dou, Xiaoyan; Duan, Shimiao; Zhang, Lei; Xu, Quanjing; Li, Hongwei; Li, Duojie

    2016-09-30

    Radiation therapy is one of the most important methods of contemporary cancer treatment. Cells in the G2 and M phases are more sensitive to radiation therapy, and cell division cycle 25 homolog C (CDC25C) is essential in shifting the cell cycle between these two phases. In this study, the knockdown of CDC25C in human esophageal squamous carcinoma EC9706 cells was mediated by transfecting shRNA against human CDC25C-subcloning into pGV248. The levels of CDC25C mRNA and protein expression were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, respectively. Moreover, cell proliferation and radiosensitivity were measured. Stable CDC25C-knockdown EC9706 cell lines were successfully established. Furthermore, the proliferation of both control and CDC25C-shRNA-EC9706 cells was inhibited after the cells were treated with increasing X-ray doses, and the proliferation of the control cells was affected more significantly (p<0.05). Moreover, cell colony formation assays allowed us to reach the same conclusion. Taken together, our experiments demonstrated that the knockdown of CDC25C can reduce both the radiotherapy sensitivity and the proliferation activity of EC9706 cells. Thus, CDC25C might be a potential biomarker for radiotherapy treatment. PMID:27188256

  20. 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB 126) deregulates proliferation of contact-inhibited rat liver epithelial 'stem-like' cells via aryl hydrocarbon receptor - effects on cell cycle regulators, cell-to-cell communication and interactions with other signaling pathways

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Zatloukalová, Jiřina; Umannová, Lenka; Bryja, Vítězslav; Krčmář, P.; Kozubík, Alois; Dietrich, C.; Machala, M.

    Seattle, 2008. s. 250. [47th Annual Meeting of the Society of Toxicology. 16.03.2008-20.03.2008, Seattle] R&D Projects: GA ČR(CZ) GA524/06/0517 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : AhR * cell proliferation * tumor promotion Subject RIV: BO - Biophysics

  1. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    Science.gov (United States)

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  2. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  3. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  4. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-lin LIU; Li HUO; Lei WANG

    2004-01-01

    AIM: To study the effect of octreotide on cell proliferation and apoptosis in different hepatocellular carcinoma (HCC) cells and hepatocytes. METHODS: The proliferation of HCC cells (HepG2, SMMC-7721) and hepatocytes (L-02) was determined by MTT assay. Apoptosis was detected either by fluorescent staining, transmission electron microscopy or flow cytometry. The content of AFP in the supernatant of cultured HCC cells was determined by electrochemiluminescence immunoassay. The expression of SSTR subtypes was identified by RT-PCR.RESULTS: The proliferation of HCC cells and L-02 cells was inhibited significantly by octreotide (0.25, 0.5, 1.0,2.0 and 4.0 mg/L). However, the apoptosis of HCC cells markedly increased in a concentration-dependent manner.Both the apoptosis index and the percentage of apoptotic cells in L-02 cells were significantly lower than those of HepG2 and SMMC-7721 cells. The content of AFP in the supematant of cultured HepG2 cells treated with octreotide was also statistically reduced. Furthermore, SSTR2 and SSTR4 were positive in both the hepatocellular carcinoma cells and in the L-02 cells. SSTR3 was only expressed in the two heptatocellular carcinoma cells, and SSTR5 was found in the SMMC-7721 cells. No SSTR1 was detected either in HCC cells or L-02 cells. CONCLUSIONS:Apoptosis induction is a major mechanism of octreotide inhibition on hepatocellular cells. SSTR3 is expressed in the HCC cells, but not in the L-02 cells, which suggests a molecular basis for the HCC-selective effects of octreotide.

  5. Inhibition of sphingolipid metabolism enhances resveratrol chemotherapy in human gastric cancer cells.

    Science.gov (United States)

    Shin, Kyong-Oh; Park, Nam-Young; Seo, Cho-Hee; Hong, Seon-Pyo; Oh, Ki-Wan; Hong, Jin-Tae; Han, Sang-Kil; Lee, Yong-Moon

    2012-09-01

    Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol (100 μM) for 24 hr induced cell death and cell cycle arrest in gastric cancer cells. Exposure to the combination of resveratrol and dimethylsphingosine (DMS) increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity. Specifically, DHCer accumulated in a resveratrol concentration-dependent manner in SNU-1 and HT-29 cells, but not in SNU-668 cells. LC-MS/MS analysis showed that specific DHCer species containing C24:0, C16:0, C24:1, and C22:0 fatty acids chain were increased by up to 30-fold by resveratrol, indicating that resveratrol may partially inhibit DHCer desaturase. Indeed, resveratrol mildly inhibited DHCer desaturase activity compared to the specific inhibitor GT-11 or to retinamide (4-HPR); however, in SNU-1 cells resveratrol alone exhibited a typical cell cycle arrest pattern, which GT-11 did not alter, indicating that inhibition of DHCer desaturase is not essential to the cytotoxicity induced by the combination of resveratrol and sphingolipid metabolites. Resveratrol-induced p53 expression strongly correlated with the enhancement of cytotoxicity observed upon combination of resveratrol with DMS or 4-HPR. Taken together, these results show that DHCer accumulation is a novel lipid biomarker of resveratrol-induced cytotoxicity in human gastric cancer cells. PMID:24009836

  6. Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    OpenAIRE

    Talebian, Fatemeh; Liu, Jin-Qing; Liu, Zhenzhen; Khattabi, Mazin; He, Yukai; Ganju, Ramesh; Bai, Xue-feng

    2012-01-01

    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16...

  7. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture.

    Science.gov (United States)

    Musser, Jeffrey M B; Heatley, J Jill; Koinis, Anastasia V; Suchodolski, Paulette F; Guo, Jianhua; Escandon, Paulina; Tizard, Ian R

    2015-01-01

    Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 μg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture. PMID:26222794

  8. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  9. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  10. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  11. Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle.

    OpenAIRE

    O'Neill, E A; Bender, R A

    1987-01-01

    Net phospholipid synthesis is discontinuous during the Caulobacter crescentus cell cycle with synthesis restricted to two discrete periods. The first period of net phospholipid synthesis begins in the swarmer cell shortly after cell division and ends at about the time when DNA replication initiates. The second period of phospholipid synthesis begins at a time when DNA replication is about two-thirds complete and ends at about the same time that DNA replication terminates. Thus, considerable D...

  12. Cell cycle related /sup 125/IUDR-induced-division delay

    International Nuclear Information System (INIS)

    A series of experiments were run to determine if /sup 125/I-decays, in /sup 125/IUdR labeled DNA, specifically accumulated at 1, 3, 5, 7 and 9 hours after plating labeled mitotic cells caused a change in the rate or time of cell entry into mitosis. To accomplish this, a pool of labeled mitotic cells was selected in mitosis and plated in replicate flasks. /sup 125/I decays were accumulated in groups of cells by cooling (40C) for 2 hours starting at the designated times. After rewarding, colcemid was added to arrest cells in mitosis. The rate of cell progression into mitosis for each cell cycle time of accumulation was determined by scoring the mitotic index of cells sampled as a function of time after addition of the colcemid. The results are summarized: (1) Decays from /sup 125/I in /sup 125/I(UdR) labeled DNA reduced the rate of cell progression into mitosis and delayed the time of initiation of mitosis. (2) The reduced rate of progression and the delayed time of initiation of mitosis were independent of the cell cycle time that /sup 125/I-decays were accumulated. (3) The reduced rate of progression after cell cycle accumulation of /sup 125/I decay was statistically indistinguishable from the corresponding controls. (4) The delayed initiation of mitosis after specific cell cycle accumulation of /sup 125/I- decays was greater than the corresponding control. The relationship of these data to DNA and non-DNA division delay target(s) is emphasized

  13. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1

    Directory of Open Access Journals (Sweden)

    Dong L

    2015-12-01

    Full Text Available Liwei Dong,1 Hongge Wang,1 Jiajing Niu,1 Mingwei Zou,2 Nuoting Wu,1 Debin Yu,1 Ye Wang,1 Zhihua Zou11Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People’s Republic of China; 2Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA Abstract: Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine, while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. Keywords: Echinacoside, MTH1, 8-oxoG, DNA damage, apoptosis, cell cycle arrest

  14. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    International Nuclear Information System (INIS)

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G1 phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G1-phase delay in ataxia telangiectasia cells is accompanied by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G1/S-phase delay. When the progress of irradiated G1-phase cells was followed into the subsequent G2 and G1 phases ataxia telangiectasia cells showed a more pronounced accumulation in G2 phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G2 phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G1 and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs

  15. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  16. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  17. Regulation of apoptosis and cell cycle in irradiated mouse brain

    International Nuclear Information System (INIS)

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body γ -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34cdc2 were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0±0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue

  18. Pluripotent Stem Cell Protein Sox2 Confers Sensitivity to LSD1 Inhibition in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    2013-10-01

    Full Text Available Gene amplification of Sox2 at 3q26.33 is a common event in squamous cell carcinomas (SCCs of the lung and esophagus, as well as several other cancers. Here, we show that the expression of LSD1/KDM1 histone demethylase is significantly elevated in Sox2-expressing lung SCCs. LSD1-specific inhibitors selectively impair the growth of Sox2-expressing lung SCCs, but not that of Sox2-negative cells. Sox2 expression is associated with sensitivity to LSD1 inhibition in lung, breast, ovarian, and other carcinoma cells. Inactivation of LSD1 reduces Sox2 expression, promotes G1 cell-cycle arrest, and induces genes for differentiation by selectively modulating the methylation states of histone H3 at lysines 4 (H3K4 and 9 (H3K9. Reduction of Sox2 further suppresses Sox2-dependent lineage-survival oncogenic potential, elevates trimethylation of histone H3 at lysine 27 (H3K27 and enhances growth arrest and cellular differentiation. Our studies suggest that LSD1 serves as a selective epigenetic target for therapy in Sox2-expressing cancers.

  19. Human cytochrome c enters murine J774 cells and causes G1 and G2/M cell cycle arrest and induction of apoptosis

    International Nuclear Information System (INIS)

    Cytochrome c is well known as a carrier of electrons during respiration. Current evidence indicates that cytochrome c also functions as a major component of apoptosomes to induce apoptosis in eukaryotic cells as well as an antioxidant. More recently, a prokaryotic cytochrome c, cytochrome c 551 from Pseudomonas aeruginosa, has been shown to enter in mammalian cells such as the murine macrophage-like J774 cells and causes inhibition of cell cycle progression. Much less is known about such functions by mammalian cytochromes c, particularly the human cytochrome c. We now report that similar to P. aeruginosa cytochrome c 551, the purified human cytochrome c protein can enter J774 cells and induce cell cycle arrest at the G1 to S phase, as well as at the G2/M phase at higher concentrations. Unlike P. aeruginosa cytochrome c 551 which had no effect on the induction of apoptosis, human cytochrome c induces significant apoptosis and cell death in J774 cells, presumably through inhibition of the cell cycle at the G2/M phase. When incubated with human breast cancer MCF-7 and normal mammary epithelial cell line MCF-10A1 cells, human cytochrome c entered in both types of cells but induced cell death only in the normal MCF-10A1 cells. The ability of human cytochrome c to enter J774 cells was greatly reduced at 4 deg. C, suggesting energy requirement in the entry process

  20. Geldanamycin inhibits proliferation and motility of Her2/neu-overexpressing SKBr3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy of GA on Her2/neu tyrosine kinase overexpressing human breast cancer cell line SKBr3. Methods The degradation of Her2/neu tyrosine kinase was analyzed by Western blotting, the proliferation index was determined by MTT assay, cell cycle distribution was detected by flow cytometry, Cyclin D1 mRNA ...

  1. Effects of nicotine on cellular proliferation, cell cycle phase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukaemia cells

    International Nuclear Information System (INIS)

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in the human promyelocytic HL-60 leukemia cells, with 4 mM nicotine resulting in a 50% inhibition of cellular proliferation after 48-50h. Accompanying the anticellular effect of nicotine is a significant change in the cell cycle distribution of HL-60 cells. For example, treatment with 4 mM nicotine for 20h causes an increase in the proportion of G1-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes partial cell arrest in the G-1 phase which may in part account for its effects on cell growth. To determine whether nicotine changes the cellular uptake/transport to macromolecular precursors, HL-60 cells were treated with 216 mM nicotine for 30h, at the end of which time cells were labelled with (3H)thymidine, (3H)uridine, (14C)lysine and(35S)methionine, the trichloroacetic acid soluble and insoluble radioactivities from each of the labelling conditions were determined. These studies show that nicotine mainly affects the ''de novo synthesis'' of proteins. (author)

  2. Butyrate-induced GPR41 Activation Inhibits Histone Acetylation and Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Jin Wu; Zongli Zhou; Yinghe Hu; Suzhen Dong

    2012-01-01

    Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41 (GPR41).In addition,it is an inhibitor of histone deacetylase (HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the Gl-stage,while its activation by butyrate can cause more cells to pass the Gl checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.

  3. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  4. Thermal stress cycling of GaAs solar cells

    Science.gov (United States)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  5. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  6. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim; Hasemann, Marie S; Anderson, Kristina; Damgaard, Inge; Jacobsen, Sten Eirik W; Nerlov, Claus

    2005-01-01

    dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid...

  7. Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV-I oncoprotein Tax.

    Science.gov (United States)

    Darwiche, N; Abou-Lteif, G; Bazarbachi, A

    2007-02-01

    N-(4-hydroxyphenyl)retinamide (HPR) is a synthetic retinoid that inhibits growth of many human tumor cells, including those resistant to natural retinoids. HPR is an effective chemopreventive agent for prostate, cervix, breast, bladder, skin and lung cancers, and has shown promise for the treatment of neuroblastomas. We have previously shown that HPR inhibits proliferation and induces apoptosis of human T-cell lymphotropic virus type I (HTLV-I)-associated adult T-cell leukemia (ATL) and HTLV-I-negative malignant T cells, whereas no effect is observed on normal lymphocytes. In this report, we identified HPR-induced reactive oxygen species (ROS) generation as the key mediator of cell cycle arrest and apoptosis of malignant T cells. HPR treatment of HTLV-I-negative malignant T cells was associated with a rapid and progressive ROS accumulation. Pre-treatment with the antioxidants vitamin C and dithiothreitol inhibited ROS generation, prevented HPR-induced ceramide accumulation, cell cycle arrest, cytochrome c release, caspase-activation and apoptosis. Therefore, anti-oxidants protected malignant T cells from HPR-induced growth inhibition. The expression of the HTLV-I oncoprotein Tax abrogated HPR-induced ROS accumulation in HTLV-I-infected cells, which explains their lower sensitivity to HPR. Defining the mechanism of free radical induction by HPR may support a potential therapeutic role for this synthetic retinoid in ATL and HTLV-I-negative T-cell lymphomas. PMID:17122865

  8. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  9. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  10. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren;

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... are often mirrored by changes in other layers, implying that independent layers of control coevolve. By taking a bird's eye view of the cell cycle, we demonstrate how the modular organization of cellular systems possesses a built-in flexibility, which allows evolution to find many different solutions...

  11. Modulation of cell cycle regulatory protein expression and suppression of tumor growth by mimosine in nude mice.

    Science.gov (United States)

    Chang, H C; Weng, C F; Yen, M H; Chuang, L Y; Hung, W C

    2000-10-01

    Our previous results demonstrated that the plant amino acid mimosine blocked cell cycle progression and suppressed proliferation of human lung cancer cells in vitro by multiple mechanisms. Inhibition of cyclin D1 expression or induction of cyclin-dependent kinase inhibitor p21WAF1 expression was found in mimosine-treated lung cancer cells. However, whether mimosine may modulate the expression of these cell cycle regulatory proteins and suppress tumor growth in vivo is unknown. In this study, we examined the anti-cancer effect of mimosine on human H226 lung cancer cells grown in nude mice. Our results demonstrated that mimosine inhibits cyclin D1 and induces p21WAF1 expression in vivo. Furthermore, results of TUNEL analysis indicated that mimosine may induce apoptosis to suppress tumor growth in nude mice. Collectively, these results suggest that mimosine exerts anti-cancer effect in vivo and might be useful in the therapy of lung cancer. PMID:10995875

  12. Multiple Defects of Cell Cycle Checkpoints in U937-ASPI3K, an U937 Cell Mutant Stably Expressing Anti-Sense ATM Gene cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    (Ataxia-telangiectasia mutated gene (ATM) functions in control of cell cycle checkpoints in responding to DNA damage and protects cells from undergoing apoptosis. Knock-out within tumor cells of endogenous ATM will achieve therapeutic benefits and nable a better understanding of the decisive mechanisms of cell death or survival in response to DNA damaging agents. ) In present paper, we sought to characterize the cell cycle checkpoint profiles in U937-ASPI3K, a U937 cell mutant that was previously established with endogenous ATM knock-out phenotype. Synchronized U937-ASPI3K was exposed to 137Cs irradiation, G1, S, G2/M cell cycle checkpoint profiles were evaluated by determining cell cycle kinetics, p53/p21 protein, cyclin dependent kinase 2 (CDK2) and p34CDC2 kinase activity in response to irradiation. U937-ASPI3K exhibited multiple defects in cell cycle checkpoints as defined by failing to arrest cells upon irradiation. The accumulation of cellular p53/p21 protein and inhibition of CDK kinase was also abolished in U937-ASPI3K. It was concluded that the stable expression of anti-sense PI3K cDNA fragment completely abolished multiple cell cycle checkpoints in U937-ASPI3K, and hence U937-ASPI3K with an AT-like phenotype could serves as a valuable model system for investigating the signal transduction pathway in responding to DNA damaging-based cancer therapy.

  13. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  14. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine,